mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-07 14:03:37 +01:00
documentation
This commit is contained in:
parent
996c09d220
commit
d32b170fd3
@ -90,7 +90,7 @@ end
|
|||||||
subroutine erfc_mu_gauss_xyz_ij_ao(i,j,mu, C_center, delta,gauss_ints)
|
subroutine erfc_mu_gauss_xyz_ij_ao(i,j,mu, C_center, delta,gauss_ints)
|
||||||
implicit none
|
implicit none
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
! gauss_ints(m) = \int dr exp(-delta (r - C)^2 ) x/y/z * ( 1 - erf(mu |r-r'|))/ |r-r'| * AO_i(r') * AO_j(r')
|
! gauss_ints(m) = \int dr exp(-delta (r - C)^2 ) x/y/z * ( 1 - erf(mu |r-C|))/ |r-C| * AO_i(r) * AO_j(r)
|
||||||
!
|
!
|
||||||
! with m = 1 ==> x, m = 2, m = 3 ==> z
|
! with m = 1 ==> x, m = 2, m = 3 ==> z
|
||||||
!
|
!
|
||||||
|
@ -142,7 +142,7 @@ double precision function erf_mu_gauss(D_center,delta,mu,A_center,B_center,power
|
|||||||
!
|
!
|
||||||
! .. math::
|
! .. math::
|
||||||
!
|
!
|
||||||
! \int dr exp(-delta (r - D)^2 ) erf(mu*|r-r'|)/ |r-r'| * (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
! \int dr exp(-delta (r - D)^2 ) erf(mu*|r-D|)/ |r-D| * (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||||
!
|
!
|
||||||
END_DOC
|
END_DOC
|
||||||
|
|
||||||
|
@ -9,3 +9,7 @@ The two providers are :
|
|||||||
+) ao_non_hermit_term_chemist which returns the non hermitian part of the two-electron TC Hamiltonian on the MO basis.
|
+) ao_non_hermit_term_chemist which returns the non hermitian part of the two-electron TC Hamiltonian on the MO basis.
|
||||||
+) mo_non_hermit_term_chemist which returns the non hermitian part of the two-electron TC Hamiltonian on the BI-ORTHO MO basis.
|
+) mo_non_hermit_term_chemist which returns the non hermitian part of the two-electron TC Hamiltonian on the BI-ORTHO MO basis.
|
||||||
|
|
||||||
|
|
||||||
|
!\sum_mm = 1,3 \sum_R phi_i(R) \phi_k(R) grad_1_u_ij_mu(j,l,R,mm) grad_1_u_ij_mu(m,n,R,mm)
|
||||||
|
!\sum_mm+= 1,3 \sum_R phi_j(R) \phi_l(R) grad_1_u_ij_mu(i,k,R,mm) grad_1_u_ij_mu(m,n,R,mm)
|
||||||
|
!\sum_mm+= 1,3 \sum_R phi_m(R) \phi_n(R) grad_1_u_ij_mu(i,k,R,mm) grad_1_u_ij_mu(j,l,R,mm)
|
||||||
|
@ -20,7 +20,7 @@ END_PROVIDER
|
|||||||
!
|
!
|
||||||
! J(mu,r12) = 0.5/mu * F(r12*mu) where F(x) = x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2)
|
! J(mu,r12) = 0.5/mu * F(r12*mu) where F(x) = x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2)
|
||||||
!
|
!
|
||||||
! F(x) is fitted by - 1/sqrt(pi) * exp(-alpha * x) exp(-beta*mu^2x^2) (see expo_j_xmu)
|
! F(x) is fitted by - 1/sqrt(pi) * exp(-alpha * x) exp(-beta * x^2) (see expo_j_xmu)
|
||||||
!
|
!
|
||||||
! The slater function exp(-alpha * x) is fitted with n_max_fit_slat gaussians
|
! The slater function exp(-alpha * x) is fitted with n_max_fit_slat gaussians
|
||||||
!
|
!
