9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-03 09:05:39 +01:00

Merge pull request #225 from AbdAmmar/good-dev-tc

Good dev tc
This commit is contained in:
Anthony Scemama 2022-12-07 18:16:58 +01:00 committed by GitHub
commit d5fb21fe12
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
35 changed files with 4603 additions and 2143 deletions

View File

@ -233,9 +233,6 @@ subroutine NAI_pol_x_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
double precision :: NAI_pol_mult_erf double precision :: NAI_pol_mult_erf
ints = 0.d0 ints = 0.d0
if(ao_overlap_abs(j_ao,i_ao).lt.1.d-12) then
return
endif
num_A = ao_nucl(i_ao) num_A = ao_nucl(i_ao)
power_A(1:3) = ao_power(i_ao,1:3) power_A(1:3) = ao_power(i_ao,1:3)
@ -260,11 +257,11 @@ subroutine NAI_pol_x_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao) coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao)
! First term = (x-Ax)**(ax+1) ! First term = (x-Ax)**(ax+1)
integral = NAI_pol_mult_erf(A_center, B_center, power_xA, power_B, alpha, beta, C_center, n_pt_in, mu_in) integral = NAI_pol_mult_erf(A_center, B_center, power_xA, power_B, alpha, beta, C_center, n_pt_in, mu_in)
ints(m) += integral * coef ints(m) += integral * coef
! Second term = Ax * (x-Ax)**(ax) ! Second term = Ax * (x-Ax)**(ax)
integral = NAI_pol_mult_erf(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in) integral = NAI_pol_mult_erf(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in)
ints(m) += A_center(m) * integral * coef ints(m) += A_center(m) * integral * coef
enddo enddo
@ -274,7 +271,8 @@ subroutine NAI_pol_x_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
end subroutine NAI_pol_x_mult_erf_ao end subroutine NAI_pol_x_mult_erf_ao
! --- ! ---
subroutine NAI_pol_x_mult_erf_ao_v(i_ao, j_ao, mu_in, C_center, ints, n_points)
subroutine NAI_pol_x_mult_erf_ao_v0(i_ao, j_ao, mu_in, C_center, LD_C, ints, LD_ints, n_points)
BEGIN_DOC BEGIN_DOC
! !
@ -292,20 +290,16 @@ subroutine NAI_pol_x_mult_erf_ao_v(i_ao, j_ao, mu_in, C_center, ints, n_points)
implicit none implicit none
integer, intent(in) :: i_ao, j_ao, n_points integer, intent(in) :: i_ao, j_ao, LD_C, LD_ints, n_points
double precision, intent(in) :: mu_in, C_center(n_points,3) double precision, intent(in) :: mu_in, C_center(LD_C,3)
double precision, intent(out) :: ints(n_points,3) double precision, intent(out) :: ints(LD_ints,3)
integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in
integer :: power_xA(3), m, ipoint integer :: power_xA(3), m, ipoint
double precision :: A_center(3), B_center(3), alpha, beta, coef double precision :: A_center(3), B_center(3), alpha, beta, coef
double precision, allocatable :: integral(:) double precision, allocatable :: integral(:)
double precision :: NAI_pol_mult_erf
ints = 0.d0 ints(1:LD_ints,1:3) = 0.d0
if(ao_overlap_abs(j_ao,i_ao).lt.1.d-12) then
return
endif
num_A = ao_nucl(i_ao) num_A = ao_nucl(i_ao)
power_A(1:3) = ao_power(i_ao,1:3) power_A(1:3) = ao_power(i_ao,1:3)
@ -317,13 +311,15 @@ subroutine NAI_pol_x_mult_erf_ao_v(i_ao, j_ao, mu_in, C_center, ints, n_points)
n_pt_in = n_pt_max_integrals n_pt_in = n_pt_max_integrals
allocate(integral(n_points)) allocate(integral(n_points))
integral = 0.d0
do i = 1, ao_prim_num(i_ao) do i = 1, ao_prim_num(i_ao)
alpha = ao_expo_ordered_transp(i,i_ao) alpha = ao_expo_ordered_transp(i,i_ao)
do m = 1, 3 do m = 1, 3
power_xA = power_A
! x * phi_i(r) = x * (x-Ax)**ax = (x-Ax)**(ax+1) + Ax * (x-Ax)**ax ! x * phi_i(r) = x * (x-Ax)**ax = (x-Ax)**(ax+1) + Ax * (x-Ax)**ax
power_xA = power_A
power_xA(m) += 1 power_xA(m) += 1
do j = 1, ao_prim_num(j_ao) do j = 1, ao_prim_num(j_ao)
@ -331,25 +327,494 @@ subroutine NAI_pol_x_mult_erf_ao_v(i_ao, j_ao, mu_in, C_center, ints, n_points)
coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao) coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao)
! First term = (x-Ax)**(ax+1) ! First term = (x-Ax)**(ax+1)
call NAI_pol_mult_erf_v(A_center, B_center, power_xA, power_B, alpha, beta, C_center, n_pt_in, mu_in, integral, n_points) call NAI_pol_mult_erf_v(A_center, B_center, power_xA, power_B, alpha, beta, C_center(1:LD_C,1:3), LD_C, n_pt_in, mu_in, integral(1:n_points), n_points, n_points)
do ipoint=1,n_points do ipoint = 1, n_points
ints(ipoint,m) += integral(ipoint) * coef ints(ipoint,m) += integral(ipoint) * coef
enddo enddo
! Second term = Ax * (x-Ax)**(ax) ! Second term = Ax * (x-Ax)**(ax)
call NAI_pol_mult_erf_v(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in, integral, n_points) call NAI_pol_mult_erf_v(A_center, B_center, power_A, power_B, alpha, beta, C_center(1:LD_C,1:3), LD_C, n_pt_in, mu_in, integral(1:n_points), n_points, n_points)
do ipoint=1,n_points do ipoint = 1, n_points
ints(ipoint,m) += A_center(m) * integral(ipoint) * coef ints(ipoint,m) += A_center(m) * integral(ipoint) * coef
enddo enddo
enddo enddo
enddo enddo
enddo enddo
deallocate(integral)
end subroutine NAI_pol_x_mult_erf_ao_v0
! ---
subroutine NAI_pol_x_mult_erf_ao_v(i_ao, j_ao, mu_in, C_center, LD_C, ints, LD_ints, n_points)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao, LD_C, LD_ints, n_points(3)
double precision, intent(in) :: mu_in, C_center(LD_C,3,3)
double precision, intent(out) :: ints(LD_ints,3)
integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in, LD_integral
integer :: power_xA(3), m, ipoint, n_points_m
double precision :: A_center(3), B_center(3), alpha, beta, coef
double precision, allocatable :: integral(:)
ints(1:LD_ints,1:3) = 0.d0
num_A = ao_nucl(i_ao)
power_A(1:3) = ao_power(i_ao,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
num_B = ao_nucl(j_ao)
power_B(1:3) = ao_power(j_ao,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
n_pt_in = n_pt_max_integrals
LD_integral = max(max(n_points(1), n_points(2)), n_points(3))
allocate(integral(LD_integral))
integral = 0.d0
do i = 1, ao_prim_num(i_ao)
alpha = ao_expo_ordered_transp(i,i_ao)
do m = 1, 3
n_points_m = n_points(m)
! x * phi_i(r) = x * (x-Ax)**ax = (x-Ax)**(ax+1) + Ax * (x-Ax)**ax
power_xA = power_A
power_xA(m) += 1
do j = 1, ao_prim_num(j_ao)
beta = ao_expo_ordered_transp(j,j_ao)
coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao)
! First term = (x-Ax)**(ax+1)
call NAI_pol_mult_erf_v( A_center, B_center, power_xA, power_B, alpha, beta &
, C_center(1:LD_C,1:3,m), LD_C, n_pt_in, mu_in, integral(1:LD_integral), LD_integral, n_points_m)
do ipoint = 1, n_points_m
ints(ipoint,m) += integral(ipoint) * coef
enddo
! Second term = Ax * (x-Ax)**(ax)
call NAI_pol_mult_erf_v( A_center, B_center, power_A, power_B, alpha, beta &
, C_center(1:LD_C,1:3,m), LD_C, n_pt_in, mu_in, integral(1:LD_integral), LD_integral, n_points_m)
do ipoint = 1, n_points_m
ints(ipoint,m) += A_center(m) * integral(ipoint) * coef
enddo
enddo
enddo
enddo
deallocate(integral) deallocate(integral)
end subroutine NAI_pol_x_mult_erf_ao_v end subroutine NAI_pol_x_mult_erf_ao_v
! --- ! ---
double precision function NAI_pol_x_mult_erf_ao_x(i_ao, j_ao, mu_in, C_center)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: mu_in, C_center(3)
integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in, power_xA(3)
double precision :: A_center(3), B_center(3), integral, alpha, beta, coef
double precision :: NAI_pol_mult_erf
NAI_pol_x_mult_erf_ao_x = 0.d0
if(ao_overlap_abs(j_ao,i_ao) .lt. 1.d-12) return
num_A = ao_nucl(i_ao)
power_A(1:3) = ao_power(i_ao,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
num_B = ao_nucl(j_ao)
power_B(1:3) = ao_power(j_ao,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
power_xA = power_A
power_xA(1) += 1
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alpha = ao_expo_ordered_transp(i,i_ao)
do j = 1, ao_prim_num(j_ao)
beta = ao_expo_ordered_transp(j,j_ao)
coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao)
! First term = (x-Ax)**(ax+1)
integral = NAI_pol_mult_erf(A_center, B_center, power_xA, power_B, alpha, beta, C_center, n_pt_in, mu_in)
NAI_pol_x_mult_erf_ao_x += integral * coef
! Second term = Ax * (x-Ax)**(ax)
integral = NAI_pol_mult_erf(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in)
NAI_pol_x_mult_erf_ao_x += A_center(1) * integral * coef
enddo
enddo
end function NAI_pol_x_mult_erf_ao_x
! ---
double precision function NAI_pol_x_mult_erf_ao_y(i_ao, j_ao, mu_in, C_center)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: mu_in, C_center(3)
integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in, power_xA(3)
double precision :: A_center(3), B_center(3), integral, alpha, beta, coef
double precision :: NAI_pol_mult_erf
NAI_pol_x_mult_erf_ao_y = 0.d0
if(ao_overlap_abs(j_ao,i_ao) .lt. 1.d-12) return
num_A = ao_nucl(i_ao)
power_A(1:3) = ao_power(i_ao,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
num_B = ao_nucl(j_ao)
power_B(1:3) = ao_power(j_ao,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
power_xA = power_A
power_xA(2) += 1
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alpha = ao_expo_ordered_transp(i,i_ao)
do j = 1, ao_prim_num(j_ao)
beta = ao_expo_ordered_transp(j,j_ao)
coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao)
! First term = (x-Ax)**(ax+1)
integral = NAI_pol_mult_erf(A_center, B_center, power_xA, power_B, alpha, beta, C_center, n_pt_in, mu_in)
NAI_pol_x_mult_erf_ao_y += integral * coef
! Second term = Ax * (x-Ax)**(ax)
integral = NAI_pol_mult_erf(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in)
NAI_pol_x_mult_erf_ao_y += A_center(2) * integral * coef
enddo
enddo
end function NAI_pol_x_mult_erf_ao_y
! ---
double precision function NAI_pol_x_mult_erf_ao_z(i_ao, j_ao, mu_in, C_center)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: mu_in, C_center(3)
integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in, power_xA(3)
double precision :: A_center(3), B_center(3), integral, alpha, beta, coef
double precision :: NAI_pol_mult_erf
NAI_pol_x_mult_erf_ao_z = 0.d0
if(ao_overlap_abs(j_ao,i_ao) .lt. 1.d-12) return
num_A = ao_nucl(i_ao)
power_A(1:3) = ao_power(i_ao,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
num_B = ao_nucl(j_ao)
power_B(1:3) = ao_power(j_ao,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
power_xA = power_A
power_xA(3) += 1
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alpha = ao_expo_ordered_transp(i,i_ao)
do j = 1, ao_prim_num(j_ao)
beta = ao_expo_ordered_transp(j,j_ao)
coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao)
! First term = (x-Ax)**(ax+1)
integral = NAI_pol_mult_erf(A_center, B_center, power_xA, power_B, alpha, beta, C_center, n_pt_in, mu_in)
NAI_pol_x_mult_erf_ao_z += integral * coef
! Second term = Ax * (x-Ax)**(ax)
integral = NAI_pol_mult_erf(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in)
NAI_pol_x_mult_erf_ao_z += A_center(3) * integral * coef
enddo
enddo
end function NAI_pol_x_mult_erf_ao_z
! ---
double precision function NAI_pol_x_mult_erf_ao_with1s_x(i_ao, j_ao, beta, B_center, mu_in, C_center)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: beta, B_center(3), mu_in, C_center(3)
integer :: i, j, power_Ai(3), power_Aj(3), n_pt_in, power_xA(3)
double precision :: Ai_center(3), Aj_center(3), integral, alphai, alphaj, coef, coefi
double precision, external :: NAI_pol_mult_erf_with1s
double precision, external :: NAI_pol_x_mult_erf_ao_x
ASSERT(beta .ge. 0.d0)
if(beta .lt. 1d-10) then
NAI_pol_x_mult_erf_ao_with1s_x = NAI_pol_x_mult_erf_ao_x(i_ao, j_ao, mu_in, C_center)
return
endif
NAI_pol_x_mult_erf_ao_with1s_x = 0.d0
if(ao_overlap_abs(j_ao,i_ao) .lt. 1.d-12) then
return
endif
power_Ai(1:3) = ao_power(i_ao,1:3)
power_Aj(1:3) = ao_power(j_ao,1:3)
Ai_center(1:3) = nucl_coord(ao_nucl(i_ao),1:3)
Aj_center(1:3) = nucl_coord(ao_nucl(j_ao),1:3)
power_xA = power_Ai
power_xA(1) += 1
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alphai = ao_expo_ordered_transp (i,i_ao)
coefi = ao_coef_normalized_ordered_transp(i,i_ao)
do j = 1, ao_prim_num(j_ao)
alphaj = ao_expo_ordered_transp (j,j_ao)
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
! First term = (x-Ax)**(ax+1)
integral = NAI_pol_mult_erf_with1s( Ai_center, Aj_center, power_xA, power_Aj, alphai, alphaj &
, beta, B_center, C_center, n_pt_in, mu_in )
NAI_pol_x_mult_erf_ao_with1s_x += integral * coef
! Second term = Ax * (x-Ax)**(ax)
integral = NAI_pol_mult_erf_with1s( Ai_center, Aj_center, power_Ai, power_Aj, alphai, alphaj &
, beta, B_center, C_center, n_pt_in, mu_in )
NAI_pol_x_mult_erf_ao_with1s_x += Ai_center(1) * integral * coef
enddo
enddo
end function NAI_pol_x_mult_erf_ao_with1s_x
! ---
double precision function NAI_pol_x_mult_erf_ao_with1s_y(i_ao, j_ao, beta, B_center, mu_in, C_center)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: beta, B_center(3), mu_in, C_center(3)
integer :: i, j, power_Ai(3), power_Aj(3), n_pt_in, power_xA(3)
double precision :: Ai_center(3), Aj_center(3), integral, alphai, alphaj, coef, coefi
double precision, external :: NAI_pol_mult_erf_with1s
double precision, external :: NAI_pol_x_mult_erf_ao_y
ASSERT(beta .ge. 0.d0)
if(beta .lt. 1d-10) then
NAI_pol_x_mult_erf_ao_with1s_y = NAI_pol_x_mult_erf_ao_y(i_ao, j_ao, mu_in, C_center)
return
endif
NAI_pol_x_mult_erf_ao_with1s_y = 0.d0
if(ao_overlap_abs(j_ao,i_ao) .lt. 1.d-12) then
return
endif
power_Ai(1:3) = ao_power(i_ao,1:3)
power_Aj(1:3) = ao_power(j_ao,1:3)
Ai_center(1:3) = nucl_coord(ao_nucl(i_ao),1:3)
Aj_center(1:3) = nucl_coord(ao_nucl(j_ao),1:3)
power_xA = power_Ai
power_xA(2) += 1
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alphai = ao_expo_ordered_transp (i,i_ao)
coefi = ao_coef_normalized_ordered_transp(i,i_ao)
do j = 1, ao_prim_num(j_ao)
alphaj = ao_expo_ordered_transp (j,j_ao)
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
! First term = (x-Ax)**(ax+1)
integral = NAI_pol_mult_erf_with1s( Ai_center, Aj_center, power_xA, power_Aj, alphai, alphaj &
, beta, B_center, C_center, n_pt_in, mu_in )
NAI_pol_x_mult_erf_ao_with1s_y += integral * coef
! Second term = Ax * (x-Ax)**(ax)
integral = NAI_pol_mult_erf_with1s( Ai_center, Aj_center, power_Ai, power_Aj, alphai, alphaj &
, beta, B_center, C_center, n_pt_in, mu_in )
NAI_pol_x_mult_erf_ao_with1s_y += Ai_center(2) * integral * coef
enddo
enddo
end function NAI_pol_x_mult_erf_ao_with1s_y
! ---
double precision function NAI_pol_x_mult_erf_ao_with1s_z(i_ao, j_ao, beta, B_center, mu_in, C_center)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: beta, B_center(3), mu_in, C_center(3)
integer :: i, j, power_Ai(3), power_Aj(3), n_pt_in, power_xA(3)
double precision :: Ai_center(3), Aj_center(3), integral, alphai, alphaj, coef, coefi
double precision, external :: NAI_pol_mult_erf_with1s
double precision, external :: NAI_pol_x_mult_erf_ao_z
ASSERT(beta .ge. 0.d0)
if(beta .lt. 1d-10) then
NAI_pol_x_mult_erf_ao_with1s_z = NAI_pol_x_mult_erf_ao_z(i_ao, j_ao, mu_in, C_center)
return
endif
NAI_pol_x_mult_erf_ao_with1s_z = 0.d0
if(ao_overlap_abs(j_ao,i_ao) .lt. 1.d-12) then
return
endif
power_Ai(1:3) = ao_power(i_ao,1:3)
power_Aj(1:3) = ao_power(j_ao,1:3)
Ai_center(1:3) = nucl_coord(ao_nucl(i_ao),1:3)
Aj_center(1:3) = nucl_coord(ao_nucl(j_ao),1:3)
power_xA = power_Ai
power_xA(3) += 1
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alphai = ao_expo_ordered_transp (i,i_ao)
coefi = ao_coef_normalized_ordered_transp(i,i_ao)
do j = 1, ao_prim_num(j_ao)
alphaj = ao_expo_ordered_transp (j,j_ao)
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
! First term = (x-Ax)**(ax+1)
integral = NAI_pol_mult_erf_with1s( Ai_center, Aj_center, power_xA, power_Aj, alphai, alphaj &
, beta, B_center, C_center, n_pt_in, mu_in )
NAI_pol_x_mult_erf_ao_with1s_z += integral * coef
! Second term = Ax * (x-Ax)**(ax)
integral = NAI_pol_mult_erf_with1s( Ai_center, Aj_center, power_Ai, power_Aj, alphai, alphaj &
, beta, B_center, C_center, n_pt_in, mu_in )
NAI_pol_x_mult_erf_ao_with1s_z += Ai_center(3) * integral * coef
enddo
enddo
end function NAI_pol_x_mult_erf_ao_with1s_z
! ---
subroutine NAI_pol_x_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_center, ints) subroutine NAI_pol_x_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_center, ints)
BEGIN_DOC BEGIN_DOC
@ -384,9 +849,6 @@ subroutine NAI_pol_x_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_cen
endif endif
ints = 0.d0 ints = 0.d0
if(ao_overlap_abs(j_ao,i_ao) .lt. 1.d-12) then
return
endif
power_Ai(1:3) = ao_power(i_ao,1:3) power_Ai(1:3) = ao_power(i_ao,1:3)
power_Aj(1:3) = ao_power(j_ao,1:3) power_Aj(1:3) = ao_power(j_ao,1:3)
@ -411,13 +873,11 @@ subroutine NAI_pol_x_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_cen
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao) coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
! First term = (x-Ax)**(ax+1) ! First term = (x-Ax)**(ax+1)
integral = NAI_pol_mult_erf_with1s( Ai_center, Aj_center, power_xA, power_Aj, alphai, alphaj & integral = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_xA, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
, beta, B_center, C_center, n_pt_in, mu_in )
ints(m) += integral * coef ints(m) += integral * coef
! Second term = Ax * (x-Ax)**(ax) ! Second term = Ax * (x-Ax)**(ax)
integral = NAI_pol_mult_erf_with1s( Ai_center, Aj_center, power_Ai, power_Aj, alphai, alphaj & integral = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_Ai, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
, beta, B_center, C_center, n_pt_in, mu_in )
ints(m) += Ai_center(m) * integral * coef ints(m) += Ai_center(m) * integral * coef
enddo enddo
@ -426,9 +886,9 @@ subroutine NAI_pol_x_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_cen
end subroutine NAI_pol_x_mult_erf_ao_with1s end subroutine NAI_pol_x_mult_erf_ao_with1s
!-- ! ---
subroutine NAI_pol_x_mult_erf_ao_with1s_v(i_ao, j_ao, beta, B_center, mu_in, C_center, ints, n_points) subroutine NAI_pol_x_mult_erf_ao_with1s_v0(i_ao, j_ao, beta, B_center, LD_B, mu_in, C_center, LD_C, ints, LD_ints, n_points)
BEGIN_DOC BEGIN_DOC
! !
@ -446,25 +906,23 @@ subroutine NAI_pol_x_mult_erf_ao_with1s_v(i_ao, j_ao, beta, B_center, mu_in, C_c
implicit none implicit none
integer, intent(in) :: i_ao, j_ao, n_points integer, intent(in) :: i_ao, j_ao, LD_B, LD_C, LD_ints, n_points
double precision, intent(in) :: beta, B_center(n_points,3), mu_in, C_center(n_points,3) double precision, intent(in) :: beta, mu_in
double precision, intent(out) :: ints(n_points,3) double precision, intent(in) :: B_center(LD_B,3), C_center(LD_C,3)
double precision, intent(out) :: ints(LD_ints,3)
integer :: i, j, power_Ai(3), power_Aj(3), n_pt_in, power_xA(3), m integer :: i, j, power_Ai(3), power_Aj(3), n_pt_in, power_xA(3), m
double precision :: Ai_center(3), Aj_center(3), alphai, alphaj, coef, coefi double precision :: Ai_center(3), Aj_center(3), alphai, alphaj, coef, coefi
integer :: ipoint integer :: ipoint
double precision, allocatable :: integral(:) double precision, allocatable :: integral(:)
if(beta .lt. 1d-10) then if(beta .lt. 1d-10) then
call NAI_pol_x_mult_erf_ao_v(i_ao, j_ao, mu_in, C_center, ints, n_points) call NAI_pol_x_mult_erf_ao_v0(i_ao, j_ao, mu_in, C_center, LD_C, ints, LD_ints, n_points)
return return
endif endif
ints(:,:) = 0.d0 ints(1:LD_ints,1:3) = 0.d0
if(ao_overlap_abs(j_ao,i_ao) .lt. 1.d-12) then
return
endif
power_Ai(1:3) = ao_power(i_ao,1:3) power_Ai(1:3) = ao_power(i_ao,1:3)
power_Aj(1:3) = ao_power(j_ao,1:3) power_Aj(1:3) = ao_power(j_ao,1:3)
@ -475,6 +933,8 @@ subroutine NAI_pol_x_mult_erf_ao_with1s_v(i_ao, j_ao, beta, B_center, mu_in, C_c
n_pt_in = n_pt_max_integrals n_pt_in = n_pt_max_integrals
allocate(integral(n_points)) allocate(integral(n_points))
integral = 0.d0
do i = 1, ao_prim_num(i_ao) do i = 1, ao_prim_num(i_ao)
alphai = ao_expo_ordered_transp (i,i_ao) alphai = ao_expo_ordered_transp (i,i_ao)
coefi = ao_coef_normalized_ordered_transp(i,i_ao) coefi = ao_coef_normalized_ordered_transp(i,i_ao)
@ -490,15 +950,17 @@ subroutine NAI_pol_x_mult_erf_ao_with1s_v(i_ao, j_ao, beta, B_center, mu_in, C_c
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao) coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
! First term = (x-Ax)**(ax+1) ! First term = (x-Ax)**(ax+1)
call NAI_pol_mult_erf_with1s_v( Ai_center, Aj_center, power_xA, power_Aj, alphai, &
alphaj, beta, B_center, C_center, n_pt_in, mu_in, integral, n_points) call NAI_pol_mult_erf_with1s_v( Ai_center, Aj_center, power_xA, power_Aj, alphai, alphaj, beta &
, B_center(1:LD_B,1:3), LD_B, C_center(1:LD_C,1:3), LD_C, n_pt_in, mu_in, integral(1:n_points), n_points, n_points)
do ipoint = 1, n_points do ipoint = 1, n_points
ints(ipoint,m) += integral(ipoint) * coef ints(ipoint,m) += integral(ipoint) * coef
enddo enddo
! Second term = Ax * (x-Ax)**(ax) ! Second term = Ax * (x-Ax)**(ax)
call NAI_pol_mult_erf_with1s_v( Ai_center, Aj_center, power_Ai, power_Aj, alphai, & call NAI_pol_mult_erf_with1s_v( Ai_center, Aj_center, power_Ai, power_Aj, alphai, alphaj, beta &
alphaj, beta, B_center, C_center, n_pt_in, mu_in, integral, n_points) , B_center(1:LD_B,1:3), LD_B, C_center(1:LD_C,1:3), LD_C, n_pt_in, mu_in, integral(1:n_points), n_points, n_points)
do ipoint = 1, n_points do ipoint = 1, n_points
ints(ipoint,m) += Ai_center(m) * integral(ipoint) * coef ints(ipoint,m) += Ai_center(m) * integral(ipoint) * coef
enddo enddo
@ -506,10 +968,100 @@ subroutine NAI_pol_x_mult_erf_ao_with1s_v(i_ao, j_ao, beta, B_center, mu_in, C_c
enddo enddo
enddo enddo
enddo enddo
deallocate(integral) deallocate(integral)
end subroutine NAI_pol_x_mult_erf_ao_with1s end subroutine NAI_pol_x_mult_erf_ao_with1s_v0
! ---
subroutine NAI_pol_x_mult_erf_ao_with1s_v(i_ao, j_ao, beta, B_center, LD_B, mu_in, C_center, LD_C, ints, LD_ints, n_points)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao, LD_B, LD_C, LD_ints, n_points(3)
double precision, intent(in) :: beta, mu_in
double precision, intent(in) :: B_center(LD_B,3,3), C_center(LD_C,3,3)
double precision, intent(out) :: ints(LD_ints,3)
integer :: i, j, power_Ai(3), power_Aj(3), n_pt_in, power_xA(3), m
double precision :: Ai_center(3), Aj_center(3), alphai, alphaj, coef, coefi
integer :: ipoint, n_points_m, LD_integral
double precision, allocatable :: integral(:)
if(beta .lt. 1d-10) then
print *, 'small beta', i_ao, j_ao
call NAI_pol_x_mult_erf_ao_v(i_ao, j_ao, mu_in, C_center, LD_C, ints, LD_ints, n_points)
return
endif
ints(1:LD_ints,1:3) = 0.d0
power_Ai(1:3) = ao_power(i_ao,1:3)
power_Aj(1:3) = ao_power(j_ao,1:3)
Ai_center(1:3) = nucl_coord(ao_nucl(i_ao),1:3)
Aj_center(1:3) = nucl_coord(ao_nucl(j_ao),1:3)
n_pt_in = n_pt_max_integrals
LD_integral = max(max(n_points(1), n_points(2)), n_points(3))
allocate(integral(LD_integral))
integral = 0.d0
do i = 1, ao_prim_num(i_ao)
alphai = ao_expo_ordered_transp (i,i_ao)
coefi = ao_coef_normalized_ordered_transp(i,i_ao)
do m = 1, 3
n_points_m = n_points(m)
! x * phi_i(r) = x * (x-Ax)**ax = (x-Ax)**(ax+1) + Ax * (x-Ax)**ax
power_xA = power_Ai
power_xA(m) += 1
do j = 1, ao_prim_num(j_ao)
alphaj = ao_expo_ordered_transp (j,j_ao)
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
! First term = (x-Ax)**(ax+1)
call NAI_pol_mult_erf_with1s_v( Ai_center, Aj_center, power_xA, power_Aj, alphai, alphaj, beta &
, B_center(1:LD_B,1:3,m), LD_B, C_center(1:LD_C,1:3,m), LD_C, n_pt_in, mu_in, integral(1:LD_integral), LD_integral, n_points_m)
do ipoint = 1, n_points_m
ints(ipoint,m) += integral(ipoint) * coef
enddo
! Second term = Ax * (x-Ax)**(ax)
call NAI_pol_mult_erf_with1s_v( Ai_center, Aj_center, power_Ai, power_Aj, alphai, alphaj, beta &
, B_center(1:LD_B,1:3,m), LD_B, C_center(1:LD_C,1:3,m), LD_C, n_pt_in, mu_in, integral(1:LD_integral), LD_integral, n_points_m)
do ipoint = 1, n_points_m
ints(ipoint,m) += Ai_center(m) * integral(ipoint) * coef
enddo
enddo
enddo
enddo
deallocate(integral)
end subroutine NAI_pol_x_mult_erf_ao_with1s_v
! --- ! ---

View File

@ -1,4 +1,7 @@
! ---
subroutine overlap_gauss_xyz_r12_ao(D_center,delta,i,j,gauss_ints) subroutine overlap_gauss_xyz_r12_ao(D_center,delta,i,j,gauss_ints)
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! gauss_ints(m) = \int dr AO_i(r) AO_j(r) x/y/z e^{-delta |r-D_center|^2} ! gauss_ints(m) = \int dr AO_i(r) AO_j(r) x/y/z e^{-delta |r-D_center|^2}
@ -32,6 +35,7 @@ subroutine overlap_gauss_xyz_r12_ao(D_center,delta,i,j,gauss_ints)
enddo enddo
enddo enddo
enddo enddo
end end
@ -152,24 +156,26 @@ end function overlap_gauss_r12_ao
! -- ! --
subroutine overlap_gauss_r12_ao_v(D_center, delta, i, j, resv, n_points) subroutine overlap_gauss_r12_ao_v(D_center, LD_D, delta, i, j, resv, LD_resv, n_points)
BEGIN_DOC BEGIN_DOC
!
! \int dr AO_i(r) AO_j(r) e^{-delta |r-D_center|^2} ! \int dr AO_i(r) AO_j(r) e^{-delta |r-D_center|^2}
!
! n_points: nb of integrals <= min(LD_D, LD_resv)
!
END_DOC END_DOC
implicit none implicit none
integer, intent(in) :: i, j, n_points integer, intent(in) :: i, j, LD_D, LD_resv, n_points
double precision, intent(in) :: D_center(n_points,3), delta double precision, intent(in) :: D_center(LD_D,3), delta
double precision, intent(out) :: resv(n_points) double precision, intent(out) :: resv(LD_resv)
integer :: power_A(3), power_B(3), l, k integer :: ipoint
double precision :: A_center(3), B_center(3), alpha, beta, coef, coef1 integer :: power_A(3), power_B(3), l, k
double precision :: A_center(3), B_center(3), alpha, beta, coef, coef1
double precision, allocatable :: analytical_j(:) double precision, allocatable :: analytical_j(:)
double precision, external :: overlap_gauss_r12
integer :: ipoint
resv(:) = 0.d0 resv(:) = 0.d0
if(ao_overlap_abs(j,i).lt.1.d-12) then if(ao_overlap_abs(j,i).lt.1.d-12) then
return return
@ -182,6 +188,7 @@ subroutine overlap_gauss_r12_ao_v(D_center, delta, i, j, resv, n_points)
B_center(1:3) = nucl_coord(ao_nucl(j),1:3) B_center(1:3) = nucl_coord(ao_nucl(j),1:3)
allocate(analytical_j(n_points)) allocate(analytical_j(n_points))
do l = 1, ao_prim_num(i) do l = 1, ao_prim_num(i)
alpha = ao_expo_ordered_transp (l,i) alpha = ao_expo_ordered_transp (l,i)
coef1 = ao_coef_normalized_ordered_transp(l,i) coef1 = ao_coef_normalized_ordered_transp(l,i)
@ -192,15 +199,18 @@ subroutine overlap_gauss_r12_ao_v(D_center, delta, i, j, resv, n_points)
if(dabs(coef) .lt. 1d-12) cycle if(dabs(coef) .lt. 1d-12) cycle
call overlap_gauss_r12_v(D_center, delta, A_center, B_center, power_A, power_B, alpha, beta, analytical_j, n_points) call overlap_gauss_r12_v(D_center, LD_D, delta, A_center, B_center, power_A, power_B, alpha, beta, analytical_j, n_points, n_points)
do ipoint=1, n_points
resv(ipoint) = resv(ipoint) + coef*analytical_j(ipoint) do ipoint = 1, n_points
resv(ipoint) = resv(ipoint) + coef * analytical_j(ipoint)
enddo enddo
enddo enddo
enddo enddo
deallocate(analytical_j) deallocate(analytical_j)
end end subroutine overlap_gauss_r12_ao_v
! --- ! ---
@ -274,7 +284,8 @@ end function overlap_gauss_r12_ao_with1s
! --- ! ---
subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, delta, i, j, resv, n_points) subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, LD_D, delta, i, j, resv, LD_resv, n_points)
BEGIN_DOC BEGIN_DOC
! !
! \int dr AO_i(r) AO_j(r) e^{-beta |r-B_center^2|} e^{-delta |r-D_center|^2} ! \int dr AO_i(r) AO_j(r) e^{-beta |r-B_center^2|} e^{-delta |r-D_center|^2}
@ -283,18 +294,16 @@ subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, delta, i, j,
END_DOC END_DOC
implicit none implicit none
integer, intent(in) :: i, j, n_points integer, intent(in) :: i, j, n_points, LD_D, LD_resv
double precision, intent(in) :: B_center(3), beta, D_center(n_points,3), delta double precision, intent(in) :: B_center(3), beta, D_center(LD_D,3), delta
double precision, intent(out) :: resv(n_points) double precision, intent(out) :: resv(LD_resv)
integer :: power_A1(3), power_A2(3), l, k
double precision :: A1_center(3), A2_center(3), alpha1, alpha2, coef1
double precision :: coef12, coef12f
double precision :: gama, gama_inv
double precision :: bg, dg, bdg
integer :: ipoint
integer :: ipoint
integer :: power_A1(3), power_A2(3), l, k
double precision :: A1_center(3), A2_center(3), alpha1, alpha2, coef1
double precision :: coef12, coef12f
double precision :: gama, gama_inv
double precision :: bg, dg, bdg
double precision, allocatable :: fact_g(:), G_center(:,:), analytical_j(:) double precision, allocatable :: fact_g(:), G_center(:,:), analytical_j(:)
if(ao_overlap_abs(j,i) .lt. 1.d-12) then if(ao_overlap_abs(j,i) .lt. 1.d-12) then
@ -304,7 +313,9 @@ subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, delta, i, j,
ASSERT(beta .gt. 0.d0) ASSERT(beta .gt. 0.d0)
if(beta .lt. 1d-10) then if(beta .lt. 1d-10) then
call overlap_gauss_r12_ao_v(D_center, delta, i, j, resv, n_points)
call overlap_gauss_r12_ao_v(D_center, LD_D, delta, i, j, resv, LD_resv, n_points)
return return
endif endif
@ -312,8 +323,8 @@ subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, delta, i, j,
! e^{-beta |r-B_center^2|} e^{-delta |r-D_center|^2} = fact_g e^{-gama |r - G|^2} ! e^{-beta |r-B_center^2|} e^{-delta |r-D_center|^2} = fact_g e^{-gama |r - G|^2}
gama = beta + delta gama = beta + delta
gama_inv = 1.d0 / gama gama_inv = 1.d0 / gama
power_A1(1:3) = ao_power(i,1:3) power_A1(1:3) = ao_power(i,1:3)
power_A2(1:3) = ao_power(j,1:3) power_A2(1:3) = ao_power(j,1:3)
@ -323,8 +334,8 @@ subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, delta, i, j,
allocate (fact_g(n_points), G_center(n_points,3), analytical_j(n_points) ) allocate (fact_g(n_points), G_center(n_points,3), analytical_j(n_points) )
bg = beta * gama_inv bg = beta * gama_inv
dg = delta * gama_inv dg = delta * gama_inv
bdg = bg * delta bdg = bg * delta
do ipoint=1,n_points do ipoint=1,n_points
G_center(ipoint,1) = bg * B_center(1) + dg * D_center(ipoint,1) G_center(ipoint,1) = bg * B_center(1) + dg * D_center(ipoint,1)
@ -343,10 +354,8 @@ subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, delta, i, j,
enddo enddo
! ---
do l = 1, ao_prim_num(i) do l = 1, ao_prim_num(i)
alpha1 = ao_expo_ordered_transp (l,i) alpha1 = ao_expo_ordered_transp (l,i)
coef1 = ao_coef_normalized_ordered_transp(l,i) coef1 = ao_coef_normalized_ordered_transp(l,i)
do k = 1, ao_prim_num(j) do k = 1, ao_prim_num(j)
@ -354,19 +363,19 @@ subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, delta, i, j,
coef12 = coef1 * ao_coef_normalized_ordered_transp(k,j) coef12 = coef1 * ao_coef_normalized_ordered_transp(k,j)
if(dabs(coef12) .lt. 1d-12) cycle if(dabs(coef12) .lt. 1d-12) cycle
call overlap_gauss_r12_v(G_center, gama, A1_center,& call overlap_gauss_r12_v(G_center, n_points, gama, A1_center, A2_center, power_A1, power_A2, alpha1, alpha2, analytical_j, n_points, n_points)
A2_center, power_A1, power_A2, alpha1, alpha2, analytical_j, n_points)
do ipoint=1,n_points do ipoint = 1, n_points
coef12f = coef12 * fact_g(ipoint) coef12f = coef12 * fact_g(ipoint)
resv(ipoint) += coef12f * analytical_j(ipoint) resv(ipoint) += coef12f * analytical_j(ipoint)
end do end do
enddo enddo
enddo enddo
deallocate (fact_g, G_center, analytical_j )
deallocate(fact_g, G_center, analytical_j)
end end subroutine overlap_gauss_r12_ao_with1s_v
! ---

