fixed bug in vectorized integ

This commit is contained in:
AbdAmmar 2022-12-10 14:14:45 +01:00
parent 06a2f32b1d
commit d731e31934
17 changed files with 1393 additions and 150 deletions

View File

@ -991,4 +991,266 @@ D 1
1 1.3743000 1.0000000
D 1
1 0.0537000 1.00000000
$END
COPPER
S 20
1 5.430321E+06 7.801026E-06
2 8.131665E+05 6.065666E-05
3 1.850544E+05 3.188964E-04
4 5.241466E+04 1.344687E-03
5 1.709868E+04 4.869050E-03
6 6.171994E+03 1.561013E-02
7 2.406481E+03 4.452077E-02
8 9.972584E+02 1.103111E-01
9 4.339289E+02 2.220342E-01
10 1.962869E+02 3.133739E-01
11 9.104280E+01 2.315121E-01
12 4.138425E+01 7.640920E-02
13 1.993278E+01 1.103818E-01
14 9.581891E+00 1.094372E-01
15 4.234516E+00 1.836311E-02
16 1.985814E+00 -6.043084E-04
17 8.670830E-01 5.092245E-05
18 1.813390E-01 -5.540730E-05
19 8.365700E-02 3.969482E-05
20 3.626700E-02 -1.269538E-05
S 20
1 5.430321E+06 -4.404706E-06
2 8.131665E+05 -3.424801E-05
3 1.850544E+05 -1.801238E-04
4 5.241466E+04 -7.600455E-04
5 1.709868E+04 -2.759348E-03
6 6.171994E+03 -8.900970E-03
7 2.406481E+03 -2.579378E-02
8 9.972584E+02 -6.623861E-02
9 4.339289E+02 -1.445927E-01
10 1.962869E+02 -2.440110E-01
11 9.104280E+01 -2.504837E-01
12 4.138425E+01 2.852577E-02
13 1.993278E+01 5.115874E-01
14 9.581891E+00 4.928061E-01
15 4.234516E+00 8.788437E-02
16 1.985814E+00 -5.820281E-03
17 8.670830E-01 2.013508E-04
18 1.813390E-01 -5.182553E-04
19 8.365700E-02 3.731503E-04
20 3.626700E-02 -1.193171E-04
S 20
1 5.430321E+06 9.704682E-07
2 8.131665E+05 7.549245E-06
3 1.850544E+05 3.968892E-05
4 5.241466E+04 1.677200E-04
5 1.709868E+04 6.095101E-04
6 6.171994E+03 1.978846E-03
7 2.406481E+03 5.798049E-03
8 9.972584E+02 1.534158E-02
9 4.339289E+02 3.540484E-02
10 1.962869E+02 6.702098E-02
11 9.104280E+01 8.026945E-02
12 4.138425E+01 -1.927231E-02
13 1.993278E+01 -3.160129E-01
14 9.581891E+00 -4.573162E-01
15 4.234516E+00 1.550841E-01
16 1.985814E+00 7.202872E-01
17 8.670830E-01 3.885122E-01
18 1.813390E-01 1.924326E-02
19 8.365700E-02 -7.103807E-03
20 3.626700E-02 3.272906E-03
S 20
1 5.430321E+06 -1.959354E-07
2 8.131665E+05 -1.523472E-06
3 1.850544E+05 -8.014808E-06
4 5.241466E+04 -3.383992E-05
5 1.709868E+04 -1.231191E-04
6 6.171994E+03 -3.992085E-04
7 2.406481E+03 -1.171900E-03
8 9.972584E+02 -3.096141E-03
9 4.339289E+02 -7.171993E-03
10 1.962869E+02 -1.356621E-02
11 9.104280E+01 -1.643989E-02
12 4.138425E+01 4.107628E-03
13 1.993278E+01 6.693964E-02
14 9.581891E+00 1.028221E-01
15 4.234516E+00 -4.422945E-02
16 1.985814E+00 -2.031191E-01
17 8.670830E-01 -2.230022E-01
18 1.813390E-01 2.517975E-01
19 8.365700E-02 5.650091E-01
20 3.626700E-02 3.247243E-01
S 20
1 5.430321E+06 -7.508267E-07
2 8.131665E+05 -5.972018E-06
3 1.850544E+05 -3.039682E-05
4 5.241466E+04 -1.340405E-04
5 1.709868E+04 -4.615778E-04
6 6.171994E+03 -1.601064E-03
7 2.406481E+03 -4.330942E-03
8 9.972584E+02 -1.265434E-02
9 4.339289E+02 -2.586864E-02
10 1.962869E+02 -5.835428E-02
11 9.104280E+01 -5.132322E-02
12 4.138425E+01 -1.908953E-02
13 1.993278E+01 3.586116E-01
14 9.581891E+00 3.885818E-01
15 4.234516E+00 -3.057106E-01
16 1.985814E+00 -2.069896E+00
17 8.670830E-01 2.431774E+00
18 1.813390E-01 -2.121974E-02
19 8.365700E-02 -1.820251E+00
20 3.626700E-02 1.434585E+00
S 20
1 5.430321E+06 -3.532229E-07
2 8.131665E+05 -2.798812E-06
3 1.850544E+05 -1.432517E-05
4 5.241466E+04 -6.270946E-05
5 1.709868E+04 -2.179490E-04
6 6.171994E+03 -7.474316E-04
7 2.406481E+03 -2.049271E-03
8 9.972584E+02 -5.885203E-03
9 4.339289E+02 -1.226885E-02
10 1.962869E+02 -2.683147E-02
11 9.104280E+01 -2.479261E-02
12 4.138425E+01 -5.984746E-03
13 1.993278E+01 1.557124E-01
14 9.581891E+00 1.436683E-01
15 4.234516E+00 8.374103E-03
16 1.985814E+00 -7.460711E-01
17 8.670830E-01 1.244367E-01
18 1.813390E-01 1.510110E+00
19 8.365700E-02 -3.477122E-01
20 3.626700E-02 -9.774169E-01
S 1
1 3.626700E-02 1.000000E+00
S 1
1 0.0157200 1.0000000
P 16
1 2.276057E+04 4.000000E-05
2 5.387679E+03 3.610000E-04
3 1.749945E+03 2.083000E-03
4 6.696653E+02 9.197000E-03
5 2.841948E+02 3.266000E-02
6 1.296077E+02 9.379500E-02
7 6.225415E+01 2.082740E-01
8 3.092964E+01 3.339930E-01
9 1.575827E+01 3.324930E-01
10 8.094211E+00 1.547280E-01
11 4.046921E+00 2.127100E-02
12 1.967869E+00 -1.690000E-03
13 9.252950E-01 -1.516000E-03
14 3.529920E-01 -2.420000E-04
15 1.273070E-01 2.300000E-05
16 4.435600E-02 -9.000000E-06
P 16
1 2.276057E+04 -1.500000E-05
2 5.387679E+03 -1.310000E-04
3 1.749945E+03 -7.550000E-04
4 6.696653E+02 -3.359000E-03
5 2.841948E+02 -1.208100E-02
6 1.296077E+02 -3.570300E-02
7 6.225415E+01 -8.250200E-02
8 3.092964E+01 -1.398900E-01
9 1.575827E+01 -1.407290E-01
10 8.094211E+00 3.876600E-02
11 4.046921E+00 3.426950E-01
12 1.967869E+00 4.523100E-01
13 9.252950E-01 2.770540E-01
14 3.529920E-01 4.388500E-02
15 1.273070E-01 -2.802000E-03
16 4.435600E-02 1.152000E-03
P 16
1 2.276057E+04 5.000000E-06
2 5.387679E+03 4.900000E-05
3 1.749945E+03 2.780000E-04
4 6.696653E+02 1.253000E-03
5 2.841948E+02 4.447000E-03
6 1.296077E+02 1.337000E-02
7 6.225415E+01 3.046900E-02
8 3.092964E+01 5.344700E-02
9 1.575827E+01 5.263900E-02
10 8.094211E+00 -1.688100E-02
11 4.046921E+00 -1.794480E-01
12 1.967869E+00 -2.095880E-01
13 9.252950E-01 -3.963300E-02
14 3.529920E-01 5.021300E-01
15 1.273070E-01 5.811110E-01
16 4.435600E-02 4.566600E-02
P 16
1 2.276057E+04 1.100000E-05
2 5.387679E+03 9.600000E-05
3 1.749945E+03 5.900000E-04
4 6.696653E+02 2.484000E-03
5 2.841948E+02 9.463000E-03
6 1.296077E+02 2.645300E-02
7 6.225415E+01 6.568900E-02
8 3.092964E+01 1.027320E-01
9 1.575827E+01 1.370410E-01
10 8.094211E+00 -7.096100E-02
11 4.046921E+00 -5.047080E-01
12 1.967869E+00 -4.780560E-01
13 9.252950E-01 9.428920E-01
14 3.529920E-01 5.446990E-01
15 1.273070E-01 -8.327660E-01
16 4.435600E-02 -1.084160E-01
P 16
1 2.276057E+04 3.000000E-06
2 5.387679E+03 2.500000E-05
3 1.749945E+03 1.470000E-04
4 6.696653E+02 6.560000E-04
5 2.841948E+02 2.351000E-03
6 1.296077E+02 7.004000E-03
7 6.225415E+01 1.613100E-02
8 3.092964E+01 2.777000E-02
9 1.575827E+01 2.756700E-02
10 8.094211E+00 -1.011500E-02
11 4.046921E+00 -8.100900E-02
12 1.967869E+00 -1.104090E-01
13 9.252950E-01 -7.173200E-02
14 3.529920E-01 1.879300E-01
15 1.273070E-01 5.646290E-01
16 4.435600E-02 4.070000E-01
P 1
1 4.435600E-02 1.000000E+00
P 1
1 0.0154500 1.0000000
D 8
1 1.738970E+02 2.700000E-03
2 5.188690E+01 2.090900E-02
3 1.934190E+01 8.440800E-02
4 7.975720E+00 2.139990E-01
5 3.398230E+00 3.359800E-01
6 1.409320E+00 3.573010E-01
7 5.488580E-01 2.645780E-01
8 1.901990E-01 1.039720E-01
D 8
1 1.738970E+02 -3.363000E-03
2 5.188690E+01 -2.607900E-02
3 1.934190E+01 -1.082310E-01
4 7.975720E+00 -2.822170E-01
5 3.398230E+00 -3.471900E-01
6 1.409320E+00 2.671100E-02
7 5.488580E-01 4.920470E-01
8 1.901990E-01 4.384220E-01
D 8
1 1.738970E+02 4.133000E-03
2 5.188690E+01 3.308500E-02
3 1.934190E+01 1.383360E-01
4 7.975720E+00 3.901660E-01
5 3.398230E+00 1.698420E-01
6 1.409320E+00 -6.830180E-01
7 5.488580E-01 -2.657970E-01
8 1.901990E-01 8.380630E-01
D 1
1 1.901990E-01 1.000000E+00
D 1
1 0.0659100 1.0000000
F 1
1 5.082100E+00 1.000000E+00
F 1
1 1.279700E+00 1.000000E+00
F 1
1 0.4617200 1.0000000
G 1
1 3.483500E+00 1.0000000
G 1
1 1.4597900 1.0000000
$END