|
||||||
|
@ -32,6 +32,103 @@
|
|||||||
print*,'Wall time for grad_1_squared_u_ij_mu = ',time1 - time0
|
print*,'Wall time for grad_1_squared_u_ij_mu = ',time1 - time0
|
||||||
END_PROVIDER
|
END_PROVIDER
|
||||||
|
|
||||||
|
BEGIN_PROVIDER [ double precision, grad_1_squared_u_ij_mu_new, (n_points_final_grid, ao_num, ao_num)]
|
||||||
|
implicit none
|
||||||
|
integer :: ipoint,i,j,m,igauss
|
||||||
|
BEGIN_DOC
|
||||||
|
! grad_1_squared_u_ij_mu(j,i,ipoint) = -1/2 \int dr2 phi_j(r2) phi_i(r2) |\grad_r1 u(r1,r2,\mu)|^2
|
||||||
|
! |\grad_r1 u(r1,r2,\mu)|^2 = 1/4 * (1 - erf(mu*r12))^2
|
||||||
|
! ! (1 - erf(mu*r12))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * r12^2)
|
||||||
|
END_DOC
|
||||||
|
include 'constants.include.F'
|
||||||
|
double precision :: r(3),delta,coef
|
||||||
|
double precision :: overlap_gauss_r12_ao,time0,time1
|
||||||
|
integer :: num_a,num_b,power_A(3), power_B(3),l,k
|
||||||
|
double precision :: A_center(3), B_center(3),overlap_gauss_r12,alpha,beta,analytical_j
|
||||||
|
double precision :: A_new(0:max_dim,3)! new polynom
|
||||||
|
double precision :: A_center_new(3) ! new center
|
||||||
|
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
||||||
|
double precision :: alpha_new ! new exponent
|
||||||
|
double precision :: fact_a_new, coef_i, coef_j, k_ab,center_new(3),p_new,c_tmp,coef_last ! constant factor
|
||||||
|
double precision :: coefxy, coefx, coefy, coefz,coefxyz
|
||||||
|
integer :: d(3),lx,ly,lz,iorder_tmp(3),dim1
|
||||||
|
double precision :: overlap,overlap_x,overlap_y,overlap_z,thr
|
||||||
|
dim1=100
|
||||||
|
thr = 0.d0
|
||||||
|
print*,'providing grad_1_squared_u_ij_mu_new ...'
|
||||||
|
grad_1_squared_u_ij_mu_new = 0.d0
|
||||||
|
call wall_time(time0)
|
||||||
|
!TODO : strong optmization : write the loops in a different way
|
||||||
|
! : for each couple of AO, the gaussian product are done once for all
|
||||||
|
d = 0
|
||||||
|
do i = 1, ao_num
|
||||||
|
do j = 1, ao_num
|
||||||
|
! \int dr2 phi_j(r2) phi_i(r2) (1 - erf(mu*r12))^2
|
||||||
|
! = \sum_i coef_gauss_1_erf_x_2(i) \int dr2 phi_j(r2) phi_i(r2) exp(-expo_gauss_1_erf_x_2(i) * (r_1 - r_2)^2)
|
||||||
|
if(ao_overlap_abs(j,i).lt.1.d-12)then
|
||||||
|
cycle
|
||||||
|
endif
|
||||||
|
num_A = ao_nucl(i)
|
||||||
|
power_A(1:3)= ao_power(i,1:3)
|
||||||
|
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||||
|
num_B = ao_nucl(j)
|
||||||
|
power_B(1:3)= ao_power(j,1:3)
|
||||||
|
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||||
|
do l=1,ao_prim_num(i)
|
||||||
|
coef_i = ao_coef_normalized_ordered_transp(l,i)
|
||||||
|
alpha = ao_expo_ordered_transp(l,i)
|
||||||
|
do k=1,ao_prim_num(j)
|
||||||
|
beta = ao_expo_ordered_transp(k,j)
|
||||||
|
coef_j = ao_coef_normalized_ordered_transp(k,j)
|
||||||
|
|
||||||
|
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||||
|
! from gaussian_A * gaussian_B
|
||||||
|
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
||||||
|
beta,alpha,power_B,power_A,B_center,A_center,n_pt_max_integrals)
|
||||||
|
c_tmp = coef_i*coef_j*fact_a_new
|
||||||
|
if(dabs(c_tmp).lt.thr)cycle
|
||||||
|
do ipoint = 1, n_points_final_grid
|
||||||
|
r(1) = final_grid_points(1,ipoint)
|
||||||
|
r(2) = final_grid_points(2,ipoint)
|
||||||
|
r(3) = final_grid_points(3,ipoint)
|
||||||
|
do igauss = 1, n_max_fit_slat
|
||||||
|
delta = expo_gauss_1_erf_x_2(igauss)
|
||||||
|
coef = coef_gauss_1_erf_x_2(igauss)
|
||||||
|
coef_last = c_tmp * coef
|
||||||
|
if(dabs(coef_last).lt.thr)cycle
|
||||||
|
do lx = 0, iorder_a_new(1)
|
||||||
|
coefx = A_new(lx,1)
|
||||||
|
coefx *= coef_last
|
||||||
|
! if(dabs(coefx).lt.thr)cycle
|
||||||
|
iorder_tmp(1) = lx
|
||||||
|
do ly = 0, iorder_a_new(2)
|
||||||
|
coefy = A_new(ly,2)
|
||||||
|
coefxy= coefx*coefy
|
||||||
|
! if(dabs(coefxy).lt.thr)cycle
|
||||||
|
iorder_tmp(2) = ly
|
||||||
|
do lz = 0, iorder_a_new(3)
|
||||||
|
coefz = A_new(lz,3)
|
||||||
|
coefxyz = coefz * coefxy
|
||||||
|
! if(dabs(coefxyz).lt.thr)cycle
|
||||||
|
iorder_tmp(3) = lz
|
||||||
|
! call gaussian_product(alpha_new,A_center_new,delta,r,k_ab,p_new,center_new)
|
||||||
|
! if(dabs(coef_last*k_ab).lt.thr)cycle
|
||||||
|
call overlap_gaussian_xyz(A_center_new,r,alpha_new,delta,iorder_tmp,d,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
||||||
|
grad_1_squared_u_ij_mu_new(ipoint,j,i) += -0.25 * coefxyz * overlap
|
||||||
|
enddo ! igauss
|
||||||
|
enddo ! ipoint
|
||||||
|
enddo ! lz
|
||||||
|
enddo ! ly
|
||||||
|
enddo ! lx
|
||||||
|
enddo ! k
|
||||||
|
enddo ! l
|
||||||
|
enddo ! j
|
||||||
|
enddo ! i
|
||||||
|
call wall_time(time1)
|
||||||
|
print*,'Wall time for grad_1_squared_u_ij_mu_new = ',time1 - time0
|
||||||
|
END_PROVIDER
|
||||||
|
|
||||||
|
|
||||||
BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao_num)]
|
BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao_num)]
|
||||||
implicit none
|
implicit none
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
|
@ -28,7 +28,7 @@ END_PROVIDER
|
|||||||
BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao, (ao_num, ao_num, ao_num, ao_num)]
|
BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao, (ao_num, ao_num, ao_num, ao_num)]
|
||||||
implicit none
|
implicit none
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
! tc_grad_and_lapl_ao(k,i,l,j) = <kl | -1/2 \Delta_1 u(r1,r2) - \grad_1 u(r1,r2) | ij>
|
! tc_grad_and_lapl_ao(k,i,l,j) = <kl | -1/2 \Delta_1 u(r1,r2) - \grad_1 u(r1,r2) .\grad_1| ij>
|
||||||
!