View File

@ -11,65 +11,72 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
implicit none implicit none
integer :: i, j, ipoint, i_1s, i_fit integer :: i, j, ipoint, i_1s, i_fit
double precision :: r(3), expo_fit, coef_fit double precision :: r(3), int_fit, expo_fit, coef_fit
double precision :: coef, beta, B_center(3) double precision :: coef, beta, B_center(3)
double precision :: tmp double precision :: tmp
double precision :: wall0, wall1 double precision :: wall0, wall1
double precision, allocatable :: int_fit_v(:) double precision, external :: overlap_gauss_r12_ao
double precision, external :: overlap_gauss_r12_ao_with1s double precision, external :: overlap_gauss_r12_ao_with1s
provide mu_erf final_grid_points_transp j1b_pen provide mu_erf final_grid_points j1b_pen
call wall_time(wall0) call wall_time(wall0)
int2_grad1u2_grad2u2_j1b2(:,:,:) = 0.d0 int2_grad1u2_grad2u2_j1b2 = 0.d0
!$OMP PARALLEL DEFAULT (NONE) & !$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,& !$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit_v, tmp) & !$OMP coef_fit, expo_fit, int_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size,& !$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
!$OMP final_grid_points_transp, n_max_fit_slat, & !$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, & !$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, & !$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2,& !$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2)
!$OMP ao_overlap_abs) !$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
allocate(int_fit_v(n_points_final_grid)) do i = 1, ao_num
!$OMP DO SCHEDULE(dynamic) do j = i, ao_num
do i = 1, ao_num
do j = i, ao_num
if(ao_overlap_abs(j,i) .lt. 1.d-12) then tmp = 0.d0
cycle do i_fit = 1, ng_fit_jast
endif
do i_1s = 1, List_all_comb_b3_size expo_fit = expo_gauss_1_erf_x_2(i_fit)
coef_fit = coef_gauss_1_erf_x_2(i_fit)
coef = List_all_comb_b3_coef (i_1s) ! ---
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
B_center(3) = List_all_comb_b3_cent(3,i_1s)
do i_fit = 1, n_max_fit_slat int_fit = overlap_gauss_r12_ao(r, expo_fit, i, j)
tmp += -0.25d0 * coef_fit * int_fit
if(dabs(int_fit) .lt. 1d-10) cycle
expo_fit = expo_gauss_1_erf_x_2(i_fit) ! ---
coef_fit = -0.25d0 * coef_gauss_1_erf_x_2(i_fit) * coef
call overlap_gauss_r12_ao_with1s_v(B_center, beta, final_grid_points_transp, & do i_1s = 2, List_all_comb_b3_size
expo_fit, i, j, int_fit_v, n_points_final_grid)
do ipoint = 1, n_points_final_grid coef = List_all_comb_b3_coef (i_1s)
int2_grad1u2_grad2u2_j1b2(j,i,ipoint) += coef_fit * int_fit_v(ipoint) beta = List_all_comb_b3_expo (i_1s)
enddo B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
B_center(3) = List_all_comb_b3_cent(3,i_1s)
enddo int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
enddo tmp += -0.25d0 * coef * coef_fit * int_fit
enddo enddo
enddo
! ---
enddo
int2_grad1u2_grad2u2_j1b2(j,i,ipoint) = tmp
enddo
enddo
enddo
!$OMP END DO !$OMP END DO
deallocate(int_fit_v)
!$OMP END PARALLEL !$OMP END PARALLEL
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
@ -83,7 +90,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
call wall_time(wall1) call wall_time(wall1)
print*, ' wall time for int2_grad1u2_grad2u2_j1b2', wall1 - wall0 print*, ' wall time for int2_grad1u2_grad2u2_j1b2', wall1 - wall0
END_PROVIDER END_PROVIDER
! --- ! ---
@ -96,60 +103,73 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final
END_DOC END_DOC
implicit none implicit none
integer :: i, j, ipoint, i_1s, i_fit integer :: i, j, ipoint, i_1s, i_fit
double precision :: r(3), expo_fit, coef_fit double precision :: r(3), int_fit, expo_fit, coef_fit
double precision :: coef, beta, B_center(3), tmp double precision :: coef, beta, B_center(3), tmp
double precision :: wall0, wall1 double precision :: wall0, wall1
double precision, allocatable :: int_fit_v(:)
double precision, external :: overlap_gauss_r12_ao_with1s double precision, external :: overlap_gauss_r12_ao
double precision, external :: overlap_gauss_r12_ao_with1s
provide mu_erf final_grid_points_transp j1b_pen provide mu_erf final_grid_points j1b_pen
call wall_time(wall0) call wall_time(wall0)
int2_u2_j1b2(:,:,:) = 0.d0 int2_u2_j1b2 = 0.d0
!$OMP PARALLEL DEFAULT (NONE) & !$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,& !$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit_v) & !$OMP coef_fit, expo_fit, int_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size,& !$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
!$OMP final_grid_points_transp, n_max_fit_slat, & !$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, & !$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, & !$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_u2_j1b2) !$OMP List_all_comb_b3_cent, int2_u2_j1b2)
allocate(int_fit_v(n_points_final_grid)) !$OMP DO
!$OMP DO SCHEDULE(dynamic) do ipoint = 1, n_points_final_grid
do i = 1, ao_num r(1) = final_grid_points(1,ipoint)
do j = i, ao_num r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do i_1s = 1, List_all_comb_b3_size do i = 1, ao_num
do j = i, ao_num
coef = List_all_comb_b3_coef (i_1s) tmp = 0.d0
beta = List_all_comb_b3_expo (i_1s) do i_fit = 1, ng_fit_jast
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
B_center(3) = List_all_comb_b3_cent(3,i_1s)
do i_fit = 1, n_max_fit_slat
expo_fit = expo_gauss_j_mu_x_2(i_fit) expo_fit = expo_gauss_j_mu_x_2(i_fit)
coef_fit = coef_gauss_j_mu_x_2(i_fit) * coef coef_fit = coef_gauss_j_mu_x_2(i_fit)
call overlap_gauss_r12_ao_with1s_v(B_center, beta, final_grid_points_transp, & ! ---
expo_fit, i, j, int_fit_v, n_points_final_grid)
do ipoint = 1, n_points_final_grid int_fit = overlap_gauss_r12_ao(r, expo_fit, i, j)
int2_u2_j1b2(j,i,ipoint) += coef_fit * int_fit_v(ipoint) tmp += coef_fit * int_fit
if(dabs(int_fit) .lt. 1d-10) cycle
! ---
do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s)
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
B_center(3) = List_all_comb_b3_cent(3,i_1s)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
tmp += coef * coef_fit * int_fit
enddo enddo
! ---
enddo enddo
int2_u2_j1b2(j,i,ipoint) = tmp
enddo enddo
enddo enddo
enddo enddo
!$OMP END DO !$OMP END DO
deallocate(int_fit_v) !$OMP END PARALLEL
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
do i = 2, ao_num do i = 2, ao_num
@ -162,7 +182,7 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final
call wall_time(wall1) call wall_time(wall1)
print*, ' wall time for int2_u2_j1b2', wall1 - wall0 print*, ' wall time for int2_u2_j1b2', wall1 - wall0
END_PROVIDER END_PROVIDER
! --- ! ---
@ -175,95 +195,97 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_p
END_DOC END_DOC
implicit none implicit none
integer :: i, j, ipoint, i_1s, i_fit integer :: i, j, ipoint, i_1s, i_fit
double precision :: r(3), expo_fit, coef_fit double precision :: r(3), int_fit(3), expo_fit, coef_fit
double precision :: coef, beta, B_center(3) double precision :: coef, beta, B_center(3), dist
double precision :: alpha_1s, alpha_1s_inv, expo_coef_1s, coef_tmp double precision :: alpha_1s, alpha_1s_inv, centr_1s(3), expo_coef_1s, coef_tmp
double precision :: tmp_x, tmp_y, tmp_z double precision :: tmp_x, tmp_y, tmp_z
double precision :: wall0, wall1 double precision :: wall0, wall1
double precision, allocatable :: int_fit_v(:,:), dist(:), centr_1s(:,:)
provide mu_erf final_grid_points_transp j1b_pen provide mu_erf final_grid_points j1b_pen
call wall_time(wall0) call wall_time(wall0)
allocate(dist(n_points_final_grid), centr_1s(n_points_final_grid,3)) int2_u_grad1u_x_j1b2 = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, alpha_1s, dist, &
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp, &
!$OMP tmp_x, tmp_y, tmp_z) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_u_grad1u_x_j1b2)
!$OMP DO
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
r(1) = final_grid_points_transp(ipoint,1) r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points_transp(ipoint,2) r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points_transp(ipoint,3) r(3) = final_grid_points(3,ipoint)
dist(ipoint) = (B_center(1) - r(1)) * (B_center(1) - r(1)) & do i = 1, ao_num
+ (B_center(2) - r(2)) * (B_center(2) - r(2)) & do j = i, ao_num
+ (B_center(3) - r(3)) * (B_center(3) - r(3))
enddo
int2_u_grad1u_x_j1b2(:,:,:,:) = 0.d0 tmp_x = 0.d0
tmp_y = 0.d0
tmp_z = 0.d0
do i_fit = 1, ng_fit_jast
!$OMP PARALLEL DEFAULT (NONE) & expo_fit = expo_gauss_j_mu_1_erf(i_fit)
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,& coef_fit = coef_gauss_j_mu_1_erf(i_fit)
!$OMP coef_fit, expo_fit, int_fit_v, alpha_1s, &
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp, &
!$OMP tmp_x, tmp_y, tmp_z) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size,&
!$OMP final_grid_points_transp, n_max_fit_slat, dist, &
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_u_grad1u_x_j1b2)
allocate(int_fit_v(n_points_final_grid,3))
do i_1s = 1, List_all_comb_b3_size ! ---
coef = List_all_comb_b3_coef (i_1s) call NAI_pol_x_mult_erf_ao_with1s(i, j, expo_fit, r, 1.d+9, r, int_fit)
beta = List_all_comb_b3_expo (i_1s) tmp_x += coef_fit * int_fit(1)
B_center(1) = List_all_comb_b3_cent(1,i_1s) tmp_y += coef_fit * int_fit(2)
B_center(2) = List_all_comb_b3_cent(2,i_1s) tmp_z += coef_fit * int_fit(3)
B_center(3) = List_all_comb_b3_cent(3,i_1s) if( (dabs(int_fit(1)) + dabs(int_fit(2)) + dabs(int_fit(3))) .lt. 3d-10 ) cycle
do i_fit = 1, n_max_fit_slat ! ---
expo_fit = expo_gauss_j_mu_1_erf(i_fit) do i_1s = 2, List_all_comb_b3_size
coef_fit = coef_gauss_j_mu_1_erf(i_fit) * coef
coef = List_all_comb_b3_coef (i_1s)
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
B_center(3) = List_all_comb_b3_cent(3,i_1s)
dist = (B_center(1) - r(1)) * (B_center(1) - r(1)) &
+ (B_center(2) - r(2)) * (B_center(2) - r(2)) &
+ (B_center(3) - r(3)) * (B_center(3) - r(3))
alpha_1s = beta + expo_fit alpha_1s = beta + expo_fit
alpha_1s_inv = 1.d0 / alpha_1s alpha_1s_inv = 1.d0 / alpha_1s
do ipoint = 1, n_points_final_grid centr_1s(1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * r(1))
r(1) = final_grid_points_transp(ipoint,1) centr_1s(2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * r(2))
r(2) = final_grid_points_transp(ipoint,2) centr_1s(3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3))
r(3) = final_grid_points_transp(ipoint,3)
centr_1s(ipoint,1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * r(1)) expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist
centr_1s(ipoint,2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * r(2)) coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
centr_1s(ipoint,3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3)) if(dabs(coef_tmp) .lt. 1d-10) cycle
enddo
call NAI_pol_x_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r, int_fit)
expo_coef_1s = beta * expo_fit * alpha_1s_inv tmp_x += coef_tmp * int_fit(1)
!$OMP BARRIER tmp_y += coef_tmp * int_fit(2)
!$OMP DO SCHEDULE(dynamic) tmp_z += coef_tmp * int_fit(3)
do i = 1, ao_num
do j = i, ao_num
call NAI_pol_x_mult_erf_ao_with1s_v(i, j, alpha_1s, centr_1s,&
1.d+9, final_grid_points_transp, int_fit_v, n_points_final_grid)
do ipoint = 1, n_points_final_grid
coef_tmp = coef_fit * dexp(-expo_coef_1s* dist(ipoint))
int2_u_grad1u_x_j1b2(1,j,i,ipoint) = &
int2_u_grad1u_x_j1b2(1,j,i,ipoint) + coef_tmp * int_fit_v(ipoint,1)
int2_u_grad1u_x_j1b2(2,j,i,ipoint) = &
int2_u_grad1u_x_j1b2(2,j,i,ipoint) + coef_tmp * int_fit_v(ipoint,2)
int2_u_grad1u_x_j1b2(3,j,i,ipoint) = &
int2_u_grad1u_x_j1b2(3,j,i,ipoint) + coef_tmp * int_fit_v(ipoint,3)
enddo enddo
enddo
enddo
!$OMP END DO NOWAIT
! ---
enddo
int2_u_grad1u_x_j1b2(1,j,i,ipoint) = tmp_x
int2_u_grad1u_x_j1b2(2,j,i,ipoint) = tmp_y
int2_u_grad1u_x_j1b2(3,j,i,ipoint) = tmp_z
enddo
enddo enddo
enddo enddo
deallocate(int_fit_v) !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
deallocate(dist)
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
do i = 2, ao_num do i = 2, ao_num
@ -278,7 +300,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_p
call wall_time(wall1) call wall_time(wall1)
print*, ' wall time for int2_u_grad1u_x_j1b2', wall1 - wall0 print*, ' wall time for int2_u_grad1u_x_j1b2', wall1 - wall0
END_PROVIDER END_PROVIDER
! --- ! ---
@ -306,11 +328,11 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
!$OMP PARALLEL DEFAULT (NONE) & !$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, & !$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp, alpha_1s, dist, & !$OMP coef_fit, expo_fit, int_fit, tmp, alpha_1s, dist, &
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp) & !$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, & !$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
!$OMP final_grid_points, n_max_fit_slat, & !$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, & !$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, & !$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_u_grad1u_j1b2) !$OMP List_all_comb_b3_cent, int2_u_grad1u_j1b2)
!$OMP DO !$OMP DO
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
@ -321,37 +343,48 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
r(3) = final_grid_points(3,ipoint) r(3) = final_grid_points(3,ipoint)
tmp = 0.d0 tmp = 0.d0
do i_1s = 1, List_all_comb_b3_size do i_fit = 1, ng_fit_jast
coef = List_all_comb_b3_coef (i_1s) expo_fit = expo_gauss_j_mu_1_erf(i_fit)
beta = List_all_comb_b3_expo (i_1s) coef_fit = coef_gauss_j_mu_1_erf(i_fit)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
B_center(3) = List_all_comb_b3_cent(3,i_1s)
dist = (B_center(1) - r(1)) * (B_center(1) - r(1)) &
+ (B_center(2) - r(2)) * (B_center(2) - r(2)) &
+ (B_center(3) - r(3)) * (B_center(3) - r(3))
do i_fit = 1, n_max_fit_slat ! ---
expo_fit = expo_gauss_j_mu_1_erf(i_fit) int_fit = NAI_pol_mult_erf_ao_with1s(i, j, expo_fit, r, 1.d+9, r)
coef_fit = coef_gauss_j_mu_1_erf(i_fit) if(dabs(int_fit) .lt. 1d-10) cycle
tmp += coef_fit * int_fit
! ---
do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s)
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
B_center(3) = List_all_comb_b3_cent(3,i_1s)
dist = (B_center(1) - r(1)) * (B_center(1) - r(1)) &
+ (B_center(2) - r(2)) * (B_center(2) - r(2)) &
+ (B_center(3) - r(3)) * (B_center(3) - r(3))
alpha_1s = beta + expo_fit alpha_1s = beta + expo_fit
alpha_1s_inv = 1.d0 / alpha_1s alpha_1s_inv = 1.d0 / alpha_1s
centr_1s(1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * r(1)) centr_1s(1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * r(1))
centr_1s(2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * r(2)) centr_1s(2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * r(2))
centr_1s(3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3)) centr_1s(3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3))
expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist
!if(expo_coef_1s .gt. 80.d0) cycle
coef_tmp = coef * coef_fit * dexp(-expo_coef_1s) coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
!if(dabs(coef_tmp) .lt. 1d-10) cycle if(dabs(coef_tmp) .lt. 1d-10) cycle
int_fit = NAI_pol_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r) int_fit = NAI_pol_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r)
tmp += coef_tmp * int_fit tmp += coef_tmp * int_fit
enddo enddo
! ---
enddo enddo
int2_u_grad1u_j1b2(j,i,ipoint) = tmp int2_u_grad1u_j1b2(j,i,ipoint) = tmp
@ -372,7 +405,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
call wall_time(wall1) call wall_time(wall1)
print*, ' wall time for int2_u_grad1u_j1b2', wall1 - wall0 print*, ' wall time for int2_u_grad1u_j1b2', wall1 - wall0
END_PROVIDER END_PROVIDER
! --- ! ---

View File

@ -0,0 +1,453 @@
!
!! ---
!
!BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
!
! BEGIN_DOC
! !
! ! -\frac{1}{4} int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [1 - erf(mu r12)]^2
! !
! END_DOC
!
! implicit none
! integer :: i, j, ipoint, i_1s, i_fit
! integer :: i_mask_grid
! double precision :: r(3), expo_fit, coef_fit
! double precision :: coef, beta, B_center(3)
! double precision :: wall0, wall1
!
! integer, allocatable :: n_mask_grid(:)
! double precision, allocatable :: r_mask_grid(:,:)
! double precision, allocatable :: int_fit_v(:)
!
! print*, ' providing int2_grad1u2_grad2u2_j1b2'
!
! provide mu_erf final_grid_points_transp j1b_pen
! call wall_time(wall0)
!
! int2_grad1u2_grad2u2_j1b2(:,:,:) = 0.d0
!
! !$OMP PARALLEL DEFAULT (NONE) &
! !$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,&
! !$OMP coef_fit, expo_fit, int_fit_v, n_mask_grid, &
! !$OMP i_mask_grid, r_mask_grid) &
! !$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size,&
! !$OMP final_grid_points_transp, n_max_fit_slat, &
! !$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
! !$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
! !$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2, &
! !$OMP ao_overlap_abs)
!
! allocate(int_fit_v(n_points_final_grid))
! allocate(n_mask_grid(n_points_final_grid))
! allocate(r_mask_grid(n_points_final_grid,3))
!
! !$OMP DO SCHEDULE(dynamic)
! do i = 1, ao_num
! do j = i, ao_num
!
! if(ao_overlap_abs(j,i) .lt. 1.d-12) then
! cycle
! endif
!
! do i_fit = 1, n_max_fit_slat
!
! expo_fit = expo_gauss_1_erf_x_2(i_fit)
! coef_fit = coef_gauss_1_erf_x_2(i_fit) * (-0.25d0)
!
! ! ---
!
! call overlap_gauss_r12_ao_v(final_grid_points_transp, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, n_points_final_grid)
!
! i_mask_grid = 0 ! dim
! n_mask_grid = 0 ! ind
! r_mask_grid = 0.d0 ! val
! do ipoint = 1, n_points_final_grid
!
! int2_grad1u2_grad2u2_j1b2(j,i,ipoint) += coef_fit * int_fit_v(ipoint)
!
! if(dabs(int_fit_v(ipoint)) .gt. 1d-10) then
! i_mask_grid += 1
! n_mask_grid(i_mask_grid ) = ipoint
! r_mask_grid(i_mask_grid,1) = final_grid_points_transp(ipoint,1)
! r_mask_grid(i_mask_grid,2) = final_grid_points_transp(ipoint,2)
! r_mask_grid(i_mask_grid,3) = final_grid_points_transp(ipoint,3)
! endif
!
! enddo
!
! if(i_mask_grid .eq. 0) cycle
!
! ! ---
!
! do i_1s = 2, List_all_comb_b3_size
!
! coef = List_all_comb_b3_coef (i_1s) * coef_fit
! beta = List_all_comb_b3_expo (i_1s)
! B_center(1) = List_all_comb_b3_cent(1,i_1s)
! B_center(2) = List_all_comb_b3_cent(2,i_1s)
! B_center(3) = List_all_comb_b3_cent(3,i_1s)
!
! call overlap_gauss_r12_ao_with1s_v(B_center, beta, r_mask_grid, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, i_mask_grid)
!
! do ipoint = 1, i_mask_grid
! int2_grad1u2_grad2u2_j1b2(j,i,n_mask_grid(ipoint)) += coef * int_fit_v(ipoint)
! enddo
!
! enddo
!
! ! ---
!
! enddo
! enddo
! enddo
! !$OMP END DO
!
! deallocate(n_mask_grid)
! deallocate(r_mask_grid)
! deallocate(int_fit_v)
!
! !$OMP END PARALLEL
!
! do ipoint = 1, n_points_final_grid
! do i = 2, ao_num
! do j = 1, i-1
! int2_grad1u2_grad2u2_j1b2(j,i,ipoint) = int2_grad1u2_grad2u2_j1b2(i,j,ipoint)
! enddo
! enddo
! enddo
!
! call wall_time(wall1)
! print*, ' wall time for int2_grad1u2_grad2u2_j1b2', wall1 - wall0
!
!END_PROVIDER
!
!! ---
!
!BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
!
! BEGIN_DOC
! !
! ! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [u_12^mu]^2
! !
! END_DOC
!
! implicit none
! integer :: i, j, ipoint, i_1s, i_fit
! integer :: i_mask_grid
! double precision :: r(3), expo_fit, coef_fit
! double precision :: coef, beta, B_center(3), tmp
! double precision :: wall0, wall1
!
! integer, allocatable :: n_mask_grid(:)
! double precision, allocatable :: r_mask_grid(:,:)
! double precision, allocatable :: int_fit_v(:)
!
! print*, ' providing int2_u2_j1b2'
!
! provide mu_erf final_grid_points_transp j1b_pen
! call wall_time(wall0)
!
! int2_u2_j1b2(:,:,:) = 0.d0
!
! !$OMP PARALLEL DEFAULT (NONE) &
! !$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
! !$OMP coef_fit, expo_fit, int_fit_v, &
! !$OMP i_mask_grid, n_mask_grid, r_mask_grid ) &
! !$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
! !$OMP final_grid_points_transp, n_max_fit_slat, &
! !$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
! !$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
! !$OMP List_all_comb_b3_cent, int2_u2_j1b2)
!
! allocate(n_mask_grid(n_points_final_grid))
! allocate(r_mask_grid(n_points_final_grid,3))
! allocate(int_fit_v(n_points_final_grid))
!
! !$OMP DO SCHEDULE(dynamic)
! do i = 1, ao_num
! do j = i, ao_num
!
! do i_fit = 1, n_max_fit_slat
!
! expo_fit = expo_gauss_j_mu_x_2(i_fit)
! coef_fit = coef_gauss_j_mu_x_2(i_fit)
!
! ! ---
!
! call overlap_gauss_r12_ao_v(final_grid_points_transp, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, n_points_final_grid)
!
! i_mask_grid = 0 ! dim
! n_mask_grid = 0 ! ind
! r_mask_grid = 0.d0 ! val
!
! do ipoint = 1, n_points_final_grid
! int2_u2_j1b2(j,i,ipoint) += coef_fit * int_fit_v(ipoint)
!
! if(dabs(int_fit_v(ipoint)) .gt. 1d-10) then
! i_mask_grid += 1
! n_mask_grid(i_mask_grid ) = ipoint
! r_mask_grid(i_mask_grid,1) = final_grid_points_transp(ipoint,1)
! r_mask_grid(i_mask_grid,2) = final_grid_points_transp(ipoint,2)
! r_mask_grid(i_mask_grid,3) = final_grid_points_transp(ipoint,3)
! endif
! enddo
!
! if(i_mask_grid .eq. 0) cycle
!
! ! ---
!
! do i_1s = 2, List_all_comb_b3_size
!
! coef = List_all_comb_b3_coef (i_1s) * coef_fit
! beta = List_all_comb_b3_expo (i_1s)
! B_center(1) = List_all_comb_b3_cent(1,i_1s)
! B_center(2) = List_all_comb_b3_cent(2,i_1s)
! B_center(3) = List_all_comb_b3_cent(3,i_1s)
!
! call overlap_gauss_r12_ao_with1s_v(B_center, beta, r_mask_grid, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, i_mask_grid)
!
! do ipoint = 1, i_mask_grid
! int2_u2_j1b2(j,i,n_mask_grid(ipoint)) += coef * int_fit_v(ipoint)
! enddo
!
! enddo
!
! ! ---
!
! enddo
! enddo
! enddo
! !$OMP END DO
!
! deallocate(n_mask_grid)
! deallocate(r_mask_grid)
! deallocate(int_fit_v)
!
! !$OMP END PARALLEL
!
! do ipoint = 1, n_points_final_grid
! do i = 2, ao_num
! do j = 1, i-1
! int2_u2_j1b2(j,i,ipoint) = int2_u2_j1b2(i,j,ipoint)
! enddo
! enddo
! enddo
!
! call wall_time(wall1)
! print*, ' wall time for int2_u2_j1b2', wall1 - wall0
!
!END_PROVIDER
!
!! ---
!
!BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_points_final_grid)]
!
! BEGIN_DOC
! !
! ! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 u_12^mu [\grad_1 u_12^mu] r2
! !
! END_DOC
!
! implicit none
!
! integer :: i, j, ipoint, i_1s, i_fit
! integer :: i_mask_grid1, i_mask_grid2, i_mask_grid3, i_mask_grid(3)
! double precision :: x, y, z, expo_fit, coef_fit
! double precision :: coef, beta, B_center(3)
! double precision :: alpha_1s, alpha_1s_inv, expo_coef_1s
! double precision :: wall0, wall1
!
! integer, allocatable :: n_mask_grid(:,:)
! double precision, allocatable :: r_mask_grid(:,:,:)
! double precision, allocatable :: int_fit_v(:,:), dist(:,:), centr_1s(:,:,:)
!
! print*, ' providing int2_u_grad1u_x_j1b2'
!
! provide mu_erf final_grid_points_transp j1b_pen
! call wall_time(wall0)
!
! int2_u_grad1u_x_j1b2(:,:,:,:) = 0.d0
!
! !$OMP PARALLEL DEFAULT (NONE) &
! !$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, x, y, z, coef, beta, &
! !$OMP coef_fit, expo_fit, int_fit_v, alpha_1s, dist, B_center,&
! !$OMP alpha_1s_inv, centr_1s, expo_coef_1s, &
! !$OMP i_mask_grid1, i_mask_grid2, i_mask_grid3, i_mask_grid, &
! !$OMP n_mask_grid, r_mask_grid) &
! !$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
! !$OMP final_grid_points_transp, n_max_fit_slat, &
! !$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
! !$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
! !$OMP List_all_comb_b3_cent, int2_u_grad1u_x_j1b2)
!
! allocate(dist(n_points_final_grid,3))
! allocate(centr_1s(n_points_final_grid,3,3))
! allocate(n_mask_grid(n_points_final_grid,3))
! allocate(r_mask_grid(n_points_final_grid,3,3))
! allocate(int_fit_v(n_points_final_grid,3))
!
! !$OMP DO SCHEDULE(dynamic)
! do i = 1, ao_num
! do j = i, ao_num
! do i_fit = 1, n_max_fit_slat
!
! expo_fit = expo_gauss_j_mu_1_erf(i_fit)
! coef_fit = coef_gauss_j_mu_1_erf(i_fit)
!
! ! ---
!
! call NAI_pol_x_mult_erf_ao_with1s_v0(i, j, expo_fit, final_grid_points_transp, n_points_final_grid, 1.d+9, final_grid_points_transp, n_points_final_grid, int_fit_v, n_points_final_grid, n_points_final_grid)
!
! i_mask_grid1 = 0 ! dim
! i_mask_grid2 = 0 ! dim
! i_mask_grid3 = 0 ! dim
! n_mask_grid = 0 ! ind
! r_mask_grid = 0.d0 ! val
! do ipoint = 1, n_points_final_grid
!
! ! ---
!
! int2_u_grad1u_x_j1b2(1,j,i,ipoint) += coef_fit * int_fit_v(ipoint,1)
!
! if(dabs(int_fit_v(ipoint,1)) .gt. 1d-10) then
! i_mask_grid1 += 1
! n_mask_grid(i_mask_grid1, 1) = ipoint
! r_mask_grid(i_mask_grid1,1,1) = final_grid_points_transp(ipoint,1)
! r_mask_grid(i_mask_grid1,2,1) = final_grid_points_transp(ipoint,2)
! r_mask_grid(i_mask_grid1,3,1) = final_grid_points_transp(ipoint,3)
! endif
!
! ! ---
!
! int2_u_grad1u_x_j1b2(2,j,i,ipoint) += coef_fit * int_fit_v(ipoint,2)
!
! if(dabs(int_fit_v(ipoint,2)) .gt. 1d-10) then
! i_mask_grid2 += 1
! n_mask_grid(i_mask_grid2, 2) = ipoint
! r_mask_grid(i_mask_grid2,1,2) = final_grid_points_transp(ipoint,1)
! r_mask_grid(i_mask_grid2,2,2) = final_grid_points_transp(ipoint,2)
! r_mask_grid(i_mask_grid2,3,2) = final_grid_points_transp(ipoint,3)
! endif
!
! ! ---
!
! int2_u_grad1u_x_j1b2(3,j,i,ipoint) += coef_fit * int_fit_v(ipoint,3)
!
! if(dabs(int_fit_v(ipoint,3)) .gt. 1d-10) then
! i_mask_grid3 += 1
! n_mask_grid(i_mask_grid3, 3) = ipoint
! r_mask_grid(i_mask_grid3,1,3) = final_grid_points_transp(ipoint,1)
! r_mask_grid(i_mask_grid3,2,3) = final_grid_points_transp(ipoint,2)
! r_mask_grid(i_mask_grid3,3,3) = final_grid_points_transp(ipoint,3)
! endif
!
! ! ---
!
! enddo
!
! if((i_mask_grid1+i_mask_grid2+i_mask_grid3) .eq. 0) cycle
!
! i_mask_grid(1) = i_mask_grid1
! i_mask_grid(2) = i_mask_grid2
! i_mask_grid(3) = i_mask_grid3
!
! ! ---
!
! do i_1s = 2, List_all_comb_b3_size
!
! coef = List_all_comb_b3_coef (i_1s) * coef_fit
! beta = List_all_comb_b3_expo (i_1s)
! B_center(1) = List_all_comb_b3_cent(1,i_1s)
! B_center(2) = List_all_comb_b3_cent(2,i_1s)
! B_center(3) = List_all_comb_b3_cent(3,i_1s)
!
! alpha_1s = beta + expo_fit
! alpha_1s_inv = 1.d0 / alpha_1s
! expo_coef_1s = beta * expo_fit * alpha_1s_inv
!
! do ipoint = 1, i_mask_grid1
!
! x = r_mask_grid(ipoint,1,1)
! y = r_mask_grid(ipoint,2,1)
! z = r_mask_grid(ipoint,3,1)
!
! centr_1s(ipoint,1,1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * x)
! centr_1s(ipoint,2,1) = alpha_1s_inv * (beta * B_center(2) + expo_fit * y)
! centr_1s(ipoint,3,1) = alpha_1s_inv * (beta * B_center(3) + expo_fit * z)
!
! dist(ipoint,1) = (B_center(1) - x) * (B_center(1) - x) + (B_center(2) - y) * (B_center(2) - y) + (B_center(3) - z) * (B_center(3) - z)
! enddo
!
! do ipoint = 1, i_mask_grid2
!
! x = r_mask_grid(ipoint,1,2)
! y = r_mask_grid(ipoint,2,2)
! z = r_mask_grid(ipoint,3,2)
!
! centr_1s(ipoint,1,2) = alpha_1s_inv * (beta * B_center(1) + expo_fit * x)
! centr_1s(ipoint,2,2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * y)
! centr_1s(ipoint,3,2) = alpha_1s_inv * (beta * B_center(3) + expo_fit * z)
!
! dist(ipoint,2) = (B_center(1) - x) * (B_center(1) - x) + (B_center(2) - y) * (B_center(2) - y) + (B_center(3) - z) * (B_center(3) - z)
! enddo
!
! do ipoint = 1, i_mask_grid3
!
! x = r_mask_grid(ipoint,1,3)
! y = r_mask_grid(ipoint,2,3)
! z = r_mask_grid(ipoint,3,3)
!
! centr_1s(ipoint,1,3) = alpha_1s_inv * (beta * B_center(1) + expo_fit * x)
! centr_1s(ipoint,2,3) = alpha_1s_inv * (beta * B_center(2) + expo_fit * y)
! centr_1s(ipoint,3,3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * z)
!
! dist(ipoint,3) = (B_center(1) - x) * (B_center(1) - x) + (B_center(2) - y) * (B_center(2) - y) + (B_center(3) - z) * (B_center(3) - z)
! enddo
!
! call NAI_pol_x_mult_erf_ao_with1s_v(i, j, alpha_1s, centr_1s, n_points_final_grid, 1.d+9, r_mask_grid, n_points_final_grid, int_fit_v, n_points_final_grid, i_mask_grid)
!
! do ipoint = 1, i_mask_grid1
! int2_u_grad1u_x_j1b2(1,j,i,n_mask_grid(ipoint,1)) += coef * dexp(-expo_coef_1s * dist(ipoint,1)) * int_fit_v(ipoint,1)
! enddo
!
! do ipoint = 1, i_mask_grid2
! int2_u_grad1u_x_j1b2(2,j,i,n_mask_grid(ipoint,2)) += coef * dexp(-expo_coef_1s * dist(ipoint,2)) * int_fit_v(ipoint,2)
! enddo
!
! do ipoint = 1, i_mask_grid3
! int2_u_grad1u_x_j1b2(3,j,i,n_mask_grid(ipoint,3)) += coef * dexp(-expo_coef_1s * dist(ipoint,3)) * int_fit_v(ipoint,3)
! enddo
!
! enddo
!
! ! ---
!
! enddo
! enddo
! enddo
! !$OMP END DO
!
! deallocate(dist)
! deallocate(centr_1s)
! deallocate(n_mask_grid)
! deallocate(r_mask_grid)
! deallocate(int_fit_v)
!
! !$OMP END PARALLEL
!
! do ipoint = 1, n_points_final_grid
! do i = 2, ao_num
! do j = 1, i-1
! int2_u_grad1u_x_j1b2(1,j,i,ipoint) = int2_u_grad1u_x_j1b2(1,i,j,ipoint)
! int2_u_grad1u_x_j1b2(2,j,i,ipoint) = int2_u_grad1u_x_j1b2(2,i,j,ipoint)
! int2_u_grad1u_x_j1b2(3,j,i,ipoint) = int2_u_grad1u_x_j1b2(3,i,j,ipoint)
! enddo
! enddo
! enddo
!
! call wall_time(wall1)
! print*, ' wall time for int2_u_grad1u_x_j1b2', wall1 - wall0
!
!END_PROVIDER
!