View File

@ -177,7 +177,7 @@ subroutine overlap_gauss_r12_ao_v(D_center, LD_D, delta, i, j, resv, LD_resv, n_
double precision, allocatable :: analytical_j(:)
resv(:) = 0.d0
if(ao_overlap_abs(j,i).lt.1.d-12) then
if(ao_overlap_abs(j,i) .lt. 1.d-12) then
return
endif
@ -313,9 +313,7 @@ subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, LD_D, delta,
ASSERT(beta .gt. 0.d0)
if(beta .lt. 1d-10) then
call overlap_gauss_r12_ao_v(D_center, LD_D, delta, i, j, resv, LD_resv, n_points)
return
endif
@ -332,19 +330,20 @@ subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, LD_D, delta,
A1_center(1:3) = nucl_coord(ao_nucl(i),1:3)
A2_center(1:3) = nucl_coord(ao_nucl(j),1:3)
allocate (fact_g(n_points), G_center(n_points,3), analytical_j(n_points) )
allocate(fact_g(n_points), G_center(n_points,3), analytical_j(n_points))
bg = beta * gama_inv
dg = delta * gama_inv
bdg = bg * delta
do ipoint=1,n_points
do ipoint = 1, n_points
G_center(ipoint,1) = bg * B_center(1) + dg * D_center(ipoint,1)
G_center(ipoint,2) = bg * B_center(2) + dg * D_center(ipoint,2)
G_center(ipoint,3) = bg * B_center(3) + dg * D_center(ipoint,3)
fact_g(ipoint) = bdg * ( &
(B_center(1) - D_center(ipoint,1)) * (B_center(1) - D_center(ipoint,1)) &
+ (B_center(2) - D_center(ipoint,2)) * (B_center(2) - D_center(ipoint,2)) &
+ (B_center(3) - D_center(ipoint,3)) * (B_center(3) - D_center(ipoint,3)) )
fact_g(ipoint) = bdg * ( (B_center(1) - D_center(ipoint,1)) * (B_center(1) - D_center(ipoint,1)) &
+ (B_center(2) - D_center(ipoint,2)) * (B_center(2) - D_center(ipoint,2)) &
+ (B_center(3) - D_center(ipoint,3)) * (B_center(3) - D_center(ipoint,3)) )
if(fact_g(ipoint) < 10d0) then
fact_g(ipoint) = dexp(-fact_g(ipoint))
@ -368,8 +367,7 @@ subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, LD_D, delta,
do ipoint = 1, n_points
coef12f = coef12 * fact_g(ipoint)
resv(ipoint) += coef12f * analytical_j(ipoint)
end do
enddo
enddo
enddo

View File

@ -1,5 +1,9 @@
double precision function overlap_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta)
! ---
double precision function overlap_gauss_r12(D_center, delta, A_center, B_center, power_A, power_B, alpha, beta)
BEGIN_DOC
!
! Computes the following integral :
!
! .. math ::
@ -8,50 +12,60 @@ double precision function overlap_gauss_r12(D_center,delta,A_center,B_center,pow
!
END_DOC
implicit none
include 'constants.include.F'
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
integer, intent(in) :: power_A(3),power_B(3)
double precision :: overlap_x,overlap_y,overlap_z,overlap
implicit none
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
integer, intent(in) :: power_A(3),power_B(3)
double precision :: overlap_x,overlap_y,overlap_z,overlap
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
double precision :: A_new(0:max_dim,3)! new polynom
double precision :: A_center_new(3) ! new center
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
double precision :: alpha_new ! new exponent
double precision :: fact_a_new ! constant factor
double precision :: accu,coefx,coefy,coefz,coefxy,coefxyz,thr
integer :: d(3),i,lx,ly,lz,iorder_tmp(3),dim1
dim1=100
thr = 1.d-10
double precision :: A_new(0:max_dim,3)! new polynom
double precision :: A_center_new(3) ! new center
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
double precision :: alpha_new ! new exponent
double precision :: fact_a_new ! constant factor
double precision :: accu, coefx, coefy, coefz, coefxy, coefxyz, thr
integer :: d(3), i, lx, ly, lz, iorder_tmp(3), dim1
dim1 = 100
thr = 1.d-10
d(:) = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new ,&
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
call give_explicit_poly_and_gaussian( A_new, A_center_new , alpha_new, fact_a_new, iorder_a_new &
, delta, alpha, d, power_A, D_center, A_center, n_pt_max_integrals)
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
accu = 0.d0
do lx = 0, iorder_a_new(1)
coefx = A_new(lx,1)
if(dabs(coefx).lt.thr)cycle
if(dabs(coefx) .lt. thr) cycle
iorder_tmp(1) = lx
do ly = 0, iorder_a_new(2)
coefy = A_new(ly,2)
coefy = A_new(ly,2)
coefxy = coefx * coefy
if(dabs(coefxy).lt.thr)cycle
if(dabs(coefxy) .lt. thr) cycle
iorder_tmp(2) = ly
do lz = 0, iorder_a_new(3)
coefz = A_new(lz,3)
coefz = A_new(lz,3)
coefxyz = coefxy * coefz
if(dabs(coefxyz).lt.thr)cycle
if(dabs(coefxyz) .lt. thr) cycle
iorder_tmp(3) = lz
call overlap_gaussian_xyz(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
call overlap_gaussian_xyz( A_center_new, B_center, alpha_new, beta, iorder_tmp, power_B &
, overlap_x, overlap_y, overlap_z, overlap, dim1)
accu += coefxyz * overlap
enddo
enddo
enddo
overlap_gauss_r12 = fact_a_new * accu
end
!---
@ -95,11 +109,9 @@ subroutine overlap_gauss_r12_v(D_center, LD_D, delta, A_center, B_center, power_
maxab = maxval(power_A(1:3))
allocate(A_new(n_points, 0:maxab, 3), A_center_new(n_points, 3), fact_a_new(n_points), iorder_a_new(3), overlap(n_points))
allocate(A_new(n_points,0:maxab,3), A_center_new(n_points,3), fact_a_new(n_points), iorder_a_new(3), overlap(n_points))
call give_explicit_poly_and_gaussian_v(A_new, maxab, A_center_new, &
alpha_new, fact_a_new, iorder_a_new, delta, alpha, d, power_A, &
D_center, LD_D, A_center, n_points)
call give_explicit_poly_and_gaussian_v(A_new, maxab, A_center_new, alpha_new, fact_a_new, iorder_a_new, delta, alpha, d, power_A, D_center, LD_D, A_center, n_points)
rvec(:) = 0.d0

