mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-02 09:58:24 +01:00
Dressed davidson with CSF
This commit is contained in:
parent
cf3f510704
commit
d84e3fa236
@ -1,4 +1,3 @@
|
||||
|
||||
BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
|
@ -21,133 +21,201 @@ END_PROVIDER
|
||||
BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ]
|
||||
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ]
|
||||
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ]
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/values of the CI matrix
|
||||
END_DOC
|
||||
implicit none
|
||||
double precision :: ovrlp,u_dot_v
|
||||
integer :: i_good_state
|
||||
integer, allocatable :: index_good_state_array(:)
|
||||
logical, allocatable :: good_state_array(:)
|
||||
double precision, allocatable :: s2_values_tmp(:)
|
||||
integer :: i_other_state
|
||||
double precision, allocatable :: eigenvectors(:,:), eigenvectors_s2(:,:), eigenvalues(:)
|
||||
integer :: i_state
|
||||
double precision :: e_0
|
||||
integer :: i,j,k,mrcc_state
|
||||
double precision, allocatable :: s2_eigvalues(:)
|
||||
double precision, allocatable :: e_array(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
|
||||
PROVIDE threshold_davidson nthreads_davidson
|
||||
! Guess values for the "N_states" states of the CI_eigenvectors_dressed
|
||||
do j=1,min(N_states,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j=min(N_states,N_det)+1,N_states_diag
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if (diag_algorithm == "Davidson") then
|
||||
|
||||
do j=1,min(N_states,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
logical :: converged
|
||||
converged = .False.
|
||||
call davidson_diag_HS2(psi_det,CI_eigenvectors_dressed, CI_eigenvectors_s2_dressed,&
|
||||
size(CI_eigenvectors_dressed,1), CI_electronic_energy_dressed,&
|
||||
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
|
||||
|
||||
else if (diag_algorithm == "Lapack") then
|
||||
|
||||
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
|
||||
allocate (eigenvalues(N_det))
|
||||
|
||||
call lapack_diag(eigenvalues,eigenvectors, &
|
||||
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
|
||||
CI_electronic_energy_dressed(:) = 0.d0
|
||||
if (s2_eig) then
|
||||
i_state = 0
|
||||
allocate (s2_eigvalues(N_det))
|
||||
allocate(index_good_state_array(N_det),good_state_array(N_det))
|
||||
good_state_array = .False.
|
||||
|
||||
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
|
||||
N_det,size(eigenvectors,1))
|
||||
do j=1,N_det
|
||||
! Select at least n_states states with S^2 values closed to "expected_s2"
|
||||
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
|
||||
i_state +=1
|
||||
index_good_state_array(i_state) = j
|
||||
good_state_array(j) = .True.
|
||||
endif
|
||||
if(i_state.eq.N_states) then
|
||||
exit
|
||||
endif
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/values of the CI matrix
|
||||
END_DOC
|
||||
implicit none
|
||||
double precision :: ovrlp,u_dot_v
|
||||
integer :: i_good_state
|
||||
integer, allocatable :: index_good_state_array(:)
|
||||
logical, allocatable :: good_state_array(:)
|
||||
double precision, allocatable :: s2_values_tmp(:)
|
||||
integer :: i_other_state
|
||||
double precision, allocatable :: eigenvectors(:,:), eigenvectors_s2(:,:), eigenvalues(:)
|
||||
integer :: i_state
|
||||
double precision :: e_0
|
||||
integer :: i,j,k,mrcc_state
|
||||
double precision, allocatable :: s2_eigvalues(:)
|
||||
double precision, allocatable :: e_array(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
logical :: converged
|
||||
logical :: do_csf
|
||||
|
||||
PROVIDE threshold_davidson nthreads_davidson
|
||||
! Guess values for the "N_states" states of the CI_eigenvectors_dressed
|
||||
do j=1,min(N_states,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j=min(N_states,N_det)+1,N_states_diag
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do_csf = s2_eig .and. only_expected_s2 .and. csf_based
|
||||
|
||||
if (diag_algorithm == "Davidson") then
|
||||
|
||||
do j=1,min(N_states,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
if(i_state .ne.0)then
|
||||
! Fill the first "i_state" states that have a correct S^2 value
|
||||
do j = 1, i_state
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,index_good_state_array(j))
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(index_good_state_array(j))
|
||||
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j))
|
||||
enddo
|
||||
i_other_state = 0
|
||||
do j = 1, N_det
|
||||
if(good_state_array(j))cycle
|
||||
i_other_state +=1
|
||||
if(i_state+i_other_state.gt.n_states_diag)then
|
||||
exit
|
||||
endif
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,i_state+i_other_state) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(i_state+i_other_state) = eigenvalues(j)
|
||||
CI_eigenvectors_s2_dressed(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state)
|
||||
enddo
|
||||
else
|
||||
print*,''
|
||||
print*,'!!!!!!!! WARNING !!!!!!!!!'