View File

@ -38,7 +38,24 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_po
do j = i, ao_num do j = i, ao_num
tmp = 0.d0 tmp = 0.d0
do i_1s = 1, List_all_comb_b2_size
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
int_mu = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
int_coulomb = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
if(dabs(int_mu - int_coulomb) .lt. 1d-10) cycle
tmp += coef * (int_mu - int_coulomb)
! ---
do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s) coef = List_all_comb_b2_coef (i_1s)
beta = List_all_comb_b2_expo (i_1s) beta = List_all_comb_b2_expo (i_1s)
@ -52,6 +69,8 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_po
tmp += coef * (int_mu - int_coulomb) tmp += coef * (int_mu - int_coulomb)
enddo enddo
! ---
v_ij_erf_rk_cst_mu_j1b(j,i,ipoint) = tmp v_ij_erf_rk_cst_mu_j1b(j,i,ipoint) = tmp
enddo enddo
enddo enddo
@ -138,7 +157,27 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_tmp_j1b, (3, ao_num, ao_
tmp_x = 0.d0 tmp_x = 0.d0
tmp_y = 0.d0 tmp_y = 0.d0
tmp_z = 0.d0 tmp_z = 0.d0
do i_1s = 1, List_all_comb_b2_size
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, ints )
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, ints_coulomb)
if( (dabs(ints(1)-ints_coulomb(1)) + dabs(ints(2)-ints_coulomb(2)) + dabs(ints(3)-ints_coulomb(3))) .lt. 3d-10) cycle
tmp_x += coef * (ints(1) - ints_coulomb(1))
tmp_y += coef * (ints(2) - ints_coulomb(2))
tmp_z += coef * (ints(3) - ints_coulomb(3))
! ---
do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s) coef = List_all_comb_b2_coef (i_1s)
beta = List_all_comb_b2_expo (i_1s) beta = List_all_comb_b2_expo (i_1s)
@ -154,6 +193,8 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_tmp_j1b, (3, ao_num, ao_
tmp_z += coef * (ints(3) - ints_coulomb(3)) tmp_z += coef * (ints(3) - ints_coulomb(3))
enddo enddo
! ---
x_v_ij_erf_rk_cst_mu_tmp_j1b(1,j,i,ipoint) = tmp_x x_v_ij_erf_rk_cst_mu_tmp_j1b(1,j,i,ipoint) = tmp_x
x_v_ij_erf_rk_cst_mu_tmp_j1b(2,j,i,ipoint) = tmp_y x_v_ij_erf_rk_cst_mu_tmp_j1b(2,j,i,ipoint) = tmp_y
x_v_ij_erf_rk_cst_mu_tmp_j1b(3,j,i,ipoint) = tmp_z x_v_ij_erf_rk_cst_mu_tmp_j1b(3,j,i,ipoint) = tmp_z
@ -207,7 +248,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, & !$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp) & !$OMP coef_fit, expo_fit, int_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, & !$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
!$OMP final_grid_points, n_max_fit_slat, & !$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, & !$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, & !$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b) !$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b)
@ -222,22 +263,41 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
do j = i, ao_num do j = i, ao_num
tmp = 0.d0 tmp = 0.d0
do i_1s = 1, List_all_comb_b2_size do i_fit = 1, ng_fit_jast
coef = List_all_comb_b2_coef (i_1s) expo_fit = expo_gauss_j_mu_x(i_fit)
beta = List_all_comb_b2_expo (i_1s) coef_fit = coef_gauss_j_mu_x(i_fit)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
do i_fit = 1, n_max_fit_slat ! ---
expo_fit = expo_gauss_j_mu_x(i_fit) coef = List_all_comb_b2_coef (1)
coef_fit = coef_gauss_j_mu_x(i_fit) beta = List_all_comb_b2_expo (1)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j) B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
if(dabs(int_fit) .lt. 1d-10) cycle
tmp += coef * coef_fit * int_fit
! ---
do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
tmp += coef * coef_fit * int_fit tmp += coef * coef_fit * int_fit
enddo enddo
! ---
enddo enddo
v_ij_u_cst_mu_j1b(j,i,ipoint) = tmp v_ij_u_cst_mu_j1b(j,i,ipoint) = tmp

View File

@ -168,7 +168,7 @@ END_PROVIDER
do j = 1, nucl_num do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb_b3(j,i)) * j1b_pen(j) tmp_alphaj = dble(List_all_comb_b3(j,i)) * j1b_pen(j)
print*,List_all_comb_b3(j,i),j1b_pen(j) !print*, List_all_comb_b3(j,i), j1b_pen(j)
List_all_comb_b3_expo(i) += tmp_alphaj List_all_comb_b3_expo(i) += tmp_alphaj
List_all_comb_b3_cent(1,i) += tmp_alphaj * nucl_coord(j,1) List_all_comb_b3_cent(1,i) += tmp_alphaj * nucl_coord(j,1)
List_all_comb_b3_cent(2,i) += tmp_alphaj * nucl_coord(j,2) List_all_comb_b3_cent(2,i) += tmp_alphaj * nucl_coord(j,2)
@ -220,6 +220,10 @@ END_PROVIDER
List_all_comb_b3_coef(i) = (-1.d0)**dble(phase) * facto * dexp(-List_all_comb_b3_coef(i)) List_all_comb_b3_coef(i) = (-1.d0)**dble(phase) * facto * dexp(-List_all_comb_b3_coef(i))
enddo enddo
print *, ' 1st coeff & expo of lists'
print*, List_all_comb_b2_coef(1), List_all_comb_b2_expo(1)
print*, List_all_comb_b3_coef(1), List_all_comb_b3_expo(1)
END_PROVIDER END_PROVIDER
! --- ! ---

View File

@ -56,79 +56,83 @@ end
!--- !---
subroutine overlap_gauss_r12_v(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,rvec,n_points) ! TODO apply Gaussian product three times first
subroutine overlap_gauss_r12_v(D_center, LD_D, delta, A_center, B_center, power_A, power_B, alpha, beta, rvec, LD_rvec, n_points)
BEGIN_DOC BEGIN_DOC
!
! Computes the following integral : ! Computes the following integral :
! !
! .. math :: ! \int dr exp(-delta (r - D)^2) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2)
!
! \int dr exp(-delta (r - D)^2 ) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
! using an array of D_centers ! using an array of D_centers
! !
! n_points: nb of integrals
!
END_DOC END_DOC
implicit none implicit none
include 'constants.include.F' include 'constants.include.F'
integer, intent(in) :: n_points
double precision, intent(in) :: D_center(n_points,3), delta ! pure gaussian "D"
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
integer, intent(in) :: power_A(3),power_B(3)
double precision, intent(out) :: rvec(n_points)
double precision, allocatable :: overlap(:) integer, intent(in) :: LD_D, LD_rvec, n_points
double precision :: overlap_x, overlap_y, overlap_z integer, intent(in) :: power_A(3), power_B(3)
double precision, intent(in) :: D_center(LD_D,3), delta
double precision, intent(in) :: A_center(3), B_center(3), alpha, beta
double precision, intent(out) :: rvec(LD_rvec)
integer :: maxab integer :: maxab
integer, allocatable :: iorder_a_new(:) integer :: d(3), i, lx, ly, lz, iorder_tmp(3), ipoint
double precision, allocatable :: A_new(:,:,:), A_center_new(:,:) double precision :: overlap_x, overlap_y, overlap_z
double precision, allocatable :: fact_a_new(:) double precision :: alpha_new
double precision :: alpha_new double precision :: accu, thr, coefxy
double precision :: accu,thr, coefxy integer, allocatable :: iorder_a_new(:)
integer :: d(3),i,lx,ly,lz,iorder_tmp(3),dim1, ipoint double precision, allocatable :: overlap(:)
double precision, allocatable :: A_new(:,:,:), A_center_new(:,:)
double precision, allocatable :: fact_a_new(:)
dim1=100 thr = 1.d-10
thr = 1.d-10
d(:) = 0 d(:) = 0
maxab = maxval(power_A(1:3)) maxab = maxval(power_A(1:3))
allocate (A_new(n_points, 0:maxab, 3), A_center_new(n_points, 3), & allocate(A_new(n_points, 0:maxab, 3), A_center_new(n_points, 3), fact_a_new(n_points), iorder_a_new(3), overlap(n_points))
fact_a_new(n_points), iorder_a_new(3), overlap(n_points) )
call give_explicit_poly_and_gaussian_v(A_new, maxab, A_center_new, & call give_explicit_poly_and_gaussian_v(A_new, maxab, A_center_new, &
alpha_new, fact_a_new, iorder_a_new , delta, alpha, d, power_A, & alpha_new, fact_a_new, iorder_a_new, delta, alpha, d, power_A, &
D_center, A_center, n_points) D_center, LD_D, A_center, n_points)
do ipoint=1,n_points rvec(:) = 0.d0
rvec(ipoint) = 0.d0
enddo
do lx = 0, iorder_a_new(1) do lx = 0, iorder_a_new(1)
iorder_tmp(1) = lx iorder_tmp(1) = lx
do ly = 0, iorder_a_new(2) do ly = 0, iorder_a_new(2)
iorder_tmp(2) = ly iorder_tmp(2) = ly
do lz = 0, iorder_a_new(3) do lz = 0, iorder_a_new(3)
iorder_tmp(3) = lz iorder_tmp(3) = lz
call overlap_gaussian_xyz_v(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B,overlap,dim1,n_points)
do ipoint=1,n_points call overlap_gaussian_xyz_v(A_center_new, B_center, alpha_new, beta, iorder_tmp, power_B, overlap, n_points)
rvec(ipoint) = rvec(ipoint) + A_new(ipoint,lx,1) * &
A_new(ipoint,ly,2) * & do ipoint = 1, n_points
A_new(ipoint,lz,3) * overlap(ipoint) rvec(ipoint) = rvec(ipoint) + A_new(ipoint,lx,1) * A_new(ipoint,ly,2) * A_new(ipoint,lz,3) * overlap(ipoint)
enddo enddo
enddo enddo
enddo enddo
enddo enddo
do ipoint=1,n_points do ipoint = 1, n_points
rvec(ipoint) = rvec(ipoint) * fact_a_new(ipoint) rvec(ipoint) = rvec(ipoint) * fact_a_new(ipoint)
enddo enddo
deallocate(A_new, A_center_new, fact_a_new, iorder_a_new, overlap) deallocate(A_new, A_center_new, fact_a_new, iorder_a_new, overlap)
end
!--- end subroutine overlap_gauss_r12_v
!--- !---
subroutine overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,gauss_ints) subroutine overlap_gauss_xyz_r12(D_center, delta, A_center, B_center, power_A, power_B, alpha, beta, gauss_ints)
BEGIN_DOC BEGIN_DOC
! Computes the following integral : ! Computes the following integral :
! !

View File

@ -180,8 +180,7 @@ double precision function NAI_pol_mult_erf(A_center, B_center, power_A, power_B,
enddo enddo
! call give_polynomial_mult_center_one_e_erf(A_center,B_center,alpha,beta,power_A,power_B,C_center,n_pt_in,d,n_pt_out,mu_in) ! call give_polynomial_mult_center_one_e_erf(A_center,B_center,alpha,beta,power_A,power_B,C_center,n_pt_in,d,n_pt_out,mu_in)
p_new = p_new * p_new p_new = p_new * p_new
call give_polynomial_mult_center_one_e_erf_opt( A_center, B_center, power_A, power_B, C_center & call give_polynomial_mult_center_one_e_erf_opt(A_center, B_center, power_A, power_B, C_center, n_pt_in, d, n_pt_out, p_inv_2, p_new, P_center)
, n_pt_in, d, n_pt_out, p_inv_2, p_new, P_center)
if(n_pt_out < 0) then if(n_pt_out < 0) then
NAI_pol_mult_erf = 0.d0 NAI_pol_mult_erf = 0.d0
@ -198,7 +197,8 @@ double precision function NAI_pol_mult_erf(A_center, B_center, power_A, power_B,
end function NAI_pol_mult_erf end function NAI_pol_mult_erf
! --- ! ---
subroutine NAI_pol_mult_erf_v(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in, res_v, n_points)
subroutine NAI_pol_mult_erf_v(A_center, B_center, power_A, power_B, alpha, beta, C_center, LD_C, n_pt_in, mu_in, res_v, LD_resv, n_points)
BEGIN_DOC BEGIN_DOC
! !
@ -214,74 +214,90 @@ subroutine NAI_pol_mult_erf_v(A_center, B_center, power_A, power_B, alpha, beta,
include 'utils/constants.include.F' include 'utils/constants.include.F'
implicit none implicit none
integer, intent(in) :: n_pt_in, n_points
integer, intent(in) :: power_A(3), power_B(3)
double precision, intent(in) :: C_center(n_points,3), A_center(3), B_center(3), alpha, beta, mu_in
double precision, intent(out) :: res_v(n_points)
integer :: i, n_pt, n_pt_out, ipoint integer, intent(in) :: n_pt_in, n_points, LD_C, LD_resv
double precision :: P_center(3) integer, intent(in) :: power_A(3), power_B(3)
double precision :: d(0:n_pt_in), coeff, dist, const, factor double precision, intent(in) :: A_center(3), B_center(3), alpha, beta, mu_in
double precision :: const_factor, dist_integral double precision, intent(in) :: C_center(LD_C,3)
double precision :: accu, p_inv, p, rho, p_inv_2 double precision, intent(out) :: res_v(LD_resv)
double precision :: p_new
double precision :: rint integer :: i, n_pt, n_pt_out, ipoint
double precision :: P_center(3)
double precision :: d(0:n_pt_in), coeff, dist, const, factor
double precision :: const_factor, dist_integral
double precision :: accu, p_inv, p, rho, p_inv_2
double precision :: p_new, p_new2, coef_tmp
p = alpha + beta double precision :: rint
p_inv = 1.d0 / p
p_inv_2 = 0.5d0 * p_inv
rho = alpha * beta * p_inv
p_new = mu_in / dsqrt(p + mu_in * mu_in)
dist = 0.d0 res_V(1:LD_resv) = 0.d0
p = alpha + beta
p_inv = 1.d0 / p
p_inv_2 = 0.5d0 * p_inv
rho = alpha * beta * p_inv
p_new = mu_in / dsqrt(p + mu_in * mu_in)
p_new2 = p_new * p_new
coef_tmp = p * p_new2
dist = 0.d0
do i = 1, 3 do i = 1, 3
P_center(i) = (alpha * A_center(i) + beta * B_center(i)) * p_inv P_center(i) = (alpha * A_center(i) + beta * B_center(i)) * p_inv
dist += (A_center(i) - B_center(i)) * (A_center(i) - B_center(i)) dist += (A_center(i) - B_center(i)) * (A_center(i) - B_center(i))
enddo enddo
do ipoint=1,n_points const_factor = dist * rho
dist_integral = 0.d0 if(const_factor > 80.d0) then
do i = 1, 3 return
dist_integral += (P_center(i) - C_center(ipoint,i)) * (P_center(i) - C_center(ipoint,i)) endif
enddo factor = dexp(-const_factor)
const_factor = dist * rho coeff = dtwo_pi * factor * p_inv * p_new
if(const_factor > 80.d0) then
res_V(ipoint) = 0.d0
cycle
endif
factor = dexp(-const_factor) n_pt = 2 * ( power_A(1) + power_B(1) + power_A(2) + power_B(2) + power_A(3) + power_B(3) )
coeff = dtwo_pi * factor * p_inv * p_new
if(n_pt == 0) then
do ipoint = 1, n_points
dist_integral = 0.d0
do i = 1, 3
dist_integral += (P_center(i) - C_center(ipoint,i)) * (P_center(i) - C_center(ipoint,i))
enddo
const = coef_tmp * dist_integral
n_pt = 2 * ( power_A(1) + power_B(1) + power_A(2) + power_B(2) + power_A(3) + power_B(3) )
const = p * dist_integral * p_new * p_new
if(n_pt == 0) then
res_v(ipoint) = coeff * rint(0, const) res_v(ipoint) = coeff * rint(0, const)
cycle
endif
do i = 0, n_pt_in
d(i) = 0.d0
enddo enddo
p_new = p_new * p_new
call give_polynomial_mult_center_one_e_erf_opt( A_center, B_center, power_A, power_B, C_center(ipoint,1:3)&
, n_pt_in, d, n_pt_out, p_inv_2, p_new, P_center)
if(n_pt_out < 0) then else
res_v(ipoint) = 0.d0
cycle
endif
! sum of integrals of type : int {t,[0,1]} exp-(rho.(P-Q)^2 * t^2) * t^i do ipoint = 1, n_points
accu = 0.d0 dist_integral = 0.d0
do i = 0, n_pt_out, 2 do i = 1, 3
accu += d(i) * rint(i/2, const) dist_integral += (P_center(i) - C_center(ipoint,i)) * (P_center(i) - C_center(ipoint,i))
enddo
const = coef_tmp * dist_integral
do i = 0, n_pt_in
d(i) = 0.d0
enddo
call give_polynomial_mult_center_one_e_erf_opt(A_center, B_center, power_A, power_B, C_center(ipoint,1:3), n_pt_in, d, n_pt_out, p_inv_2, p_new2, P_center)
if(n_pt_out < 0) then
res_v(ipoint) = 0.d0
cycle
endif
! sum of integrals of type : int {t,[0,1]} exp-(rho.(P-Q)^2 * t^2) * t^i
accu = 0.d0
do i = 0, n_pt_out, 2
accu += d(i) * rint(i/2, const)
enddo
res_v(ipoint) = accu * coeff
enddo enddo
res_v(ipoint) = accu * coeff
enddo
end endif
end subroutine NAI_pol_mult_erf_v
! --- ! ---
@ -380,9 +396,7 @@ double precision function NAI_pol_mult_erf_with1s( A1_center, A2_center, power_A
d(i) = 0.d0 d(i) = 0.d0
enddo enddo
p_new = p_new * p_new p_new = p_new * p_new
call give_polynomial_mult_center_one_e_erf_opt( A1_center, A2_center, power_A1, power_A2, C_center, n_pt_in, d, n_pt_out, p_inv_2, p_new, P_center)
call give_polynomial_mult_center_one_e_erf_opt( A1_center, A2_center, power_A1, power_A2, C_center &
, n_pt_in, d, n_pt_out, p_inv_2, p_new, P_center)
if(n_pt_out < 0) then if(n_pt_out < 0) then
NAI_pol_mult_erf_with1s = 0.d0 NAI_pol_mult_erf_with1s = 0.d0
@ -398,10 +412,9 @@ double precision function NAI_pol_mult_erf_with1s( A1_center, A2_center, power_A
end function NAI_pol_mult_erf_with1s end function NAI_pol_mult_erf_with1s
!-- ! ---
subroutine NAI_pol_mult_erf_with1s_v( A1_center, A2_center, power_A1, power_A2, alpha1, alpha2& subroutine NAI_pol_mult_erf_with1s_v(A1_center, A2_center, power_A1, power_A2, alpha1, alpha2, beta, B_center, LD_B, C_center, LD_C, n_pt_in, mu_in, res_v, LD_resv, n_points)
, beta, B_center, C_center, n_pt_in, mu_in, res_v, n_points)
BEGIN_DOC BEGIN_DOC
! !
@ -420,23 +433,26 @@ subroutine NAI_pol_mult_erf_with1s_v( A1_center, A2_center, power_A1, power_A2,
include 'utils/constants.include.F' include 'utils/constants.include.F'
implicit none implicit none
integer, intent(in) :: n_pt_in, n_points integer, intent(in) :: n_pt_in, LD_B, LD_C, LD_resv, n_points
integer, intent(in) :: power_A1(3), power_A2(3) integer, intent(in) :: power_A1(3), power_A2(3)
double precision, intent(in) :: C_center(n_points,3), A1_center(3), A2_center(3), B_center(n_points,3) double precision, intent(in) :: A1_center(3), A2_center(3)
double precision, intent(in) :: alpha1, alpha2, beta, mu_in double precision, intent(in) :: C_center(LD_C,3), B_center(LD_B,3)
double precision, intent(out) :: res_v(n_points) double precision, intent(in) :: alpha1, alpha2, beta, mu_in
double precision, intent(out) :: res_v(LD_resv)
integer :: i, n_pt, n_pt_out, ipoint integer :: i, n_pt, n_pt_out, ipoint
double precision :: alpha12, alpha12_inv, alpha12_inv_2, rho12, A12_center(3), dist12, const_factor12 double precision :: alpha12, alpha12_inv, alpha12_inv_2, rho12, A12_center(3), dist12, const_factor12
double precision :: p, p_inv, p_inv_2, rho, P_center(3), dist, const_factor double precision :: p, p_inv, p_inv_2, rho, P_center(3), dist, const_factor
double precision :: dist_integral double precision :: dist_integral
double precision :: d(0:n_pt_in), coeff, const, factor double precision :: d(0:n_pt_in), coeff, const, factor
double precision :: accu double precision :: accu
double precision :: p_new, p_new2 double precision :: p_new, p_new2, coef_tmp, cons_tmp
double precision :: rint double precision :: rint
res_V(1:LD_resv) = 0.d0
! e^{-alpha1 (r - A1)^2} e^{-alpha2 (r - A2)^2} = e^{-K12} e^{-alpha12 (r - A12)^2} ! e^{-alpha1 (r - A1)^2} e^{-alpha2 (r - A2)^2} = e^{-K12} e^{-alpha12 (r - A12)^2}
alpha12 = alpha1 + alpha2 alpha12 = alpha1 + alpha2
alpha12_inv = 1.d0 / alpha12 alpha12_inv = 1.d0 / alpha12
@ -446,87 +462,92 @@ subroutine NAI_pol_mult_erf_with1s_v( A1_center, A2_center, power_A1, power_A2,
A12_center(2) = (alpha1 * A1_center(2) + alpha2 * A2_center(2)) * alpha12_inv A12_center(2) = (alpha1 * A1_center(2) + alpha2 * A2_center(2)) * alpha12_inv
A12_center(3) = (alpha1 * A1_center(3) + alpha2 * A2_center(3)) * alpha12_inv A12_center(3) = (alpha1 * A1_center(3) + alpha2 * A2_center(3)) * alpha12_inv
dist12 = (A1_center(1) - A2_center(1)) * (A1_center(1) - A2_center(1))& dist12 = (A1_center(1) - A2_center(1)) * (A1_center(1) - A2_center(1))&
+ (A1_center(2) - A2_center(2)) * (A1_center(2) - A2_center(2))& + (A1_center(2) - A2_center(2)) * (A1_center(2) - A2_center(2))&
+ (A1_center(3) - A2_center(3)) * (A1_center(3) - A2_center(3)) + (A1_center(3) - A2_center(3)) * (A1_center(3) - A2_center(3))
const_factor12 = dist12 * rho12 const_factor12 = dist12 * rho12
if(const_factor12 > 80.d0) then if(const_factor12 > 80.d0) then
res_v(:) = 0.d0
return return
endif endif
! ---
! e^{-K12} e^{-alpha12 (r - A12)^2} e^{-beta (r - B)^2} = e^{-K} e^{-p (r - P)^2} ! e^{-K12} e^{-alpha12 (r - A12)^2} e^{-beta (r - B)^2} = e^{-K} e^{-p (r - P)^2}
p = alpha12 + beta p = alpha12 + beta
p_inv = 1.d0 / p p_inv = 1.d0 / p
p_inv_2 = 0.5d0 * p_inv p_inv_2 = 0.5d0 * p_inv
rho = alpha12 * beta * p_inv rho = alpha12 * beta * p_inv
p_new = mu_in / dsqrt(p + mu_in * mu_in) p_new = mu_in / dsqrt(p + mu_in * mu_in)
p_new2 = p_new * p_new p_new2 = p_new * p_new
n_pt = 2 * (power_A1(1) + power_A2(1) + power_A1(2) + power_A2(2) & coef_tmp = dtwo_pi * p_inv * p_new
+ power_A1(3) + power_A2(3) ) cons_tmp = p * p_new2
n_pt = 2 * (power_A1(1) + power_A2(1) + power_A1(2) + power_A2(2) + power_A1(3) + power_A2(3) )
do ipoint=1,n_points if(n_pt == 0) then
P_center(1) = (alpha12 * A12_center(1) + beta * B_center(ipoint,1)) * p_inv do ipoint = 1, n_points
P_center(2) = (alpha12 * A12_center(2) + beta * B_center(ipoint,2)) * p_inv
P_center(3) = (alpha12 * A12_center(3) + beta * B_center(ipoint,3)) * p_inv
dist = (A12_center(1) - B_center(ipoint,1)) * (A12_center(1) - B_center(ipoint,1))&
+ (A12_center(2) - B_center(ipoint,2)) * (A12_center(2) - B_center(ipoint,2))&
+ (A12_center(3) - B_center(ipoint,3)) * (A12_center(3) - B_center(ipoint,3))
const_factor = const_factor12 + dist * rho dist = (A12_center(1) - B_center(ipoint,1)) * (A12_center(1) - B_center(ipoint,1))&
if(const_factor > 80.d0) then + (A12_center(2) - B_center(ipoint,2)) * (A12_center(2) - B_center(ipoint,2))&
res_v(ipoint) = 0.d0 + (A12_center(3) - B_center(ipoint,3)) * (A12_center(3) - B_center(ipoint,3))
cycle const_factor = const_factor12 + dist * rho
endif if(const_factor > 80.d0) cycle
coeff = coef_tmp * dexp(-const_factor)
dist_integral = (P_center(1) - C_center(ipoint,1)) * (P_center(1) - C_center(ipoint,1))& P_center(1) = (alpha12 * A12_center(1) + beta * B_center(ipoint,1)) * p_inv
+ (P_center(2) - C_center(ipoint,2)) * (P_center(2) - C_center(ipoint,2))& P_center(2) = (alpha12 * A12_center(2) + beta * B_center(ipoint,2)) * p_inv
+ (P_center(3) - C_center(ipoint,3)) * (P_center(3) - C_center(ipoint,3)) P_center(3) = (alpha12 * A12_center(3) + beta * B_center(ipoint,3)) * p_inv
dist_integral = (P_center(1) - C_center(ipoint,1)) * (P_center(1) - C_center(ipoint,1))&
+ (P_center(2) - C_center(ipoint,2)) * (P_center(2) - C_center(ipoint,2))&
+ (P_center(3) - C_center(ipoint,3)) * (P_center(3) - C_center(ipoint,3))
const = cons_tmp * dist_integral
! ---
factor = dexp(-const_factor)
coeff = dtwo_pi * factor * p_inv * p_new
const = p * dist_integral * p_new2
if(n_pt == 0) then
res_v(ipoint) = coeff * rint(0, const) res_v(ipoint) = coeff * rint(0, const)
cycle
endif
do i = 0, n_pt_in
d(i) = 0.d0
enddo enddo
!TODO: VECTORIZE HERE else
call give_polynomial_mult_center_one_e_erf_opt( &
A1_center, A2_center, power_A1, power_A2, C_center(ipoint,1:3)&
, n_pt_in, d, n_pt_out, p_inv_2, p_new, P_center,1)
if(n_pt_out < 0) then do ipoint = 1, n_points
res_v(ipoint) = 0.d0
cycle dist = (A12_center(1) - B_center(ipoint,1)) * (A12_center(1) - B_center(ipoint,1))&
endif + (A12_center(2) - B_center(ipoint,2)) * (A12_center(2) - B_center(ipoint,2))&
+ (A12_center(3) - B_center(ipoint,3)) * (A12_center(3) - B_center(ipoint,3))
! sum of integrals of type : int {t,[0,1]} exp-(rho.(P-Q)^2 * t^2) * t^i const_factor = const_factor12 + dist * rho
accu = 0.d0 if(const_factor > 80.d0) cycle
do i = 0, n_pt_out, 2 coeff = coef_tmp * dexp(-const_factor)
accu += d(i) * rint(i/2, const)
P_center(1) = (alpha12 * A12_center(1) + beta * B_center(ipoint,1)) * p_inv
P_center(2) = (alpha12 * A12_center(2) + beta * B_center(ipoint,2)) * p_inv
P_center(3) = (alpha12 * A12_center(3) + beta * B_center(ipoint,3)) * p_inv
dist_integral = (P_center(1) - C_center(ipoint,1)) * (P_center(1) - C_center(ipoint,1))&
+ (P_center(2) - C_center(ipoint,2)) * (P_center(2) - C_center(ipoint,2))&
+ (P_center(3) - C_center(ipoint,3)) * (P_center(3) - C_center(ipoint,3))
const = cons_tmp * dist_integral
do i = 0, n_pt_in
d(i) = 0.d0
enddo
!TODO: VECTORIZE HERE
call give_polynomial_mult_center_one_e_erf_opt(A1_center, A2_center, power_A1, power_A2, C_center(ipoint,1:3), n_pt_in, d, n_pt_out, p_inv_2, p_new2, P_center)
if(n_pt_out < 0) then
cycle
endif
! sum of integrals of type : int {t,[0,1]} exp-(rho.(P-Q)^2 * t^2) * t^i
accu = 0.d0
do i = 0, n_pt_out, 2
accu += d(i) * rint(i/2, const)
enddo
res_v(ipoint) = accu * coeff
enddo enddo
res_v(ipoint) = accu * coeff
end do
end endif
end subroutine NAI_pol_mult_erf_with1s_v
! ---
! --- ! ---
subroutine give_polynomial_mult_center_one_e_erf_opt( A_center, B_center, power_A, power_B, C_center & subroutine give_polynomial_mult_center_one_e_erf_opt(A_center, B_center, power_A, power_B, C_center, n_pt_in, d, n_pt_out, p_inv_2, p_new, P_center)
, n_pt_in, d, n_pt_out, p_inv_2, p_new, P_center)
BEGIN_DOC BEGIN_DOC
! Returns the explicit polynomial in terms of the $t$ variable of the ! Returns the explicit polynomial in terms of the $t$ variable of the
@ -554,17 +575,17 @@ subroutine give_polynomial_mult_center_one_e_erf_opt( A_center, B_center, power_
accu = 0.d0 accu = 0.d0
ASSERT (n_pt_in > 1) ASSERT (n_pt_in > 1)
R1x(0) = (P_center(1) - A_center(1)) R1x(0) = (P_center(1) - A_center(1))
R1x(1) = 0.d0 R1x(1) = 0.d0
R1x(2) = -(P_center(1) - C_center(1))* p_new R1x(2) = -(P_center(1) - C_center(1))* p_new
! R1x = (P_x - A_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2 ! R1x = (P_x - A_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
R1xp(0) = (P_center(1) - B_center(1)) R1xp(0) = (P_center(1) - B_center(1))
R1xp(1) = 0.d0 R1xp(1) = 0.d0
R1xp(2) =-(P_center(1) - C_center(1))* p_new R1xp(2) =-(P_center(1) - C_center(1))* p_new
!R1xp = (P_x - B_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2 !R1xp = (P_x - B_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
R2x(0) = p_inv_2 R2x(0) = p_inv_2
R2x(1) = 0.d0 R2x(1) = 0.d0
R2x(2) = -p_inv_2 * p_new R2x(2) = -p_inv_2 * p_new
!R2x = 0.5 / p - 0.5/p ( t * mu/sqrt(p+mu^2) )^2 !R2x = 0.5 / p - 0.5/p ( t * mu/sqrt(p+mu^2) )^2
do i = 0, n_pt_in do i = 0, n_pt_in
@ -588,13 +609,13 @@ subroutine give_polynomial_mult_center_one_e_erf_opt( A_center, B_center, power_
return return
endif endif
R1x(0) = (P_center(2) - A_center(2)) R1x(0) = (P_center(2) - A_center(2))
R1x(1) = 0.d0 R1x(1) = 0.d0
R1x(2) = -(P_center(2) - C_center(2))* p_new R1x(2) = -(P_center(2) - C_center(2))* p_new
! R1x = (P_x - A_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2 ! R1x = (P_x - A_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
R1xp(0) = (P_center(2) - B_center(2)) R1xp(0) = (P_center(2) - B_center(2))
R1xp(1) = 0.d0 R1xp(1) = 0.d0
R1xp(2) =-(P_center(2) - C_center(2))* p_new R1xp(2) =-(P_center(2) - C_center(2))* p_new
!R1xp = (P_x - B_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2 !R1xp = (P_x - B_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
a_y = power_A(2) a_y = power_A(2)
b_y = power_B(2) b_y = power_B(2)
@ -607,13 +628,13 @@ subroutine give_polynomial_mult_center_one_e_erf_opt( A_center, B_center, power_
return return
endif endif
R1x(0) = (P_center(3) - A_center(3)) R1x(0) = (P_center(3) - A_center(3))
R1x(1) = 0.d0 R1x(1) = 0.d0
R1x(2) = -(P_center(3) - C_center(3)) * p_new R1x(2) = -(P_center(3) - C_center(3)) * p_new
! R1x = (P_x - A_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2 ! R1x = (P_x - A_x) - (P_x - C_x) ( t * mu/sqrt(p+mu^2) )^2
R1xp(0) = (P_center(3) - B_center(3)) R1xp(0) = (P_center(3) - B_center(3))
R1xp(1) = 0.d0 R1xp(1) = 0.d0
R1xp(2) =-(P_center(3) - C_center(3)) * p_new R1xp(2) =-(P_center(3) - C_center(3)) * p_new
!R2x = 0.5 / p - 0.5/p ( t * mu/sqrt(p+mu^2) )^2 !R2x = 0.5 / p - 0.5/p ( t * mu/sqrt(p+mu^2) )^2
a_z = power_A(3) a_z = power_A(3)
b_z = power_B(3) b_z = power_B(3)
@ -642,16 +663,15 @@ end subroutine give_polynomial_mult_center_one_e_erf_opt
! --- ! ---
subroutine give_polynomial_mult_center_one_e_erf(A_center,B_center,alpha,beta,power_A,power_B,C_center,n_pt_in,d,n_pt_out,mu_in)
subroutine give_polynomial_mult_center_one_e_erf(A_center,B_center,alpha,beta,&
power_A,power_B,C_center,n_pt_in,d,n_pt_out,mu_in)
BEGIN_DOC BEGIN_DOC
! Returns the explicit polynomial in terms of the $t$ variable of the ! Returns the explicit polynomial in terms of the $t$ variable of the
! following polynomial: ! following polynomial:
! !
! $I_{x1}(a_x, d_x,p,q) \times I_{x1}(a_y, d_y,p,q) \times I_{x1}(a_z, d_z,p,q)$. ! $I_{x1}(a_x, d_x,p,q) \times I_{x1}(a_y, d_y,p,q) \times I_{x1}(a_z, d_z,p,q)$.
END_DOC END_DOC
implicit none implicit none
integer, intent(in) :: n_pt_in integer, intent(in) :: n_pt_in
integer,intent(out) :: n_pt_out integer,intent(out) :: n_pt_out