View File

@ -165,7 +165,7 @@ end
expo_gauss_1_erf_x_2 = (/ 6.23519457d0 /)
tmp = mu_erf * mu_erf
do i = 1, n_max_fit_slat
do i = 1, ng_fit_jast
expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i)
enddo
@ -175,7 +175,7 @@ end
expo_gauss_1_erf_x_2 = (/ 55.39184787d0, 3.92151407d0 /)
tmp = mu_erf * mu_erf
do i = 1, n_max_fit_slat
do i = 1, ng_fit_jast
expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i)
enddo
@ -185,7 +185,7 @@ end
expo_gauss_1_erf_x_2 = (/ 19.90272209d0, 3.2671671d0 , 336.47320445d0 /)
tmp = mu_erf * mu_erf
do i = 1, n_max_fit_slat
do i = 1, ng_fit_jast
expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i)
enddo
@ -195,7 +195,7 @@ end
expo_gauss_1_erf_x_2 = (/ 6467.28126d0, 46.9071990d0, 9.09617721d0, 2.76883328d0, 360.367093d0 /)
tmp = mu_erf * mu_erf
do i = 1, n_max_fit_slat
do i = 1, ng_fit_jast
expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i)
enddo
@ -205,7 +205,7 @@ end
expo_gauss_1_erf_x_2 = (/ 2.54293498d+01, 1.40317872d+02, 7.14630801d+00, 2.65517675d+00, 1.45142619d+03, 1.00000000d+04 /)
tmp = mu_erf * mu_erf
do i = 1, n_max_fit_slat
do i = 1, ng_fit_jast
expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i)
enddo

View File

@ -10,6 +10,7 @@ BEGIN_PROVIDER [double precision, TCSCF_bi_ort_dm_ao_alpha, (ao_num, ao_num) ]
END_DOC
call dgemm( 'N', 'T', ao_num, ao_num, elec_alpha_num, 1.d0 &
, mo_l_coef, size(mo_l_coef, 1), mo_r_coef, size(mo_r_coef, 1) &
!, mo_r_coef, size(mo_r_coef, 1), mo_l_coef, size(mo_l_coef, 1) &
, 0.d0, TCSCF_bi_ort_dm_ao_alpha, size(TCSCF_bi_ort_dm_ao_alpha, 1) )
END_PROVIDER
@ -24,6 +25,7 @@ BEGIN_PROVIDER [ double precision, TCSCF_bi_ort_dm_ao_beta, (ao_num, ao_num) ]
END_DOC
call dgemm( 'N', 'T', ao_num, ao_num, elec_beta_num, 1.d0 &
, mo_l_coef, size(mo_l_coef, 1), mo_r_coef, size(mo_r_coef, 1) &
!, mo_r_coef, size(mo_r_coef, 1), mo_l_coef, size(mo_l_coef, 1) &
, 0.d0, TCSCF_bi_ort_dm_ao_beta, size(TCSCF_bi_ort_dm_ao_beta, 1) )
END_PROVIDER

View File

@ -68,20 +68,33 @@ subroutine create_guess
endif
end
subroutine run
! ---
subroutine run()
BEGIN_DOC
! Run SCF calculation
! Run SCF calculation
END_DOC
use bitmasks
implicit none
integer :: i_it, i, j, k
mo_label = 'Orthonormalized'
call Roothaan_Hall_SCF
PROVIDE scf_algorithm
if(scf_algorithm .eq. "DIIS_MO") then
call Roothaan_Hall_SCF_MO()
elseif(scf_algorithm .eq. "DIIS_MODIF") then
call Roothaan_Hall_SCF_MODIF()
elseif(scf_algorithm .eq. "DIIS") then
call Roothaan_Hall_SCF()
elseif(scf_algorithm .eq. "Simple") then
call Roothaan_Hall_SCF_Simple()
else
print *, ' not implemented yet:', scf_algorithm
endif
call ezfio_set_hartree_fock_energy(SCF_energy)
end

View File

@ -17,7 +17,7 @@ program debug_integ_jmu_modif
PROVIDE mu_erf j1b_pen
call test_v_ij_u_cst_mu_j1b()
! call test_v_ij_u_cst_mu_j1b()
! call test_v_ij_erf_rk_cst_mu_j1b()
! call test_x_v_ij_erf_rk_cst_mu_j1b()
! call test_int2_u2_j1b2()
@ -31,6 +31,9 @@ program debug_integ_jmu_modif
! call test_u12_grad1_u12_j1b_grad1_j1b()
! !call test_gradu_squared_u_ij_mu()
!call test_vect_overlap_gauss_r12_ao()
call test_vect_overlap_gauss_r12_ao_with1s()
end
! ---
@ -595,7 +598,183 @@ subroutine test_u12_grad1_u12_j1b_grad1_j1b()
print*, ' normalz = ', normalz
return
end subroutine test_u12_grad1_u12_j1b_grad1_j1b,
end subroutine test_u12_grad1_u12_j1b_grad1_j1b
! ---
subroutine test_vect_overlap_gauss_r12_ao()
implicit none
integer :: i, j, ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision :: expo_fit, r(3)
double precision, allocatable :: I_vec(:,:,:), I_ref(:,:,:), int_fit_v(:)
double precision, external :: overlap_gauss_r12_ao
print *, ' test_vect_overlap_gauss_r12_ao ...'
provide mu_erf final_grid_points_transp j1b_pen
expo_fit = expo_gauss_j_mu_x_2(1)
! ---
allocate(int_fit_v(n_points_final_grid))
allocate(I_vec(ao_num,ao_num,n_points_final_grid))
I_vec = 0.d0
do i = 1, ao_num
do j = 1, ao_num
call overlap_gauss_r12_ao_v(final_grid_points_transp, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, n_points_final_grid)
do ipoint = 1, n_points_final_grid
I_vec(j,i,ipoint) = int_fit_v(ipoint)
enddo
enddo
enddo
! ---
allocate(I_ref(ao_num,ao_num,n_points_final_grid))
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do i = 1, ao_num
do j = 1, ao_num
I_ref(j,i,ipoint) = overlap_gauss_r12_ao(r, expo_fit, i, j)
enddo
enddo
enddo
! ---
eps_ij = 1d-3
acc_tot = 0.d0
normalz = 0.d0
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
i_exc = I_ref(i,j,ipoint)
i_num = I_vec(i,j,ipoint)
acc_ij = dabs(i_exc - i_num)
!acc_ij = dabs(i_exc - i_num) / dabs(i_exc)
if(acc_ij .gt. eps_ij) then
print *, ' problem in overlap_gauss_r12_ao_v on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
stop
endif
acc_tot += acc_ij
normalz += dabs(i_num)
enddo
enddo
enddo
print*, ' acc_tot = ', acc_tot
print*, ' normalz = ', normalz
return
end subroutine test_vect_overlap_gauss_r12_ao
! ---
subroutine test_vect_overlap_gauss_r12_ao_with1s()
implicit none
integer :: i, j, ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision :: expo_fit, r(3), beta, B_center(3)
double precision, allocatable :: I_vec(:,:,:), I_ref(:,:,:), int_fit_v(:)
double precision, external :: overlap_gauss_r12_ao_with1s
print *, ' test_vect_overlap_gauss_r12_ao_with1s ...'
provide mu_erf final_grid_points_transp j1b_pen
expo_fit = expo_gauss_j_mu_x_2(1)
beta = List_all_comb_b3_expo (2)
B_center(1) = List_all_comb_b3_cent(1,2)
B_center(2) = List_all_comb_b3_cent(2,2)
B_center(3) = List_all_comb_b3_cent(3,2)
! ---
allocate(int_fit_v(n_points_final_grid))
allocate(I_vec(ao_num,ao_num,n_points_final_grid))
I_vec = 0.d0
do i = 1, ao_num
do j = 1, ao_num
call overlap_gauss_r12_ao_with1s_v(B_center, beta, final_grid_points_transp, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, n_points_final_grid)
do ipoint = 1, n_points_final_grid
I_vec(j,i,ipoint) = int_fit_v(ipoint)
enddo
enddo
enddo
! ---
allocate(I_ref(ao_num,ao_num,n_points_final_grid))
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do i = 1, ao_num
do j = 1, ao_num
I_ref(j,i,ipoint) = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
enddo
enddo
enddo
! ---
eps_ij = 1d-3
acc_tot = 0.d0
normalz = 0.d0
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
i_exc = I_ref(i,j,ipoint)
i_num = I_vec(i,j,ipoint)
acc_ij = dabs(i_exc - i_num)
!acc_ij = dabs(i_exc - i_num) / dabs(i_exc)
if(acc_ij .gt. eps_ij) then
print *, ' problem in overlap_gauss_r12_ao_v on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
stop
endif
acc_tot += acc_ij
normalz += dabs(i_num)
enddo
enddo
enddo
print*, ' acc_tot = ', acc_tot
print*, ' normalz = ', normalz
return
end subroutine test_vect_overlap_gauss_r12_ao

View File

@ -57,7 +57,6 @@ BEGIN_PROVIDER [ double precision, eigenvectors_Fock_matrix_mo, (ao_num,mo_num)
do i = elec_beta_num+1, elec_alpha_num
F(i,i) += 0.5d0*level_shift
enddo
do i = elec_alpha_num+1, mo_num
F(i,i) += level_shift
enddo