|
!
|
||||||
! = 1/2 \int dr1 (phi_k(r1) \grad_r1 phi_i(r1) - phi_i(r1) \grad_r1 phi_k(r1)) . \int dr2 \grad_r1 u(r1,r2) \phi_l(r2) \phi_j(r2)
|
! = 1/2 \int dr1 (phi_k(r1) \grad_r1 phi_i(r1) - phi_i(r1) \grad_r1 phi_k(r1)) . \int dr2 \grad_r1 u(r1,r2) \phi_l(r2) \phi_j(r2)
|
||||||
!
|
!
|
||||||
|
@ -1,13 +1,14 @@
|
|||||||
program test_non_h
|
program test_non_h
|
||||||
implicit none
|
implicit none
|
||||||
my_grid_becke = .True.
|
my_grid_becke = .True.
|
||||||
my_n_pt_r_grid = 50
|
! my_n_pt_r_grid = 50
|
||||||
my_n_pt_a_grid = 74
|
! my_n_pt_a_grid = 74
|
||||||
! my_n_pt_r_grid = 10 ! small grid for quick debug
|
my_n_pt_r_grid = 10 ! small grid for quick debug
|
||||||
! my_n_pt_a_grid = 26 ! small grid for quick debug
|
my_n_pt_a_grid = 26 ! small grid for quick debug
|
||||||
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
|
||||||
!call routine_grad_squared
|
!call routine_grad_squared
|
||||||
call routine_fit
|
! call routine_fit
|
||||||
|
call routine_grad_squared_new
|
||||||
end
|
end
|
||||||
|
|
||||||
subroutine routine_lapl_grad
|
subroutine routine_lapl_grad
|
||||||
@ -85,6 +86,38 @@ subroutine routine_grad_squared
|
|||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
subroutine routine_grad_squared_new
|
||||||
|
implicit none
|
||||||
|
integer :: i,j,k,l,ipoint
|
||||||
|
double precision :: grad_squared, get_ao_tc_sym_two_e_pot,new,accu,contrib
|
||||||
|
double precision :: count_n,accu_relat
|
||||||
|
accu = 0.d0
|
||||||
|
accu_relat = 0.d0
|
||||||
|
count_n = 0.d0
|
||||||
|
do i = 1, ao_num
|
||||||
|
do j = 1, ao_num
|
||||||
|
do ipoint = 1, n_points_final_grid
|
||||||
|
grad_squared = grad_1_squared_u_ij_mu(j,i,ipoint)
|
||||||
|
new = grad_1_squared_u_ij_mu_new(ipoint,j,i)
|
||||||
|
contrib = dabs(new - grad_squared)
|
||||||
|
if(dabs(grad_squared).gt.1.d-12)then
|
||||||
|
count_n += 1.d0
|
||||||
|
accu_relat += 2.0d0 * contrib/dabs(grad_squared+new)
|
||||||
|
endif
|
||||||
|
if(contrib.gt.1.d-10)then
|
||||||
|
print*,i,j,ipoint
|
||||||
|
print*,grad_squared,new,contrib
|
||||||
|
print*,2.0d0*contrib/dabs(grad_squared+new+1.d-12)
|
||||||
|
endif
|
||||||
|
accu += contrib
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
print*,'accu = ',accu/count_n
|
||||||
|
print*,'accu/rel = ',accu_relat/count_n
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
subroutine routine_fit
|
subroutine routine_fit
|
||||||
implicit none
|
implicit none
|
||||||
integer :: i,nx
|
integer :: i,nx
|
||||||
|
Loading…
Reference in New Issue
Block a user