View File

@ -1,3 +1,5 @@
! ---
BEGIN_PROVIDER [ double precision, expo_j_xmu, (n_fit_1_erf_x) ] BEGIN_PROVIDER [ double precision, expo_j_xmu, (n_fit_1_erf_x) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -14,8 +16,8 @@ END_PROVIDER
! --- ! ---
BEGIN_PROVIDER [double precision, expo_gauss_j_mu_x, (n_max_fit_slat)] BEGIN_PROVIDER [double precision, expo_gauss_j_mu_x, (ng_fit_jast)]
&BEGIN_PROVIDER [double precision, coef_gauss_j_mu_x, (n_max_fit_slat)] &BEGIN_PROVIDER [double precision, coef_gauss_j_mu_x, (ng_fit_jast)]
BEGIN_DOC BEGIN_DOC
! !
@ -34,31 +36,96 @@ END_PROVIDER
implicit none implicit none
integer :: i integer :: i
double precision :: tmp double precision :: tmp
double precision :: expos(n_max_fit_slat), alpha, beta double precision :: expos(ng_fit_jast), alpha, beta
tmp = -0.5d0 / (mu_erf * sqrt(dacos(-1.d0))) if(ng_fit_jast .eq. 1) then
alpha = expo_j_xmu(1) * mu_erf coef_gauss_j_mu_x = (/ -0.47947881d0 /)
call expo_fit_slater_gam(alpha, expos) expo_gauss_j_mu_x = (/ 3.4987848d0 /)
beta = expo_j_xmu(2) * mu_erf * mu_erf
tmp = mu_erf * mu_erf
do i = 1, ng_fit_jast
expo_gauss_j_mu_x(i) = tmp * expo_gauss_j_mu_x(i)
enddo
elseif(ng_fit_jast .eq. 2) then
coef_gauss_j_mu_x = (/ -0.18390742d0, -0.35512656d0 /)
expo_gauss_j_mu_x = (/ 31.9279947d0 , 2.11428789d0 /)
tmp = mu_erf * mu_erf
do i = 1, ng_fit_jast
expo_gauss_j_mu_x(i) = tmp * expo_gauss_j_mu_x(i)
enddo
elseif(ng_fit_jast .eq. 3) then
coef_gauss_j_mu_x = (/ -0.07501725d0, -0.28499012d0, -0.1953932d0 /)
expo_gauss_j_mu_x = (/ 206.74058566d0, 1.72974157d0, 11.18735164d0 /)
tmp = mu_erf * mu_erf
do i = 1, ng_fit_jast
expo_gauss_j_mu_x(i) = tmp * expo_gauss_j_mu_x(i)
enddo
elseif(ng_fit_jast .eq. 5) then
coef_gauss_j_mu_x = (/ -0.01832955d0 , -0.10188952d0 , -0.20710858d0 , -0.18975032d0 , -0.04641657d0 /)
expo_gauss_j_mu_x = (/ 4.33116687d+03, 2.61292842d+01, 1.43447161d+00, 4.92767426d+00, 2.10654699d+02 /)
tmp = mu_erf * mu_erf
do i = 1, ng_fit_jast
expo_gauss_j_mu_x(i) = tmp * expo_gauss_j_mu_x(i)
enddo
elseif(ng_fit_jast .eq. 6) then
coef_gauss_j_mu_x = (/ -0.08783664d0 , -0.16088711d0 , -0.18464486d0 , -0.0368509d0 , -0.08130028d0 , -0.0126972d0 /)
expo_gauss_j_mu_x = (/ 4.09729729d+01, 7.11620618d+00, 2.03692338d+00, 4.10831731d+02, 1.12480198d+00, 1.00000000d+04 /)
tmp = mu_erf * mu_erf
do i = 1, ng_fit_jast
expo_gauss_j_mu_x(i) = tmp * expo_gauss_j_mu_x(i)
enddo
elseif(ng_fit_jast .eq. 20) then
ASSERT(n_max_fit_slat == 20)
alpha = expo_j_xmu(1) * mu_erf
call expo_fit_slater_gam(alpha, expos)
beta = expo_j_xmu(2) * mu_erf * mu_erf
tmp = -1.0d0 / sqrt(dacos(-1.d0))
do i = 1, ng_fit_jast
expo_gauss_j_mu_x(i) = expos(i) + beta
coef_gauss_j_mu_x(i) = tmp * coef_fit_slat_gauss(i)
enddo
else
print *, ' not implemented yet'
stop
do i = 1, n_max_fit_slat endif
expo_gauss_j_mu_x(i) = expos(i) + beta
coef_gauss_j_mu_x(i) = tmp * coef_fit_slat_gauss(i) tmp = 0.5d0 / mu_erf
do i = 1, ng_fit_jast
coef_gauss_j_mu_x(i) = tmp * coef_gauss_j_mu_x(i)
enddo enddo
END_PROVIDER END_PROVIDER
! --- ! ---
BEGIN_PROVIDER [double precision, expo_gauss_j_mu_x_2, (n_max_fit_slat)] BEGIN_PROVIDER [double precision, expo_gauss_j_mu_x_2, (ng_fit_jast)]
&BEGIN_PROVIDER [double precision, coef_gauss_j_mu_x_2, (n_max_fit_slat)] &BEGIN_PROVIDER [double precision, coef_gauss_j_mu_x_2, (ng_fit_jast)]
BEGIN_DOC BEGIN_DOC
! !
! J(mu,r12)^2 = 0.25/mu^2 F(r12*mu)^2 ! J(mu,r12)^2 = 0.25/mu^2 F(r12*mu)^2
! !
! F(x)^2 = 1 /pi * exp(-2 * alpha * x) exp(-2 * beta * x^2) ! F(x)^2 = 1/pi * exp(-2 * alpha * x) exp(-2 * beta * x^2)
! !
! The slater function exp(-2 * alpha * x) is fitted with n_max_fit_slat gaussians ! The slater function exp(-2 * alpha * x) is fitted with n_max_fit_slat gaussians
! !
@ -69,33 +136,98 @@ END_PROVIDER
implicit none implicit none
integer :: i integer :: i
double precision :: tmp double precision :: tmp
double precision :: expos(n_max_fit_slat), alpha, beta double precision :: expos(ng_fit_jast), alpha, beta
double precision :: alpha_opt, beta_opt double precision :: alpha_opt, beta_opt
!alpha_opt = 2.d0 * expo_j_xmu(1) if(ng_fit_jast .eq. 1) then
!beta_opt = 2.d0 * expo_j_xmu(2)
! direct opt
alpha_opt = 3.52751759d0
beta_opt = 1.26214809d0
tmp = 0.25d0 / (mu_erf * mu_erf * dacos(-1.d0)) coef_gauss_j_mu_x_2 = (/ 0.26699573d0 /)
expo_gauss_j_mu_x_2 = (/ 11.71029824d0 /)
tmp = mu_erf * mu_erf
do i = 1, ng_fit_jast
expo_gauss_j_mu_x_2(i) = tmp * expo_gauss_j_mu_x_2(i)
enddo
alpha = alpha_opt * mu_erf elseif(ng_fit_jast .eq. 2) then
call expo_fit_slater_gam(alpha, expos)
beta = beta_opt * mu_erf * mu_erf coef_gauss_j_mu_x_2 = (/ 0.11627934d0 , 0.18708824d0 /)
expo_gauss_j_mu_x_2 = (/ 102.41386863d0, 6.36239771d0 /)
tmp = mu_erf * mu_erf
do i = 1, ng_fit_jast
expo_gauss_j_mu_x_2(i) = tmp * expo_gauss_j_mu_x_2(i)
enddo
elseif(ng_fit_jast .eq. 3) then
coef_gauss_j_mu_x_2 = (/ 0.04947216d0 , 0.14116238d0, 0.12276501d0 /)
expo_gauss_j_mu_x_2 = (/ 635.29701766d0, 4.87696954d0, 33.36745891d0 /)
tmp = mu_erf * mu_erf
do i = 1, ng_fit_jast
expo_gauss_j_mu_x_2(i) = tmp * expo_gauss_j_mu_x_2(i)
enddo
elseif(ng_fit_jast .eq. 5) then
coef_gauss_j_mu_x_2 = (/ 0.01461527d0 , 0.03257147d0 , 0.08831354d0 , 0.11411794d0 , 0.06858783d0 /)
expo_gauss_j_mu_x_2 = (/ 8.76554470d+03, 4.90224577d+02, 3.68267125d+00, 1.29663940d+01, 6.58240931d+01 /)
tmp = mu_erf * mu_erf
do i = 1, ng_fit_jast
expo_gauss_j_mu_x_2(i) = tmp * expo_gauss_j_mu_x_2(i)
enddo
elseif(ng_fit_jast .eq. 6) then
coef_gauss_j_mu_x_2 = (/ 0.01347632d0 , 0.03929124d0 , 0.06289468d0 , 0.10702493d0 , 0.06999865d0 , 0.02558191d0 /)
expo_gauss_j_mu_x_2 = (/ 1.00000000d+04, 1.20900717d+02, 3.20346191d+00, 8.92157196d+00, 3.28119120d+01, 6.49045808d+02 /)
tmp = mu_erf * mu_erf
do i = 1, ng_fit_jast
expo_gauss_j_mu_x_2(i) = tmp * expo_gauss_j_mu_x_2(i)
enddo
elseif(ng_fit_jast .eq. 20) then
ASSERT(n_max_fit_slat == 20)
!alpha_opt = 2.d0 * expo_j_xmu(1)
!beta_opt = 2.d0 * expo_j_xmu(2)
! direct opt
alpha_opt = 3.52751759d0
beta_opt = 1.26214809d0
do i = 1, n_max_fit_slat alpha = alpha_opt * mu_erf
expo_gauss_j_mu_x_2(i) = expos(i) + beta call expo_fit_slater_gam(alpha, expos)
coef_gauss_j_mu_x_2(i) = tmp * coef_fit_slat_gauss(i) beta = beta_opt * mu_erf * mu_erf
tmp = 1.d0 / dacos(-1.d0)
do i = 1, ng_fit_jast
expo_gauss_j_mu_x_2(i) = expos(i) + beta
coef_gauss_j_mu_x_2(i) = tmp * coef_fit_slat_gauss(i)
enddo
else
print *, ' not implemented yet'
stop
endif
tmp = 0.25d0 / (mu_erf * mu_erf)
do i = 1, ng_fit_jast
coef_gauss_j_mu_x_2(i) = tmp * coef_gauss_j_mu_x_2(i)
enddo enddo
END_PROVIDER END_PROVIDER
! --- ! ---
BEGIN_PROVIDER [double precision, expo_gauss_j_mu_1_erf, (n_max_fit_slat)] BEGIN_PROVIDER [double precision, expo_gauss_j_mu_1_erf, (ng_fit_jast)]
&BEGIN_PROVIDER [double precision, coef_gauss_j_mu_1_erf, (n_max_fit_slat)] &BEGIN_PROVIDER [double precision, coef_gauss_j_mu_1_erf, (ng_fit_jast)]
BEGIN_DOC BEGIN_DOC
! !
@ -108,25 +240,90 @@ END_PROVIDER
implicit none implicit none
integer :: i integer :: i
double precision :: tmp double precision :: tmp
double precision :: expos(n_max_fit_slat), alpha, beta double precision :: expos(ng_fit_jast), alpha, beta
double precision :: alpha_opt, beta_opt double precision :: alpha_opt, beta_opt
!alpha_opt = expo_j_xmu(1) + expo_gauss_1_erf_x(1) if(ng_fit_jast .eq. 1) then
!beta_opt = expo_j_xmu(2) + expo_gauss_1_erf_x(2)
! direct opt
alpha_opt = 2.87875632d0
beta_opt = 1.34801003d0
tmp = -0.25d0 / (mu_erf * dsqrt(dacos(-1.d0))) coef_gauss_j_mu_1_erf = (/ -0.47742461d0 /)
expo_gauss_j_mu_1_erf = (/ 8.72255696d0 /)
tmp = mu_erf * mu_erf
do i = 1, ng_fit_jast
expo_gauss_j_mu_1_erf(i) = tmp * expo_gauss_j_mu_1_erf(i)
enddo
alpha = alpha_opt * mu_erf elseif(ng_fit_jast .eq. 2) then
call expo_fit_slater_gam(alpha, expos)
beta = beta_opt * mu_erf * mu_erf coef_gauss_j_mu_1_erf = (/ -0.19342649d0, -0.34563835d0 /)
expo_gauss_j_mu_1_erf = (/ 78.66099999d0, 5.04324363d0 /)
tmp = mu_erf * mu_erf
do i = 1, ng_fit_jast
expo_gauss_j_mu_1_erf(i) = tmp * expo_gauss_j_mu_1_erf(i)
enddo
elseif(ng_fit_jast .eq. 3) then
coef_gauss_j_mu_1_erf = (/ -0.0802541d0 , -0.27019258d0, -0.20546681d0 /)
expo_gauss_j_mu_1_erf = (/ 504.53350764d0, 4.01408169d0, 26.5758329d0 /)
tmp = mu_erf * mu_erf
do i = 1, ng_fit_jast
expo_gauss_j_mu_1_erf(i) = tmp * expo_gauss_j_mu_1_erf(i)
enddo
elseif(ng_fit_jast .eq. 5) then
coef_gauss_j_mu_1_erf = (/ -0.02330531d0 , -0.11888176d0 , -0.16476192d0 , -0.19874713d0 , -0.05889174d0 /)
expo_gauss_j_mu_1_erf = (/ 1.00000000d+04, 4.66067922d+01, 3.04359857d+00, 9.54726649d+00, 3.59796835d+02 /)
tmp = mu_erf * mu_erf
do i = 1, ng_fit_jast
expo_gauss_j_mu_1_erf(i) = tmp * expo_gauss_j_mu_1_erf(i)
enddo
elseif(ng_fit_jast .eq. 6) then
coef_gauss_j_mu_1_erf = (/ -0.01865654d0 , -0.18319251d0 , -0.06543196d0 , -0.11522778d0 , -0.14825793d0 , -0.03327101d0 /)
expo_gauss_j_mu_1_erf = (/ 1.00000000d+04, 8.05593848d+00, 1.27986190d+02, 2.92674319d+01, 2.93583623d+00, 7.65609148d+02 /)
tmp = mu_erf * mu_erf
do i = 1, ng_fit_jast
expo_gauss_j_mu_1_erf(i) = tmp * expo_gauss_j_mu_1_erf(i)
enddo
elseif(ng_fit_jast .eq. 20) then
ASSERT(n_max_fit_slat == 20)
!alpha_opt = expo_j_xmu(1) + expo_gauss_1_erf_x(1)
!beta_opt = expo_j_xmu(2) + expo_gauss_1_erf_x(2)
! direct opt
alpha_opt = 2.87875632d0
beta_opt = 1.34801003d0
alpha = alpha_opt * mu_erf
call expo_fit_slater_gam(alpha, expos)
beta = beta_opt * mu_erf * mu_erf
tmp = -1.d0 / dsqrt(dacos(-1.d0))
do i = 1, ng_fit_jast
expo_gauss_j_mu_1_erf(i) = expos(i) + beta
coef_gauss_j_mu_1_erf(i) = tmp * coef_fit_slat_gauss(i)
enddo
else
print *, ' not implemented yet'
stop
do i = 1, n_max_fit_slat endif
expo_gauss_j_mu_1_erf(i) = expos(i) + beta
coef_gauss_j_mu_1_erf(i) = tmp * coef_fit_slat_gauss(i) tmp = 0.25d0 / mu_erf
do i = 1, ng_fit_jast
coef_gauss_j_mu_1_erf(i) = tmp * coef_gauss_j_mu_1_erf(i)
enddo enddo
END_PROVIDER END_PROVIDER

View File

@ -142,27 +142,96 @@ double precision function fit_1_erf_x(x)
end end
BEGIN_PROVIDER [double precision, expo_gauss_1_erf_x_2, (n_max_fit_slat)] ! ---
&BEGIN_PROVIDER [double precision, coef_gauss_1_erf_x_2, (n_max_fit_slat)]
implicit none BEGIN_PROVIDER [double precision, expo_gauss_1_erf_x_2, (ng_fit_jast)]
BEGIN_DOC &BEGIN_PROVIDER [double precision, coef_gauss_1_erf_x_2, (ng_fit_jast)]
! (1 - erf(mu*x))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * x^2)
! BEGIN_DOC
! This is based on a fit of (1 - erf(mu*x)) by exp(-alpha * x) exp(-beta*mu^2x^2) ! (1 - erf(mu*x))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * x^2)
! !
! and the slater function exp(-alpha * x) is fitted with n_max_fit_slat gaussians ! This is based on a fit of (1 - erf(mu*x)) by exp(-alpha * x) exp(-beta*mu^2x^2)
END_DOC !
integer :: i ! and the slater function exp(-alpha * x) is fitted with n_max_fit_slat gaussians
double precision :: expos(n_max_fit_slat),alpha,beta END_DOC
alpha = 2.d0 * expos_slat_gauss_1_erf_x(1) * mu_erf
call expo_fit_slater_gam(alpha,expos) implicit none
beta = 2.d0 * expos_slat_gauss_1_erf_x(2) * mu_erf**2.d0 integer :: i
do i = 1, n_max_fit_slat double precision :: expos(ng_fit_jast), alpha, beta, tmp
expo_gauss_1_erf_x_2(i) = expos(i) + beta
coef_gauss_1_erf_x_2(i) = coef_fit_slat_gauss(i) if(ng_fit_jast .eq. 1) then
enddo
coef_gauss_1_erf_x_2 = (/ 0.85345277d0 /)
expo_gauss_1_erf_x_2 = (/ 6.23519457d0 /)
tmp = mu_erf * mu_erf
do i = 1, n_max_fit_slat
expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i)
enddo
elseif(ng_fit_jast .eq. 2) then
coef_gauss_1_erf_x_2 = (/ 0.31030624d0 , 0.64364964d0 /)
expo_gauss_1_erf_x_2 = (/ 55.39184787d0, 3.92151407d0 /)
tmp = mu_erf * mu_erf
do i = 1, n_max_fit_slat
expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i)
enddo
elseif(ng_fit_jast .eq. 3) then
coef_gauss_1_erf_x_2 = (/ 0.33206082d0 , 0.52347449d0, 0.12605012d0 /)
expo_gauss_1_erf_x_2 = (/ 19.90272209d0, 3.2671671d0 , 336.47320445d0 /)
tmp = mu_erf * mu_erf
do i = 1, n_max_fit_slat
expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i)
enddo
elseif(ng_fit_jast .eq. 5) then
coef_gauss_1_erf_x_2 = (/ 0.02956716d0, 0.17025555d0, 0.32774114d0, 0.39034764d0, 0.07822781d0 /)
expo_gauss_1_erf_x_2 = (/ 6467.28126d0, 46.9071990d0, 9.09617721d0, 2.76883328d0, 360.367093d0 /)
tmp = mu_erf * mu_erf
do i = 1, n_max_fit_slat
expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i)
enddo
elseif(ng_fit_jast .eq. 6) then
coef_gauss_1_erf_x_2 = (/ 0.18331042d0 , 0.10971118d0 , 0.29949169d0 , 0.34853132d0 , 0.0394275d0 , 0.01874444d0 /)
expo_gauss_1_erf_x_2 = (/ 2.54293498d+01, 1.40317872d+02, 7.14630801d+00, 2.65517675d+00, 1.45142619d+03, 1.00000000d+04 /)
tmp = mu_erf * mu_erf
do i = 1, n_max_fit_slat
expo_gauss_1_erf_x_2(i) = tmp * expo_gauss_1_erf_x_2(i)
enddo
elseif(ng_fit_jast .eq. 20) then
ASSERT(n_max_fit_slat == 20)
alpha = 2.d0 * expos_slat_gauss_1_erf_x(1) * mu_erf
call expo_fit_slater_gam(alpha, expos)
beta = 2.d0 * expos_slat_gauss_1_erf_x(2) * mu_erf * mu_erf
do i = 1, n_max_fit_slat
expo_gauss_1_erf_x_2(i) = expos(i) + beta
coef_gauss_1_erf_x_2(i) = coef_fit_slat_gauss(i)
enddo
else
print *, ' not implemented yet'
stop
endif
END_PROVIDER END_PROVIDER
! ---
double precision function fit_1_erf_x_2(x) double precision function fit_1_erf_x_2(x)
implicit none implicit none
double precision, intent(in) :: x double precision, intent(in) :: x

View File

@ -45,6 +45,9 @@ BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_n
! ao_non_hermit_term_chemist(k,i,l,j) = < k l | [erf( mu r12) - 1] d/d_r12 | i j > on the AO basis ! ao_non_hermit_term_chemist(k,i,l,j) = < k l | [erf( mu r12) - 1] d/d_r12 | i j > on the AO basis
integral_nsym = ao_non_hermit_term_chemist(k,i,l,j) integral_nsym = ao_non_hermit_term_chemist(k,i,l,j)
!print *, ' sym integ = ', integral_sym
!print *, ' non-sym integ = ', integral_nsym
ao_two_e_tc_tot(k,i,l,j) = integral_sym + integral_nsym ao_two_e_tc_tot(k,i,l,j) = integral_sym + integral_nsym
!write(111,*) ao_two_e_tc_tot(k,i,l,j) !write(111,*) ao_two_e_tc_tot(k,i,l,j)
enddo enddo

View File

@ -58,7 +58,7 @@
accu_nd = accu_nd/dble(mo_num**2-mo_num) accu_nd = accu_nd/dble(mo_num**2-mo_num)
if(dabs(accu_d-1.d0).gt.1.d-10.or.dabs(accu_nd).gt.1.d-10)then if(dabs(accu_d-1.d0).gt.1.d-10.or.dabs(accu_nd).gt.1.d-10)then
print*,'Warning !!!' print*,'Warning !!!'
print*,'Average trace of overlap_bi_ortho is different from 1 by ', accu_d print*,'Average trace of overlap_bi_ortho is different from 1 by ', dabs(accu_d-1.d0)
print*,'And bi orthogonality is off by an average of ',accu_nd print*,'And bi orthogonality is off by an average of ',accu_nd
print*,'****************' print*,'****************'
print*,'Overlap matrix betwee mo_l_coef and mo_r_coef ' print*,'Overlap matrix betwee mo_l_coef and mo_r_coef '
@ -76,67 +76,85 @@ END_PROVIDER
! --- ! ---
BEGIN_PROVIDER [ double precision, overlap_mo_r, (mo_num, mo_num)] BEGIN_PROVIDER [ double precision, overlap_mo_r, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, overlap_mo_l, (mo_num, mo_num)] &BEGIN_PROVIDER [ double precision, overlap_mo_l, (mo_num, mo_num)]
implicit none
BEGIN_DOC BEGIN_DOC
! overlap_mo_r_mo(j,i) = <MO_i|MO_R_j> ! overlap_mo_r_mo(j,i) = <MO_i|MO_R_j>
END_DOC END_DOC
integer :: i,j,p,q
overlap_mo_r= 0.d0 implicit none
overlap_mo_l= 0.d0 integer :: i, j, p, q
do i = 1, mo_num
do j = 1, mo_num overlap_mo_r = 0.d0
do p = 1, ao_num overlap_mo_l = 0.d0
do q = 1, ao_num do i = 1, mo_num
overlap_mo_r(j,i) += mo_r_coef(q,i) * mo_r_coef(p,j) * ao_overlap(q,p) do j = 1, mo_num
overlap_mo_l(j,i) += mo_l_coef(q,i) * mo_l_coef(p,j) * ao_overlap(q,p) do p = 1, ao_num
enddo do q = 1, ao_num
overlap_mo_r(j,i) += mo_r_coef(q,i) * mo_r_coef(p,j) * ao_overlap(q,p)
overlap_mo_l(j,i) += mo_l_coef(q,i) * mo_l_coef(p,j) * ao_overlap(q,p)
enddo
enddo
enddo enddo
enddo enddo
enddo
END_PROVIDER END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, overlap_mo_r_mo, (mo_num, mo_num)] BEGIN_PROVIDER [ double precision, overlap_mo_r_mo, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, overlap_mo_l_mo, (mo_num, mo_num)] &BEGIN_PROVIDER [ double precision, overlap_mo_l_mo, (mo_num, mo_num)]
implicit none
BEGIN_DOC BEGIN_DOC
! overlap_mo_r_mo(j,i) = <MO_j|MO_R_i> ! overlap_mo_r_mo(j,i) = <MO_j|MO_R_i>
END_DOC END_DOC
integer :: i,j,p,q
overlap_mo_r_mo = 0.d0 implicit none
overlap_mo_l_mo = 0.d0 integer :: i, j, p, q
do i = 1, mo_num
do j = 1, mo_num overlap_mo_r_mo = 0.d0
do p = 1, ao_num overlap_mo_l_mo = 0.d0
do q = 1, ao_num do i = 1, mo_num
overlap_mo_r_mo(j,i) += mo_coef(p,j) * mo_r_coef(q,i) * ao_overlap(q,p) do j = 1, mo_num
overlap_mo_l_mo(j,i) += mo_coef(p,j) * mo_l_coef(q,i) * ao_overlap(q,p) do p = 1, ao_num
enddo do q = 1, ao_num
overlap_mo_r_mo(j,i) += mo_coef(p,j) * mo_r_coef(q,i) * ao_overlap(q,p)
overlap_mo_l_mo(j,i) += mo_coef(p,j) * mo_l_coef(q,i) * ao_overlap(q,p)
enddo
enddo
enddo enddo
enddo enddo
enddo
END_PROVIDER END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, angle_left_right, (mo_num)] BEGIN_PROVIDER [ double precision, angle_left_right, (mo_num)]
&BEGIN_PROVIDER [ double precision, max_angle_left_right] &BEGIN_PROVIDER [ double precision, max_angle_left_right]
implicit none
BEGIN_DOC BEGIN_DOC
! angle_left_right(i) = angle between the left-eigenvector chi_i and the right-eigenvector phi_i ! angle_left_right(i) = angle between the left-eigenvector chi_i and the right-eigenvector phi_i
END_DOC END_DOC
integer :: i,j
double precision :: left,right,arg implicit none
do i = 1, mo_num integer :: i, j
left = overlap_mo_l(i,i) double precision :: left, right, arg
right = overlap_mo_r(i,i) double precision :: angle(mo_num)
arg = min(overlap_bi_ortho(i,i)/(left*right),1.d0)
arg = max(arg,-1.d0) do i = 1, mo_num
angle_left_right(i) = dacos(arg) * 180.d0/dacos(-1.d0) left = overlap_mo_l(i,i)
enddo right = overlap_mo_r(i,i)
double precision :: angle(mo_num) arg = min(overlap_bi_ortho(i,i)/(left*right),1.d0)
angle(1:mo_num) = dabs(angle_left_right(1:mo_num)) arg = max(arg, -1.d0)
max_angle_left_right = maxval(angle) angle_left_right(i) = dacos(arg) * 180.d0/dacos(-1.d0)
enddo
angle(1:mo_num) = dabs(angle_left_right(1:mo_num))
max_angle_left_right = maxval(angle)
END_PROVIDER END_PROVIDER
! ---

View File

@ -750,7 +750,10 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
if (delta_E < 0.d0) then if (delta_E < 0.d0) then
tmp = -tmp tmp = -tmp
endif endif
!e_pert(istate) = alpha_h_psi * alpha_h_psi / (E0(istate) - Hii)
e_pert(istate) = 0.5d0 * (tmp - delta_E) e_pert(istate) = 0.5d0 * (tmp - delta_E)
if (dabs(alpha_h_psi) > 1.d-4) then if (dabs(alpha_h_psi) > 1.d-4) then
coef(istate) = e_pert(istate) / alpha_h_psi coef(istate) = e_pert(istate) / alpha_h_psi
else else

View File

@ -252,7 +252,7 @@ end subroutine non_hrmt_real_diag_new
! --- ! ---
subroutine non_hrmt_bieig(n, A, leigvec, reigvec, n_real_eigv, eigval) subroutine non_hrmt_bieig(n, A, thr_d, thr_nd, leigvec, reigvec, n_real_eigv, eigval)
BEGIN_DOC BEGIN_DOC
! !
@ -266,13 +266,14 @@ subroutine non_hrmt_bieig(n, A, leigvec, reigvec, n_real_eigv, eigval)
implicit none implicit none
integer, intent(in) :: n integer, intent(in) :: n
double precision, intent(in) :: A(n,n) double precision, intent(in) :: A(n,n)
double precision, intent(in) :: thr_d, thr_nd
integer, intent(out) :: n_real_eigv integer, intent(out) :: n_real_eigv
double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n) double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n)
integer :: i, j integer :: i, j
integer :: n_good integer :: n_good
double precision :: thr, thr_cut, thr_diag, thr_norm double precision :: thr, thr_cut, thr_diag, thr_norm
double precision :: accu_d, accu_nd, thr_d, thr_nd double precision :: accu_d, accu_nd
integer, allocatable :: list_good(:), iorder(:) integer, allocatable :: list_good(:), iorder(:)
double precision, allocatable :: WR(:), WI(:), VL(:,:), VR(:,:) double precision, allocatable :: WR(:), WI(:), VL(:,:), VR(:,:)
@ -327,9 +328,9 @@ subroutine non_hrmt_bieig(n, A, leigvec, reigvec, n_real_eigv, eigval)
! track & sort the real eigenvalues ! track & sort the real eigenvalues
n_good = 0 n_good = 0
thr = 1.d-5 thr = 1.d-3
do i = 1, n do i = 1, n
print*, 'Re(i) + Im(i)', WR(i), WI(i) print*, 'Re(i) + Im(i)', WR(i), WI(i)
if(dabs(WI(i)) .lt. thr) then if(dabs(WI(i)) .lt. thr) then
n_good += 1 n_good += 1
else else
@ -395,22 +396,22 @@ subroutine non_hrmt_bieig(n, A, leigvec, reigvec, n_real_eigv, eigval)
! ------------------------------------------------------------------------------------- ! -------------------------------------------------------------------------------------
! check bi-orthogonality ! check bi-orthogonality
thr_d = 1d-10 ! -7 thr_diag = 10.d0
thr_nd = 1d-10 ! -7 thr_norm = 1d+10
allocate( S(n_real_eigv,n_real_eigv) ) allocate( S(n_real_eigv,n_real_eigv) )
call check_biorthog(n, n_real_eigv, leigvec, reigvec, accu_d, accu_nd, S, .false.) call check_biorthog(n, n_real_eigv, leigvec, reigvec, accu_d, accu_nd, S, thr_d, thr_nd, .false.)
if( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n_real_eigv)) .lt. thr_d) ) then if( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n_real_eigv))/dble(n_real_eigv) .lt. thr_d) ) then
print *, ' lapack vectors are normalized and bi-orthogonalized' print *, ' lapack vectors are normalized and bi-orthogonalized'
deallocate(S) deallocate(S)
return return
elseif( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n_real_eigv)) .gt. thr_d) ) then elseif( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n_real_eigv))/dble(n_real_eigv) .gt. thr_d) ) then
print *, ' lapack vectors are not normalized but bi-orthogonalized' print *, ' lapack vectors are not normalized but bi-orthogonalized'
call check_biorthog_binormalize(n, n_real_eigv, leigvec, reigvec, .true.) call check_biorthog_binormalize(n, n_real_eigv, leigvec, reigvec, thr_d, thr_nd, .true.)
call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, thr_diag, thr_norm, .true.) call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, thr_diag, thr_norm, .true.)
@ -429,17 +430,17 @@ subroutine non_hrmt_bieig(n, A, leigvec, reigvec, n_real_eigv, eigval)
call impose_biorthog_degen_eigvec(n, eigval, leigvec, reigvec) call impose_biorthog_degen_eigvec(n, eigval, leigvec, reigvec)
!call impose_orthog_biorthog_degen_eigvec(n, eigval, leigvec, reigvec) !call impose_orthog_biorthog_degen_eigvec(n, thr_d, thr_nd, eigval, leigvec, reigvec)
!call impose_unique_biorthog_degen_eigvec(n, eigval, mo_coef, ao_overlap, leigvec, reigvec) !call impose_unique_biorthog_degen_eigvec(n, eigval, mo_coef, ao_overlap, leigvec, reigvec)
! --- ! ---
call check_biorthog(n, n_real_eigv, leigvec, reigvec, accu_d, accu_nd, S, .false.) call check_biorthog(n, n_real_eigv, leigvec, reigvec, accu_d, accu_nd, S, thr_d, thr_nd, .false.)
if( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n_real_eigv)) .gt. thr_d) ) then if( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n_real_eigv)) .gt. thr_d) ) then
call check_biorthog_binormalize(n, n_real_eigv, leigvec, reigvec, .true.) call check_biorthog_binormalize(n, n_real_eigv, leigvec, reigvec, thr_d, thr_nd, .true.)
endif endif
call check_biorthog(n, n_real_eigv, leigvec, reigvec, accu_d, accu_nd, S, .true.) call check_biorthog(n, n_real_eigv, leigvec, reigvec, accu_d, accu_nd, S, thr_d, thr_nd, .true.)
!call impose_biorthog_qr(n, n_real_eigv, leigvec, reigvec) !call impose_biorthog_qr(n, n_real_eigv, leigvec, reigvec)
!call impose_biorthog_lu(n, n_real_eigv, leigvec, reigvec) !call impose_biorthog_lu(n, n_real_eigv, leigvec, reigvec)