View File

@ -1,3 +1,5 @@
! ---
BEGIN_PROVIDER [ double precision, threshold_DIIS_nonzero ]
implicit none
BEGIN_DOC
@ -12,6 +14,8 @@ BEGIN_PROVIDER [ double precision, threshold_DIIS_nonzero ]
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, FPS_SPF_Matrix_AO, (AO_num, AO_num)]
implicit none
BEGIN_DOC
@ -60,6 +64,8 @@ BEGIN_PROVIDER [double precision, FPS_SPF_Matrix_AO, (AO_num, AO_num)]
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, FPS_SPF_Matrix_MO, (mo_num, mo_num)]
implicit none
begin_doc
@ -69,6 +75,7 @@ BEGIN_PROVIDER [double precision, FPS_SPF_Matrix_MO, (mo_num, mo_num)]
FPS_SPF_Matrix_MO, size(FPS_SPF_Matrix_MO,1))
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, eigenvalues_Fock_matrix_AO, (AO_num) ]
&BEGIN_PROVIDER [ double precision, eigenvectors_Fock_matrix_AO, (AO_num,AO_num) ]
@ -137,3 +144,107 @@ END_PROVIDER
END_PROVIDER
! ---
!BEGIN_PROVIDER [double precision, error_diis_Fmo, (ao_num, ao_num)]
!
! BEGIN_DOC
! !
! ! error_diis_Fmo = (S x C) x [F_mo x \eta_occ - \eta_occ x F_mo] x (S x C).T
! !
! ! \eta_occ is the matrix of occupation : \eta_occ = \eta_occ(alpha) + \eta_occ(beta)
! !
! END_DOC
!
! implicit none
! integer :: i, j
! double precision, allocatable :: tmp(:,:)
!
! provide Fock_matrix_mo
!
! allocate(tmp(mo_num,mo_num))
! tmp = 0.d0
!
! ! F_mo x \eta_occ(alpha) - \eta_occ x F_mo(alpha)
! do j = 1, elec_alpha_num
! do i = elec_alpha_num + 1, mo_num
! tmp(i,j) = Fock_matrix_mo(i,j)
! enddo
! enddo
! do j = elec_alpha_num + 1, mo_num
! do i = 1, elec_alpha_num
! tmp(i,j) = -Fock_matrix_mo(i,j)
! enddo
! enddo
!
! ! F_mo x \eta_occ(beta) - \eta_occ x F_mo(beta)
! do j = 1, elec_beta_num
! do i = elec_beta_num + 1, mo_num
! tmp(i,j) += Fock_matrix_mo(i,j)
! enddo
! enddo
! do j = elec_beta_num + 1, mo_num
! do i = 1, elec_beta_num
! tmp(i,j) -= Fock_matrix_mo(i,j)
! enddo
! enddo
!
! call mo_to_ao(tmp, size(tmp, 1), error_diis_Fmo, size(error_diis_Fmo, 1))
!
! deallocate(tmp)
!
!END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, error_diis_Fmo, (mo_num, mo_num)]
BEGIN_DOC
!
! error_diis_Fmo = [F_mo x \eta_occ - \eta_occ x F_mo]
!
! \eta_occ is the matrix of occupation : \eta_occ = \eta_occ(alpha) + \eta_occ(beta)
!
END_DOC
implicit none
integer :: i, j
double precision, allocatable :: tmp(:,:)
provide Fock_matrix_mo
error_diis_Fmo = 0.d0
! F_mo x \eta_occ(alpha) - \eta_occ x F_mo(alpha)
do j = 1, elec_alpha_num
do i = elec_alpha_num + 1, mo_num
error_diis_Fmo(i,j) += Fock_matrix_mo(i,j)
enddo
enddo
do j = elec_alpha_num + 1, mo_num
do i = 1, elec_alpha_num
error_diis_Fmo(i,j) -= Fock_matrix_mo(i,j)
enddo
enddo
! F_mo x \eta_occ(beta) - \eta_occ x F_mo(beta)
do j = 1, elec_beta_num
do i = elec_beta_num + 1, mo_num
error_diis_Fmo(i,j) += Fock_matrix_mo(i,j)
enddo
enddo
do j = elec_beta_num + 1, mo_num
do i = 1, elec_beta_num
error_diis_Fmo(i,j) -= Fock_matrix_mo(i,j)
enddo
enddo
!allocate(tmp(ao_num,ao_num))
!call mo_to_ao(error_diis_Fmo, size(error_diis_Fmo, 1), tmp, size(tmp, 1))
!call ao_to_mo(tmp, size(tmp, 1), error_diis_Fmo, size(error_diis_Fmo, 1))
!deallocate(tmp)
END_PROVIDER
! ---