|
||||
print*,' Within the ',N_det,'determinants selected'
|
||||
print*,' and the ',N_states_diag,'states requested'
|
||||
print*,' We did not find any state with S^2 values close to ',expected_s2
|
||||
print*,' We will then set the first N_states eigenvectors of the H matrix'
|
||||
print*,' as the CI_eigenvectors_dressed'
|
||||
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
|
||||
print*,''
|
||||
do j=1,min(N_states_diag,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(j)
|
||||
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(j)
|
||||
enddo
|
||||
endif
|
||||
deallocate(index_good_state_array,good_state_array)
|
||||
deallocate(s2_eigvalues)
|
||||
enddo
|
||||
converged = .False.
|
||||
if (do_csf) then
|
||||
call davidson_diag_H_csf(psi_det,CI_eigenvectors_dressed, &
|
||||
size(CI_eigenvectors_dressed,1),CI_electronic_energy_dressed, &
|
||||
N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
|
||||
else
|
||||
call u_0_S2_u_0(CI_eigenvectors_s2_dressed,eigenvectors,N_det,psi_det,N_int,&
|
||||
min(N_det,N_states_diag),size(eigenvectors,1))
|
||||
! Select the "N_states_diag" states of lowest energy
|
||||
do j=1,min(N_det,N_states_diag)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(j)
|
||||
enddo
|
||||
call davidson_diag_HS2(psi_det,CI_eigenvectors_dressed, CI_eigenvectors_s2_dressed,&
|
||||
size(CI_eigenvectors_dressed,1), CI_electronic_energy_dressed,&
|
||||
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
|
||||
endif
|
||||
deallocate(eigenvectors,eigenvalues)
|
||||
endif
|
||||
|
||||
integer :: N_states_diag_save
|
||||
N_states_diag_save = N_states_diag
|
||||
do while (.not.converged)
|
||||
double precision, allocatable :: CI_electronic_energy_tmp (:)
|
||||
double precision, allocatable :: CI_eigenvectors_tmp (:,:)
|
||||
double precision, allocatable :: CI_s2_tmp (:)
|
||||
|
||||
N_states_diag *= 2
|
||||
TOUCH N_states_diag
|
||||
|
||||
if (do_csf) then
|
||||
|
||||
allocate (CI_electronic_energy_tmp (N_states_diag) )
|
||||
allocate (CI_eigenvectors_tmp (N_det,N_states_diag) )
|
||||
|
||||
CI_electronic_energy_tmp(1:N_states_diag_save) = CI_electronic_energy_dressed(1:N_states_diag_save)
|
||||
CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) = CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save)
|
||||
|
||||
call davidson_diag_H_csf(psi_det,CI_eigenvectors_tmp, &
|
||||
size(CI_eigenvectors_tmp,1),CI_electronic_energy_tmp, &
|
||||
N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
|
||||
|
||||
CI_electronic_energy_dressed(1:N_states_diag_save) = CI_electronic_energy_tmp(1:N_states_diag_save)
|
||||
CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save) = CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save)
|
||||
|
||||
deallocate (CI_electronic_energy_tmp)
|
||||
deallocate (CI_eigenvectors_tmp)
|
||||
|
||||
else
|
||||
|
||||
allocate (CI_electronic_energy_tmp (N_states_diag) )
|
||||
allocate (CI_eigenvectors_tmp (N_det,N_states_diag) )
|
||||
allocate (CI_s2_tmp (N_states_diag) )
|
||||
|
||||
CI_electronic_energy_tmp(1:N_states_diag_save) = CI_electronic_energy_dressed(1:N_states_diag_save)
|
||||
CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) = CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save)
|
||||
CI_s2_tmp(1:N_states_diag_save) = CI_eigenvectors_s2_dressed(1:N_states_diag_save)
|
||||
|
||||
call davidson_diag_HS2(psi_det,CI_eigenvectors_tmp, CI_s2_tmp, &
|
||||
size(CI_eigenvectors_tmp,1),CI_electronic_energy_tmp, &
|
||||
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
|
||||
|
||||