View File

@ -356,6 +356,7 @@ subroutine non_hrmt_real_diag(n, A, leigvec, reigvec, n_real_eigv, eigval)
! Eigvalue(n) = WR(n) + i * WI(n) ! Eigvalue(n) = WR(n) + i * WI(n)
allocate(WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n)) allocate(WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n))
Aw = A Aw = A
!print *, ' matrix to diagonalize', Aw
call lapack_diag_non_sym(n, Aw, WR, WI, VL, VR) call lapack_diag_non_sym(n, Aw, WR, WI, VL, VR)
! --- ! ---
@ -573,21 +574,22 @@ end subroutine non_hrmt_general_real_diag
! --- ! ---
subroutine impose_biorthog_qr(m, n, Vl, Vr) subroutine impose_biorthog_qr(m, n, thr_d, thr_nd, Vl, Vr)
implicit none implicit none
integer, intent(in) :: m, n integer, intent(in) :: m, n
double precision, intent(in) :: thr_d, thr_nd
double precision, intent(inout) :: Vl(m,n), Vr(m,n) double precision, intent(inout) :: Vl(m,n), Vr(m,n)
integer :: i, j integer :: i, j
integer :: LWORK, INFO integer :: LWORK, INFO
double precision :: accu_nd, accu_d, thr_nd, thr_d double precision :: accu_nd, accu_d
double precision, allocatable :: TAU(:), WORK(:) double precision, allocatable :: TAU(:), WORK(:)
double precision, allocatable :: S(:,:), R(:,:), tmp(:,:) double precision, allocatable :: S(:,:), R(:,:), tmp(:,:)
! --- ! ---
call check_biorthog_binormalize(m, n, Vl, Vr, .false.) call check_biorthog_binormalize(m, n, Vl, Vr, thr_d, thr_nd, .false.)
! --- ! ---
@ -609,9 +611,7 @@ subroutine impose_biorthog_qr(m, n, Vl, Vr)
enddo enddo
accu_nd = dsqrt(accu_nd) accu_nd = dsqrt(accu_nd)
thr_d = 1d-10 if((accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n))/dble(n) .lt. thr_d)) then
thr_nd = 1d-08
if((accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n)) .lt. thr_d)) then
print *, ' bi-orthogonal vectors without QR !' print *, ' bi-orthogonal vectors without QR !'
deallocate(S) deallocate(S)
return return
@ -1011,7 +1011,7 @@ subroutine check_degen(n, m, eigval, leigvec, reigvec)
double precision :: ei, ej, de, de_thr, accu_nd double precision :: ei, ej, de, de_thr, accu_nd
double precision, allocatable :: S(:,:) double precision, allocatable :: S(:,:)
de_thr = 1d-7 de_thr = 1d-6
do i = 1, m-1 do i = 1, m-1
ei = eigval(i) ei = eigval(i)
@ -1082,7 +1082,7 @@ subroutine impose_weighted_orthog_svd(n, m, W, C)
double precision, allocatable :: S(:,:), tmp(:,:) double precision, allocatable :: S(:,:), tmp(:,:)
double precision, allocatable :: U(:,:), Vt(:,:), D(:) double precision, allocatable :: U(:,:), Vt(:,:), D(:)
print *, ' apply SVD to orthogonalize vectors' print *, ' apply SVD to orthogonalize & normalize weighted vectors'
! --- ! ---
@ -1097,7 +1097,7 @@ subroutine impose_weighted_orthog_svd(n, m, W, C)
, 0.d0, S, size(S, 1) ) , 0.d0, S, size(S, 1) )
deallocate(tmp) deallocate(tmp)
print *, ' eigenvec overlap bef SVD: ' print *, ' overlap bef SVD: '
do i = 1, m do i = 1, m
write(*, '(1000(F16.10,X))') S(i,:) write(*, '(1000(F16.10,X))') S(i,:)
enddo enddo
@ -1160,7 +1160,7 @@ subroutine impose_weighted_orthog_svd(n, m, W, C)
, 0.d0, S, size(S, 1) ) , 0.d0, S, size(S, 1) )
deallocate(tmp) deallocate(tmp)
print *, ' eigenvec overlap aft SVD: ' print *, ' overlap aft SVD: '
do i = 1, m do i = 1, m
write(*, '(1000(F16.10,X))') S(i,:) write(*, '(1000(F16.10,X))') S(i,:)
enddo enddo
@ -1185,7 +1185,7 @@ subroutine impose_orthog_svd(n, m, C)
double precision, allocatable :: S(:,:), tmp(:,:) double precision, allocatable :: S(:,:), tmp(:,:)
double precision, allocatable :: U(:,:), Vt(:,:), D(:) double precision, allocatable :: U(:,:), Vt(:,:), D(:)
print *, ' apply SVD to orthogonalize vectors' print *, ' apply SVD to orthogonalize & normalize vectors'
! --- ! ---
@ -1213,6 +1213,7 @@ subroutine impose_orthog_svd(n, m, C)
num_linear_dependencies = 0 num_linear_dependencies = 0
do i = 1, m do i = 1, m
if(abs(D(i)) <= threshold) then if(abs(D(i)) <= threshold) then
write(*,*) ' D(i) = ', D(i)
D(i) = 0.d0 D(i) = 0.d0
num_linear_dependencies += 1 num_linear_dependencies += 1
else else
@ -1268,7 +1269,7 @@ end subroutine impose_orthog_svd
! --- ! ---
subroutine impose_orthog_svd_overlap(n, m, C,overlap) subroutine impose_orthog_svd_overlap(n, m, C, overlap)
implicit none implicit none
@ -1278,27 +1279,27 @@ subroutine impose_orthog_svd_overlap(n, m, C,overlap)
integer :: i, j, num_linear_dependencies integer :: i, j, num_linear_dependencies
double precision :: threshold double precision :: threshold
double precision, allocatable :: S(:,:), tmp(:,:),Stmp(:,:) double precision, allocatable :: S(:,:), tmp(:,:), Stmp(:,:)
double precision, allocatable :: U(:,:), Vt(:,:), D(:) double precision, allocatable :: U(:,:), Vt(:,:), D(:)
print *, ' apply SVD to orthogonalize vectors' print *, ' apply SVD to orthogonalize vectors'
! --- ! ---
allocate(S(m,m),Stmp(n,m))
! S = C.T x overlap x C ! S = C.T x overlap x C
call dgemm( 'N', 'N', n, m, n, 1.d0 & allocate(S(m,m), Stmp(n,m))
call dgemm( 'N', 'N', n, m, n, 1.d0 &
, overlap, size(overlap, 1), C, size(C, 1) & , overlap, size(overlap, 1), C, size(C, 1) &
, 0.d0, Stmp, size(Stmp, 1) ) , 0.d0, Stmp, size(Stmp, 1) )
call dgemm( 'T', 'N', m, m, n, 1.d0 & call dgemm( 'T', 'N', m, m, n, 1.d0 &
, C, size(C, 1), Stmp, size(Stmp, 1) & , C, size(C, 1), Stmp, size(Stmp, 1) &
, 0.d0, S, size(S, 1) ) , 0.d0, S, size(S, 1) )
deallocate(Stmp)
! print *, ' eigenvec overlap bef SVD: ' print *, ' eigenvec overlap bef SVD: '
! do i = 1, m do i = 1, m
! write(*, '(1000(F16.10,X))') S(i,:) write(*, '(1000(F16.10,X))') S(i,:)
! enddo enddo
! --- ! ---
@ -1347,23 +1348,23 @@ subroutine impose_orthog_svd_overlap(n, m, C,overlap)
! --- ! ---
allocate(S(m,m)) ! S = C.T x overlap x C
allocate(S(m,m), Stmp(n,m))
! S = C.T x C call dgemm( 'N', 'N', n, m, n, 1.d0 &
call dgemm( 'T', 'N', m, m, n, 1.d0 & , overlap, size(overlap, 1), C, size(C, 1) &
, C, size(C, 1), C, size(C, 1) & , 0.d0, Stmp, size(Stmp, 1) )
call dgemm( 'T', 'N', m, m, n, 1.d0 &
, C, size(C, 1), Stmp, size(Stmp, 1) &
, 0.d0, S, size(S, 1) ) , 0.d0, S, size(S, 1) )
deallocate(Stmp)
! print *, ' eigenvec overlap aft SVD: ' print *, ' eigenvec overlap aft SVD: '
! do i = 1, m do i = 1, m
! write(*, '(1000(F16.10,X))') S(i,:) write(*, '(1000(F16.10,X))') S(i,:)
! enddo enddo
deallocate(S) deallocate(S)
! --- end subroutine impose_orthog_svd_overlap
end subroutine impose_orthog_svd
! --- ! ---
@ -1379,7 +1380,7 @@ subroutine impose_orthog_GramSchmidt(n, m, C)
double precision, allocatable :: S(:,:) double precision, allocatable :: S(:,:)
print *, '' print *, ''
print *, ' apply Gram-Schmidt to orthogonalize vectors' print *, ' apply Gram-Schmidt to orthogonalize & normalize vectors'
print *, '' print *, ''
! --- ! ---
@ -1663,22 +1664,19 @@ end subroutine get_halfinv_svd
! --- ! ---
subroutine check_biorthog_binormalize(n, m, Vl, Vr, stop_ifnot) subroutine check_biorthog_binormalize(n, m, Vl, Vr, thr_d, thr_nd, stop_ifnot)
implicit none implicit none
integer, intent(in) :: n, m integer, intent(in) :: n, m
logical, intent(in) :: stop_ifnot logical, intent(in) :: stop_ifnot
double precision, intent(in) :: thr_d, thr_nd
double precision, intent(inout) :: Vl(n,m), Vr(n,m) double precision, intent(inout) :: Vl(n,m), Vr(n,m)
integer :: i, j integer :: i, j
double precision :: thr_d, thr_nd
double precision :: accu_d, accu_nd, s_tmp double precision :: accu_d, accu_nd, s_tmp
double precision, allocatable :: S(:,:) double precision, allocatable :: S(:,:)
thr_d = 1d-6
thr_nd = 1d-7
print *, ' check bi-orthonormality' print *, ' check bi-orthonormality'
! --- ! ---
@ -1694,11 +1692,13 @@ subroutine check_biorthog_binormalize(n, m, Vl, Vr, stop_ifnot)
! S(i,i) = -1 ! S(i,i) = -1
do i = 1, m do i = 1, m
if( (S(i,i) + 1.d0) .lt. thr_d ) then if(S(i,i) .lt. 0.d0) then
!if( (S(i,i) + 1.d0) .lt. thr_d ) then
do j = 1, n do j = 1, n
Vl(j,i) = -1.d0 * Vl(j,i) Vl(j,i) = -1.d0 * Vl(j,i)
enddo enddo
S(i,i) = 1.d0 !S(i,i) = 1.d0
S(i,i) = -S(i,i)
endif endif
enddo enddo
@ -1713,7 +1713,7 @@ subroutine check_biorthog_binormalize(n, m, Vl, Vr, stop_ifnot)
endif endif
enddo enddo
enddo enddo
accu_nd = dsqrt(accu_nd) accu_nd = dsqrt(accu_nd) / dble(m)
print*, ' diag acc: ', accu_d print*, ' diag acc: ', accu_d
print*, ' nondiag acc: ', accu_nd print*, ' nondiag acc: ', accu_nd
@ -1730,6 +1730,7 @@ subroutine check_biorthog_binormalize(n, m, Vl, Vr, stop_ifnot)
Vr(j,i) = Vr(j,i) * s_tmp Vr(j,i) = Vr(j,i) * s_tmp
enddo enddo
endif endif
enddo enddo
endif endif
@ -1755,7 +1756,7 @@ subroutine check_biorthog_binormalize(n, m, Vl, Vr, stop_ifnot)
endif endif
enddo enddo
enddo enddo
accu_nd = dsqrt(accu_nd) accu_nd = dsqrt(accu_nd) / dble(m)
print *, ' diag acc: ', accu_d print *, ' diag acc: ', accu_d
print *, ' nondiag acc: ', accu_nd print *, ' nondiag acc: ', accu_nd
@ -1774,22 +1775,19 @@ end subroutine check_biorthog_binormalize
! --- ! ---
subroutine check_weighted_biorthog(n, m, W, Vl, Vr, accu_d, accu_nd, S, stop_ifnot) subroutine check_weighted_biorthog(n, m, W, Vl, Vr, thr_d, thr_nd, accu_d, accu_nd, S, stop_ifnot)
implicit none implicit none
integer, intent(in) :: n, m integer, intent(in) :: n, m
double precision, intent(in) :: Vl(n,m), Vr(n,m), W(n,n) double precision, intent(in) :: Vl(n,m), Vr(n,m), W(n,n)
double precision, intent(in) :: thr_d, thr_nd
logical, intent(in) :: stop_ifnot logical, intent(in) :: stop_ifnot
double precision, intent(out) :: accu_d, accu_nd, S(m,m) double precision, intent(out) :: accu_d, accu_nd, S(m,m)
integer :: i, j integer :: i, j
double precision :: thr_d, thr_nd
double precision, allocatable :: SS(:,:), tmp(:,:) double precision, allocatable :: SS(:,:), tmp(:,:)
thr_d = 1d-6
thr_nd = 1d-08
print *, ' check weighted bi-orthogonality' print *, ' check weighted bi-orthogonality'
! --- ! ---
@ -1841,22 +1839,19 @@ end subroutine check_weighted_biorthog
! --- ! ---
subroutine check_biorthog(n, m, Vl, Vr, accu_d, accu_nd, S, stop_ifnot) subroutine check_biorthog(n, m, Vl, Vr, accu_d, accu_nd, S, thr_d, thr_nd, stop_ifnot)
implicit none implicit none
integer, intent(in) :: n, m integer, intent(in) :: n, m
double precision, intent(in) :: Vl(n,m), Vr(n,m) double precision, intent(in) :: Vl(n,m), Vr(n,m)
logical, intent(in) :: stop_ifnot logical, intent(in) :: stop_ifnot
double precision, intent(in) :: thr_d, thr_nd
double precision, intent(out) :: accu_d, accu_nd, S(m,m) double precision, intent(out) :: accu_d, accu_nd, S(m,m)
integer :: i, j integer :: i, j
double precision :: thr_d, thr_nd
double precision, allocatable :: SS(:,:) double precision, allocatable :: SS(:,:)
thr_d = 1d-6
thr_nd = 1d-08
print *, ' check bi-orthogonality' print *, ' check bi-orthogonality'
! --- ! ---
@ -1880,7 +1875,7 @@ subroutine check_biorthog(n, m, Vl, Vr, accu_d, accu_nd, S, stop_ifnot)
endif endif
enddo enddo
enddo enddo
accu_nd = dsqrt(accu_nd) accu_nd = dsqrt(accu_nd) / dble(m)
print *, ' accu_nd = ', accu_nd print *, ' accu_nd = ', accu_nd
print *, ' accu_d = ', dabs(accu_d-dble(m))/dble(m) print *, ' accu_d = ', dabs(accu_d-dble(m))/dble(m)
@ -1988,7 +1983,7 @@ subroutine impose_biorthog_degen_eigvec(n, e0, L0, R0)
do i = 1, n do i = 1, n
if(deg_num(i).gt.1) then if(deg_num(i).gt.1) then
print *, ' degen on', i, deg_num(i) print *, ' degen on', i, deg_num(i), e0(i)
endif endif
enddo enddo
@ -2011,6 +2006,8 @@ subroutine impose_biorthog_degen_eigvec(n, e0, L0, R0)
call impose_orthog_svd(n, m, L) call impose_orthog_svd(n, m, L)
call impose_orthog_svd(n, m, R) call impose_orthog_svd(n, m, R)
!call impose_orthog_GramSchmidt(n, m, L)
!call impose_orthog_GramSchmidt(n, m, R)
! --- ! ---
@ -2029,7 +2026,7 @@ subroutine impose_biorthog_degen_eigvec(n, e0, L0, R0)
call impose_biorthog_svd(n, m, L, R) call impose_biorthog_svd(n, m, L, R)
!call impose_biorthog_qr(n, m, L, R) !call impose_biorthog_qr(n, m, thr_d, thr_nd, L, R)
! --- ! ---
@ -2047,11 +2044,12 @@ end subroutine impose_biorthog_degen_eigvec
! --- ! ---
subroutine impose_orthog_biorthog_degen_eigvec(n, e0, L0, R0) subroutine impose_orthog_biorthog_degen_eigvec(n, thr_d, thr_nd, e0, L0, R0)
implicit none implicit none
integer, intent(in) :: n integer, intent(in) :: n
double precision, intent(in) :: thr_d, thr_nd
double precision, intent(in) :: e0(n) double precision, intent(in) :: e0(n)
double precision, intent(inout) :: L0(n,n), R0(n,n) double precision, intent(inout) :: L0(n,n), R0(n,n)
@ -2116,12 +2114,12 @@ subroutine impose_orthog_biorthog_degen_eigvec(n, e0, L0, R0)
! --- ! ---
call impose_biorthog_qr(n, m, L, R) call impose_biorthog_qr(n, m, thr_d, thr_nd, L, R)
allocate(S(m,m)) allocate(S(m,m))
call check_biorthog(n, m, L, R, accu_d, accu_nd, S, .true.) call check_biorthog(n, m, L, R, accu_d, accu_nd, S, thr_d, thr_nd, .true.)
!call check_biorthog(n, m, L, L, accu_d, accu_nd, S, .true.) !call check_biorthog(n, m, L, L, accu_d, accu_nd, S, thr_d, thr_nd, .true.)
!call check_biorthog(n, m, R, R, accu_d, accu_nd, S, .false.) !call check_biorthog(n, m, R, R, accu_d, accu_nd, S, thr_d, thr_nd, .false.)
deallocate(S) deallocate(S)
! --- ! ---
@ -2140,11 +2138,12 @@ end subroutine impose_orthog_biorthog_degen_eigvec
! --- ! ---
subroutine impose_unique_biorthog_degen_eigvec(n, e0, C0, W0, L0, R0) subroutine impose_unique_biorthog_degen_eigvec(n, thr_d, thr_nd, e0, C0, W0, L0, R0)
implicit none implicit none
integer, intent(in) :: n integer, intent(in) :: n
double precision, intent(in) :: thr_d, thr_nd
double precision, intent(in) :: e0(n), W0(n,n), C0(n,n) double precision, intent(in) :: e0(n), W0(n,n), C0(n,n)
double precision, intent(inout) :: L0(n,n), R0(n,n) double precision, intent(inout) :: L0(n,n), R0(n,n)
@ -2255,7 +2254,7 @@ subroutine impose_unique_biorthog_degen_eigvec(n, e0, C0, W0, L0, R0)
call get_inv_half_nonsymmat_diago(S, m, S_inv_half, complex_root) call get_inv_half_nonsymmat_diago(S, m, S_inv_half, complex_root)
if(complex_root)then if(complex_root)then
call impose_biorthog_svd(n, m, L, R) call impose_biorthog_svd(n, m, L, R)
!call impose_biorthog_qr(n, m, L, R) !call impose_biorthog_qr(n, m, thr_d, thr_nd, L, R)
else else
call bi_ortho_s_inv_half(m, L, R, S_inv_half) call bi_ortho_s_inv_half(m, L, R, S_inv_half)
endif endif
@ -2502,8 +2501,286 @@ end subroutine impose_biorthog_svd
! --- ! ---
subroutine impose_weighted_biorthog_qr(m, n, thr_d, thr_nd, Vl, W, Vr)
subroutine impose_biorthog_svd_overlap(n, m, overlap, L, R) implicit none
integer, intent(in) :: m, n
double precision, intent(in) :: thr_d, thr_nd
double precision, intent(inout) :: Vl(m,n), W(m,m), Vr(m,n)
integer :: i, j
integer :: LWORK, INFO
double precision :: accu_nd, accu_d
double precision, allocatable :: TAU(:), WORK(:)
double precision, allocatable :: S(:,:), R(:,:), tmp(:,:), Stmp(:,:)
call check_weighted_biorthog_binormalize(m, n, Vl, W, Vr, thr_d, thr_nd, .false.)
! ---
allocate(Stmp(n,m), S(n,n))
call dgemm( 'T', 'N', n, m, m, 1.d0 &
, Vl, size(Vl, 1), W, size(W, 1) &
, 0.d0, Stmp, size(Stmp, 1) )
call dgemm( 'N', 'N', n, n, m, 1.d0 &
, Stmp, size(Stmp, 1), Vr, size(Vr, 1) &
, 0.d0, S, size(S, 1) )
deallocate(Stmp)
accu_nd = 0.d0
accu_d = 0.d0
do i = 1, n
do j = 1, n
if(i==j) then
accu_d += S(j,i)
else
accu_nd = accu_nd + S(j,i) * S(j,i)
endif
enddo
enddo
accu_nd = dsqrt(accu_nd)
if((accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n))/dble(n) .lt. thr_d)) then
print *, ' bi-orthogonal vectors without QR !'
deallocate(S)
return
endif
! -------------------------------------------------------------------------------------
! QR factorization of S: S = Q x R
print *, ' apply QR decomposition ...'
allocate( TAU(n), WORK(1) )
LWORK = -1
call dgeqrf(n, n, S, n, TAU, WORK, LWORK, INFO)
if(INFO .ne. 0) then
print*,'dgeqrf failed !!', INFO
stop
endif
LWORK = max(n, int(WORK(1)))
deallocate(WORK)
allocate( WORK(LWORK) )
call dgeqrf(n, n, S, n, TAU, WORK, LWORK, INFO)
if(INFO .ne. 0) then
print*,'dgeqrf failed !!', INFO
stop
endif
! save the upper triangular R
allocate( R(n,n) )
R(:,:) = S(:,:)
! get Q
LWORK = -1
call dorgqr(n, n, n, S, n, TAU, WORK, LWORK, INFO)
if(INFO .ne. 0) then
print*,'dorgqr failed !!', INFO
stop
endif
LWORK = max(n, int(WORK(1)))
deallocate(WORK)
allocate( WORK(LWORK) )
call dorgqr(n, n, n, S, n, TAU, WORK, LWORK, INFO)
if(INFO .ne. 0) then
print*,'dorgqr failed !!', INFO
stop
endif
deallocate( WORK, TAU )
!
! -------------------------------------------------------------------------------------
! ---
! -------------------------------------------------------------------------------------
! get bi-orhtog left & right vectors:
! Vr' = Vr x inv(R)
! Vl' = inv(Q) x Vl = Q.T x Vl
! Q.T x Vl, where Q = S
allocate( tmp(n,m) )
call dgemm( 'T', 'T', n, m, n, 1.d0 &
, S, size(S, 1), Vl, size(Vl, 1) &
, 0.d0, tmp, size(tmp, 1) )
do i = 1, n
do j = 1, m
Vl(j,i) = tmp(i,j)
enddo
enddo
deallocate(tmp)
! ---
! inv(R)
!print *, ' inversing upper triangular matrix ...'
call dtrtri("U", "N", n, R, n, INFO)
if(INFO .ne. 0) then
print*,'dtrtri failed !!', INFO
stop
endif
!print *, ' inversing upper triangular matrix OK'
do i = 1, n-1
do j = i+1, n
R(j,i) = 0.d0
enddo
enddo
!print *, ' inv(R):'
!do i = 1, n
! write(*, '(1000(F16.10,X))') R(i,:)
!enddo
! Vr x inv(R)
allocate( tmp(m,n) )
call dgemm( 'N', 'N', m, n, n, 1.d0 &
, Vr, size(Vr, 1), R, size(R, 1) &
, 0.d0, tmp, size(tmp, 1) )
deallocate( R )
do i = 1, n
do j = 1, m
Vr(j,i) = tmp(j,i)
enddo
enddo
deallocate(tmp)
call check_weighted_biorthog_binormalize(m, n, Vl, W, Vr, thr_d, thr_nd, .false.)
return
end subroutine impose_weighted_biorthog_qr
! ---
subroutine check_weighted_biorthog_binormalize(n, m, Vl, W, Vr, thr_d, thr_nd, stop_ifnot)
implicit none
integer, intent(in) :: n, m
logical, intent(in) :: stop_ifnot
double precision, intent(in) :: thr_d, thr_nd
double precision, intent(inout) :: Vl(n,m), W(n,n), Vr(n,m)
integer :: i, j
double precision :: accu_d, accu_nd, s_tmp
double precision, allocatable :: S(:,:), Stmp(:,:)
print *, ' check weighted bi-orthonormality'
! ---
allocate(Stmp(m,n), S(m,m))
call dgemm( 'T', 'N', m, n, n, 1.d0 &
, Vl, size(Vl, 1), W, size(W, 1) &
, 0.d0, Stmp, size(Stmp, 1) )
call dgemm( 'N', 'N', m, m, n, 1.d0 &
, Stmp, size(Stmp, 1), Vr, size(Vr, 1) &
, 0.d0, S, size(S, 1) )
deallocate(Stmp)
!print *, ' overlap matrix before:'
!do i = 1, m
! write(*,'(1000(F16.10,X))') S(i,:)
!enddo
! S(i,i) = -1
do i = 1, m
if( (S(i,i) + 1.d0) .lt. thr_d ) then
do j = 1, n
Vl(j,i) = -1.d0 * Vl(j,i)
enddo
S(i,i) = 1.d0
endif
enddo
accu_d = 0.d0
accu_nd = 0.d0
do i = 1, m
do j = 1, m
if(i==j) then
accu_d = accu_d + S(i,i)
else
accu_nd = accu_nd + S(j,i) * S(j,i)
endif
enddo
enddo
accu_nd = dsqrt(accu_nd) / dble(m)
print*, ' diag acc: ', accu_d
print*, ' nondiag acc: ', accu_nd
! ---
if( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(m))/dble(m) .gt. thr_d) ) then
do i = 1, m
print *, i, S(i,i)
if(dabs(S(i,i) - 1.d0) .gt. thr_d) then
s_tmp = 1.d0 / dsqrt(S(i,i))
do j = 1, n
Vl(j,i) = Vl(j,i) * s_tmp
Vr(j,i) = Vr(j,i) * s_tmp
enddo
endif
enddo
endif
! ---
allocate(Stmp(m,n))
call dgemm( 'T', 'N', m, n, n, 1.d0 &
, Vl, size(Vl, 1), W, size(W, 1) &
, 0.d0, Stmp, size(Stmp, 1) )
call dgemm( 'N', 'N', m, m, n, 1.d0 &
, Stmp, size(Stmp, 1), Vr, size(Vr, 1) &
, 0.d0, S, size(S, 1) )
deallocate(Stmp)
!print *, ' overlap matrix after:'
!do i = 1, m
! write(*,'(1000(F16.10,X))') S(i,:)
!enddo
accu_d = 0.d0
accu_nd = 0.d0
do i = 1, m
do j = 1, m
if(i==j) then
accu_d = accu_d + S(i,i)
else
accu_nd = accu_nd + S(j,i) * S(j,i)
endif
enddo
enddo
accu_nd = dsqrt(accu_nd) / dble(m)
print *, ' diag acc: ', accu_d
print *, ' nondiag acc: ', accu_nd
deallocate(S)
! ---
if( stop_ifnot .and. ((accu_nd .gt. thr_nd) .or. (dabs(accu_d-dble(m))/dble(m) .gt. thr_d)) ) then
print *, accu_nd, thr_nd
print *, dabs(accu_d-dble(m))/dble(m), thr_d
print *, ' weighted biorthog_binormalize failed !'
stop
endif
end subroutine check_weighted_biorthog_binormalize
! ---
subroutine impose_weighted_biorthog_svd(n, m, overlap, L, R)
implicit none implicit none
@ -2527,6 +2804,7 @@ subroutine impose_biorthog_svd_overlap(n, m, overlap, L, R)
call dgemm( 'T', 'N', m, m, n, 1.d0 & call dgemm( 'T', 'N', m, m, n, 1.d0 &
, L, size(L, 1), Stmp, size(Stmp, 1) & , L, size(L, 1), Stmp, size(Stmp, 1) &
, 0.d0, S, size(S, 1) ) , 0.d0, S, size(S, 1) )
deallocate(Stmp)
print *, ' overlap bef SVD: ' print *, ' overlap bef SVD: '
do i = 1, m do i = 1, m
@ -2598,10 +2876,7 @@ subroutine impose_biorthog_svd_overlap(n, m, overlap, L, R)
! --- ! ---
allocate(S(m,m)) allocate(S(m,m),Stmp(n,m))
! call dgemm( 'T', 'N', m, m, n, 1.d0 &
! , L, size(L, 1), R, size(R, 1) &
! , 0.d0, S, size(S, 1) )
! S = C.T x overlap x C ! S = C.T x overlap x C
call dgemm( 'N', 'N', n, m, n, 1.d0 & call dgemm( 'N', 'N', n, m, n, 1.d0 &
, overlap, size(overlap, 1), R, size(R, 1) & , overlap, size(overlap, 1), R, size(R, 1) &
@ -2609,6 +2884,7 @@ subroutine impose_biorthog_svd_overlap(n, m, overlap, L, R)
call dgemm( 'T', 'N', m, m, n, 1.d0 & call dgemm( 'T', 'N', m, m, n, 1.d0 &
, L, size(L, 1), Stmp, size(Stmp, 1) & , L, size(L, 1), Stmp, size(Stmp, 1) &
, 0.d0, S, size(S, 1) ) , 0.d0, S, size(S, 1) )
deallocate(Stmp)
print *, ' overlap aft SVD with overlap: ' print *, ' overlap aft SVD with overlap: '
do i = 1, m do i = 1, m
@ -2616,9 +2892,8 @@ subroutine impose_biorthog_svd_overlap(n, m, overlap, L, R)
enddo enddo
deallocate(S) deallocate(S)
! --- return
end subroutine impose_weighted_biorthog_svd
end subroutine impose_biorthog_svd
! --- ! ---

View File

@ -0,0 +1,142 @@
! ---
program print_he_tc_energy
implicit none
call print_overlap()
call print_energy1()
end
! ---
subroutine print_overlap()
implicit none
integer :: i, j, k, l
double precision :: S_ij
print *, ' ao_overlap:'
do i = 1, ao_num
do j = 1, ao_num
print *, j, i, ao_overlap(j,i)
enddo
enddo
print *, ' mo_overlap:'
do i = 1, mo_num
do j = 1, mo_num
S_ij = 0.d0
do k = 1, ao_num
do l = 1, ao_num
S_ij += mo_l_coef(k,i) * ao_overlap(k,l) * mo_r_coef(l,j)
enddo
enddo
print *, i, j, S_ij
enddo
enddo
end subroutine print_overlap
! ---
subroutine print_energy1()
implicit none
integer :: i, j, k, l
double precision :: e, n, e_tmp, n_tmp, e_ns
double precision, external :: ao_two_e_integral
e = 0.d0
n = 0.d0
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
! < phi_1 phi_1 | h1 | phi_1 phi_1 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
e_tmp += mo_l_coef(i,1) * ao_one_e_integrals(i,j) * mo_r_coef(j,1)
n_tmp += mo_l_coef(i,1) * ao_overlap(i,j) * mo_r_coef(j,1)
enddo
enddo
e += e_tmp * n_tmp
! ---
! < phi_1 phi_1 | h2 | phi_1 phi_1 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
n_tmp += mo_l_coef(i,1) * ao_overlap(i,j) * mo_r_coef(j,1)
e_tmp += mo_l_coef(i,1) * ao_one_e_integrals(i,j) * mo_r_coef(j,1)
enddo
enddo
e += e_tmp * n_tmp
! ---
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
! ---
e_ns = 0.d0
do i = 1, ao_num
do j = 1, ao_num
do k = 1, ao_num
do l = 1, ao_num
! ao_two_e_tc_tot(i,j,k,l) = <k i| V^TC(r_12) |l j>
e += mo_l_coef(i,1) * mo_l_coef(k,1) * ao_two_e_tc_tot(i,j,k,l) * mo_r_coef(j,1) * mo_r_coef(l,1)
e_ns += mo_l_coef(i,1) * mo_l_coef(k,1) * ao_non_hermit_term_chemist(i,j,k,l) * mo_r_coef(j,1) * mo_r_coef(l,1)
enddo
enddo
enddo
enddo
! ---
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
! ---
! < phi_1 phi_1 | phi_1 phi_1 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
e_tmp += mo_l_coef(i,1) * ao_overlap(i,j) * mo_r_coef(j,1)
n_tmp += mo_l_coef(i,1) * ao_overlap(i,j) * mo_r_coef(j,1)
enddo
enddo
n += e_tmp * n_tmp
! ---
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
e = e / n
e_ns = e_ns / n
print *, ' tc energy = ', e
print *, ' non-sym energy = ', e_ns
end subroutine print_energy1
! ---

View File

@ -66,7 +66,7 @@ subroutine diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
enddo enddo
enddo enddo
enddo enddo
print*,'aab = ',accu !print*,'aab = ',accu
! beta/beta/alpha three-body ! beta/beta/alpha three-body
accu = 0.d0 accu = 0.d0
@ -83,7 +83,7 @@ subroutine diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
enddo enddo
enddo enddo
enddo enddo
print*,'abb = ',accu !print*,'abb = ',accu
! alpha/alpha/alpha three-body ! alpha/alpha/alpha three-body
accu = 0.d0 accu = 0.d0
@ -99,7 +99,7 @@ subroutine diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
enddo enddo
enddo enddo
enddo enddo
print*,'aaa = ',accu !print*,'aaa = ',accu
! beta/beta/beta three-body ! beta/beta/beta three-body
accu = 0.d0 accu = 0.d0
@ -115,7 +115,7 @@ subroutine diag_htilde_three_body_ints_bi_ort(Nint, key_i, hthree)
enddo enddo
enddo enddo
enddo enddo
print*,'bbb = ',accu !print*,'bbb = ',accu
endif endif
end end

View File

@ -18,6 +18,10 @@
do j = 1, N_det do j = 1, N_det
! < J | Htilde | I > ! < J | Htilde | I >
call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot) call htilde_mu_mat_bi_ortho(psi_det(1,1,j), psi_det(1,1,i), N_int, hmono, htwoe, hthree, htot)
!print *, ' hmono = ', hmono
!print *, ' htwoe = ', htwoe
!print *, ' hthree = ', hthree
htilde_matrix_elmt_bi_ortho(j,i) = htot htilde_matrix_elmt_bi_ortho(j,i) = htot
enddo enddo
enddo enddo

View File

@ -1,125 +1,150 @@
BEGIN_PROVIDER [ double precision, natorb_tc_reigvec_mo, (mo_num, mo_num)] ! ---
&BEGIN_PROVIDER [ double precision, natorb_tc_leigvec_mo, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, natorb_tc_eigval, (mo_num)] BEGIN_PROVIDER [ double precision, natorb_tc_reigvec_mo, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, natorb_tc_leigvec_mo, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, natorb_tc_eigval, (mo_num)]
BEGIN_DOC
!
! natorb_tc_reigvec_mo : RIGHT eigenvectors of the ground state transition matrix (equivalent of natural orbitals)
! natorb_tc_leigvec_mo : LEFT eigenvectors of the ground state transition matrix (equivalent of natural orbitals)
! natorb_tc_eigval : eigenvalues of the ground state transition matrix (equivalent of the occupation numbers). WARNINING :: can be negative !!
!
END_DOC
implicit none implicit none
BEGIN_DOC integer :: i, j, k, n_real
! natorb_tc_reigvec_mo : RIGHT eigenvectors of the ground state transition matrix (equivalent of natural orbitals) double precision :: thr_d, thr_nd, thr_deg, accu
! natorb_tc_leigvec_mo : LEFT eigenvectors of the ground state transition matrix (equivalent of natural orbitals) double precision :: accu_d, accu_nd
! natorb_tc_eigval : eigenvalues of the ground state transition matrix (equivalent of the occupation numbers). WARNINING :: can be negative !! double precision, allocatable :: dm_tmp(:,:), fock_diag(:)
END_DOC
double precision, allocatable :: dm_tmp(:,:),fock_diag(:) allocate(dm_tmp(mo_num,mo_num), fock_diag(mo_num))
double precision :: thr_deg
integer :: i,j,k,n_real
allocate( dm_tmp(mo_num,mo_num),fock_diag(mo_num))
dm_tmp(:,:) = -tc_transition_matrix(:,:,1,1) dm_tmp(:,:) = -tc_transition_matrix(:,:,1,1)
print*,'dm_tmp'
print *, ' dm_tmp'
do i = 1, mo_num do i = 1, mo_num
fock_diag(i) = fock_matrix_tc_mo_tot(i,i) fock_diag(i) = fock_matrix_tc_mo_tot(i,i)
write(*,'(100(F16.10,X))')-dm_tmp(:,i) write(*, '(100(F16.10,X))') -dm_tmp(:,i)
enddo enddo
thr_d = 1.d-6
thr_nd = 1.d-6
thr_deg = 1.d-3 thr_deg = 1.d-3
call diag_mat_per_fock_degen(fock_diag,dm_tmp,mo_num,thr_deg,& call diag_mat_per_fock_degen( fock_diag, dm_tmp, mo_num, thr_d, thr_nd, thr_deg &
natorb_tc_leigvec_mo,natorb_tc_reigvec_mo,& , natorb_tc_leigvec_mo, natorb_tc_reigvec_mo, natorb_tc_eigval)
natorb_tc_eigval)
! call non_hrmt_bieig( mo_num, dm_tmp& ! call non_hrmt_bieig( mo_num, dm_tmp&
! , natorb_tc_leigvec_mo, natorb_tc_reigvec_mo& ! , natorb_tc_leigvec_mo, natorb_tc_reigvec_mo&
! , n_real, natorb_tc_eigval ) ! , n_real, natorb_tc_eigval )
double precision :: accu
accu = 0.d0 accu = 0.d0
do i = 1, n_real do i = 1, n_real
print*,'natorb_tc_eigval(i) = ',-natorb_tc_eigval(i) print*,'natorb_tc_eigval(i) = ',-natorb_tc_eigval(i)
accu += -natorb_tc_eigval(i) accu += -natorb_tc_eigval(i)
enddo enddo
print*,'accu = ',accu print *, ' accu = ', accu
dm_tmp = 0.d0 dm_tmp = 0.d0
do i = 1, n_real do i = 1, n_real
accu = 0.d0 accu = 0.d0
do k = 1, mo_num
accu += natorb_tc_reigvec_mo(k,i) * natorb_tc_leigvec_mo(k,i)
enddo
accu = 1.d0/dsqrt(dabs(accu))
natorb_tc_reigvec_mo(:,i) *= accu
natorb_tc_leigvec_mo(:,i) *= accu
do j = 1, n_real
do k = 1, mo_num do k = 1, mo_num
dm_tmp(j,i) += natorb_tc_reigvec_mo(k,i) * natorb_tc_leigvec_mo(k,j) accu += natorb_tc_reigvec_mo(k,i) * natorb_tc_leigvec_mo(k,i)
enddo
accu = 1.d0/dsqrt(dabs(accu))
natorb_tc_reigvec_mo(:,i) *= accu
natorb_tc_leigvec_mo(:,i) *= accu
do j = 1, n_real
do k = 1, mo_num
dm_tmp(j,i) += natorb_tc_reigvec_mo(k,i) * natorb_tc_leigvec_mo(k,j)
enddo
enddo enddo
enddo
enddo enddo
double precision :: accu_d, accu_nd
accu_d = 0.d0 accu_d = 0.d0
accu_nd = 0.d0 accu_nd = 0.d0
do i = 1, mo_num do i = 1, mo_num
accu_d += dm_tmp(i,i) accu_d += dm_tmp(i,i)
! write(*,'(100(F16.10,X))')dm_tmp(:,i) !write(*,'(100(F16.10,X))')dm_tmp(:,i)
do j = 1, mo_num do j = 1, mo_num
if(i==j)cycle if(i==j)cycle
accu_nd += dabs(dm_tmp(j,i)) accu_nd += dabs(dm_tmp(j,i))
enddo enddo
enddo enddo
print*,'Trace of the overlap between TC natural orbitals ',accu_d print *, ' Trace of the overlap between TC natural orbitals ', accu_d
print*,'L1 norm of extra diagonal elements of overlap matrix ',accu_nd print *, ' L1 norm of extra diagonal elements of overlap matrix ', accu_nd
deallocate(dm_tmp, fock_diag)
END_PROVIDER
! ---
END_PROVIDER BEGIN_PROVIDER [ double precision, fock_diag_sorted_r_natorb, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, fock_diag_sorted_l_natorb, (mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, fock_diag_sorted_r_natorb, (mo_num, mo_num)] &BEGIN_PROVIDER [ double precision, fock_diag_sorted_v_natorb, (mo_num)]
&BEGIN_PROVIDER [ double precision, fock_diag_sorted_l_natorb, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, fock_diag_sorted_v_natorb, (mo_num)]
implicit none implicit none
integer ::i,j,k integer :: i,j,k
print*,'Diagonal elements of the Fock matrix before ' integer, allocatable :: iorder(:)
do i = 1, mo_num
write(*,*)i,Fock_matrix_tc_mo_tot(i,i)
enddo
double precision, allocatable :: fock_diag(:) double precision, allocatable :: fock_diag(:)
print *, ' Diagonal elements of the Fock matrix before '
do i = 1, mo_num
write(*,*) i, Fock_matrix_tc_mo_tot(i,i)
enddo
allocate(fock_diag(mo_num)) allocate(fock_diag(mo_num))
fock_diag = 0.d0 fock_diag = 0.d0
do i = 1, mo_num do i = 1, mo_num
fock_diag(i) = 0.d0 fock_diag(i) = 0.d0
do j = 1, mo_num do j = 1, mo_num
do k = 1, mo_num do k = 1, mo_num
fock_diag(i) += natorb_tc_leigvec_mo(k,i) * Fock_matrix_tc_mo_tot(k,j) * natorb_tc_reigvec_mo(j,i) fock_diag(i) += natorb_tc_leigvec_mo(k,i) * Fock_matrix_tc_mo_tot(k,j) * natorb_tc_reigvec_mo(j,i)
enddo
enddo enddo
enddo
enddo enddo
integer, allocatable :: iorder(:)
allocate(iorder(mo_num)) allocate(iorder(mo_num))
do i = 1, mo_num do i = 1, mo_num
iorder(i) = i iorder(i) = i
enddo enddo
call dsort(fock_diag,iorder,mo_num) call dsort(fock_diag, iorder, mo_num)
print*,'Diagonal elements of the Fock matrix after '
print *, ' Diagonal elements of the Fock matrix after '
do i = 1, mo_num do i = 1, mo_num
write(*,*)i,fock_diag(i) write(*,*) i, fock_diag(i)
enddo enddo
deallocate(fock_diag)
do i = 1, mo_num do i = 1, mo_num
fock_diag_sorted_v_natorb(i) = natorb_tc_eigval(iorder(i)) fock_diag_sorted_v_natorb(i) = natorb_tc_eigval(iorder(i))
do j = 1, mo_num do j = 1, mo_num
fock_diag_sorted_r_natorb(j,i) = natorb_tc_reigvec_mo(j,iorder(i)) fock_diag_sorted_r_natorb(j,i) = natorb_tc_reigvec_mo(j,iorder(i))
fock_diag_sorted_l_natorb(j,i) = natorb_tc_leigvec_mo(j,iorder(i)) fock_diag_sorted_l_natorb(j,i) = natorb_tc_leigvec_mo(j,iorder(i))
enddo enddo
enddo enddo
deallocate(iorder)
END_PROVIDER END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, natorb_tc_reigvec_ao, (ao_num, mo_num)]
&BEGIN_PROVIDER [ double precision, natorb_tc_leigvec_ao, (ao_num, mo_num)]
&BEGIN_PROVIDER [ double precision, overlap_natorb_tc_eigvec_ao, (mo_num, mo_num) ]
BEGIN_PROVIDER [ double precision, natorb_tc_reigvec_ao, (ao_num, mo_num)] BEGIN_DOC
&BEGIN_PROVIDER [ double precision, natorb_tc_leigvec_ao, (ao_num, mo_num)] ! EIGENVECTORS OF FOCK MATRIX ON THE AO BASIS and their OVERLAP
&BEGIN_PROVIDER [ double precision, overlap_natorb_tc_eigvec_ao, (mo_num, mo_num) ] !
! THE OVERLAP SHOULD BE THE SAME AS overlap_natorb_tc_eigvec_mo
END_DOC
BEGIN_DOC implicit none
! EIGENVECTORS OF FOCK MATRIX ON THE AO BASIS and their OVERLAP integer :: i, j, k, q, p
! double precision :: accu, accu_d
! THE OVERLAP SHOULD BE THE SAME AS overlap_natorb_tc_eigvec_mo double precision, allocatable :: tmp(:,:)
END_DOC
implicit none
integer :: i, j, k, q, p
double precision :: accu, accu_d
double precision, allocatable :: tmp(:,:)
! ! MO_R x R ! ! MO_R x R

View File

@ -118,7 +118,6 @@ doc: type of 1-body Jastrow
interface: ezfio, provider, ocaml interface: ezfio, provider, ocaml
default: 0 default: 0
[thr_degen_tc] [thr_degen_tc]
type: Threshold type: Threshold
doc: Threshold to determine if two orbitals are degenerate in TCSCF in order to avoid random quasi orthogonality between the right- and left-eigenvector for the same eigenvalue doc: Threshold to determine if two orbitals are degenerate in TCSCF in order to avoid random quasi orthogonality between the right- and left-eigenvector for the same eigenvalue
@ -130,3 +129,10 @@ type: logical
doc: If |true|, maximize the overlap between orthogonalized left- and right eigenvectors doc: If |true|, maximize the overlap between orthogonalized left- and right eigenvectors
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: False default: False
[ng_fit_jast]
type: integer
doc: nb of Gaussians used to fit Jastrow fcts
interface: ezfio,provider,ocaml
default: 6