View File

@ -0,0 +1,308 @@
! ---
subroutine Roothaan_Hall_SCF_MO()
BEGIN_DOC
!
! Roothaan-Hall algorithm for SCF Hartree-Fock calculation
!
END_DOC
implicit none
double precision :: energy_SCF, energy_SCF_previous, Delta_energy_SCF
double precision :: max_error_DIIS
double precision, allocatable :: Fock_matrix_DIIS(:,:,:), error_matrix_DIIS(:,:,:)
integer :: iteration_SCF, dim_DIIS, index_dim_DIIS
integer :: i, j
double precision :: level_shift_save
double precision, allocatable :: mo_coef_save(:,:)
logical, external :: qp_stop
PROVIDE ao_md5 mo_occ level_shift
allocate( mo_coef_save(ao_num,mo_num) &
, Fock_matrix_DIIS (mo_num,mo_num,max_dim_DIIS) &
, error_matrix_DIIS(mo_num,mo_num,max_dim_DIIS) )
Fock_matrix_DIIS = 0.d0
error_matrix_DIIS = 0.d0
mo_coef_save = 0.d0
call write_time(6)
print*,'energy of the guess = ',SCF_energy
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
' N ', 'energy ', 'energy diff ', 'DIIS error ', 'Level shift '
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
! Initialize energies and density matrices
energy_SCF_previous = SCF_energy
Delta_energy_SCF = 1.d0
iteration_SCF = 0
dim_DIIS = 0
max_error_DIIS = 1.d0
!
! Start of main SCF loop
!
PROVIDE Fock_matrix_mo error_diis_Fmo
do while ( &
( (max_error_DIIS > threshold_DIIS_nonzero) .or. &
(dabs(Delta_energy_SCF) > thresh_SCF) &
) .and. (iteration_SCF < n_it_SCF_max) )
iteration_SCF += 1
if(frozen_orb_scf) then
call initialize_mo_coef_begin_iteration
endif
dim_DIIS = min(dim_DIIS+1, max_dim_DIIS)
if( (scf_algorithm == 'DIIS_MO').and.(dabs(Delta_energy_SCF) > 1.d-6)) then
!if(scf_algorithm == 'DIIS_MO') then
index_dim_DIIS = mod(dim_DIIS-1, max_dim_DIIS) + 1
do j = 1, mo_num
do i = 1, mo_num
Fock_matrix_DIIS (i,j,index_dim_DIIS) = Fock_matrix_mo(i,j)
error_matrix_DIIS(i,j,index_dim_DIIS) = error_diis_Fmo(i,j)
enddo
enddo
call extrapolate_Fock_matrix_mo(error_matrix_DIIS, Fock_matrix_DIIS, Fock_matrix_mo, size(Fock_matrix_mo, 1), iteration_SCF, dim_DIIS)
do i = 1, mo_num
Fock_matrix_diag_mo(i) = Fock_matrix_mo(i,i)
enddo
TOUCH Fock_matrix_mo fock_matrix_diag_mo
endif
mo_coef = eigenvectors_Fock_matrix_mo
if(frozen_orb_scf) then
call reorder_core_orb
call initialize_mo_coef_begin_iteration
endif
TOUCH mo_coef
max_error_DIIS = maxval(Abs(error_diis_Fmo))
energy_SCF = SCF_energy
Delta_energy_SCF = energy_SCF - energy_SCF_previous
if( (SCF_algorithm == 'DIIS_MO') .and. (Delta_energy_SCF > 0.d0) ) then
Fock_matrix_MO(1:mo_num,1:mo_num) = Fock_matrix_DIIS(1:mo_num,1:mo_num,index_dim_DIIS)
do i = 1, mo_num
Fock_matrix_diag_mo(i) = Fock_matrix_mo(i,i)
enddo
TOUCH Fock_matrix_mo fock_matrix_diag_mo
mo_coef = eigenvectors_Fock_matrix_mo
max_error_DIIS = maxval(Abs(error_diis_Fmo))
energy_SCF = SCF_energy
Delta_energy_SCF = energy_SCF - energy_SCF_previous
endif
level_shift_save = level_shift
mo_coef_save(1:ao_num,1:mo_num) = mo_coef(1:ao_num,1:mo_num)
do while(Delta_energy_SCF > 0.d0)
mo_coef(1:ao_num,1:mo_num) = mo_coef_save(1:ao_num,1:mo_num)
if(level_shift <= .1d0) then
level_shift = 1.d0
else
level_shift = level_shift * 3.0d0
endif
TOUCH mo_coef level_shift
mo_coef(1:ao_num,1:mo_num) = eigenvectors_Fock_matrix_mo(1:ao_num,1:mo_num)
if(frozen_orb_scf) then
call reorder_core_orb
call initialize_mo_coef_begin_iteration
endif
TOUCH mo_coef
Delta_energy_SCF = SCF_energy - energy_SCF_previous
energy_SCF = SCF_energy
if(level_shift-level_shift_save > 40.d0) then
level_shift = level_shift_save * 4.d0
SOFT_TOUCH level_shift
exit
endif
dim_DIIS=0
enddo
level_shift = level_shift * 0.5d0
SOFT_TOUCH level_shift
energy_SCF_previous = energy_SCF
! Print results at the end of each iteration
write(6,'(I4, 1X, F16.10, 1X, F16.10, 1X, F16.10, 1X, F16.10, 1X, I3)') &
iteration_SCF, energy_SCF, Delta_energy_SCF, max_error_DIIS, level_shift, dim_DIIS
if(Delta_energy_SCF < 0.d0) then
call save_mos
endif
if(qp_stop()) exit
enddo
!
! End of Main SCF loop
!
if(iteration_SCF < n_it_SCF_max) then
mo_label = 'Canonical'
endif
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
write(6,*)
if(.not.frozen_orb_scf)then
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo, size(Fock_matrix_mo, 1), size(Fock_matrix_mo, 2), mo_label, 1, .true.)
call restore_symmetry(ao_num, mo_num, mo_coef, size(mo_coef, 1), 1.d-10)
call orthonormalize_mos
call save_mos
endif
call write_double(6, energy_SCF, 'SCF energy')
call write_time(6)
end
! ---
subroutine extrapolate_Fock_matrix_mo(error_matrix_DIIS, Fock_matrix_DIIS, Fock_matrix_MO_, size_Fock_matrix_MO, iteration_SCF, dim_DIIS)
BEGIN_DOC
! Compute the extrapolated Fock matrix using the DIIS procedure
END_DOC
implicit none
integer,intent(inout) :: dim_DIIS
double precision,intent(in) :: Fock_matrix_DIIS(mo_num,mo_num,dim_DIIS), error_matrix_DIIS(mo_num,mo_num,dim_DIIS)
integer,intent(in) :: iteration_SCF, size_Fock_matrix_MO
double precision,intent(inout):: Fock_matrix_MO_(size_Fock_matrix_MO,mo_num)
double precision,allocatable :: B_matrix_DIIS(:,:),X_vector_DIIS(:)
double precision,allocatable :: C_vector_DIIS(:)
double precision,allocatable :: scratch(:,:)
integer :: i,j,k,l,i_DIIS,j_DIIS
double precision :: rcond, ferr, berr
integer, allocatable :: iwork(:)
integer :: lwork
if(dim_DIIS < 1) then
return
endif
allocate( &
B_matrix_DIIS(dim_DIIS+1,dim_DIIS+1), &
X_vector_DIIS(dim_DIIS+1), &
C_vector_DIIS(dim_DIIS+1), &
scratch(mo_num,mo_num) &
)
! Compute the matrices B and X
B_matrix_DIIS(:,:) = 0.d0
do j = 1, dim_DIIS
j_DIIS = min(dim_DIIS, mod(iteration_SCF-j, max_dim_DIIS) + 1)
do i = 1, dim_DIIS
i_DIIS = min(dim_DIIS, mod(iteration_SCF-i, max_dim_DIIS) + 1)
! Compute product of two errors vectors
do l = 1, mo_num
do k = 1, mo_num
B_matrix_DIIS(i,j) = B_matrix_DIIS(i,j) + error_matrix_DIIS(k,l,i_DIIS) * error_matrix_DIIS(k,l,j_DIIS)
enddo
enddo
enddo
enddo
! Pad B matrix and build the X matrix
C_vector_DIIS(:) = 0.d0
do i = 1, dim_DIIS
B_matrix_DIIS(i,dim_DIIS+1) = -1.d0
B_matrix_DIIS(dim_DIIS+1,i) = -1.d0
enddo
C_vector_DIIS(dim_DIIS+1) = -1.d0
deallocate(scratch)
! Estimate condition number of B
double precision :: anorm
integer :: info
integer,allocatable :: ipiv(:)
double precision, allocatable :: AF(:,:)
double precision, external :: dlange
lwork = max((dim_DIIS+1)**2, (dim_DIIS+1)*5)
allocate(AF(dim_DIIS+1,dim_DIIS+1))
allocate(ipiv(2*(dim_DIIS+1)), iwork(2*(dim_DIIS+1)) )
allocate(scratch(lwork,1))
scratch(:,1) = 0.d0
anorm = dlange('1', dim_DIIS+1, dim_DIIS+1, B_matrix_DIIS, size(B_matrix_DIIS, 1), scratch(1,1))
AF(:,:) = B_matrix_DIIS(:,:)
call dgetrf(dim_DIIS+1, dim_DIIS+1, AF, size(AF, 1), ipiv, info)
if(info /= 0) then
dim_DIIS = 0
return
endif
call dgecon( '1', dim_DIIS+1, AF, size(AF, 1), anorm, rcond, scratch, iwork, info)
if(info /= 0) then
dim_DIIS = 0
return
endif
if(rcond < 1.d-14) then
dim_DIIS = 0
return
endif
! solve the linear system C = B.X
X_vector_DIIS = C_vector_DIIS
call dgesv(dim_DIIS+1 , 1, B_matrix_DIIS, size(B_matrix_DIIS, 1), ipiv, X_vector_DIIS, size(X_vector_DIIS, 1), info)
deallocate(scratch, AF, iwork)
if(info < 0) then
stop 'bug in DIIS_MO'
endif
! Compute extrapolated Fock matrix
!$OMP PARALLEL DO PRIVATE(i,j,k) DEFAULT(SHARED) if (mo_num > 200)
do j = 1, mo_num
do i = 1, mo_num
Fock_matrix_MO_(i,j) = 0.d0
enddo
do k = 1, dim_DIIS
if(dabs(X_vector_DIIS(k)) < 1.d-10) cycle
do i = 1, mo_num
! FPE here
Fock_matrix_MO_(i,j) = Fock_matrix_MO_(i,j) + X_vector_DIIS(k) * Fock_matrix_DIIS(i,j,dim_DIIS-k+1)
enddo
enddo
enddo
!$OMP END PARALLEL DO
end

View File

@ -0,0 +1,196 @@
subroutine Roothaan_Hall_SCF_MODIF
BEGIN_DOC
! Roothaan-Hall algorithm for SCF Hartree-Fock calculation
END_DOC
implicit none
double precision :: energy_SCF,energy_SCF_previous,Delta_energy_SCF
double precision :: max_error_DIIS,max_error_DIIS_alpha,max_error_DIIS_beta
double precision, allocatable :: Fock_matrix_DIIS(:,:,:),error_matrix_DIIS(:,:,:)
integer :: iteration_SCF,dim_DIIS,index_dim_DIIS
integer :: i,j
logical, external :: qp_stop
double precision, allocatable :: mo_coef_save(:,:)
PROVIDE ao_md5 mo_occ level_shift
allocate(mo_coef_save(ao_num,mo_num), &
Fock_matrix_DIIS (ao_num,ao_num,max_dim_DIIS), &
error_matrix_DIIS(ao_num,ao_num,max_dim_DIIS) &
)
Fock_matrix_DIIS = 0.d0
error_matrix_DIIS = 0.d0
mo_coef_save = 0.d0
call write_time(6)
print*,'energy of the guess = ',SCF_energy
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
' N ', 'energy ', 'energy diff ', 'DIIS error ', 'Level shift '
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
! Initialize energies and density matrices
energy_SCF_previous = SCF_energy
Delta_energy_SCF = 1.d0
iteration_SCF = 0
dim_DIIS = 0
max_error_DIIS = 1.d0
!
! Start of main SCF loop
!
PROVIDE FPS_SPF_matrix_AO Fock_matrix_AO
do while ( &
( (max_error_DIIS > threshold_DIIS_nonzero) .or. &
(dabs(Delta_energy_SCF) > thresh_SCF) &
) .and. (iteration_SCF < n_it_SCF_max) )
! Increment cycle number
iteration_SCF += 1
if(frozen_orb_scf)then
call initialize_mo_coef_begin_iteration
endif
! Current size of the DIIS space
dim_DIIS = min(dim_DIIS+1,max_dim_DIIS)
if( (scf_algorithm == 'DIIS_MODIF') .and. (dabs(Delta_energy_SCF) > 1.d-6) ) then
!if(scf_algorithm == 'DIIS_MODIF') then
! Store Fock and error matrices at each iteration
index_dim_DIIS = mod(dim_DIIS-1,max_dim_DIIS)+1
do j=1,ao_num
do i=1,ao_num
Fock_matrix_DIIS (i,j,index_dim_DIIS) = Fock_matrix_AO(i,j)
error_matrix_DIIS(i,j,index_dim_DIIS) = FPS_SPF_matrix_AO(i,j)
enddo
enddo
! Compute the extrapolated Fock matrix
call extrapolate_Fock_matrix( &
error_matrix_DIIS,Fock_matrix_DIIS, &
Fock_matrix_AO,size(Fock_matrix_AO,1), &
iteration_SCF,dim_DIIS &
)
call ao_to_mo(Fock_matrix_AO, size(Fock_matrix_AO, 1), Fock_matrix_MO, size(Fock_matrix_MO, 1))
do i = 1, mo_num
Fock_matrix_diag_MO(i) = Fock_matrix_MO(i,i)
enddo
TOUCH Fock_matrix_MO Fock_matrix_diag_MO
!Fock_matrix_AO_alpha = Fock_matrix_AO*0.5d0
!Fock_matrix_AO_beta = Fock_matrix_AO*0.5d0
!TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta
endif
MO_coef = eigenvectors_Fock_matrix_MO
if(frozen_orb_scf)then
call reorder_core_orb
call initialize_mo_coef_begin_iteration
endif
TOUCH MO_coef
! Calculate error vectors
max_error_DIIS = maxval(Abs(FPS_SPF_Matrix_MO))
! SCF energy
energy_SCF = SCF_energy
Delta_energy_SCF = energy_SCF - energy_SCF_previous
if( (SCF_algorithm == 'DIIS_MODIF') .and. (Delta_energy_SCF > 0.d0) ) then
Fock_matrix_AO(1:ao_num,1:ao_num) = Fock_matrix_DIIS(1:ao_num,1:ao_num,index_dim_DIIS)
call ao_to_mo(Fock_matrix_AO, size(Fock_matrix_AO, 1), Fock_matrix_MO, size(Fock_matrix_MO, 1))
do i = 1, mo_num
Fock_matrix_diag_MO(i) = Fock_matrix_MO(i,i)
enddo
TOUCH Fock_matrix_MO Fock_matrix_diag_MO
!Fock_matrix_AO_alpha = Fock_matrix_AO*0.5d0
!Fock_matrix_AO_beta = Fock_matrix_AO*0.5d0
!TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta
endif
double precision :: level_shift_save
level_shift_save = level_shift
mo_coef_save(1:ao_num,1:mo_num) = mo_coef(1:ao_num,1:mo_num)
do while (Delta_energy_SCF > 0.d0)
mo_coef(1:ao_num,1:mo_num) = mo_coef_save
if (level_shift <= .1d0) then
level_shift = 1.d0
else
level_shift = level_shift * 3.0d0
endif
TOUCH mo_coef level_shift
mo_coef(1:ao_num,1:mo_num) = eigenvectors_Fock_matrix_MO(1:ao_num,1:mo_num)
if(frozen_orb_scf)then
call reorder_core_orb
call initialize_mo_coef_begin_iteration
endif
TOUCH mo_coef
Delta_energy_SCF = SCF_energy - energy_SCF_previous
energy_SCF = SCF_energy
if (level_shift-level_shift_save > 40.d0) then
level_shift = level_shift_save * 4.d0
SOFT_TOUCH level_shift
exit
endif
dim_DIIS=0
enddo
level_shift = level_shift * 0.5d0
SOFT_TOUCH level_shift
energy_SCF_previous = energy_SCF
! Print results at the end of each iteration
write(6,'(I4, 1X, F16.10, 1X, F16.10, 1X, F16.10, 1X, F16.10, 1X, I3)') &
iteration_SCF, energy_SCF, Delta_energy_SCF, max_error_DIIS, level_shift, dim_DIIS
if (Delta_energy_SCF < 0.d0) then
call save_mos
endif
if (qp_stop()) exit
enddo
if (iteration_SCF < n_it_SCF_max) then
mo_label = 'Canonical'
endif
!
! End of Main SCF loop
!
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
write(6,*)
if(.not.frozen_orb_scf)then
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo,size(Fock_matrix_mo,1), &
size(Fock_matrix_mo,2),mo_label,1,.true.)
call restore_symmetry(ao_num, mo_num, mo_coef, size(mo_coef,1), 1.d-10)
call orthonormalize_mos
call save_mos
endif
call write_double(6, energy_SCF, 'SCF energy')
call write_time(6)
end