CI_electronic_energy_dressed(1:N_states_diag_save) = CI_electronic_energy_tmp(1:N_states_diag_save)
|
||||
CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save) = CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save)
|
||||
CI_eigenvectors_s2_dressed(1:N_states_diag_save) = CI_s2_tmp(1:N_states_diag_save)
|
||||
|
||||
deallocate (CI_electronic_energy_tmp)
|
||||
deallocate (CI_eigenvectors_tmp)
|
||||
deallocate (CI_s2_tmp)
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
if (N_states_diag > N_states_diag_save) then
|
||||
N_states_diag = N_states_diag_save
|
||||
TOUCH N_states_diag
|
||||
endif
|
||||
|
||||
else if (diag_algorithm == "Lapack") then
|
||||
|
||||
print *, 'Diagonalization of H using Lapack'
|
||||
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
|
||||
allocate (eigenvalues(N_det))
|
||||
|
||||
call lapack_diag(eigenvalues,eigenvectors, &
|
||||
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
|
||||
CI_electronic_energy_dressed(:) = 0.d0
|
||||
if (s2_eig) then
|
||||
i_state = 0
|
||||
allocate (s2_eigvalues(N_det))
|
||||
allocate(index_good_state_array(N_det),good_state_array(N_det))
|
||||
good_state_array = .False.
|
||||
|
||||
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
|
||||
N_det,size(eigenvectors,1))
|
||||
do j=1,N_det
|
||||
! Select at least n_states states with S^2 values closed to "expected_s2"
|
||||
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
|
||||
i_state +=1
|
||||
index_good_state_array(i_state) = j
|
||||
good_state_array(j) = .True.
|
||||
endif
|
||||
if(i_state.eq.N_states) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if(i_state .ne.0)then
|
||||
! Fill the first "i_state" states that have a correct S^2 value
|
||||
do j = 1, i_state
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,index_good_state_array(j))
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(index_good_state_array(j))
|
||||
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j))
|
||||
enddo
|
||||
i_other_state = 0
|
||||
do j = 1, N_det
|
||||
if(good_state_array(j))cycle
|
||||
i_other_state +=1
|
||||
if(i_state+i_other_state.gt.n_states_diag)then
|
||||
exit
|
||||
endif
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,i_state+i_other_state) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(i_state+i_other_state) = eigenvalues(j)
|
||||
CI_eigenvectors_s2_dressed(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state)
|
||||
enddo
|
||||
else
|
||||
print*,''
|
||||
print*,'!!!!!!!! WARNING !!!!!!!!!'
|
||||
print*,' Within the ',N_det,'determinants selected'
|
||||
print*,' and the ',N_states_diag,'states requested'
|
||||
print*,' We did not find any state with S^2 values close to ',expected_s2
|
||||
print*,' We will then set the first N_states eigenvectors of the H matrix'
|
||||
print*,' as the CI_eigenvectors_dressed'
|
||||
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
|
||||
print*,''
|
||||
do j=1,min(N_states_diag,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(j)
|
||||
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(j)
|
||||
enddo
|
||||
endif
|
||||
deallocate(index_good_state_array,good_state_array)
|
||||
deallocate(s2_eigvalues)
|
||||
else
|
||||
call u_0_S2_u_0(CI_eigenvectors_s2_dressed,eigenvectors,N_det,psi_det,N_int,&
|
||||
min(N_det,N_states_diag),size(eigenvectors,1))
|
||||
! Select the "N_states_diag" states of lowest energy
|
||||
do j=1,min(N_det,N_states_diag)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(j)
|
||||
enddo
|
||||
endif
|
||||
deallocate(eigenvectors,eigenvalues)
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user