View File

@ -11,20 +11,24 @@
integer :: n_real_tc integer :: n_real_tc
integer :: i, k, l integer :: i, k, l
double precision :: accu_d, accu_nd, accu_tmp double precision :: accu_d, accu_nd, accu_tmp
double precision :: thr_d, thr_nd
double precision :: norm double precision :: norm
double precision, allocatable :: eigval_right_tmp(:) double precision, allocatable :: eigval_right_tmp(:)
thr_d = 1d-6
thr_nd = 1d-6
allocate( eigval_right_tmp(mo_num) ) allocate( eigval_right_tmp(mo_num) )
PROVIDE Fock_matrix_tc_mo_tot PROVIDE Fock_matrix_tc_mo_tot
call non_hrmt_bieig( mo_num, Fock_matrix_tc_mo_tot & call non_hrmt_bieig( mo_num, Fock_matrix_tc_mo_tot, thr_d, thr_nd &
, fock_tc_leigvec_mo, fock_tc_reigvec_mo & , fock_tc_leigvec_mo, fock_tc_reigvec_mo &
, n_real_tc, eigval_right_tmp ) , n_real_tc, eigval_right_tmp )
!if(max_ov_tc_scf)then !if(max_ov_tc_scf)then
! call non_hrmt_fock_mat( mo_num, Fock_matrix_tc_mo_tot & ! call non_hrmt_fock_mat( mo_num, Fock_matrix_tc_mo_tot, thr_d, thr_nd &
! , fock_tc_leigvec_mo, fock_tc_reigvec_mo & ! , fock_tc_leigvec_mo, fock_tc_reigvec_mo &
! , n_real_tc, eigval_right_tmp ) ! , n_real_tc, eigval_right_tmp )
!else !else
! call non_hrmt_diag_split_degen_bi_orthog( mo_num, Fock_matrix_tc_mo_tot & ! call non_hrmt_diag_split_degen_bi_orthog( mo_num, Fock_matrix_tc_mo_tot &
! , fock_tc_leigvec_mo, fock_tc_reigvec_mo & ! , fock_tc_leigvec_mo, fock_tc_reigvec_mo &
@ -59,17 +63,17 @@
else else
accu_tmp = overlap_fock_tc_eigvec_mo(k,i) accu_tmp = overlap_fock_tc_eigvec_mo(k,i)
accu_nd += accu_tmp * accu_tmp accu_nd += accu_tmp * accu_tmp
if(dabs(overlap_fock_tc_eigvec_mo(k,i)).gt.1.d-10)then if(dabs(overlap_fock_tc_eigvec_mo(k,i)) .gt. thr_nd)then
print*,'k,i',k,i,overlap_fock_tc_eigvec_mo(k,i) print *, 'k,i', k, i, overlap_fock_tc_eigvec_mo(k,i)
endif endif
endif endif
enddo enddo
enddo enddo
accu_nd = dsqrt(accu_nd)/accu_d accu_nd = dsqrt(accu_nd)/accu_d
if( accu_nd .gt. 1d-8 ) then if(accu_nd .gt. thr_nd) then
print *, ' bi-orthog failed' print *, ' bi-orthog failed'
print*,'accu_nd MO = ', accu_nd print*,'accu_nd MO = ', accu_nd, thr_nd
print*,'overlap_fock_tc_eigvec_mo = ' print*,'overlap_fock_tc_eigvec_mo = '
do i = 1, mo_num do i = 1, mo_num
write(*,'(100(F16.10,X))') overlap_fock_tc_eigvec_mo(i,:) write(*,'(100(F16.10,X))') overlap_fock_tc_eigvec_mo(i,:)
@ -77,13 +81,13 @@
stop stop
endif endif
if( dabs(accu_d - dble(mo_num)) .gt. 1e-7 ) then if( dabs(accu_d - dble(mo_num))/dble(mo_num) .gt. thr_d ) then
print *, 'mo_num = ', mo_num print *, 'mo_num = ', mo_num
print *, 'accu_d MO = ', accu_d print *, 'accu_d MO = ', accu_d, thr_d
print *, 'normalizing vectors ...' print *, 'normalizing vectors ...'
do i = 1, mo_num do i = 1, mo_num
norm = dsqrt(dabs(overlap_fock_tc_eigvec_mo(i,i))) norm = dsqrt(dabs(overlap_fock_tc_eigvec_mo(i,i)))
if( norm.gt.1e-7 ) then if(norm .gt. thr_d) then
do k = 1, mo_num do k = 1, mo_num
fock_tc_reigvec_mo(k,i) *= 1.d0/norm fock_tc_reigvec_mo(k,i) *= 1.d0/norm
fock_tc_leigvec_mo(k,i) *= 1.d0/norm fock_tc_leigvec_mo(k,i) *= 1.d0/norm

View File

@ -122,6 +122,7 @@ BEGIN_PROVIDER [ double precision, Fock_matrix_tc_mo_beta, (mo_num,mo_num) ]
endif endif
END_PROVIDER END_PROVIDER
! ---
!BEGIN_PROVIDER [ double precision, Fock_matrix_tc_mo_tot, (mo_num, mo_num)] !BEGIN_PROVIDER [ double precision, Fock_matrix_tc_mo_tot, (mo_num, mo_num)]
! implicit none ! implicit none

View File

@ -0,0 +1,60 @@
program print_fit_param
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
!call create_guess
!call orthonormalize_mos
call main()
end
! ---
subroutine main()
implicit none
integer :: i
mu_erf = 1.d0
touch mu_erf
print *, ' fit for (1 - erf(x))^2'
do i = 1, n_max_fit_slat
print*, expo_gauss_1_erf_x_2(i), coef_gauss_1_erf_x_2(i)
enddo
print *, ''
print *, ' fit for [x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2)]'
do i = 1, n_max_fit_slat
print *, expo_gauss_j_mu_x(i), 2.d0 * coef_gauss_j_mu_x(i)
enddo
print *, ''
print *, ' fit for [x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2)]^2'
do i = 1, n_max_fit_slat
print *, expo_gauss_j_mu_x_2(i), 4.d0 * coef_gauss_j_mu_x_2(i)
enddo
print *, ''
print *, ' fit for [x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2)] x [1 - erf(mu * r12)]'
do i = 1, n_max_fit_slat
print *, expo_gauss_j_mu_1_erf(i), 4.d0 * coef_gauss_j_mu_1_erf(i)
enddo
return
end subroutine main
! ---

View File

@ -73,7 +73,7 @@ subroutine maximize_overlap()
! --- ! ---
call rotate_degen_eigvec(n, m, e, C, W, L, R) call rotate_degen_eigvec_to_maximize_overlap(n, m, e, C, W, L, R)
! --- ! ---
@ -115,7 +115,7 @@ end subroutine maximize_overlap
! --- ! ---
subroutine rotate_degen_eigvec(n, m, e0, C0, W0, L0, R0) subroutine rotate_degen_eigvec_to_maximize_overlap(n, m, e0, C0, W0, L0, R0)
implicit none implicit none
@ -124,7 +124,7 @@ subroutine rotate_degen_eigvec(n, m, e0, C0, W0, L0, R0)
double precision, intent(inout) :: L0(n,m), R0(n,m) double precision, intent(inout) :: L0(n,m), R0(n,m)
integer :: i, j, k, kk, mm, id1 integer :: i, j, k, kk, mm, id1, tot_deg
double precision :: ei, ej, de, de_thr double precision :: ei, ej, de, de_thr
integer, allocatable :: deg_num(:) integer, allocatable :: deg_num(:)
double precision, allocatable :: L(:,:), R(:,:), C(:,:), Lnew(:,:), Rnew(:,:), tmp(:,:) double precision, allocatable :: L(:,:), R(:,:), C(:,:), Lnew(:,:), Rnew(:,:), tmp(:,:)
@ -162,12 +162,19 @@ subroutine rotate_degen_eigvec(n, m, e0, C0, W0, L0, R0)
enddo enddo
enddo enddo
tot_deg = 0
do i = 1, m do i = 1, m
if(deg_num(i).gt.1) then if(deg_num(i).gt.1) then
print *, ' degen on', i, deg_num(i) print *, ' degen on', i, deg_num(i)
tot_deg = tot_deg + 1
endif endif
enddo enddo
if(tot_deg .eq. 0) then
print *, ' no degen'
return
endif
! --- ! ---
do i = 1, m do i = 1, m
@ -243,6 +250,122 @@ subroutine rotate_degen_eigvec(n, m, e0, C0, W0, L0, R0)
deallocate(S, Snew, T) deallocate(S, Snew, T)
end subroutine rotate_degen_eigvec end subroutine rotate_degen_eigvec_to_maximize_overlap
! ---
subroutine fix_right_to_one()
implicit none
integer :: i, j, m, n, mm, tot_deg
double precision :: accu_d, accu_nd
double precision :: de_thr, ei, ej, de
double precision :: thr_d, thr_nd
integer, allocatable :: deg_num(:)
double precision, allocatable :: R0(:,:), L0(:,:), W(:,:), e0(:)
double precision, allocatable :: R(:,:), L(:,:), S(:,:), Stmp(:,:), tmp(:,:)
thr_d = 1d-7
thr_nd = 1d-7
n = ao_num
m = mo_num
allocate(L0(n,m), R0(n,m), W(n,n), e0(m))
L0 = mo_l_coef
R0 = mo_r_coef
W = ao_overlap
print*, ' fock matrix diag elements'
do i = 1, m
e0(i) = Fock_matrix_tc_mo_tot(i,i)
print*, e0(i)
enddo
! ---
allocate( deg_num(m) )
do i = 1, m
deg_num(i) = 1
enddo
de_thr = 1d-6
do i = 1, m-1
ei = e0(i)
! already considered in degen vectors
if(deg_num(i).eq.0) cycle
do j = i+1, m
ej = e0(j)
de = dabs(ei - ej)
if(de .lt. de_thr) then
deg_num(i) = deg_num(i) + 1
deg_num(j) = 0
endif
enddo
enddo
deallocate(e0)
tot_deg = 0
do i = 1, m
if(deg_num(i).gt.1) then
print *, ' degen on', i, deg_num(i)
tot_deg = tot_deg + 1
endif
enddo
if(tot_deg .eq. 0) then
print *, ' no degen'
return
endif
! ---
do i = 1, m
mm = deg_num(i)
if(mm .gt. 1) then
allocate(L(n,mm), R(n,mm))
do j = 1, mm
L(1:n,j) = L0(1:n,i+j-1)
R(1:n,j) = R0(1:n,i+j-1)
enddo
! ---
call impose_weighted_orthog_svd(n, mm, W, R)
call impose_weighted_biorthog_qr(n, mm, thr_d, thr_nd, R, W, L)
! ---
do j = 1, mm
L0(1:n,i+j-1) = L(1:n,j)
R0(1:n,i+j-1) = R(1:n,j)
enddo
deallocate(L, R)
endif
enddo
call check_weighted_biorthog_binormalize(n, m, L0, W, R0, thr_d, thr_nd, .true.)
deallocate(W, deg_num)
mo_l_coef = L0
mo_r_coef = R0
deallocate(L0, R0)
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
print *, ' orbitals are rotated '
return
end subroutine fix_right_to_one
! --- ! ---

View File

@ -1,261 +1,335 @@
subroutine minimize_tc_orb_angles
implicit none ! ---
double precision :: thr_deg
logical :: good_angles subroutine minimize_tc_orb_angles()
integer :: i
good_angles = .False. implicit none
thr_deg = thr_degen_tc logical :: good_angles
call print_energy_and_mos integer :: i
i = 1 double precision :: thr_deg
print*,'Minimizing the angles between the TC orbitals'
do while (.not. good_angles) good_angles = .False.
print*,'iteration = ',i thr_deg = thr_degen_tc
call routine_save_rotated_mos(thr_deg,good_angles)
thr_deg *= 10.d0 call print_energy_and_mos()
i+=1
if(i.gt.100)then print *, ' Minimizing the angles between the TC orbitals'
print*,'minimize_tc_orb_angles does not seem to converge ..' i = 1
print*,'Something is weird in the tc orbitals ...' do while (.not. good_angles)
print*,'STOPPING' print *, ' iteration = ', i
endif call routine_save_rotated_mos(thr_deg, good_angles)
enddo thr_deg *= 10.d0
print*,'Converged ANGLES MINIMIZATION !!' i += 1
call print_angles_tc if(i .gt. 100) then
call print_energy_and_mos print *, ' minimize_tc_orb_angles does not seem to converge ..'
print *, ' Something is weird in the tc orbitals ...'
print *, ' STOPPING'
stop
endif
enddo
print *, ' Converged ANGLES MINIMIZATION !!'
call print_angles_tc()
call print_energy_and_mos()
end end
subroutine routine_save_rotated_mos(thr_deg,good_angles) ! ---
implicit none
double precision, intent(in) :: thr_deg subroutine routine_save_rotated_mos(thr_deg, good_angles)
logical, intent(out) :: good_angles
good_angles = .False. implicit none
integer :: i,j,k,n_degen_list,m,n,n_degen,ilast,ifirst
double precision, allocatable :: mo_r_coef_good(:,:),mo_l_coef_good(:,:) double precision, intent(in) :: thr_deg
allocate(mo_l_coef_good(ao_num, mo_num), mo_r_coef_good(ao_num,mo_num)) logical, intent(out) :: good_angles
double precision, allocatable :: mo_r_coef_new(:,:)
double precision :: norm integer :: i, j, k, n_degen_list, m, n, n_degen, ilast, ifirst
print*,'***************************************' double precision :: max_angle, norm
print*,'***************************************' integer, allocatable :: list_degen(:,:)
print*,'THRESHOLD FOR DEGENERACIES ::: ',thr_deg double precision, allocatable :: new_angles(:)
print*,'***************************************' double precision, allocatable :: mo_r_coef_good(:,:), mo_l_coef_good(:,:)
print*,'***************************************' double precision, allocatable :: mo_r_coef_new(:,:)
print*,'Starting with the following TC energy gradient :',grad_non_hermit double precision, allocatable :: fock_diag(:),s_mat(:,:)
mo_r_coef_good = mo_r_coef double precision, allocatable :: stmp(:,:), T(:,:), Snew(:,:), smat2(:,:)
mo_l_coef_good = mo_l_coef double precision, allocatable :: mo_l_coef_tmp(:,:), mo_r_coef_tmp(:,:), mo_l_coef_new(:,:)
allocate(mo_r_coef_new(ao_num, mo_num))
mo_r_coef_new = mo_r_coef good_angles = .False.
do i = 1, mo_num
norm = 1.d0/dsqrt(overlap_mo_r(i,i)) allocate(mo_l_coef_good(ao_num, mo_num), mo_r_coef_good(ao_num,mo_num))
do j = 1, ao_num
mo_r_coef_new(j,i) *= norm print *, ' ***************************************'
print *, ' ***************************************'
print *, ' THRESHOLD FOR DEGENERACIES ::: ', thr_deg
print *, ' ***************************************'
print *, ' ***************************************'
print *, ' Starting with the following TC energy gradient :', grad_non_hermit
mo_r_coef_good = mo_r_coef
mo_l_coef_good = mo_l_coef
allocate(mo_r_coef_new(ao_num, mo_num))
mo_r_coef_new = mo_r_coef
do i = 1, mo_num
norm = 1.d0/dsqrt(overlap_mo_r(i,i))
do j = 1, ao_num
mo_r_coef_new(j,i) *= norm
enddo
enddo enddo
enddo
double precision, allocatable :: fock_diag(:),s_mat(:,:) allocate(list_degen(mo_num,0:mo_num), s_mat(mo_num,mo_num), fock_diag(mo_num))
integer, allocatable :: list_degen(:,:) do i = 1, mo_num
allocate(list_degen(mo_num,0:mo_num),s_mat(mo_num,mo_num),fock_diag(mo_num)) fock_diag(i) = Fock_matrix_tc_mo_tot(i,i)
do i = 1, mo_num enddo
fock_diag(i) = Fock_matrix_tc_mo_tot(i,i)
enddo
! compute the overlap between the left and rescaled right ! compute the overlap between the left and rescaled right
call build_s_matrix(ao_num,mo_num,mo_r_coef_new,mo_r_coef_new,ao_overlap,s_mat) call build_s_matrix(ao_num, mo_num, mo_r_coef_new, mo_r_coef_new, ao_overlap, s_mat)
! call give_degen(fock_diag,mo_num,thr_deg,list_degen,n_degen_list) ! call give_degen(fock_diag,mo_num,thr_deg,list_degen,n_degen_list)
call give_degen_full_list(fock_diag,mo_num,thr_deg,list_degen,n_degen_list) call give_degen_full_list(fock_diag, mo_num, thr_deg, list_degen, n_degen_list)
print*,'fock_matrix_mo' print *, ' fock_matrix_mo'
do i = 1, mo_num do i = 1, mo_num
print*,i,fock_diag(i),angle_left_right(i) print *, i, fock_diag(i), angle_left_right(i)
enddo enddo
do i = 1, n_degen_list do i = 1, n_degen_list
! ifirst = list_degen(1,i) ! ifirst = list_degen(1,i)
! ilast = list_degen(2,i) ! ilast = list_degen(2,i)
! n_degen = ilast - ifirst +1 ! n_degen = ilast - ifirst +1
n_degen = list_degen(i,0)
double precision, allocatable :: stmp(:,:),T(:,:),Snew(:,:),smat2(:,:)
double precision, allocatable :: mo_l_coef_tmp(:,:),mo_r_coef_tmp(:,:),mo_l_coef_new(:,:)
allocate(stmp(n_degen,n_degen),smat2(n_degen,n_degen))
allocate(mo_r_coef_tmp(ao_num,n_degen),mo_l_coef_tmp(ao_num,n_degen),mo_l_coef_new(ao_num,n_degen))
allocate(T(n_degen,n_degen),Snew(n_degen,n_degen))
do j = 1, n_degen
mo_r_coef_tmp(1:ao_num,j) = mo_r_coef_new(1:ao_num,list_degen(i,j))
mo_l_coef_tmp(1:ao_num,j) = mo_l_coef(1:ao_num,list_degen(i,j))
enddo
! Orthogonalization of right functions
print*,'Orthogonalization of RIGHT functions'
print*,'------------------------------------'
call orthog_functions(ao_num,n_degen,mo_r_coef_tmp,ao_overlap)
! Orthogonalization of left functions n_degen = list_degen(i,0)
print*,'Orthogonalization of LEFT functions' if(n_degen .eq. 1) cycle
print*,'------------------------------------'
call orthog_functions(ao_num,n_degen,mo_l_coef_tmp,ao_overlap) allocate(stmp(n_degen,n_degen), smat2(n_degen,n_degen))
print*,'Overlap lef-right ' allocate(mo_r_coef_tmp(ao_num,n_degen), mo_l_coef_tmp(ao_num,n_degen), mo_l_coef_new(ao_num,n_degen))
call build_s_matrix(ao_num,n_degen,mo_r_coef_tmp,mo_l_coef_tmp,ao_overlap,stmp) allocate(T(n_degen,n_degen), Snew(n_degen,n_degen))
do j = 1, n_degen
write(*,'(100(F8.4,X))')stmp(:,j) do j = 1, n_degen
mo_r_coef_tmp(1:ao_num,j) = mo_r_coef_new(1:ao_num,list_degen(i,j))
mo_l_coef_tmp(1:ao_num,j) = mo_l_coef(1:ao_num,list_degen(i,j))
enddo
! Orthogonalization of right functions
print *, ' Orthogonalization of RIGHT functions'
print *, ' ------------------------------------'
call orthog_functions(ao_num, n_degen, mo_r_coef_tmp, ao_overlap)
! Orthogonalization of left functions
print *, ' Orthogonalization of LEFT functions'
print *, ' ------------------------------------'
call orthog_functions(ao_num, n_degen, mo_l_coef_tmp, ao_overlap)
print *, ' Overlap lef-right '
call build_s_matrix(ao_num, n_degen, mo_r_coef_tmp, mo_l_coef_tmp, ao_overlap, stmp)
do j = 1, n_degen
write(*,'(100(F8.4,X))') stmp(:,j)
enddo
call build_s_matrix(ao_num, n_degen, mo_l_coef_tmp, mo_l_coef_tmp, ao_overlap, stmp)
!print*,'LEFT/LEFT OVERLAP '
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
call build_s_matrix(ao_num, n_degen, mo_r_coef_tmp, mo_r_coef_tmp, ao_overlap, stmp)
!print*,'RIGHT/RIGHT OVERLAP '
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
if(maxovl_tc) then
T = 0.d0
Snew = 0.d0
call maxovl(n_degen, n_degen, stmp, T, Snew)
!print*,'overlap after'
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')Snew(:,j)
!enddo
call dgemm( 'N', 'N', ao_num, n_degen, n_degen, 1.d0 &
, mo_l_coef_tmp, size(mo_l_coef_tmp, 1), T(1,1), size(T, 1) &
, 0.d0, mo_l_coef_new, size(mo_l_coef_new, 1) )
call build_s_matrix(ao_num, n_degen, mo_l_coef_new, mo_r_coef_tmp, ao_overlap, stmp)
!print*,'Overlap test'
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
else
mo_l_coef_new = mo_l_coef_tmp
endif
call impose_weighted_biorthog_svd(ao_num, n_degen, ao_overlap, mo_l_coef_new, mo_r_coef_tmp)
!call build_s_matrix(ao_num, n_degen, mo_l_coef_new, mo_r_coef_tmp, ao_overlap, stmp)
!print*,'LAST OVERLAP '
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
!call build_s_matrix(ao_num, n_degen, mo_l_coef_new, mo_l_coef_new, ao_overlap, stmp)
!print*,'LEFT OVERLAP '
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
!call build_s_matrix(ao_num, n_degen, mo_r_coef_tmp, mo_r_coef_tmp, ao_overlap, stmp)
!print*,'RIGHT OVERLAP '
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
do j = 1, n_degen
!!! mo_l_coef_good(1:ao_num,j+ifirst-1) = mo_l_coef_new(1:ao_num,j)
!!! mo_r_coef_good(1:ao_num,j+ifirst-1) = mo_r_coef_tmp(1:ao_num,j)
mo_l_coef_good(1:ao_num,list_degen(i,j)) = mo_l_coef_new(1:ao_num,j)
mo_r_coef_good(1:ao_num,list_degen(i,j)) = mo_r_coef_tmp(1:ao_num,j)
enddo
deallocate(stmp, smat2)
deallocate(mo_r_coef_tmp, mo_l_coef_tmp, mo_l_coef_new)
deallocate(T, Snew)
enddo enddo
call build_s_matrix(ao_num,n_degen,mo_l_coef_tmp,mo_l_coef_tmp,ao_overlap,stmp)
!allocate(stmp(mo_num, mo_num))
!call build_s_matrix(ao_num, mo_num, mo_l_coef_good, mo_r_coef_good, ao_overlap, stmp)
!print*,'LEFT/RIGHT OVERLAP '
!do j = 1, mo_num
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
!call build_s_matrix(ao_num, mo_num, mo_l_coef_good, mo_l_coef_good, ao_overlap, stmp)
!print*,'LEFT/LEFT OVERLAP ' !print*,'LEFT/LEFT OVERLAP '
!do j = 1, n_degen !do j = 1, mo_num
! write(*,'(100(F16.10,X))')stmp(:,j) ! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo !enddo
call build_s_matrix(ao_num,n_degen,mo_r_coef_tmp,mo_r_coef_tmp,ao_overlap,stmp) !call build_s_matrix(ao_num, mo_num, mo_r_coef_good, mo_r_coef_good, ao_overlap, stmp)
!print*,'RIGHT/RIGHT OVERLAP ' !print*,'RIGHT/RIGHT OVERLAP '
!do j = 1, n_degen !do j = 1, mo_num
! write(*,'(100(F16.10,X))')stmp(:,j) ! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo !enddo
if(maxovl_tc)then
T = 0.d0
Snew = 0.d0
call maxovl(n_degen, n_degen, stmp, T, Snew)
!print*,'overlap after'
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')Snew(:,j)
!enddo
call dgemm( 'N', 'N', ao_num, n_degen, n_degen, 1.d0 &
, mo_l_coef_tmp, size(mo_l_coef_tmp, 1), T(1,1), size(T, 1) &
, 0.d0, mo_l_coef_new, size(mo_l_coef_new, 1) )
call build_s_matrix(ao_num,n_degen,mo_l_coef_new,mo_r_coef_tmp,ao_overlap,stmp)
!print*,'Overlap test'
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
else
mo_l_coef_new = mo_l_coef_tmp
endif
call impose_biorthog_svd_overlap(ao_num, n_degen, ao_overlap, mo_l_coef_new, mo_r_coef_tmp)
call build_s_matrix(ao_num,n_degen,mo_l_coef_new,mo_r_coef_tmp,ao_overlap,stmp)
!print*,'LAST OVERLAP '
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
call build_s_matrix(ao_num,n_degen,mo_l_coef_new,mo_l_coef_new,ao_overlap,stmp)
!print*,'LEFT OVERLAP '
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
call build_s_matrix(ao_num,n_degen,mo_r_coef_tmp,mo_r_coef_tmp,ao_overlap,stmp)
!print*,'RIGHT OVERLAP '
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
do j = 1, n_degen
! mo_l_coef_good(1:ao_num,j+ifirst-1) = mo_l_coef_new(1:ao_num,j)
! mo_r_coef_good(1:ao_num,j+ifirst-1) = mo_r_coef_tmp(1:ao_num,j)
mo_l_coef_good(1:ao_num,list_degen(i,j)) = mo_l_coef_new(1:ao_num,j)
mo_r_coef_good(1:ao_num,list_degen(i,j)) = mo_r_coef_tmp(1:ao_num,j)
enddo
deallocate(stmp,smat2)
deallocate(mo_r_coef_tmp,mo_l_coef_tmp,mo_l_coef_new)
deallocate(T,Snew)
enddo
allocate(stmp(mo_num, mo_num))
call build_s_matrix(ao_num,mo_num,mo_l_coef_good,mo_r_coef_good,ao_overlap,stmp)
!print*,'LEFT/RIGHT OVERLAP '
!do j = 1, mo_num
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
call build_s_matrix(ao_num,mo_num,mo_l_coef_good,mo_l_coef_good,ao_overlap,stmp)
!print*,'LEFT/LEFT OVERLAP '
!do j = 1, mo_num
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
call build_s_matrix(ao_num,mo_num,mo_r_coef_good,mo_r_coef_good,ao_overlap,stmp)
!print*,'RIGHT/RIGHT OVERLAP '
!do j = 1, mo_num
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
mo_r_coef = mo_r_coef_good mo_r_coef = mo_r_coef_good
mo_l_coef = mo_l_coef_good mo_l_coef = mo_l_coef_good
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef) call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef) call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
TOUCH mo_l_coef mo_r_coef TOUCH mo_l_coef mo_r_coef
double precision, allocatable :: new_angles(:)
allocate(new_angles(mo_num)) allocate(new_angles(mo_num))
new_angles(1:mo_num) = dabs(angle_left_right(1:mo_num)) new_angles(1:mo_num) = dabs(angle_left_right(1:mo_num))
double precision :: max_angle
max_angle = maxval(new_angles) max_angle = maxval(new_angles)
good_angles = max_angle.lt.45.d0 good_angles = max_angle.lt.45.d0
print*,'max_angle = ',max_angle print *, ' max_angle = ', max_angle
end end
subroutine build_s_matrix(m,n,C1,C2,overlap,smat) ! ---
implicit none
integer, intent(in) :: m,n subroutine build_s_matrix(m, n, C1, C2, overlap, smat)
double precision, intent(in) :: C1(m,n),C2(m,n),overlap(m,m)
double precision, intent(out):: smat(n,n) implicit none
integer :: i,j,k,l integer, intent(in) :: m, n
smat = 0.D0 double precision, intent(in) :: C1(m,n), C2(m,n), overlap(m,m)
do i = 1, n double precision, intent(out) :: smat(n,n)
do j = 1, n integer :: i, j, k, l
do k = 1, m double precision, allocatable :: S_tmp(:,:)
do l = 1, m
smat(i,j) += C1(k,i) * overlap(l,k) * C2(l,j) smat = 0.d0
enddo
enddo !do i = 1, n
enddo ! do j = 1, n
enddo ! do k = 1, m
! do l = 1, m
! smat(i,j) += C1(k,i) * overlap(l,k) * C2(l,j)
! enddo
! enddo
! enddo
!enddo
! C1.T x overlap
allocate(S_tmp(n,m))
call dgemm( 'T', 'N', n, m, m, 1.d0 &
, C1, size(C1, 1), overlap, size(overlap, 1) &
, 0.d0, S_tmp, size(S_tmp, 1) )
! C1.T x overlap x C2
call dgemm( 'N', 'N', n, n, m, 1.d0 &
, S_tmp, size(S_tmp, 1), C2(1,1), size(C2, 1) &
, 0.d0, smat, size(smat, 1) )
deallocate(S_tmp)
end end
subroutine orthog_functions(m,n,coef,overlap) ! ---
implicit none
integer, intent(in) :: m,n subroutine orthog_functions(m, n, coef, overlap)
double precision, intent(in) :: overlap(m,m)
double precision, intent(inout) :: coef(m,n) implicit none
double precision, allocatable :: stmp(:,:)
integer :: j integer, intent(in) :: m, n
allocate(stmp(n,n)) double precision, intent(in) :: overlap(m,m)
call build_s_matrix(m,n,coef,coef,overlap,stmp) double precision, intent(inout) :: coef(m,n)
double precision, allocatable :: stmp(:,:)
integer :: j
allocate(stmp(n,n))
call build_s_matrix(m, n, coef, coef, overlap, stmp)
! print*,'overlap before' ! print*,'overlap before'
! do j = 1, n ! do j = 1, n
! write(*,'(100(F16.10,X))')stmp(:,j) ! write(*,'(100(F16.10,X))')stmp(:,j)
! enddo ! enddo
call impose_orthog_svd_overlap(m, n, coef,overlap) call impose_orthog_svd_overlap(m, n, coef, overlap)
call build_s_matrix(m,n,coef,coef,overlap,stmp) call build_s_matrix(m, n, coef, coef, overlap, stmp)
do j = 1, n do j = 1, n
coef(1,:m) *= 1.d0/dsqrt(stmp(j,j)) coef(1,:m) *= 1.d0/dsqrt(stmp(j,j))
enddo enddo
call build_s_matrix(m,n,coef,coef,overlap,stmp) call build_s_matrix(m, n, coef, coef, overlap, stmp)
!print*,'overlap after' !print*,'overlap after'
!do j = 1, n !do j = 1, n
! write(*,'(100(F16.10,X))')stmp(:,j) ! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo !enddo
deallocate(stmp)
end end
subroutine print_angles_tc ! ---
implicit none
integer :: i,j
double precision :: left,right
print*,'product of norms, angle between vectors'
do i = 1, mo_num
left = overlap_mo_l(i,i)
right = overlap_mo_r(i,i)
! print*,Fock_matrix_tc_mo_tot(i,i),left*right,angle_left_right(i)
print*,left*right,angle_left_right(i)
enddo
end
subroutine print_energy_and_mos subroutine print_angles_tc()
implicit none
integer :: i implicit none
print*,'' integer :: i, j
print*,'TC energy = ', TC_HF_energy double precision :: left, right
print*,'TC SCF energy gradient = ',grad_non_hermit
print*,'Max angle Left/right = ',max_angle_left_right print *, ' product of norms, angle between vectors'
if(max_angle_left_right.lt.45.d0)then
print*,'Maximum angle BELOW 45 degrees, everthing is OK !'
else if(max_angle_left_right.gt.45.d0.and.max_angle_left_right.lt.75.d0)then
print*,'Maximum angle between 45 and 75 degrees, this is not the best for TC-CI calculations ...'
else if(max_angle_left_right.gt.75.d0)then
print*,'Maximum angle between ABOVE 75 degrees, YOU WILL CERTAINLY FIND TROUBLES IN TC-CI calculations ...'
endif
print*,'Diag Fock elem, product of left/right norm, angle left/right '
do i = 1, mo_num do i = 1, mo_num
write(*,'(I3,X,100(F16.10,X))')i,Fock_matrix_tc_mo_tot(i,i),overlap_mo_l(i,i)*overlap_mo_r(i,i),angle_left_right(i) left = overlap_mo_l(i,i)
right = overlap_mo_r(i,i)
! print*,Fock_matrix_tc_mo_tot(i,i),left*right,angle_left_right(i)
print *, left*right, angle_left_right(i)
enddo enddo
end end
! ---
subroutine print_energy_and_mos()
implicit none
integer :: i
print *, ' '
print *, ' TC energy = ', TC_HF_energy
print *, ' TC SCF energy gradient = ', grad_non_hermit
print *, ' Max angle Left/right = ', max_angle_left_right
if(max_angle_left_right .lt. 45.d0) then
print *, ' Maximum angle BELOW 45 degrees, everthing is OK !'
else if(max_angle_left_right .gt. 45.d0 .and. max_angle_left_right .lt. 75.d0) then
print *, ' Maximum angle between 45 and 75 degrees, this is not the best for TC-CI calculations ...'
else if(max_angle_left_right .gt. 75.d0) then
print *, ' Maximum angle between ABOVE 75 degrees, YOU WILL CERTAINLY FIND TROUBLES IN TC-CI calculations ...'
endif
print *, ' Diag Fock elem, product of left/right norm, angle left/right '
do i = 1, mo_num
write(*, '(I3,X,100(F16.10,X))') i, Fock_matrix_tc_mo_tot(i,i), overlap_mo_l(i,i)*overlap_mo_r(i,i), angle_left_right(i)
enddo
end
! ---
subroutine sort_by_tc_fock subroutine sort_by_tc_fock
implicit none implicit none
integer, allocatable :: iorder(:) integer, allocatable :: iorder(:)
@ -276,3 +350,4 @@ subroutine sort_by_tc_fock
touch mo_l_coef mo_r_coef touch mo_l_coef mo_r_coef
end end

View File

@ -0,0 +1,78 @@
! ---
program tc_petermann_factor
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call main()
end
! ---
subroutine main()
implicit none
integer :: i, j
double precision :: Pf_diag_av
double precision, allocatable :: Sl(:,:), Sr(:,:), Pf(:,:)
allocate(Sl(mo_num,mo_num), Sr(mo_num,mo_num), Pf(mo_num,mo_num))
call dgemm( "T", "N", mo_num, mo_num, ao_num, 1.d0 &
, mo_l_coef, size(mo_l_coef, 1), mo_l_coef, size(mo_l_coef, 1) &
, 0.d0, Sl, size(Sl, 1) )
print *, ''
print *, ' left-orthog matrix:'
do i = 1, mo_num
write(*,'(100(F8.4,X))') Sl(:,i)
enddo
call dgemm( "T", "N", mo_num, mo_num, ao_num, 1.d0 &
, mo_r_coef, size(mo_r_coef, 1), mo_r_coef, size(mo_r_coef, 1) &
, 0.d0, Sr, size(Sr, 1) )
print *, ''
print *, ' right-orthog matrix:'
do i = 1, mo_num
write(*,'(100(F8.4,X))') Sr(:,i)
enddo
print *, ''
print *, ' Petermann matrix:'
do i = 1, mo_num
do j = 1, mo_num
Pf(j,i) = Sl(j,i) * Sr(j,i)
enddo
write(*,'(100(F8.4,X))') Pf(:,i)
enddo
Pf_diag_av = 0.d0
do i = 1, mo_num
Pf_diag_av = Pf_diag_av + Pf(i,i)
enddo
Pf_diag_av = Pf_diag_av / dble(mo_num)
print *, ''
print *, ' mean of the diagonal Petermann factor = ', Pf_diag_av
deallocate(Sl, Sr, Pf)
return
end subroutine
! ---

View File

@ -19,8 +19,8 @@ program tc_scf
!call orthonormalize_mos !call orthonormalize_mos
call routine_scf() call routine_scf()
call minimize_tc_orb_angles call minimize_tc_orb_angles()
call print_energy_and_mos call print_energy_and_mos()
end end