View File

@ -0,0 +1,130 @@
subroutine Roothaan_Hall_SCF_Simple
BEGIN_DOC
! Roothaan-Hall algorithm for SCF Hartree-Fock calculation
END_DOC
implicit none
integer :: iteration_SCF, dim_DIIS
double precision :: energy_SCF,energy_SCF_previous,Delta_energy_SCF
double precision :: max_error_DIIS
integer :: i,j
logical, external :: qp_stop
double precision, allocatable :: mo_coef_save(:,:)
PROVIDE ao_md5 mo_occ level_shift
allocate(mo_coef_save(ao_num,mo_num))
dim_DIIS = 0
mo_coef_save = 0.d0
call write_time(6)
print*,'energy of the guess = ',SCF_energy
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
' N ', 'energy ', 'energy diff ', 'DIIS error ', 'Level shift '
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
! Initialize energies and density matrices
energy_SCF_previous = SCF_energy
Delta_energy_SCF = 1.d0
iteration_SCF = 0
max_error_DIIS = 1.d0
do while ( &
( (max_error_DIIS > threshold_DIIS_nonzero) .or. &
(dabs(Delta_energy_SCF) > thresh_SCF) &
) .and. (iteration_SCF < n_it_SCF_max) )
iteration_SCF += 1
if(frozen_orb_scf)then
call initialize_mo_coef_begin_iteration
endif
MO_coef = eigenvectors_Fock_matrix_MO
if(frozen_orb_scf)then
call reorder_core_orb
call initialize_mo_coef_begin_iteration
endif
TOUCH MO_coef
! Calculate error vectors
max_error_DIIS = maxval(Abs(FPS_SPF_Matrix_MO))
! SCF energy
energy_SCF = SCF_energy
Delta_energy_SCF = energy_SCF - energy_SCF_previous
double precision :: level_shift_save
level_shift_save = level_shift
mo_coef_save(1:ao_num,1:mo_num) = mo_coef(1:ao_num,1:mo_num)
do while (Delta_energy_SCF > 0.d0)
mo_coef(1:ao_num,1:mo_num) = mo_coef_save
if (level_shift <= .1d0) then
level_shift = 1.d0
else
level_shift = level_shift * 3.0d0
endif
TOUCH mo_coef level_shift
mo_coef(1:ao_num,1:mo_num) = eigenvectors_Fock_matrix_MO(1:ao_num,1:mo_num)
if(frozen_orb_scf)then
call reorder_core_orb
call initialize_mo_coef_begin_iteration
endif
TOUCH mo_coef
Delta_energy_SCF = SCF_energy - energy_SCF_previous
energy_SCF = SCF_energy
if (level_shift-level_shift_save > 40.d0) then
level_shift = level_shift_save * 4.d0
SOFT_TOUCH level_shift
exit
endif
enddo
level_shift = level_shift * 0.5d0
SOFT_TOUCH level_shift
energy_SCF_previous = energy_SCF
! Print results at the end of each iteration
write(6,'(I4, 1X, F16.10, 1X, F16.10, 1X, F16.10, 1X, F16.10, 1X, I3)') &
iteration_SCF, energy_SCF, Delta_energy_SCF, max_error_DIIS, level_shift, dim_DIIS
if(Delta_energy_SCF < 0.d0) then
call save_mos
endif
if(qp_stop()) exit
enddo
if (iteration_SCF < n_it_SCF_max) then
mo_label = 'Canonical'
endif
write(6,'(A4, 1X, A16, 1X, A16, 1X, A16, 1X, A16)') &
'====','================','================','================','================'
write(6,*)
if(.not.frozen_orb_scf)then
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo,size(Fock_matrix_mo,1), &
size(Fock_matrix_mo,2),mo_label,1,.true.)
call restore_symmetry(ao_num, mo_num, mo_coef, size(mo_coef,1), 1.d-10)
call orthonormalize_mos
call save_mos
endif
call write_double(6, energy_SCF, 'SCF energy')
call write_time(6)
end

View File

@ -66,7 +66,8 @@ END_DOC
dim_DIIS = min(dim_DIIS+1,max_dim_DIIS)
if ( (scf_algorithm == 'DIIS').and.(dabs(Delta_energy_SCF) > 1.d-6) ) then
if( (scf_algorithm == 'DIIS') .and. (dabs(Delta_energy_SCF) > 1.d-6)) then
!if(scf_algorithm == 'DIIS') then
! Store Fock and error matrices at each iteration
index_dim_DIIS = mod(dim_DIIS-1,max_dim_DIIS)+1