View File

@ -0,0 +1,365 @@
! ---
program print_he_energy
implicit none
call print_overlap()
call print_energy1()
call print_energy2()
end
! ---
subroutine print_overlap()
implicit none
integer :: i, j, k, l
double precision :: S_ij
print *, ' ao_overlap:'
do i = 1, ao_num
do j = 1, ao_num
print *, j, i, ao_overlap(j,i)
enddo
enddo
print *, ' mo_overlap:'
do i = 1, mo_num
do j = 1, mo_num
S_ij = 0.d0
do k = 1, ao_num
do l = 1, ao_num
S_ij += mo_coef(k,i) * ao_overlap(k,l) * mo_coef(l,j)
enddo
enddo
print *, i, j, S_ij
enddo
enddo
end subroutine print_overlap
! ---
subroutine print_energy1()
implicit none
integer :: i, j, k, l
double precision :: e, n, e_tmp, n_tmp
double precision, external :: ao_two_e_integral
e = 0.d0
n = 0.d0
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
! < phi_1 phi_1 | h1 | phi_1 phi_1 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
e_tmp += mo_coef(i,1) * ao_one_e_integrals(i,j) * mo_coef(j,1)
n_tmp += mo_coef(i,1) * ao_overlap(i,j) * mo_coef(j,1)
enddo
enddo
e += e_tmp * n_tmp
! ---
! < phi_1 phi_1 | h2 | phi_1 phi_1 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
n_tmp += mo_coef(i,1) * ao_overlap(i,j) * mo_coef(j,1)
e_tmp += mo_coef(i,1) * ao_one_e_integrals(i,j) * mo_coef(j,1)
enddo
enddo
e += e_tmp * n_tmp
! ---
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
! ---
do i = 1, ao_num
do j = 1, ao_num
do k = 1, ao_num
do l = 1, ao_num
! ( phi_1 phi_1 | phi_1 phi_1 )
e += mo_coef(i,1) * mo_coef(j,1) * ao_two_e_integral(i,j,k,l) * mo_coef(k,1) * mo_coef(l,1)
enddo
enddo
enddo
enddo
! ---
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
! ---
! < phi_1 phi_1 | phi_1 phi_1 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
e_tmp += mo_coef(i,1) * ao_overlap(i,j) * mo_coef(j,1)
n_tmp += mo_coef(i,1) * ao_overlap(i,j) * mo_coef(j,1)
enddo
enddo
n += e_tmp * n_tmp
! ---
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
e = e / n
print *, ' energy = ', e
end subroutine print_energy1
! ---
subroutine print_energy2()
implicit none
integer :: i, j, k, l
double precision :: e, n, e_tmp, n_tmp
double precision, external :: ao_two_e_integral
e = 0.d0
n = 0.d0
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
! < phi_1 phi_2 | h1 | phi_1 phi_2 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
e_tmp += mo_coef(i,1) * ao_one_e_integrals(i,j) * mo_coef(j,1)
n_tmp += mo_coef(i,2) * ao_overlap(i,j) * mo_coef(j,2)
enddo
enddo
e += e_tmp * n_tmp
! ---
! < phi_1 phi_2 | h1 | phi_2 phi_1 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
e_tmp += mo_coef(i,1) * ao_one_e_integrals(i,j) * mo_coef(j,2)
n_tmp += mo_coef(i,2) * ao_overlap(i,j) * mo_coef(j,1)
enddo
enddo
e -= e_tmp * n_tmp
! ---
! < phi_2 phi_1 | h1 | phi_1 phi_2 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
e_tmp += mo_coef(i,2) * ao_one_e_integrals(i,j) * mo_coef(j,1)
n_tmp += mo_coef(i,1) * ao_overlap(i,j) * mo_coef(j,2)
enddo
enddo
e -= e_tmp * n_tmp
! ---
! < phi_2 phi_1 | h1 | phi_2 phi_1 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
e_tmp += mo_coef(i,2) * ao_one_e_integrals(i,j) * mo_coef(j,2)
n_tmp += mo_coef(i,1) * ao_overlap(i,j) * mo_coef(j,1)
enddo
enddo
e += e_tmp * n_tmp
! ---
! < phi_1 phi_2 | h2 | phi_1 phi_2 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
n_tmp += mo_coef(i,1) * ao_overlap(i,j) * mo_coef(j,1)
e_tmp += mo_coef(i,2) * ao_one_e_integrals(i,j) * mo_coef(j,2)
enddo
enddo
e += e_tmp * n_tmp
! ---
! < phi_1 phi_2 | h2 | phi_2 phi_1 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
n_tmp += mo_coef(i,1) * ao_overlap(i,j) * mo_coef(j,2)
e_tmp += mo_coef(i,2) * ao_one_e_integrals(i,j) * mo_coef(j,1)
enddo
enddo
e -= e_tmp * n_tmp
! ---
! < phi_2 phi_1 | h2 | phi_1 phi_2 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
n_tmp += mo_coef(i,2) * ao_overlap(i,j) * mo_coef(j,1)
e_tmp += mo_coef(i,1) * ao_one_e_integrals(i,j) * mo_coef(j,2)
enddo
enddo
e -= e_tmp * n_tmp
! ---
! < phi_2 phi_1 | h2 | phi_2 phi_1 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
n_tmp += mo_coef(i,2) * ao_overlap(i,j) * mo_coef(j,2)
e_tmp += mo_coef(i,1) * ao_one_e_integrals(i,j) * mo_coef(j,1)
enddo
enddo
e += e_tmp * n_tmp
! ---
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
! ---
do i = 1, ao_num
do j = 1, ao_num
do k = 1, ao_num
do l = 1, ao_num
! ( phi_1 phi_1 | phi_2 phi_2 )
e += mo_coef(i,1) * mo_coef(j,1) * ao_two_e_integral(i,j,k,l) * mo_coef(k,2) * mo_coef(l,2)
! ( phi_1 phi_2 | phi_2 phi_1 )
e -= mo_coef(i,1) * mo_coef(j,2) * ao_two_e_integral(i,j,k,l) * mo_coef(k,2) * mo_coef(l,1)
! ( phi_2 phi_1 | phi_1 phi_2 )
e -= mo_coef(i,2) * mo_coef(j,1) * ao_two_e_integral(i,j,k,l) * mo_coef(k,1) * mo_coef(l,2)
! ( phi_2 phi_2 | phi_1 phi_1 )
e += mo_coef(i,2) * mo_coef(j,2) * ao_two_e_integral(i,j,k,l) * mo_coef(k,1) * mo_coef(l,1)
enddo
enddo
enddo
enddo
! ---
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
! ---
! < phi_1 phi_2 | phi_1 phi_2 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
e_tmp += mo_coef(i,1) * ao_overlap(i,j) * mo_coef(j,1)
n_tmp += mo_coef(i,2) * ao_overlap(i,j) * mo_coef(j,2)
enddo
enddo
n += e_tmp * n_tmp
! ---
! < phi_1 phi_2 | phi_2 phi_1 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
e_tmp += mo_coef(i,1) * ao_overlap(i,j) * mo_coef(j,2)
n_tmp += mo_coef(i,2) * ao_overlap(i,j) * mo_coef(j,1)
enddo
enddo
n -= e_tmp * n_tmp
! ---
! < phi_2 phi_1 | phi_1 phi_2 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
e_tmp += mo_coef(i,2) * ao_overlap(i,j) * mo_coef(j,1)
n_tmp += mo_coef(i,1) * ao_overlap(i,j) * mo_coef(j,2)
enddo
enddo
n -= e_tmp * n_tmp
! ---
! < phi_2 phi_1 | phi_2 phi_1 >
e_tmp = 0.d0
n_tmp = 0.d0
do i = 1, ao_num
do j = 1, ao_num
e_tmp += mo_coef(i,2) * ao_overlap(i,j) * mo_coef(j,2)
n_tmp += mo_coef(i,1) * ao_overlap(i,j) * mo_coef(j,1)
enddo
enddo
n += e_tmp * n_tmp
! ---
! --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
e = e / n
print *, ' energy = ', e
end subroutine print_energy2
! ---

View File

@ -1,177 +1,218 @@
subroutine diag_mat_per_fock_degen(fock_diag,mat_ref,n,thr_deg,leigvec,reigvec,eigval) subroutine diag_mat_per_fock_degen(fock_diag, mat_ref, n, thr_d, thr_nd, thr_deg, leigvec, reigvec, eigval)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: fock_diag(n),mat_ref(n,n),thr_deg
double precision, intent(out):: leigvec(n,n),reigvec(n,n),eigval(n)
BEGIN_DOC
! subroutine that diagonalizes a matrix mat_ref BY BLOCK
!
! the blocks are defined by the elements having the SAME DEGENERACIES in the entries "fock_diag"
!
! examples : all elements having degeneracy 1 in fock_diag (i.e. not being degenerated) will be treated together
!
! : all elements having degeneracy 2 in fock_diag (i.e. two elements are equal) will be treated together
!
! : all elements having degeneracy 3 in fock_diag (i.e. two elements are equal) will be treated together
!
! etc... the advantage is to guarentee no spurious mixing because of numerical problems.
END_DOC
double precision, allocatable :: leigvec_unsrtd(:,:),reigvec_unsrtd(:,:),eigval_unsrtd(:)
integer, allocatable :: list_degen(:,:),list_same_degen(:)
integer, allocatable :: iorder(:),list_degen_sorted(:)
integer :: n_degen_list,n_degen,size_mat,i,j,k,icount,m,index_degen
integer :: ii,jj,i_good,j_good,n_real
double precision, allocatable :: mat_tmp(:,:),eigval_tmp(:),leigvec_tmp(:,:),reigvec_tmp(:,:)
allocate(leigvec_unsrtd(n,n),reigvec_unsrtd(n,n),eigval_unsrtd(n))
leigvec_unsrtd = 0.d0
reigvec_unsrtd = 0.d0
eigval_unsrtd = 0.d0
allocate(list_degen(n,0:n)) BEGIN_DOC
!
! subroutine that diagonalizes a matrix mat_ref BY BLOCK
!
! the blocks are defined by the elements having the SAME DEGENERACIES in the entries "fock_diag"
!
! examples : all elements having degeneracy 1 in fock_diag (i.e. not being degenerated) will be treated together
!
! : all elements having degeneracy 2 in fock_diag (i.e. two elements are equal) will be treated together
!
! : all elements having degeneracy 3 in fock_diag (i.e. two elements are equal) will be treated together
!
! etc... the advantage is to guarentee no spurious mixing because of numerical problems.
!
END_DOC
! obtain degeneracies implicit none
call give_degen_full_list(fock_diag,n,thr_deg,list_degen,n_degen_list) integer, intent(in) :: n
allocate(iorder(n_degen_list),list_degen_sorted(n_degen_list)) double precision, intent(in) :: fock_diag(n), mat_ref(n,n), thr_d, thr_nd, thr_deg
do i =1, n_degen_list double precision, intent(out) :: leigvec(n,n), reigvec(n,n), eigval(n)
n_degen = list_degen(i,0)
list_degen_sorted(i) = n_degen integer :: n_degen_list, n_degen,size_mat, i, j, k, icount, m, index_degen
iorder(i)=i integer :: ii, jj, i_good, j_good, n_real
enddo integer :: icount_eigval
! sort by number of degeneracies logical, allocatable :: is_ok(:)
call isort(list_degen_sorted,iorder,n_degen_list) integer, allocatable :: list_degen(:,:), list_same_degen(:)
integer :: icount_eigval integer, allocatable :: iorder(:), list_degen_sorted(:)
logical, allocatable :: is_ok(:) double precision, allocatable :: leigvec_unsrtd(:,:), reigvec_unsrtd(:,:), eigval_unsrtd(:)
allocate(is_ok(n_degen_list)) double precision, allocatable :: mat_tmp(:,:), eigval_tmp(:), leigvec_tmp(:,:), reigvec_tmp(:,:)
is_ok = .True.
icount_eigval = 0 allocate(leigvec_unsrtd(n,n), reigvec_unsrtd(n,n), eigval_unsrtd(n))
! loop over degeneracies leigvec_unsrtd = 0.d0
do i = 1, n_degen_list reigvec_unsrtd = 0.d0
if(.not.is_ok(i))cycle eigval_unsrtd = 0.d0
is_ok(i) = .False.
n_degen = list_degen_sorted(i) ! obtain degeneracies
print*,'diagonalizing for n_degen = ',n_degen allocate(list_degen(n,0:n))
k = 1 call give_degen_full_list(fock_diag, n, thr_deg, list_degen, n_degen_list)
! group all the entries having the same degeneracies
! do while (list_degen_sorted(i+k)==n_degen) allocate(iorder(n_degen_list), list_degen_sorted(n_degen_list))
do m = i+1,n_degen_list do i = 1, n_degen_list
if(list_degen_sorted(m)==n_degen)then n_degen = list_degen(i,0)
is_ok(i+k)=.False. list_degen_sorted(i) = n_degen
k += 1 iorder(i) = i
endif
enddo enddo
print*,'number of identical degeneracies = ',k
size_mat = k*n_degen ! sort by number of degeneracies
print*,'size_mat = ',size_mat call isort(list_degen_sorted, iorder, n_degen_list)
allocate(mat_tmp(size_mat,size_mat),list_same_degen(size_mat))
allocate(eigval_tmp(size_mat),leigvec_tmp(size_mat,size_mat),reigvec_tmp(size_mat,size_mat)) allocate(is_ok(n_degen_list))
! group all the elements sharing the same degeneracy is_ok = .True.
icount = 0 icount_eigval = 0
do j = 1, k ! jth set of degeneracy
index_degen = iorder(i+j-1) ! loop over degeneracies
do m = 1, n_degen do i = 1, n_degen_list
icount += 1 if(.not.is_ok(i)) cycle
list_same_degen(icount) = list_degen(index_degen,m)
enddo is_ok(i) = .False.
n_degen = list_degen_sorted(i)
print *, ' diagonalizing for n_degen = ', n_degen
k = 1
! group all the entries having the same degeneracies
!! do while (list_degen_sorted(i+k)==n_degen)
do m = i+1, n_degen_list
if(list_degen_sorted(m)==n_degen) then
is_ok(i+k) = .False.
k += 1
endif
enddo
print *, ' number of identical degeneracies = ', k
size_mat = k*n_degen
print *, ' size_mat = ', size_mat
allocate(mat_tmp(size_mat,size_mat), list_same_degen(size_mat))
allocate(eigval_tmp(size_mat), leigvec_tmp(size_mat,size_mat), reigvec_tmp(size_mat,size_mat))
! group all the elements sharing the same degeneracy
icount = 0
do j = 1, k ! jth set of degeneracy
index_degen = iorder(i+j-1)
do m = 1, n_degen
icount += 1
list_same_degen(icount) = list_degen(index_degen,m)
enddo
enddo
print *, ' list of elements '
do icount = 1, size_mat
print *, icount, list_same_degen(icount)
enddo
! you copy subset of matrix elements having all the same degeneracy in mat_tmp
do ii = 1, size_mat
i_good = list_same_degen(ii)
do jj = 1, size_mat
j_good = list_same_degen(jj)
mat_tmp(jj,ii) = mat_ref(j_good,i_good)
enddo
enddo
call non_hrmt_bieig( size_mat, mat_tmp, thr_d, thr_nd &
, leigvec_tmp, reigvec_tmp &
, n_real, eigval_tmp )
do ii = 1, size_mat
icount_eigval += 1
eigval_unsrtd(icount_eigval) = eigval_tmp(ii) ! copy eigenvalues
do jj = 1, size_mat ! copy the eigenvectors
j_good = list_same_degen(jj)
leigvec_unsrtd(j_good,icount_eigval) = leigvec_tmp(jj,ii)
reigvec_unsrtd(j_good,icount_eigval) = reigvec_tmp(jj,ii)
enddo
enddo
deallocate(mat_tmp, list_same_degen)
deallocate(eigval_tmp, leigvec_tmp, reigvec_tmp)
enddo enddo
print*,'list of elements '
do icount = 1, size_mat if(icount_eigval .ne. n) then
print*,icount,list_same_degen(icount) print *, ' pb !! (icount_eigval.ne.n)'
enddo print *, ' icount_eigval,n', icount_eigval, n
! you copy subset of matrix elements having all the same degeneracy in mat_tmp stop
do ii = 1, size_mat endif
i_good = list_same_degen(ii)
do jj = 1, size_mat
j_good = list_same_degen(jj)
mat_tmp(jj,ii) = mat_ref(j_good,i_good)
enddo
enddo
call non_hrmt_bieig( size_mat, mat_tmp&
, leigvec_tmp, reigvec_tmp&
, n_real, eigval_tmp)
do ii = 1, size_mat
icount_eigval += 1
eigval_unsrtd(icount_eigval) = eigval_tmp(ii) ! copy eigenvalues
do jj = 1, size_mat ! copy the eigenvectors
j_good = list_same_degen(jj)
leigvec_unsrtd(j_good,icount_eigval) = leigvec_tmp(jj,ii)
reigvec_unsrtd(j_good,icount_eigval) = reigvec_tmp(jj,ii)
enddo
enddo
deallocate(mat_tmp,list_same_degen)
deallocate(eigval_tmp,leigvec_tmp,reigvec_tmp)
enddo
if(icount_eigval.ne.n)then
print*,'pb !! (icount_eigval.ne.n)'
print*,'icount_eigval,n',icount_eigval,n
stop
endif
deallocate(iorder) deallocate(iorder)
allocate(iorder(n)) allocate(iorder(n))
do i = 1, n do i = 1, n
iorder(i) = i iorder(i) = i
enddo
call dsort(eigval_unsrtd,iorder,n)
do i = 1, n
print*,'sorted eigenvalues '
i_good = iorder(i)
eigval(i) = eigval_unsrtd(i)
print*,'i,eigval(i) = ',i,eigval(i)
do j = 1, n
leigvec(j,i) = leigvec_unsrtd(j,i_good)
reigvec(j,i) = reigvec_unsrtd(j,i_good)
enddo enddo
enddo call dsort(eigval_unsrtd, iorder, n)
do i = 1, n
print*,'sorted eigenvalues '
i_good = iorder(i)
eigval(i) = eigval_unsrtd(i)
print*,'i,eigval(i) = ',i,eigval(i)
do j = 1, n
leigvec(j,i) = leigvec_unsrtd(j,i_good)
reigvec(j,i) = reigvec_unsrtd(j,i_good)
enddo
enddo
deallocate(leigvec_unsrtd, reigvec_unsrtd, eigval_unsrtd)
deallocate(list_degen)
deallocate(iorder, list_degen_sorted)
deallocate(is_ok)
end end
subroutine give_degen_full_list(A,n,thr,list_degen,n_degen_list) ! ---
implicit none
BEGIN_DOC subroutine give_degen_full_list(A, n, thr, list_degen, n_degen_list)
! you enter with an array A(n) and spits out all the elements degenerated up to thr
! BEGIN_DOC
! the elements of A(n) DON'T HAVE TO BE SORTED IN THE ENTRANCE: TOTALLY GENERAL ! you enter with an array A(n) and spits out all the elements degenerated up to thr
! !
! list_degen(i,0) = number of degenerate entries ! the elements of A(n) DON'T HAVE TO BE SORTED IN THE ENTRANCE: TOTALLY GENERAL
! !
! list_degen(i,1) = index of the first degenerate entry ! list_degen(i,0) = number of degenerate entries
! !
! list_degen(i,2:list_degen(i,0)) = list of all other dengenerate entries ! list_degen(i,1) = index of the first degenerate entry
! !
! if list_degen(i,0) == 1 it means that there is no degeneracy for that element ! list_degen(i,2:list_degen(i,0)) = list of all other dengenerate entries
END_DOC !
double precision,intent(in) :: A(n) ! if list_degen(i,0) == 1 it means that there is no degeneracy for that element
double precision,intent(in) :: thr END_DOC
integer, intent(in) :: n
integer, intent(out) :: list_degen(n,0:n),n_degen_list implicit none
logical, allocatable :: is_ok(:)
allocate(is_ok(n)) double precision, intent(in) :: A(n)
integer :: i,j,icount,icheck double precision, intent(in) :: thr
n_degen_list = 0 integer, intent(in) :: n
is_ok = .True. integer, intent(out) :: list_degen(n,0:n), n_degen_list
do i = 1, n integer :: i, j, icount, icheck
if(.not.is_ok(i))cycle logical, allocatable :: is_ok(:)
n_degen_list +=1
is_ok(i) = .False.
list_degen(n_degen_list,1) = i allocate(is_ok(n))
icount = 1 n_degen_list = 0
do j = i+1, n is_ok = .True.
if(dabs(A(i)-A(j)).lt.thr.and.is_ok(j))then do i = 1, n
is_ok(j) = .False. if(.not.is_ok(i)) cycle
icount += 1 n_degen_list +=1
list_degen(n_degen_list,icount) = j is_ok(i) = .False.
endif list_degen(n_degen_list,1) = i
icount = 1
do j = i+1, n
if(dabs(A(i)-A(j)).lt.thr.and.is_ok(j)) then
is_ok(j) = .False.
icount += 1
list_degen(n_degen_list,icount) = j
endif
enddo
list_degen(n_degen_list,0) = icount
enddo enddo
list_degen(n_degen_list,0) = icount
enddo icheck = 0
icheck = 0 do i = 1, n_degen_list
do i = 1, n_degen_list icheck += list_degen(i,0)
icheck += list_degen(i,0) enddo
enddo
if(icheck.ne.n)then if(icheck.ne.n)then
print*,'pb ! :: icheck.ne.n' print *, ' pb ! :: icheck.ne.n'
print*,icheck,n print *, icheck, n
stop stop
endif endif
end end
! ---

View File

@ -47,7 +47,9 @@ subroutine give_explicit_poly_and_gaussian_x(P_new,P_center,p,fact_k,iorder,alph
end end
! TODO remove dim
subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,beta,a,b,A_center,B_center,dim) subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,beta,a,b,A_center,B_center,dim)
BEGIN_DOC BEGIN_DOC
! Transforms the product of ! Transforms the product of
! (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) ! (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
@ -60,6 +62,7 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,
! returns a "s" function centered in zero ! returns a "s" function centered in zero
! with an inifinite exponent and a zero polynom coef ! with an inifinite exponent and a zero polynom coef
END_DOC END_DOC
implicit none implicit none
include 'constants.include.F' include 'constants.include.F'
integer, intent(in) :: dim integer, intent(in) :: dim
@ -129,7 +132,8 @@ end
!--- !---
subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_k,iorder,alpha,beta,a,b,A_center,B_center,n_points) subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center, p, fact_k, iorder, alpha, beta, a, b, A_center, LD_A, B_center, n_points)
BEGIN_DOC BEGIN_DOC
! Transforms the product of ! Transforms the product of
! (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta) ! (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
@ -142,24 +146,26 @@ subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_k,iorde
! returns a "s" function centered in zero ! returns a "s" function centered in zero
! with an inifinite exponent and a zero polynom coef ! with an inifinite exponent and a zero polynom coef
END_DOC END_DOC
implicit none
include 'constants.include.F' include 'constants.include.F'
integer, intent(in) :: n_points, ldp
integer, intent(in) :: a(3),b(3) ! powers : (x-xa)**a_x = (x-A(1))**a(1)
double precision, intent(in) :: alpha, beta ! exponents
double precision, intent(in) :: A_center(n_points,3) ! A center
double precision, intent(in) :: B_center (3) ! B center
double precision, intent(out) :: P_center(n_points,3) ! new center
double precision, intent(out) :: p ! new exponent
double precision, intent(out) :: fact_k(n_points) ! constant factor
double precision, intent(out) :: P_new(n_points,0:ldp,3)! polynomial
integer, intent(out) :: iorder(3) ! i_order(i) = order of the polynomials
double precision, allocatable :: P_a(:,:,:), P_b(:,:,:) implicit none
integer, intent(in) :: n_points, ldp, LD_A
integer, intent(in) :: a(3), b(3) ! powers : (x-xa)**a_x = (x-A(1))**a(1)
double precision, intent(in) :: alpha, beta ! exponents
double precision, intent(in) :: A_center(LD_A,3) ! A center
double precision, intent(in) :: B_center(3) ! B center
integer, intent(out) :: iorder(3) ! i_order(i) = order of the polynomials
double precision, intent(out) :: P_center(n_points,3) ! new center
double precision, intent(out) :: p ! new exponent
double precision, intent(out) :: fact_k(n_points) ! constant factor
double precision, intent(out) :: P_new(n_points,0:ldp,3) ! polynomial
integer :: n_new,i,j, ipoint, lda, ldb, xyz integer :: n_new, i, j, ipoint, lda, ldb, xyz
double precision, allocatable :: P_a(:,:,:), P_b(:,:,:)
call gaussian_product_v(alpha,A_center,beta,B_center,fact_k,p,P_center,n_points)
call gaussian_product_v(alpha, A_center, LD_A, beta, B_center, fact_k, p, P_center, n_points)
if ( ior(ior(b(1),b(2)),b(3)) == 0 ) then ! b == (0,0,0) if ( ior(ior(b(1),b(2)),b(3)) == 0 ) then ! b == (0,0,0)
@ -167,13 +173,13 @@ subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_k,iorde
ldb = 0 ldb = 0
allocate(P_a(n_points,0:lda,3), P_b(n_points,0:0,3)) allocate(P_a(n_points,0:lda,3), P_b(n_points,0:0,3))
call recentered_poly2_v0(P_a,lda,A_center,P_center,a,P_b,B_center,P_center,n_points) call recentered_poly2_v0(P_a, lda, A_center, LD_A, P_center, a, P_b, B_center, P_center, n_points)
iorder(1:3) = a(1:3) iorder(1:3) = a(1:3)
do ipoint=1,n_points do ipoint = 1, n_points
do xyz=1,3 do xyz = 1, 3
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz) P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz)
do i=1,a(xyz) do i = 1, a(xyz)
P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz) P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz)
enddo enddo
enddo enddo
@ -187,31 +193,31 @@ subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_k,iorde
ldb = maxval(b) ldb = maxval(b)
allocate(P_a(n_points,0:lda,3), P_b(n_points,0:ldb,3)) allocate(P_a(n_points,0:lda,3), P_b(n_points,0:ldb,3))
call recentered_poly2_v(P_a,lda,A_center,P_center,a,P_b,ldb,B_center,P_center,b,n_points) call recentered_poly2_v(P_a, lda, A_center, LD_A, P_center, a, P_b, ldb, B_center, P_center, b, n_points)
iorder(1:3) = a(1:3) + b(1:3) iorder(1:3) = a(1:3) + b(1:3)
do xyz=1,3 do xyz = 1, 3
if (b(xyz) == 0) then if (b(xyz) == 0) then
do ipoint=1,n_points do ipoint = 1, n_points
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz) P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz)
do i=1,a(xyz) do i = 1, a(xyz)
P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz) P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz)
enddo enddo
enddo enddo
else else
do i=0,iorder(xyz) do i = 0, iorder(xyz)
do ipoint=1,n_points do ipoint = 1, n_points
P_new(ipoint,i,xyz) = 0.d0 P_new(ipoint,i,xyz) = 0.d0
enddo enddo
enddo enddo
call multiply_poly_v(P_a(1,0,xyz), a(xyz),P_b(1,0,xyz),b(xyz),P_new(1,0,xyz),ldp,n_points) call multiply_poly_v(P_a(1,0,xyz), a(xyz), P_b(1,0,xyz), b(xyz), P_new(1,0,xyz), ldp, n_points)
endif endif
enddo enddo
end end subroutine give_explicit_poly_and_gaussian_v
!- ! ---
subroutine give_explicit_poly_and_gaussian_double(P_new,P_center,p,fact_k,iorder,alpha,beta,gama,a,b,A_center,B_center,Nucl_center,dim) subroutine give_explicit_poly_and_gaussian_double(P_new,P_center,p,fact_k,iorder,alpha,beta,gama,a,b,A_center,B_center,Nucl_center,dim)
BEGIN_DOC BEGIN_DOC
@ -273,15 +279,16 @@ subroutine give_explicit_poly_and_gaussian_double(P_new,P_center,p,fact_k,iorder
end end
! ---
subroutine gaussian_product(a, xa, b, xb, k, p, xp)
subroutine gaussian_product(a,xa,b,xb,k,p,xp)
implicit none
BEGIN_DOC BEGIN_DOC
! Gaussian product in 1D. ! Gaussian product in 1D.
! e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2} ! e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
END_DOC END_DOC
implicit none
double precision, intent(in) :: a,b ! Exponents double precision, intent(in) :: a,b ! Exponents
double precision, intent(in) :: xa(3),xb(3) ! Centers double precision, intent(in) :: xa(3),xb(3) ! Centers
double precision, intent(out) :: p ! New exponent double precision, intent(out) :: p ! New exponent
@ -312,33 +319,39 @@ subroutine gaussian_product(a,xa,b,xb,k,p,xp)
xp(1) = (a*xa(1)+b*xb(1))*p_inv xp(1) = (a*xa(1)+b*xb(1))*p_inv
xp(2) = (a*xa(2)+b*xb(2))*p_inv xp(2) = (a*xa(2)+b*xb(2))*p_inv
xp(3) = (a*xa(3)+b*xb(3))*p_inv xp(3) = (a*xa(3)+b*xb(3))*p_inv
end subroutine end subroutine
!--- !---
subroutine gaussian_product_v(a,xa,b,xb,k,p,xp,n_points)
implicit none subroutine gaussian_product_v(a, xa, LD_xa, b, xb, k, p, xp, n_points)
BEGIN_DOC BEGIN_DOC
!
! Gaussian product in 1D. ! Gaussian product in 1D.
! e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2} ! e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
!
! Using multiple A centers ! Using multiple A centers
!
END_DOC END_DOC
integer, intent(in) :: n_points implicit none
double precision, intent(in) :: a,b ! Exponents
double precision, intent(in) :: xa(n_points,3),xb(3) ! Centers
double precision, intent(out) :: p ! New exponent
double precision, intent(out) :: xp(n_points,3) ! New center
double precision, intent(out) :: k(n_points) ! Constant
double precision :: p_inv integer, intent(in) :: LD_xa, n_points
double precision, intent(in) :: a, b ! Exponents
double precision, intent(in) :: xa(LD_xa,3), xb(3) ! Centers
double precision, intent(out) :: p ! New exponent
double precision, intent(out) :: xp(n_points,3) ! New center
double precision, intent(out) :: k(n_points) ! Constant
integer :: ipoint
double precision :: p_inv
double precision :: xab(3), ab, ap, bp, bpxb(3)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: xab
integer :: ipoint
ASSERT (a>0.) ASSERT (a>0.)
ASSERT (b>0.) ASSERT (b>0.)
double precision :: xab(3), ab, ap, bp, bpxb(3)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: xab
p = a+b p = a+b
p_inv = 1.d0/(a+b) p_inv = 1.d0/(a+b)
ab = a*b*p_inv ab = a*b*p_inv
@ -348,7 +361,7 @@ subroutine gaussian_product_v(a,xa,b,xb,k,p,xp,n_points)
bpxb(2) = bp*xb(2) bpxb(2) = bp*xb(2)
bpxb(3) = bp*xb(3) bpxb(3) = bp*xb(3)
do ipoint=1,n_points do ipoint = 1, n_points
xab(1) = xa(ipoint,1)-xb(1) xab(1) = xa(ipoint,1)-xb(1)
xab(2) = xa(ipoint,2)-xb(2) xab(2) = xa(ipoint,2)-xb(2)
xab(3) = xa(ipoint,3)-xb(3) xab(3) = xa(ipoint,3)-xb(3)
@ -365,18 +378,19 @@ subroutine gaussian_product_v(a,xa,b,xb,k,p,xp,n_points)
xp(ipoint,3) = ap*xa(ipoint,3)+bpxb(3) xp(ipoint,3) = ap*xa(ipoint,3)+bpxb(3)
endif endif
enddo enddo
end subroutine
end subroutine gaussian_product_v
! ---
subroutine gaussian_product_x(a, xa, b, xb, k, p, xp)
subroutine gaussian_product_x(a,xa,b,xb,k,p,xp)
implicit none
BEGIN_DOC BEGIN_DOC
! Gaussian product in 1D. ! Gaussian product in 1D.
! e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2} ! e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
END_DOC END_DOC
implicit none
double precision , intent(in) :: a,b ! Exponents double precision , intent(in) :: a,b ! Exponents
double precision , intent(in) :: xa,xb ! Centers double precision , intent(in) :: xa,xb ! Centers
double precision , intent(out) :: p ! New exponent double precision , intent(out) :: p ! New exponent
@ -625,16 +639,20 @@ subroutine recentered_poly2(P_new,x_A,x_P,a,P_new2,x_B,x_Q,b)
do i = 21,b do i = 21,b
P_new2(i) = binom_func(b,b-i) * pows_b(b-i) P_new2(i) = binom_func(b,b-i) * pows_b(b-i)
enddo enddo
end end
!- ! ---
subroutine recentered_poly2_v(P_new,lda,x_A,x_P,a,P_new2,ldb,x_B,x_Q,b,n_points)
implicit none subroutine recentered_poly2_v(P_new, lda, x_A, LD_xA, x_P, a, P_new2, ldb, x_B, x_Q, b, n_points)
BEGIN_DOC BEGIN_DOC
! Recenter two polynomials ! Recenter two polynomials
END_DOC END_DOC
integer, intent(in) :: a(3),b(3), n_points, lda, ldb
double precision, intent(in) :: x_A(n_points,3),x_P(n_points,3),x_B(3),x_Q(n_points,3) implicit none
integer, intent(in) :: a(3), b(3), n_points, lda, ldb, LD_xA
double precision, intent(in) :: x_A(LD_xA,3), x_P(n_points,3), x_B(3), x_Q(n_points,3)
double precision, intent(out) :: P_new(n_points,0:lda,3),P_new2(n_points,0:ldb,3) double precision, intent(out) :: P_new(n_points,0:lda,3),P_new2(n_points,0:ldb,3)
double precision :: binom_func double precision :: binom_func
integer :: i,j,k,l, minab(3), maxab(3),ipoint, xyz integer :: i,j,k,l, minab(3), maxab(3),ipoint, xyz
@ -646,7 +664,6 @@ subroutine recentered_poly2_v(P_new,lda,x_A,x_P,a,P_new2,ldb,x_B,x_Q,b,n_points)
allocate( pows_a(n_points,-2:maxval(maxab)+4), pows_b(n_points,-2:maxval(maxab)+4) ) allocate( pows_a(n_points,-2:maxval(maxab)+4), pows_b(n_points,-2:maxval(maxab)+4) )
do xyz=1,3 do xyz=1,3
if ((a(xyz)<0).or.(b(xyz)<0) ) cycle if ((a(xyz)<0).or.(b(xyz)<0) ) cycle
do ipoint=1,n_points do ipoint=1,n_points
@ -698,27 +715,34 @@ subroutine recentered_poly2_v(P_new,lda,x_A,x_P,a,P_new2,ldb,x_B,x_Q,b,n_points)
enddo enddo
enddo enddo
enddo enddo
end
end subroutine recentered_poly2_v
! ---
subroutine recentered_poly2_v0(P_new, lda, x_A, LD_xA, x_P, a, P_new2, x_B, x_Q, n_points)
subroutine recentered_poly2_v0(P_new,lda,x_A,x_P,a,P_new2,x_B,x_Q,n_points)
implicit none
BEGIN_DOC BEGIN_DOC
! Recenter two polynomials. Special case for b=(0,0,0) ! Recenter two polynomials. Special case for b=(0,0,0)
END_DOC END_DOC
integer, intent(in) :: a(3), n_points, lda
double precision, intent(in) :: x_A(n_points,3),x_P(n_points,3),x_B(3),x_Q(n_points,3) implicit none
double precision, intent(out) :: P_new(n_points,0:lda,3),P_new2(n_points,3) integer, intent(in) :: a(3), n_points, lda, LD_xA
double precision :: binom_func double precision, intent(in) :: x_A(LD_xA,3)
integer :: i,j,k,l, xyz, ipoint, maxab(3) double precision, intent(in) :: x_B(3)
double precision, allocatable :: pows_a(:,:), pows_b(:,:) double precision, intent(in) :: x_P(n_points,3), x_Q(n_points,3)
double precision :: fa double precision, intent(out) :: P_new(n_points,0:lda,3), P_new2(n_points,3)
integer :: i, j, k, l, xyz, ipoint, maxab(3)
double precision :: fa
double precision, allocatable :: pows_a(:,:), pows_b(:,:)
double precision :: binom_func
maxab(1:3) = max(a(1:3),(/0,0,0/)) maxab(1:3) = max(a(1:3),(/0,0,0/))
allocate( pows_a(n_points,-2:maxval(maxab)+4), pows_b(n_points,-2:maxval(maxab)+4) ) allocate( pows_a(n_points,-2:maxval(maxab)+4), pows_b(n_points,-2:maxval(maxab)+4) )
do xyz=1,3 do xyz = 1, 3
if (a(xyz)<0) cycle if (a(xyz)<0) cycle
do ipoint=1,n_points do ipoint=1,n_points
pows_a(ipoint,0) = 1.d0 pows_a(ipoint,0) = 1.d0
@ -736,25 +760,25 @@ subroutine recentered_poly2_v0(P_new,lda,x_A,x_P,a,P_new2,x_B,x_Q,n_points)
P_new (ipoint,0,xyz) = pows_a(ipoint,a(xyz)) P_new (ipoint,0,xyz) = pows_a(ipoint,a(xyz))
P_new2(ipoint,xyz) = pows_b(ipoint,0) P_new2(ipoint,xyz) = pows_b(ipoint,0)
enddo enddo
do i = 1,min(a(xyz),20) do i = 1, min(a(xyz), 20)
fa = binom_transp(a(xyz)-i,a(xyz)) fa = binom_transp(a(xyz)-i, a(xyz))
do ipoint=1,n_points do ipoint = 1, n_points
P_new (ipoint,i,xyz) = fa * pows_a(ipoint,a(xyz)-i) P_new(ipoint,i,xyz) = fa * pows_a(ipoint,a(xyz)-i)
enddo enddo
enddo enddo
do i = 21,a(xyz) do i = 21, a(xyz)
fa = binom_func(a(xyz),a(xyz)-i) fa = binom_func(a(xyz), a(xyz)-i)
do ipoint=1,n_points do ipoint = 1, n_points
P_new (ipoint,i,xyz) = fa * pows_a(ipoint,a(xyz)-i) P_new(ipoint,i,xyz) = fa * pows_a(ipoint,a(xyz)-i)
enddo enddo
enddo enddo
enddo !xyz enddo !xyz
deallocate(pows_a, pows_b) deallocate(pows_a, pows_b)
end
!-- end subroutine recentered_poly2_v0
!-- !--
subroutine pol_modif_center(A_center, B_center, iorder, A_pol, B_pol) subroutine pol_modif_center(A_center, B_center, iorder, A_pol, B_pol)