View File

@ -67,10 +67,9 @@ subroutine rh_tcscf()
iteration_TCSCF += 1
if(iteration_TCSCF > n_it_TCSCF_max) then
print *, ' max of TCSCF iterations is reached ', n_it_TCSCF_max
exit
stop
endif
! current size of the DIIS space
dim_DIIS = min(dim_DIIS+1, max_dim_DIIS_TCSCF)
! ---
@ -86,10 +85,7 @@ subroutine rh_tcscf()
enddo
enddo
! Compute the extrapolated Fock matrix
call extrapolate_TC_Fock_matrix( e_DIIS, F_DIIS &
, Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1) &
, iteration_TCSCF, dim_DIIS )
call extrapolate_TC_Fock_matrix(e_DIIS, F_DIIS, Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1), iteration_TCSCF, dim_DIIS)
Fock_matrix_tc_ao_alpha = 0.5d0 * Fock_matrix_tc_ao_tot
Fock_matrix_tc_ao_beta = 0.5d0 * Fock_matrix_tc_ao_tot
@ -100,7 +96,6 @@ subroutine rh_tcscf()
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_beta , size(Fock_matrix_tc_ao_beta , 1) &
, Fock_matrix_tc_mo_beta , size(Fock_matrix_tc_mo_beta , 1) )
TOUCH Fock_matrix_tc_mo_alpha Fock_matrix_tc_mo_beta
endif
! ---
@ -121,9 +116,10 @@ subroutine rh_tcscf()
! ---
do while((dabs(delta_energy_tmp) > 0.1d0) .and. (iteration_TCSCF > 1))
! print *, ' very big step : ', delta_energy_tmp
! print *, ' TC level shift = ', level_shift_TCSCF
do while((delta_gradie_tmp > 1.d-7) .and. (iteration_TCSCF > 1))
!do while((dabs(delta_energy_tmp) > 0.5d0) .and. (iteration_TCSCF > 1))
print *, ' very big or bad step : ', delta_energy_tmp, delta_gradie_tmp
print *, ' TC level shift = ', level_shift_TCSCF
mo_l_coef(1:ao_num,1:mo_num) = mo_l_coef_save(1:ao_num,1:mo_num)
mo_r_coef(1:ao_num,1:mo_num) = mo_r_coef_save(1:ao_num,1:mo_num)
@ -139,7 +135,8 @@ subroutine rh_tcscf()
mo_r_coef(1:ao_num,1:mo_num) = fock_tc_reigvec_ao(1:ao_num,1:mo_num)
TOUCH mo_l_coef mo_r_coef
delta_energy_tmp = TC_HF_energy - energy_TCSCF_previous
delta_energy_tmp = TC_HF_energy - energy_TCSCF_previous
delta_gradie_tmp = grad_non_hermit - gradie_TCSCF_previous
if(level_shift_TCSCF - level_shift_save > 40.d0) then
level_shift_TCSCF = level_shift_save * 4.d0
@ -183,7 +180,7 @@ subroutine rh_tcscf()
print *, ' 1-e TC energy = ', energy_TCSCF_1e
print *, ' 2-e TC energy = ', energy_TCSCF_2e
print *, ' 3-e TC energy = ', energy_TCSCF_3e
print *, ' |delta TC energy| = ', delta_energy_TCSCF
print *, ' |delta TC energy| = ', dabs(delta_energy_TCSCF)
print *, ' TC gradient = ', gradie_TCSCF
print *, ' delta TC gradient = ', delta_gradie_TCSCF
print *, ' max TC DIIS error = ', max_error_DIIS_TCSCF
@ -199,6 +196,9 @@ subroutine rh_tcscf()
! ---
print *, ' TCSCF DIIS converged !'
call print_energy_and_mos()
call write_time(6)
deallocate(mo_r_coef_save, mo_l_coef_save, F_DIIS, e_DIIS)

View File

@ -21,8 +21,11 @@ program tc_scf
PROVIDE tcscf_algorithm
if(tcscf_algorithm == 'DIIS') then
call rh_tcscf()
else
elseif(tcscf_algorithm == 'Simple') then
call simple_tcscf()
else
print *, ' not implemented yet', tcscf_algorithm
stop
endif
call minimize_tc_orb_angles()
@ -127,7 +130,7 @@ subroutine simple_tcscf()
it += 1
if(it > n_it_tcscf_max) then
print *, ' max of TCSCF iterations is reached ', n_it_TCSCF_max
exit
stop
endif
@ -190,7 +193,7 @@ subroutine simple_tcscf()
endif
print*,'Energy converged !'
print *, ' TCSCF Simple converged !'
call print_energy_and_mos()
deallocate(rho_old, rho_new)

View File

@ -48,7 +48,7 @@ end
! TODO remove dim
subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,beta,a,b,A_center,B_center,dim)
subroutine give_explicit_poly_and_gaussian(P_new, P_center, p, fact_k, iorder, alpha, beta, a, b, A_center, B_center, dim)
BEGIN_DOC
! Transforms the product of
@ -65,19 +65,19 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,
implicit none
include 'constants.include.F'
integer, intent(in) :: dim
integer, intent(in) :: a(3),b(3) ! powers : (x-xa)**a_x = (x-A(1))**a(1)
double precision, intent(in) :: alpha, beta ! exponents
double precision, intent(in) :: A_center(3) ! A center
double precision, intent(in) :: B_center (3) ! B center
double precision, intent(out) :: P_center(3) ! new center
double precision, intent(out) :: p ! new exponent
double precision, intent(out) :: fact_k ! constant factor
double precision, intent(out) :: P_new(0:max_dim,3)! polynomial
integer, intent(out) :: iorder(3) ! i_order(i) = order of the polynomials
integer, intent(in) :: dim
integer, intent(in) :: a(3), b(3) ! powers : (x-xa)**a_x = (x-A(1))**a(1)
double precision, intent(in) :: alpha, beta ! exponents
double precision, intent(in) :: A_center(3) ! A center
double precision, intent(in) :: B_center (3) ! B center
integer, intent(out) :: iorder(3) ! i_order(i) = order of the polynomials
double precision, intent(out) :: P_center(3) ! new center
double precision, intent(out) :: p ! new exponent
double precision, intent(out) :: fact_k ! constant factor
double precision, intent(out) :: P_new(0:max_dim,3)! polynomial
double precision :: P_a(0:max_dim,3), P_b(0:max_dim,3)
integer :: n_new,i,j
integer :: n_new, i, j
double precision :: P_a(0:max_dim,3), P_b(0:max_dim,3)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: P_a, P_b
iorder(1) = 0
@ -87,46 +87,46 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,
P_new(0,2) = 0.d0
P_new(0,3) = 0.d0
!DIR$ FORCEINLINE
call gaussian_product(alpha,A_center,beta,B_center,fact_k,p,P_center)
if (fact_k < thresh) then
call gaussian_product(alpha, A_center, beta, B_center, fact_k, p, P_center)
if(fact_k < thresh) then
! IF fact_k is too smal then:
! returns a "s" function centered in zero
! with an inifinite exponent and a zero polynom coef
P_center = 0.d0
p = 1.d+15
fact_k = 0.d0
p = 1.d+15
fact_k = 0.d0
return
endif
!DIR$ FORCEINLINE
call recentered_poly2(P_a(0,1),A_center(1),P_center(1),a(1),P_b(0,1),B_center(1),P_center(1),b(1))
call recentered_poly2(P_a(0,1), A_center(1), P_center(1), a(1), P_b(0,1), B_center(1), P_center(1), b(1))
iorder(1) = a(1) + b(1)
do i=0,iorder(1)
do i = 0, iorder(1)
P_new(i,1) = 0.d0
enddo
n_new=0
n_new = 0
!DIR$ FORCEINLINE
call multiply_poly(P_a(0,1),a(1),P_b(0,1),b(1),P_new(0,1),n_new)
call multiply_poly(P_a(0,1), a(1), P_b(0,1), b(1), P_new(0,1), n_new)
!DIR$ FORCEINLINE
call recentered_poly2(P_a(0,2),A_center(2),P_center(2),a(2),P_b(0,2),B_center(2),P_center(2),b(2))
call recentered_poly2(P_a(0,2), A_center(2), P_center(2), a(2), P_b(0,2), B_center(2), P_center(2), b(2))
iorder(2) = a(2) + b(2)
do i=0,iorder(2)
do i = 0, iorder(2)
P_new(i,2) = 0.d0
enddo
n_new=0
n_new = 0
!DIR$ FORCEINLINE
call multiply_poly(P_a(0,2),a(2),P_b(0,2),b(2),P_new(0,2),n_new)
call multiply_poly(P_a(0,2), a(2), P_b(0,2), b(2), P_new(0,2), n_new)
!DIR$ FORCEINLINE
call recentered_poly2(P_a(0,3),A_center(3),P_center(3),a(3),P_b(0,3),B_center(3),P_center(3),b(3))
call recentered_poly2(P_a(0,3), A_center(3), P_center(3), a(3), P_b(0,3), B_center(3), P_center(3), b(3))
iorder(3) = a(3) + b(3)
do i=0,iorder(3)
do i = 0, iorder(3)
P_new(i,3) = 0.d0
enddo
n_new=0
n_new = 0
!DIR$ FORCEINLINE
call multiply_poly(P_a(0,3),a(3),P_b(0,3),b(3),P_new(0,3),n_new)
call multiply_poly(P_a(0,3), a(3), P_b(0,3), b(3), P_new(0,3), n_new)
end
@ -167,26 +167,33 @@ subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center, p, fact_k, io
call gaussian_product_v(alpha, A_center, LD_A, beta, B_center, fact_k, p, P_center, n_points)
if ( ior(ior(b(1),b(2)),b(3)) == 0 ) then ! b == (0,0,0)
lda = maxval(a)
ldb = 0
allocate(P_a(n_points,0:lda,3), P_b(n_points,0:0,3))
call recentered_poly2_v0(P_a, lda, A_center, LD_A, P_center, a, P_b, B_center, P_center, n_points)
if(ior(ior(b(1), b(2)), b(3)) == 0) then ! b == (0,0,0)
iorder(1:3) = a(1:3)
lda = maxval(a)
allocate(P_a(n_points,0:lda,3))
!ldb = 0
!allocate(P_b(n_points,0:0,3))
!call recentered_poly2_v0(P_a, lda, A_center, LD_A, P_center, a, P_b, B_center, P_center, n_points)
call recentered_poly2_v0(P_a, lda, A_center, LD_A, P_center, a, n_points)
do ipoint = 1, n_points
do xyz = 1, 3
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz)
!P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz)
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz)
do i = 1, a(xyz)
P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz)
!P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz)
P_new(ipoint,i,xyz) = P_a(ipoint,i,xyz)
enddo
enddo
enddo
return
deallocate(P_a)
!deallocate(P_b)
return
endif
lda = maxval(a)
@ -198,20 +205,27 @@ subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center, p, fact_k, io
iorder(1:3) = a(1:3) + b(1:3)
do xyz = 1, 3
if (b(xyz) == 0) then
if(b(xyz) == 0) then
do ipoint = 1, n_points
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz)
!P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz)
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz)
do i = 1, a(xyz)
P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz)
!P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz)
P_new(ipoint,i,xyz) = P_a(ipoint,i,xyz)
enddo
enddo
else
do i = 0, iorder(xyz)
do ipoint = 1, n_points
P_new(ipoint,i,xyz) = 0.d0
enddo
enddo
call multiply_poly_v(P_a(1,0,xyz), a(xyz), P_b(1,0,xyz), b(xyz), P_new(1,0,xyz), ldp, n_points)
endif
enddo
@ -720,45 +734,57 @@ end subroutine recentered_poly2_v
! ---
subroutine recentered_poly2_v0(P_new, lda, x_A, LD_xA, x_P, a, P_new2, x_B, x_Q, n_points)
!subroutine recentered_poly2_v0(P_new, lda, x_A, LD_xA, x_P, a, P_new2, x_B, x_Q, n_points)
subroutine recentered_poly2_v0(P_new, lda, x_A, LD_xA, x_P, a, n_points)
BEGIN_DOC
!
! Recenter two polynomials. Special case for b=(0,0,0)
!
! (x - A)^a (x - B)^0 = (x - P + P - A)^a (x - Q + Q - B)^0
! = (x - P + P - A)^a
!
END_DOC
implicit none
integer, intent(in) :: a(3), n_points, lda, LD_xA
double precision, intent(in) :: x_A(LD_xA,3)
double precision, intent(in) :: x_B(3)
double precision, intent(in) :: x_P(n_points,3), x_Q(n_points,3)
double precision, intent(out) :: P_new(n_points,0:lda,3), P_new2(n_points,3)
double precision, intent(in) :: x_A(LD_xA,3), x_P(n_points,3)
!double precision, intent(in) :: x_B(3), x_Q(n_points,3)
double precision, intent(out) :: P_new(n_points,0:lda,3)
!double precision, intent(out) :: P_new2(n_points,3)
integer :: i, j, k, l, xyz, ipoint, maxab(3)
double precision :: fa
double precision, allocatable :: pows_a(:,:), pows_b(:,:)
double precision, allocatable :: pows_a(:,:)
!double precision, allocatable :: pows_b(:,:)
double precision :: binom_func
maxab(1:3) = max(a(1:3),(/0,0,0/))
maxab(1:3) = max(a(1:3), (/0,0,0/))
allocate( pows_a(n_points,-2:maxval(maxab)+4), pows_b(n_points,-2:maxval(maxab)+4) )
allocate(pows_a(n_points,-2:maxval(maxab)+4))
!allocate(pows_b(n_points,-2:maxval(maxab)+4))
do xyz = 1, 3
if (a(xyz)<0) cycle
do ipoint=1,n_points
if(a(xyz) < 0) cycle
do ipoint = 1, n_points
pows_a(ipoint,0) = 1.d0
pows_a(ipoint,1) = (x_P(ipoint,xyz) - x_A(ipoint,xyz))
pows_b(ipoint,0) = 1.d0
pows_b(ipoint,1) = (x_Q(ipoint,xyz) - x_B(xyz))
!pows_b(ipoint,0) = 1.d0
!pows_b(ipoint,1) = (x_Q(ipoint,xyz) - x_B(xyz))
enddo
do i = 2,maxab(xyz)
do ipoint=1,n_points
pows_a(ipoint,i) = pows_a(ipoint,i-1)*pows_a(ipoint,1)
pows_b(ipoint,i) = pows_b(ipoint,i-1)*pows_b(ipoint,1)
do i = 2, maxab(xyz)
do ipoint = 1, n_points
pows_a(ipoint,i) = pows_a(ipoint,i-1) * pows_a(ipoint,1)
!pows_b(ipoint,i) = pows_b(ipoint,i-1) * pows_b(ipoint,1)
enddo
enddo
do ipoint=1,n_points
do ipoint = 1, n_points
P_new (ipoint,0,xyz) = pows_a(ipoint,a(xyz))
P_new2(ipoint,xyz) = pows_b(ipoint,0)
!P_new2(ipoint,xyz) = pows_b(ipoint,0)
enddo
do i = 1, min(a(xyz), 20)
fa = binom_transp(a(xyz)-i, a(xyz))
@ -775,11 +801,12 @@ subroutine recentered_poly2_v0(P_new, lda, x_A, LD_xA, x_P, a, P_new2, x_B, x_Q,
enddo !xyz
deallocate(pows_a, pows_b)
deallocate(pows_a)
!deallocate(pows_b)
end subroutine recentered_poly2_v0
!--
! ---
subroutine pol_modif_center(A_center, B_center, iorder, A_pol, B_pol)