View File

@ -32,9 +32,8 @@ double precision function overlap_gaussian_x(A_center,B_center,alpha,beta,power_
end end
subroutine overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,& subroutine overlap_gaussian_xyz(A_center, B_center, alpha, beta, power_A, power_B, overlap_x, overlap_y, overlap_z, overlap, dim)
power_B,overlap_x,overlap_y,overlap_z,overlap,dim)
implicit none
BEGIN_DOC BEGIN_DOC
!.. math:: !.. math::
! !
@ -42,7 +41,10 @@ subroutine overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,&
! S = S_x S_y S_z ! S = S_x S_y S_z
! !
END_DOC END_DOC
include 'constants.include.F' include 'constants.include.F'
implicit none
integer,intent(in) :: dim ! dimension maximum for the arrays representing the polynomials integer,intent(in) :: dim ! dimension maximum for the arrays representing the polynomials
double precision,intent(in) :: A_center(3),B_center(3) ! center of the x1 functions double precision,intent(in) :: A_center(3),B_center(3) ! center of the x1 functions
double precision, intent(in) :: alpha,beta double precision, intent(in) :: alpha,beta
@ -51,17 +53,18 @@ subroutine overlap_gaussian_xyz(A_center,B_center,alpha,beta,power_A,&
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,p double precision :: P_new(0:max_dim,3),P_center(3),fact_p,p
double precision :: F_integral_tab(0:max_dim) double precision :: F_integral_tab(0:max_dim)
integer :: iorder_p(3) integer :: iorder_p(3)
call give_explicit_poly_and_gaussian(P_new,P_center,p,fact_p,iorder_p,alpha,beta,power_A,power_B,A_center,B_center,dim)
if(fact_p.lt.1d-20)then
overlap_x = 1.d-10
overlap_y = 1.d-10
overlap_z = 1.d-10
overlap = 1.d-10
return
endif
integer :: nmax integer :: nmax
double precision :: F_integral double precision :: F_integral
call give_explicit_poly_and_gaussian(P_new, P_center, p, fact_p, iorder_p, alpha, beta, power_A, power_B, A_center, B_center, dim)
if(fact_p.lt.1d-20)then
overlap_x = 1.d-10
overlap_y = 1.d-10
overlap_z = 1.d-10
overlap = 1.d-10
return
endif
nmax = maxval(iorder_p) nmax = maxval(iorder_p)
do i = 0,nmax do i = 0,nmax
F_integral_tab(i) = F_integral(i,p) F_integral_tab(i) = F_integral(i,p)
@ -150,72 +153,74 @@ subroutine overlap_x_abs(A_center, B_center, alpha, beta, power_A, power_B, over
overlap_x = factor * dx * overlap_x overlap_x = factor * dx * overlap_x
end end
! --- ! ---
subroutine overlap_gaussian_xyz_v(A_center,B_center,alpha,beta,power_A,& subroutine overlap_gaussian_xyz_v(A_center, B_center, alpha, beta, power_A, power_B, overlap, n_points)
power_B,overlap,dim, n_points)
implicit none
BEGIN_DOC BEGIN_DOC
!.. math:: !.. math::
! !
! S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\ ! S_x = \int (x-A_x)^{a_x} exp(-\alpha(x-A_x)^2) (x-B_x)^{b_x} exp(-beta(x-B_x)^2) dx \\
! S = S_x S_y S_z ! S = S_x S_y S_z
! !
END_DOC END_DOC
include 'constants.include.F' include 'constants.include.F'
integer,intent(in) :: dim, n_points
double precision,intent(in) :: A_center(n_points,3),B_center(3) ! center of the x1 functions implicit none
double precision, intent(in) :: alpha,beta
integer,intent(in) :: power_A(3), power_B(3) ! power of the x1 functions integer, intent(in) :: n_points
double precision, intent(out) :: overlap(n_points) integer, intent(in) :: power_A(3), power_B(3) ! power of the x1 functions
double precision :: F_integral_tab(0:max_dim) double precision, intent(in) :: A_center(n_points,3), B_center(3) ! center of the x1 functions
double precision :: p, overlap_x, overlap_y, overlap_z double precision, intent(in) :: alpha, beta
double precision, allocatable :: P_new(:,:,:),P_center(:,:),fact_p(:), fact_pp(:), pp(:) double precision, intent(out) :: overlap(n_points)
integer :: iorder_p(3), ipoint, ldp
integer :: nmax integer :: i
double precision :: F_integral integer :: iorder_p(3), ipoint, ldp
integer :: nmax
double precision :: F_integral_tab(0:max_dim)
double precision :: p, overlap_x, overlap_y, overlap_z
double precision :: F_integral
double precision, allocatable :: P_new(:,:,:), P_center(:,:), fact_p(:)
ldp = maxval( power_A(1:3) + power_B(1:3) ) ldp = maxval( power_A(1:3) + power_B(1:3) )
allocate(P_new(n_points,0:ldp,3), P_center(n_points,3), fact_p(n_points), &
fact_pp(n_points), pp(n_points))
call give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_p,iorder_p,alpha,beta,power_A,power_B,A_center,B_center,n_points) allocate(P_new(n_points,0:ldp,3), P_center(n_points,3), fact_p(n_points))
call give_explicit_poly_and_gaussian_v(P_new, ldp, P_center, p, fact_p, iorder_p, alpha, beta, power_A, power_B, A_center, n_points, B_center, n_points)
nmax = maxval(iorder_p) nmax = maxval(iorder_p)
do i=0, nmax do i = 0, nmax
F_integral_tab(i) = F_integral(i,p) F_integral_tab(i) = F_integral(i,p)
enddo enddo
integer :: i do ipoint = 1, n_points
call gaussian_product_v(alpha,A_center,beta,B_center,fact_pp,pp,P_center,n_points) if(fact_p(ipoint) .lt. 1d-20) then
do ipoint=1,n_points
if(fact_p(ipoint).lt.1d-20)then
overlap(ipoint) = 1.d-10 overlap(ipoint) = 1.d-10
cycle cycle
endif endif
overlap_x = P_new(ipoint,0,1) * F_integral_tab(0) overlap_x = P_new(ipoint,0,1) * F_integral_tab(0)
do i = 1,iorder_p(1) do i = 1, iorder_p(1)
overlap_x = overlap_x + P_new(ipoint,i,1) * F_integral_tab(i) overlap_x = overlap_x + P_new(ipoint,i,1) * F_integral_tab(i)
enddo enddo
overlap_y = P_new(ipoint,0,2) * F_integral_tab(0) overlap_y = P_new(ipoint,0,2) * F_integral_tab(0)
do i = 1,iorder_p(2) do i = 1, iorder_p(2)
overlap_y = overlap_y + P_new(ipoint,i,2) * F_integral_tab(i) overlap_y = overlap_y + P_new(ipoint,i,2) * F_integral_tab(i)
enddo enddo
overlap_z = P_new(ipoint,0,3) * F_integral_tab(0) overlap_z = P_new(ipoint,0,3) * F_integral_tab(0)
do i = 1,iorder_p(3) do i = 1, iorder_p(3)
overlap_z = overlap_z + P_new(ipoint,i,3) * F_integral_tab(i) overlap_z = overlap_z + P_new(ipoint,i,3) * F_integral_tab(i)
enddo enddo
overlap(ipoint) = overlap_x * overlap_y * overlap_z * fact_pp(ipoint) overlap(ipoint) = overlap_x * overlap_y * overlap_z * fact_p(ipoint)
enddo enddo
deallocate(P_new, P_center, fact_p, pp, fact_pp) deallocate(P_new, P_center, fact_p)
end
end subroutine overlap_gaussian_xyz_v
! --- ! ---

View File

@ -1,373 +0,0 @@
/* [[file:~/qp2/src/utils/qsort.org::*Generated%20C%20file][Generated C file:1]] */
#include <stdlib.h>
#include <stdint.h>
struct int16_t_comp {
int16_t x;
int32_t i;
};
int compare_int16_t( const void * l, const void * r )
{
const int16_t * restrict _l= l;
const int16_t * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_int16_t(int16_t* restrict A_in, int32_t* restrict iorder, int32_t isize) {
struct int16_t_comp* A = malloc(isize * sizeof(struct int16_t_comp));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct int16_t_comp), compare_int16_t);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_int16_t_noidx(int16_t* A, int32_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(int16_t), compare_int16_t);
}
struct int16_t_comp_big {
int16_t x;
int64_t i;
};
int compare_int16_t_big( const void * l, const void * r )
{
const int16_t * restrict _l= l;
const int16_t * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_int16_t_big(int16_t* restrict A_in, int64_t* restrict iorder, int64_t isize) {
struct int16_t_comp_big* A = malloc(isize * sizeof(struct int16_t_comp_big));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct int16_t_comp_big), compare_int16_t_big);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_int16_t_noidx_big(int16_t* A, int64_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(int16_t), compare_int16_t_big);
}
struct int32_t_comp {
int32_t x;
int32_t i;
};
int compare_int32_t( const void * l, const void * r )
{
const int32_t * restrict _l= l;
const int32_t * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_int32_t(int32_t* restrict A_in, int32_t* restrict iorder, int32_t isize) {
struct int32_t_comp* A = malloc(isize * sizeof(struct int32_t_comp));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct int32_t_comp), compare_int32_t);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_int32_t_noidx(int32_t* A, int32_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(int32_t), compare_int32_t);
}
struct int32_t_comp_big {
int32_t x;
int64_t i;
};
int compare_int32_t_big( const void * l, const void * r )
{
const int32_t * restrict _l= l;
const int32_t * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_int32_t_big(int32_t* restrict A_in, int64_t* restrict iorder, int64_t isize) {
struct int32_t_comp_big* A = malloc(isize * sizeof(struct int32_t_comp_big));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct int32_t_comp_big), compare_int32_t_big);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_int32_t_noidx_big(int32_t* A, int64_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(int32_t), compare_int32_t_big);
}
struct int64_t_comp {
int64_t x;
int32_t i;
};
int compare_int64_t( const void * l, const void * r )
{
const int64_t * restrict _l= l;
const int64_t * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_int64_t(int64_t* restrict A_in, int32_t* restrict iorder, int32_t isize) {
struct int64_t_comp* A = malloc(isize * sizeof(struct int64_t_comp));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct int64_t_comp), compare_int64_t);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_int64_t_noidx(int64_t* A, int32_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(int64_t), compare_int64_t);
}
struct int64_t_comp_big {
int64_t x;
int64_t i;
};
int compare_int64_t_big( const void * l, const void * r )
{
const int64_t * restrict _l= l;
const int64_t * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_int64_t_big(int64_t* restrict A_in, int64_t* restrict iorder, int64_t isize) {
struct int64_t_comp_big* A = malloc(isize * sizeof(struct int64_t_comp_big));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct int64_t_comp_big), compare_int64_t_big);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_int64_t_noidx_big(int64_t* A, int64_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(int64_t), compare_int64_t_big);
}
struct double_comp {
double x;
int32_t i;
};
int compare_double( const void * l, const void * r )
{
const double * restrict _l= l;
const double * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_double(double* restrict A_in, int32_t* restrict iorder, int32_t isize) {
struct double_comp* A = malloc(isize * sizeof(struct double_comp));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct double_comp), compare_double);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_double_noidx(double* A, int32_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(double), compare_double);
}
struct double_comp_big {
double x;
int64_t i;
};
int compare_double_big( const void * l, const void * r )
{
const double * restrict _l= l;
const double * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_double_big(double* restrict A_in, int64_t* restrict iorder, int64_t isize) {
struct double_comp_big* A = malloc(isize * sizeof(struct double_comp_big));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct double_comp_big), compare_double_big);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_double_noidx_big(double* A, int64_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(double), compare_double_big);
}
struct float_comp {
float x;
int32_t i;
};
int compare_float( const void * l, const void * r )
{
const float * restrict _l= l;
const float * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_float(float* restrict A_in, int32_t* restrict iorder, int32_t isize) {
struct float_comp* A = malloc(isize * sizeof(struct float_comp));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct float_comp), compare_float);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_float_noidx(float* A, int32_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(float), compare_float);
}
struct float_comp_big {
float x;
int64_t i;
};
int compare_float_big( const void * l, const void * r )
{
const float * restrict _l= l;
const float * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_float_big(float* restrict A_in, int64_t* restrict iorder, int64_t isize) {
struct float_comp_big* A = malloc(isize * sizeof(struct float_comp_big));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct float_comp_big), compare_float_big);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_float_noidx_big(float* A, int64_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(float), compare_float_big);
}
/* Generated C file:1 ends here */

View File

@ -1,169 +0,0 @@
#+TITLE: Quick sort binding for Fortran
* C template
#+NAME: c_template
#+BEGIN_SRC c
struct TYPE_comp_big {
TYPE x;
int32_t i;
};
int compare_TYPE_big( const void * l, const void * r )
{
const TYPE * restrict _l= l;
const TYPE * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_TYPE_big(TYPE* restrict A_in, int32_t* restrict iorder, int32_t isize) {
struct TYPE_comp_big* A = malloc(isize * sizeof(struct TYPE_comp_big));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct TYPE_comp_big), compare_TYPE_big);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_TYPE_noidx_big(TYPE* A, int32_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(TYPE), compare_TYPE_big);
}
#+END_SRC
* Fortran template
#+NAME:f_template
#+BEGIN_SRC f90
subroutine Lsort_big_c(A, iorder, isize) bind(C, name="qsort_TYPE_big")
use iso_c_binding
integer(c_int32_t), value :: isize
integer(c_int32_t) :: iorder(isize)
real (c_TYPE) :: A(isize)
end subroutine Lsort_big_c
subroutine Lsort_noidx_big_c(A, isize) bind(C, name="qsort_TYPE_noidx_big")
use iso_c_binding
integer(c_int32_t), value :: isize
real (c_TYPE) :: A(isize)
end subroutine Lsort_noidx_big_c
#+END_SRC
#+NAME:f_template2
#+BEGIN_SRC f90
subroutine Lsort_big(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int32_t) :: isize
integer(c_int32_t) :: iorder(isize)
real (c_TYPE) :: A(isize)
call Lsort_big_c(A, iorder, isize)
end subroutine Lsort_big
subroutine Lsort_noidx_big(A, isize)
use iso_c_binding
use qsort_module
integer(c_int32_t) :: isize
real (c_TYPE) :: A(isize)
call Lsort_noidx_big_c(A, isize)
end subroutine Lsort_noidx_big
#+END_SRC
* Python scripts for type replacements
#+NAME: replaced
#+begin_src python :results output :noweb yes
data = """
<<c_template>>
"""
for typ in ["int16_t", "int32_t", "int64_t", "double", "float"]:
print( data.replace("TYPE", typ).replace("_big", "") )
print( data.replace("int32_t", "int64_t").replace("TYPE", typ) )
#+end_src
#+NAME: replaced_f
#+begin_src python :results output :noweb yes
data = """
<<f_template>>
"""
c1 = {
"int16_t": "i2",
"int32_t": "i",
"int64_t": "i8",
"double": "d",
"float": ""
}
c2 = {
"int16_t": "integer",
"int32_t": "integer",
"int64_t": "integer",
"double": "real",
"float": "real"
}
for typ in ["int16_t", "int32_t", "int64_t", "double", "float"]:
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("TYPE", typ).replace("_big", "") )
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("int32_t", "int64_t").replace("TYPE", typ) )
#+end_src
#+NAME: replaced_f2
#+begin_src python :results output :noweb yes
data = """
<<f_template2>>
"""
c1 = {
"int16_t": "i2",
"int32_t": "i",
"int64_t": "i8",
"double": "d",
"float": ""
}
c2 = {
"int16_t": "integer",
"int32_t": "integer",
"int64_t": "integer",
"double": "real",
"float": "real"
}
for typ in ["int16_t", "int32_t", "int64_t", "double", "float"]:
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("TYPE", typ).replace("_big", "") )
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("int32_t", "int64_t").replace("TYPE", typ) )
#+end_src
* Generated C file
#+BEGIN_SRC c :comments link :tangle qsort.c :noweb yes
#include <stdlib.h>
#include <stdint.h>
<<replaced()>>
#+END_SRC
* Generated Fortran file
#+BEGIN_SRC f90 :tangle qsort_module.f90 :noweb yes
module qsort_module
use iso_c_binding
interface
<<replaced_f()>>
end interface
end module qsort_module
<<replaced_f2()>>
#+END_SRC

View File

@ -1,347 +0,0 @@
module qsort_module
use iso_c_binding
interface
subroutine i2sort_c(A, iorder, isize) bind(C, name="qsort_int16_t")
use iso_c_binding
integer(c_int32_t), value :: isize
integer(c_int32_t) :: iorder(isize)
integer (c_int16_t) :: A(isize)
end subroutine i2sort_c
subroutine i2sort_noidx_c(A, isize) bind(C, name="qsort_int16_t_noidx")
use iso_c_binding
integer(c_int32_t), value :: isize
integer (c_int16_t) :: A(isize)
end subroutine i2sort_noidx_c
subroutine i2sort_big_c(A, iorder, isize) bind(C, name="qsort_int16_t_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer(c_int64_t) :: iorder(isize)
integer (c_int16_t) :: A(isize)
end subroutine i2sort_big_c
subroutine i2sort_noidx_big_c(A, isize) bind(C, name="qsort_int16_t_noidx_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer (c_int16_t) :: A(isize)
end subroutine i2sort_noidx_big_c
subroutine isort_c(A, iorder, isize) bind(C, name="qsort_int32_t")
use iso_c_binding
integer(c_int32_t), value :: isize
integer(c_int32_t) :: iorder(isize)
integer (c_int32_t) :: A(isize)
end subroutine isort_c
subroutine isort_noidx_c(A, isize) bind(C, name="qsort_int32_t_noidx")
use iso_c_binding
integer(c_int32_t), value :: isize
integer (c_int32_t) :: A(isize)
end subroutine isort_noidx_c
subroutine isort_big_c(A, iorder, isize) bind(C, name="qsort_int32_t_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer(c_int64_t) :: iorder(isize)
integer (c_int32_t) :: A(isize)
end subroutine isort_big_c
subroutine isort_noidx_big_c(A, isize) bind(C, name="qsort_int32_t_noidx_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer (c_int32_t) :: A(isize)
end subroutine isort_noidx_big_c
subroutine i8sort_c(A, iorder, isize) bind(C, name="qsort_int64_t")
use iso_c_binding
integer(c_int32_t), value :: isize
integer(c_int32_t) :: iorder(isize)
integer (c_int64_t) :: A(isize)
end subroutine i8sort_c
subroutine i8sort_noidx_c(A, isize) bind(C, name="qsort_int64_t_noidx")
use iso_c_binding
integer(c_int32_t), value :: isize
integer (c_int64_t) :: A(isize)
end subroutine i8sort_noidx_c
subroutine i8sort_big_c(A, iorder, isize) bind(C, name="qsort_int64_t_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer(c_int64_t) :: iorder(isize)
integer (c_int64_t) :: A(isize)
end subroutine i8sort_big_c
subroutine i8sort_noidx_big_c(A, isize) bind(C, name="qsort_int64_t_noidx_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer (c_int64_t) :: A(isize)
end subroutine i8sort_noidx_big_c
subroutine dsort_c(A, iorder, isize) bind(C, name="qsort_double")
use iso_c_binding
integer(c_int32_t), value :: isize
integer(c_int32_t) :: iorder(isize)
real (c_double) :: A(isize)
end subroutine dsort_c
subroutine dsort_noidx_c(A, isize) bind(C, name="qsort_double_noidx")
use iso_c_binding
integer(c_int32_t), value :: isize
real (c_double) :: A(isize)
end subroutine dsort_noidx_c
subroutine dsort_big_c(A, iorder, isize) bind(C, name="qsort_double_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer(c_int64_t) :: iorder(isize)
real (c_double) :: A(isize)
end subroutine dsort_big_c
subroutine dsort_noidx_big_c(A, isize) bind(C, name="qsort_double_noidx_big")
use iso_c_binding
integer(c_int64_t), value :: isize
real (c_double) :: A(isize)
end subroutine dsort_noidx_big_c
subroutine sort_c(A, iorder, isize) bind(C, name="qsort_float")
use iso_c_binding
integer(c_int32_t), value :: isize
integer(c_int32_t) :: iorder(isize)
real (c_float) :: A(isize)
end subroutine sort_c
subroutine sort_noidx_c(A, isize) bind(C, name="qsort_float_noidx")
use iso_c_binding
integer(c_int32_t), value :: isize
real (c_float) :: A(isize)
end subroutine sort_noidx_c
subroutine sort_big_c(A, iorder, isize) bind(C, name="qsort_float_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer(c_int64_t) :: iorder(isize)
real (c_float) :: A(isize)
end subroutine sort_big_c
subroutine sort_noidx_big_c(A, isize) bind(C, name="qsort_float_noidx_big")
use iso_c_binding
integer(c_int64_t), value :: isize
real (c_float) :: A(isize)
end subroutine sort_noidx_big_c
end interface
end module qsort_module
subroutine i2sort(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int32_t) :: isize
integer(c_int32_t) :: iorder(isize)
integer (c_int16_t) :: A(isize)
call i2sort_c(A, iorder, isize)
end subroutine i2sort
subroutine i2sort_noidx(A, isize)
use iso_c_binding
use qsort_module
integer(c_int32_t) :: isize
integer (c_int16_t) :: A(isize)
call i2sort_noidx_c(A, isize)
end subroutine i2sort_noidx
subroutine i2sort_big(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int64_t) :: isize
integer(c_int64_t) :: iorder(isize)
integer (c_int16_t) :: A(isize)
call i2sort_big_c(A, iorder, isize)
end subroutine i2sort_big
subroutine i2sort_noidx_big(A, isize)
use iso_c_binding
use qsort_module
integer(c_int64_t) :: isize
integer (c_int16_t) :: A(isize)
call i2sort_noidx_big_c(A, isize)
end subroutine i2sort_noidx_big
subroutine isort(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int32_t) :: isize
integer(c_int32_t) :: iorder(isize)
integer (c_int32_t) :: A(isize)
call isort_c(A, iorder, isize)
end subroutine isort
subroutine isort_noidx(A, isize)
use iso_c_binding
use qsort_module
integer(c_int32_t) :: isize
integer (c_int32_t) :: A(isize)
call isort_noidx_c(A, isize)
end subroutine isort_noidx
subroutine isort_big(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int64_t) :: isize
integer(c_int64_t) :: iorder(isize)
integer (c_int32_t) :: A(isize)
call isort_big_c(A, iorder, isize)
end subroutine isort_big
subroutine isort_noidx_big(A, isize)
use iso_c_binding
use qsort_module
integer(c_int64_t) :: isize
integer (c_int32_t) :: A(isize)
call isort_noidx_big_c(A, isize)
end subroutine isort_noidx_big
subroutine i8sort(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int32_t) :: isize
integer(c_int32_t) :: iorder(isize)
integer (c_int64_t) :: A(isize)
call i8sort_c(A, iorder, isize)
end subroutine i8sort
subroutine i8sort_noidx(A, isize)
use iso_c_binding
use qsort_module
integer(c_int32_t) :: isize
integer (c_int64_t) :: A(isize)
call i8sort_noidx_c(A, isize)
end subroutine i8sort_noidx
subroutine i8sort_big(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int64_t) :: isize
integer(c_int64_t) :: iorder(isize)
integer (c_int64_t) :: A(isize)
call i8sort_big_c(A, iorder, isize)
end subroutine i8sort_big
subroutine i8sort_noidx_big(A, isize)
use iso_c_binding
use qsort_module
integer(c_int64_t) :: isize
integer (c_int64_t) :: A(isize)
call i8sort_noidx_big_c(A, isize)
end subroutine i8sort_noidx_big
subroutine dsort(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int32_t) :: isize
integer(c_int32_t) :: iorder(isize)
real (c_double) :: A(isize)
call dsort_c(A, iorder, isize)
end subroutine dsort
subroutine dsort_noidx(A, isize)
use iso_c_binding
use qsort_module
integer(c_int32_t) :: isize
real (c_double) :: A(isize)
call dsort_noidx_c(A, isize)
end subroutine dsort_noidx
subroutine dsort_big(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int64_t) :: isize
integer(c_int64_t) :: iorder(isize)
real (c_double) :: A(isize)
call dsort_big_c(A, iorder, isize)
end subroutine dsort_big
subroutine dsort_noidx_big(A, isize)
use iso_c_binding
use qsort_module
integer(c_int64_t) :: isize
real (c_double) :: A(isize)
call dsort_noidx_big_c(A, isize)
end subroutine dsort_noidx_big
subroutine sort(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int32_t) :: isize
integer(c_int32_t) :: iorder(isize)
real (c_float) :: A(isize)
call sort_c(A, iorder, isize)
end subroutine sort
subroutine sort_noidx(A, isize)
use iso_c_binding
use qsort_module
integer(c_int32_t) :: isize
real (c_float) :: A(isize)
call sort_noidx_c(A, isize)
end subroutine sort_noidx
subroutine sort_big(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int64_t) :: isize
integer(c_int64_t) :: iorder(isize)
real (c_float) :: A(isize)
call sort_big_c(A, iorder, isize)
end subroutine sort_big
subroutine sort_noidx_big(A, isize)
use iso_c_binding
use qsort_module
integer(c_int64_t) :: isize
real (c_float) :: A(isize)
call sort_noidx_big_c(A, isize)
end subroutine sort_noidx_big

View File

@ -1,4 +1,222 @@
BEGIN_TEMPLATE BEGIN_TEMPLATE
subroutine insertion_$Xsort (x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize) using the insertion sort algorithm.
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
$type :: xtmp
integer :: i, i0, j, jmax
do i=2,isize
xtmp = x(i)
i0 = iorder(i)
j=i-1
do while (j>0)
if ((x(j) <= xtmp)) exit
x(j+1) = x(j)
iorder(j+1) = iorder(j)
j=j-1
enddo
x(j+1) = xtmp
iorder(j+1) = i0
enddo
end subroutine insertion_$Xsort
subroutine quick_$Xsort(x, iorder, isize)
implicit none
BEGIN_DOC
! Sort array x(isize) using the quicksort algorithm.
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
integer, external :: omp_get_num_threads
call rec_$X_quicksort(x,iorder,isize,1,isize,nproc)
end
recursive subroutine rec_$X_quicksort(x, iorder, isize, first, last, level)
implicit none
integer, intent(in) :: isize, first, last, level
integer,intent(inout) :: iorder(isize)
$type, intent(inout) :: x(isize)
$type :: c, tmp
integer :: itmp
integer :: i, j
if(isize<2)return
c = x( shiftr(first+last,1) )
i = first
j = last
do
do while (x(i) < c)
i=i+1
end do
do while (c < x(j))
j=j-1
end do
if (i >= j) exit
tmp = x(i)
x(i) = x(j)
x(j) = tmp
itmp = iorder(i)
iorder(i) = iorder(j)
iorder(j) = itmp
i=i+1
j=j-1
enddo
if ( ((i-first <= 10000).and.(last-j <= 10000)).or.(level<=0) ) then
if (first < i-1) then
call rec_$X_quicksort(x, iorder, isize, first, i-1,level/2)
endif
if (j+1 < last) then
call rec_$X_quicksort(x, iorder, isize, j+1, last,level/2)
endif
else
if (first < i-1) then
call rec_$X_quicksort(x, iorder, isize, first, i-1,level/2)
endif
if (j+1 < last) then
call rec_$X_quicksort(x, iorder, isize, j+1, last,level/2)
endif
endif
end
subroutine heap_$Xsort(x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize) using the heap sort algorithm.
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
integer :: i, k, j, l, i0
$type :: xtemp
l = isize/2+1
k = isize
do while (.True.)
if (l>1) then
l=l-1
xtemp = x(l)
i0 = iorder(l)
else
xtemp = x(k)
i0 = iorder(k)
x(k) = x(1)
iorder(k) = iorder(1)
k = k-1
if (k == 1) then
x(1) = xtemp
iorder(1) = i0
exit
endif
endif
i=l
j = shiftl(l,1)
do while (j<k)
if ( x(j) < x(j+1) ) then
j=j+1
endif
if (xtemp < x(j)) then
x(i) = x(j)
iorder(i) = iorder(j)
i = j
j = shiftl(j,1)
else
j = k+1
endif
enddo
if (j==k) then
if (xtemp < x(j)) then
x(i) = x(j)
iorder(i) = iorder(j)
i = j
j = shiftl(j,1)
else
j = k+1
endif
endif
x(i) = xtemp
iorder(i) = i0
enddo
end subroutine heap_$Xsort
subroutine heap_$Xsort_big(x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize) using the heap sort algorithm.
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
! This is a version for very large arrays where the indices need
! to be in integer*8 format
END_DOC
integer*8,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer*8,intent(inout) :: iorder(isize)
integer*8 :: i, k, j, l, i0
$type :: xtemp
l = isize/2+1
k = isize
do while (.True.)
if (l>1) then
l=l-1
xtemp = x(l)
i0 = iorder(l)
else
xtemp = x(k)
i0 = iorder(k)
x(k) = x(1)
iorder(k) = iorder(1)
k = k-1
if (k == 1) then
x(1) = xtemp
iorder(1) = i0
exit
endif
endif
i=l
j = shiftl(l,1)
do while (j<k)
if ( x(j) < x(j+1) ) then
j=j+1
endif
if (xtemp < x(j)) then
x(i) = x(j)
iorder(i) = iorder(j)
i = j
j = shiftl(j,1)
else
j = k+1
endif
enddo
if (j==k) then
if (xtemp < x(j)) then
x(i) = x(j)
iorder(i) = iorder(j)
i = j
j = shiftl(j,1)
else
j = k+1
endif
endif
x(i) = xtemp
iorder(i) = i0
enddo
end subroutine heap_$Xsort_big
subroutine sorted_$Xnumber(x,isize,n) subroutine sorted_$Xnumber(x,isize,n)
implicit none implicit none
@ -32,6 +250,222 @@ SUBST [ X, type ]
END_TEMPLATE END_TEMPLATE
!---------------------- INTEL
IRP_IF INTEL
BEGIN_TEMPLATE
subroutine $Xsort(x,iorder,isize)
use intel
implicit none
BEGIN_DOC
! Sort array x(isize).
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
integer :: n
character, allocatable :: tmp(:)
if (isize < 2) return
call ippsSortRadixIndexGetBufferSize(isize, $ippsz, n)
allocate(tmp(n))
call ippsSortRadixIndexAscend_$ityp(x, $n, iorder, isize, tmp)
deallocate(tmp)
iorder(1:isize) = iorder(1:isize)+1
call $Xset_order(x,iorder,isize)
end
subroutine $Xsort_noidx(x,isize)
use intel
implicit none
BEGIN_DOC
! Sort array x(isize).
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer :: n
character, allocatable :: tmp(:)
if (isize < 2) return
call ippsSortRadixIndexGetBufferSize(isize, $ippsz, n)
allocate(tmp(n))
call ippsSortRadixAscend_$ityp_I(x, isize, tmp)
deallocate(tmp)
end
SUBST [ X, type, ityp, n, ippsz ]
; real ; 32f ; 4 ; 13 ;;
i ; integer ; 32s ; 4 ; 11 ;;
i2 ; integer*2 ; 16s ; 2 ; 7 ;;
END_TEMPLATE
BEGIN_TEMPLATE
subroutine $Xsort(x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize).
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
integer :: n
if (isize < 2) then
return
endif
! call sorted_$Xnumber(x,isize,n)
! if (isize == n) then
! return
! endif
if ( isize < 32) then
call insertion_$Xsort(x,iorder,isize)
else
! call heap_$Xsort(x,iorder,isize)
call quick_$Xsort(x,iorder,isize)
endif
end subroutine $Xsort
SUBST [ X, type ]
d ; double precision ;;
END_TEMPLATE
BEGIN_TEMPLATE
subroutine $Xsort(x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize).
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
integer :: n
if (isize < 2) then
return
endif
call sorted_$Xnumber(x,isize,n)
if (isize == n) then
return
endif
if ( isize < 32) then
call insertion_$Xsort(x,iorder,isize)
else
! call $Xradix_sort(x,iorder,isize,-1)
call quick_$Xsort(x,iorder,isize)
endif
end subroutine $Xsort
SUBST [ X, type ]
i8 ; integer*8 ;;
END_TEMPLATE
!---------------------- END INTEL
IRP_ELSE
!---------------------- NON-INTEL
BEGIN_TEMPLATE
subroutine $Xsort_noidx(x,isize)
implicit none
BEGIN_DOC
! Sort array x(isize).
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer, allocatable :: iorder(:)
integer :: i
allocate(iorder(isize))
do i=1,isize
iorder(i)=i
enddo
call $Xsort(x,iorder,isize)
deallocate(iorder)
end subroutine $Xsort_noidx
SUBST [ X, type ]
; real ;;
d ; double precision ;;
i ; integer ;;
i8 ; integer*8 ;;
i2 ; integer*2 ;;
END_TEMPLATE
BEGIN_TEMPLATE
subroutine $Xsort(x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize).
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
integer :: n
if (isize < 2) then
return
endif
! call sorted_$Xnumber(x,isize,n)
! if (isize == n) then
! return
! endif
if ( isize < 32) then
call insertion_$Xsort(x,iorder,isize)
else
! call heap_$Xsort(x,iorder,isize)
call quick_$Xsort(x,iorder,isize)
endif
end subroutine $Xsort
SUBST [ X, type ]
; real ;;
d ; double precision ;;
END_TEMPLATE
BEGIN_TEMPLATE
subroutine $Xsort(x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize).
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
integer :: n
if (isize < 2) then
return
endif
call sorted_$Xnumber(x,isize,n)
if (isize == n) then
return
endif
if ( isize < 32) then
call insertion_$Xsort(x,iorder,isize)
else
! call $Xradix_sort(x,iorder,isize,-1)
call quick_$Xsort(x,iorder,isize)
endif
end subroutine $Xsort
SUBST [ X, type ]
i ; integer ;;
i8 ; integer*8 ;;
i2 ; integer*2 ;;
END_TEMPLATE
IRP_ENDIF
!---------------------- END NON-INTEL
BEGIN_TEMPLATE BEGIN_TEMPLATE
subroutine $Xset_order(x,iorder,isize) subroutine $Xset_order(x,iorder,isize)
@ -57,6 +491,47 @@ BEGIN_TEMPLATE
deallocate(xtmp) deallocate(xtmp)
end end
SUBST [ X, type ]
; real ;;
d ; double precision ;;
i ; integer ;;
i8; integer*8 ;;
i2; integer*2 ;;
END_TEMPLATE
BEGIN_TEMPLATE
subroutine insertion_$Xsort_big (x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize) using the insertion sort algorithm.
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
! This is a version for very large arrays where the indices need
! to be in integer*8 format
END_DOC
integer*8,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer*8,intent(inout) :: iorder(isize)
$type :: xtmp
integer*8 :: i, i0, j, jmax
do i=2_8,isize
xtmp = x(i)
i0 = iorder(i)
j = i-1_8
do while (j>0_8)
if (x(j)<=xtmp) exit
x(j+1_8) = x(j)
iorder(j+1_8) = iorder(j)
j = j-1_8
enddo
x(j+1_8) = xtmp
iorder(j+1_8) = i0
enddo
end subroutine insertion_$Xsort_big
subroutine $Xset_order_big(x,iorder,isize) subroutine $Xset_order_big(x,iorder,isize)
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -90,3 +565,223 @@ SUBST [ X, type ]
END_TEMPLATE END_TEMPLATE
BEGIN_TEMPLATE
recursive subroutine $Xradix_sort$big(x,iorder,isize,iradix)
implicit none
BEGIN_DOC
! Sort integer array x(isize) using the radix sort algorithm.
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
! iradix should be -1 in input.
END_DOC
integer*$int_type, intent(in) :: isize
integer*$int_type, intent(inout) :: iorder(isize)
integer*$type, intent(inout) :: x(isize)
integer, intent(in) :: iradix
integer :: iradix_new
integer*$type, allocatable :: x2(:), x1(:)
integer*$type :: i4 ! data type
integer*$int_type, allocatable :: iorder1(:),iorder2(:)
integer*$int_type :: i0, i1, i2, i3, i ! index type
integer*$type :: mask
integer :: err
!DIR$ ATTRIBUTES ALIGN : 128 :: iorder1,iorder2, x2, x1
if (isize < 2) then
return
endif
if (iradix == -1) then ! Sort Positive and negative
allocate(x1(isize),iorder1(isize), x2(isize),iorder2(isize),stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to allocate arrays'
stop
endif
i1=1_$int_type
i2=1_$int_type
do i=1_$int_type,isize
if (x(i) < 0_$type) then
iorder1(i1) = iorder(i)
x1(i1) = -x(i)
i1 = i1+1_$int_type
else
iorder2(i2) = iorder(i)
x2(i2) = x(i)
i2 = i2+1_$int_type
endif
enddo
i1=i1-1_$int_type
i2=i2-1_$int_type
do i=1_$int_type,i2
iorder(i1+i) = iorder2(i)
x(i1+i) = x2(i)
enddo
deallocate(x2,iorder2,stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to deallocate arrays x2, iorder2'
stop
endif
if (i1 > 1_$int_type) then
call $Xradix_sort$big(x1,iorder1,i1,-2)
do i=1_$int_type,i1
x(i) = -x1(1_$int_type+i1-i)
iorder(i) = iorder1(1_$int_type+i1-i)
enddo
endif
if (i2>1_$int_type) then
call $Xradix_sort$big(x(i1+1_$int_type),iorder(i1+1_$int_type),i2,-2)
endif
deallocate(x1,iorder1,stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to deallocate arrays x1, iorder1'
stop
endif
return
else if (iradix == -2) then ! Positive
! Find most significant bit
i0 = 0_$int_type
i4 = maxval(x)
iradix_new = max($integer_size-1-leadz(i4),1)
mask = ibset(0_$type,iradix_new)
allocate(x1(isize),iorder1(isize), x2(isize),iorder2(isize),stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to allocate arrays'
stop
endif
i1=1_$int_type
i2=1_$int_type
do i=1_$int_type,isize
if (iand(mask,x(i)) == 0_$type) then
iorder1(i1) = iorder(i)
x1(i1) = x(i)
i1 = i1+1_$int_type
else
iorder2(i2) = iorder(i)
x2(i2) = x(i)
i2 = i2+1_$int_type
endif
enddo
i1=i1-1_$int_type
i2=i2-1_$int_type
do i=1_$int_type,i1
iorder(i0+i) = iorder1(i)
x(i0+i) = x1(i)
enddo
i0 = i0+i1
i3 = i0
deallocate(x1,iorder1,stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to deallocate arrays x1, iorder1'
stop
endif
do i=1_$int_type,i2
iorder(i0+i) = iorder2(i)
x(i0+i) = x2(i)
enddo
i0 = i0+i2
deallocate(x2,iorder2,stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to deallocate arrays x2, iorder2'
stop
endif
if (i3>1_$int_type) then
call $Xradix_sort$big(x,iorder,i3,iradix_new-1)
endif
if (isize-i3>1_$int_type) then
call $Xradix_sort$big(x(i3+1_$int_type),iorder(i3+1_$int_type),isize-i3,iradix_new-1)
endif
return
endif
ASSERT (iradix >= 0)
if (isize < 48) then
call insertion_$Xsort$big(x,iorder,isize)
return
endif
allocate(x2(isize),iorder2(isize),stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to allocate arrays x1, iorder1'
stop
endif
mask = ibset(0_$type,iradix)
i0=1_$int_type
i1=1_$int_type
do i=1_$int_type,isize
if (iand(mask,x(i)) == 0_$type) then
iorder(i0) = iorder(i)
x(i0) = x(i)
i0 = i0+1_$int_type
else
iorder2(i1) = iorder(i)
x2(i1) = x(i)
i1 = i1+1_$int_type
endif
enddo
i0=i0-1_$int_type
i1=i1-1_$int_type
do i=1_$int_type,i1
iorder(i0+i) = iorder2(i)
x(i0+i) = x2(i)
enddo
deallocate(x2,iorder2,stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to allocate arrays x2, iorder2'
stop
endif
if (iradix == 0) then
return
endif
if (i1>1_$int_type) then
call $Xradix_sort$big(x(i0+1_$int_type),iorder(i0+1_$int_type),i1,iradix-1)
endif
if (i0>1) then
call $Xradix_sort$big(x,iorder,i0,iradix-1)
endif
end
SUBST [ X, type, integer_size, is_big, big, int_type ]
i ; 4 ; 32 ; .False. ; ; 4 ;;
i8 ; 8 ; 64 ; .False. ; ; 4 ;;
i2 ; 2 ; 16 ; .False. ; ; 4 ;;
i ; 4 ; 32 ; .True. ; _big ; 8 ;;
i8 ; 8 ; 64 ; .True. ; _big ; 8 ;;
END_TEMPLATE