View File

@ -31,7 +31,10 @@ double precision function overlap_gaussian_x(A_center,B_center,alpha,beta,power_
overlap_gaussian_x*= fact_p
end
! ---
! TODO
! gaussian_product is called twice: in give_explicit_poly_and_gaussian and here
subroutine overlap_gaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, overlap_x, overlap_y, overlap_z, overlap, dim)
BEGIN_DOC
@ -45,51 +48,50 @@ subroutine overlap_gaussian_xyz(A_center, B_center, alpha, beta, power_A, power_
include 'constants.include.F'
implicit none
integer,intent(in) :: dim ! dimension maximum for the arrays representing the polynomials
double precision,intent(in) :: A_center(3),B_center(3) ! center of the x1 functions
double precision, intent(in) :: alpha,beta
integer,intent(in) :: power_A(3), power_B(3) ! power of the x1 functions
double precision, intent(out) :: overlap_x,overlap_y,overlap_z,overlap
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,p
double precision :: F_integral_tab(0:max_dim)
integer :: iorder_p(3)
integer :: nmax
double precision :: F_integral
integer, intent(in) :: dim ! dimension maximum for the arrays representing the polynomials
integer, intent(in) :: power_A(3), power_B(3) ! power of the x1 functions
double precision, intent(in) :: A_center(3), B_center(3) ! center of the x1 functions
double precision, intent(in) :: alpha, beta
double precision, intent(out) :: overlap_x, overlap_y, overlap_z, overlap
integer :: i, nmax, iorder_p(3)
double precision :: P_new(0:max_dim,3), P_center(3), fact_p, p
double precision :: F_integral_tab(0:max_dim)
double precision :: F_integral
call give_explicit_poly_and_gaussian(P_new, P_center, p, fact_p, iorder_p, alpha, beta, power_A, power_B, A_center, B_center, dim)
if(fact_p.lt.1d-20)then
if(fact_p .lt. 1d-20) then
overlap_x = 1.d-10
overlap_y = 1.d-10
overlap_z = 1.d-10
overlap = 1.d-10
overlap = 1.d-10
return
endif
nmax = maxval(iorder_p)
do i = 0,nmax
F_integral_tab(i) = F_integral(i,p)
do i = 0, nmax
F_integral_tab(i) = F_integral(i, p)
enddo
overlap_x = P_new(0,1) * F_integral_tab(0)
overlap_y = P_new(0,2) * F_integral_tab(0)
overlap_z = P_new(0,3) * F_integral_tab(0)
integer :: i
do i = 1,iorder_p(1)
overlap_x = overlap_x + P_new(i,1) * F_integral_tab(i)
enddo
call gaussian_product_x(alpha,A_center(1),beta,B_center(1),fact_p,p,P_center(1))
call gaussian_product_x(alpha, A_center(1), beta, B_center(1), fact_p, p, P_center(1))
overlap_x *= fact_p
do i = 1,iorder_p(2)
do i = 1, iorder_p(2)
overlap_y = overlap_y + P_new(i,2) * F_integral_tab(i)
enddo
call gaussian_product_x(alpha,A_center(2),beta,B_center(2),fact_p,p,P_center(2))
call gaussian_product_x(alpha, A_center(2), beta, B_center(2), fact_p, p, P_center(2))
overlap_y *= fact_p
do i = 1,iorder_p(3)
overlap_z = overlap_z + P_new(i,3) * F_integral_tab(i)
enddo
call gaussian_product_x(alpha,A_center(3),beta,B_center(3),fact_p,p,P_center(3))
call gaussian_product_x(alpha, A_center(3), beta, B_center(3), fact_p, p, P_center(3))
overlap_z *= fact_p
overlap = overlap_x * overlap_y * overlap_z
@ -183,7 +185,7 @@ subroutine overlap_gaussian_xyz_v(A_center, B_center, alpha, beta, power_A, powe
double precision :: F_integral
double precision, allocatable :: P_new(:,:,:), P_center(:,:), fact_p(:)
ldp = maxval( power_A(1:3) + power_B(1:3) )
ldp = maxval(power_A(1:3) + power_B(1:3))
allocate(P_new(n_points,0:ldp,3), P_center(n_points,3), fact_p(n_points))