9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-06 21:43:39 +01:00

still cleaning in two_body_rdm

This commit is contained in:
Emmanuel Giner 2020-03-20 14:30:46 +01:00
parent 244831673d
commit d04774c435
10 changed files with 1 additions and 1267 deletions

View File

@ -1,2 +1,2 @@
davidson_undressed
two_rdm_routines
density_for_dft

View File

@ -1,499 +0,0 @@
subroutine orb_range_two_rdm_state_av(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_0,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
! if ispin == 1 :: alpha/alpha 2rdm
! == 2 :: beta /beta 2rdm
! == 3 :: alpha/beta 2rdm
! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba))
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
integer, intent(in) :: N_st,sze
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
double precision, intent(in) :: u_0(sze,N_st),state_weights(N_st)
integer :: k
double precision, allocatable :: u_t(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
allocate(u_t(N_st,N_det))
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
enddo
call dtranspose( &
u_0, &
size(u_0, 1), &
u_t, &
size(u_t, 1), &
N_det, N_st)
call orb_range_two_rdm_state_av_work(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,1,N_det,0,1)
deallocate(u_t)
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
enddo
end
subroutine orb_range_two_rdm_state_av_work(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
! Computes two-rdm
!
! Default should be 1,N_det,0,1
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
double precision, intent(in) :: u_t(N_st,N_det),state_weights(N_st)
integer :: k
PROVIDE N_int
select case (N_int)
case (1)
call orb_range_two_rdm_state_av_work_1(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
case (2)
call orb_range_two_rdm_state_av_work_2(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
case (3)
call orb_range_two_rdm_state_av_work_3(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
case (4)
call orb_range_two_rdm_state_av_work_4(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
case default
call orb_range_two_rdm_state_av_work_N_int(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
end select
end
BEGIN_TEMPLATE
subroutine orb_range_two_rdm_state_av_work_$N_int(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
! Computes the two rdm for the N_st vectors |u_t>
! if ispin == 1 :: alpha/alpha 2rdm
! == 2 :: beta /beta 2rdm
! == 3 :: alpha/beta 2rdm
! == 4 :: spin traced 2rdm :: aa + bb + 0.5 (ab + ba))
! The 2rdm will be computed only on the list of orbitals list_orb, which contains norb
! In any cases, the state average weights will be used with an array state_weights
! Default should be 1,N_det,0,1 for istart,iend,ishift,istep
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
double precision, intent(in) :: u_t(N_st,N_det),state_weights(N_st)
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer :: i,j,k,l
integer :: k_a, k_b, l_a, l_b, m_a, m_b
integer :: istate
integer :: krow, kcol, krow_b, kcol_b
integer :: lrow, lcol
integer :: mrow, mcol
integer(bit_kind) :: spindet($N_int)
integer(bit_kind) :: tmp_det($N_int,2)
integer(bit_kind) :: tmp_det2($N_int,2)
integer(bit_kind) :: tmp_det3($N_int,2)
integer(bit_kind), allocatable :: buffer(:,:)
integer :: n_doubles
integer, allocatable :: doubles(:)
integer, allocatable :: singles_a(:)
integer, allocatable :: singles_b(:)
integer, allocatable :: idx(:), idx0(:)
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
integer*8 :: k8
double precision :: c_average
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
integer(bit_kind) :: orb_bitmask($N_int)
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
else
print*,'Wrong parameter for ispin in general_two_rdm_state_av_work'
print*,'ispin = ',ispin
stop
endif
PROVIDE N_int
call list_to_bitstring( orb_bitmask, list_orb, norb, N_int)
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
allocate(idx0(maxab))
do i=1,maxab
idx0(i) = i
enddo
! Prepare the array of all alpha single excitations
! -------------------------------------------------
PROVIDE N_int nthreads_davidson
!!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) &
! !$OMP SHARED(psi_bilinear_matrix_rows, N_det, &
! !$OMP psi_bilinear_matrix_columns, &
! !$OMP psi_det_alpha_unique, psi_det_beta_unique,&
! !$OMP n_det_alpha_unique, n_det_beta_unique, N_int,&
! !$OMP psi_bilinear_matrix_transp_rows, &
! !$OMP psi_bilinear_matrix_transp_columns, &
! !$OMP psi_bilinear_matrix_transp_order, N_st, &
! !$OMP psi_bilinear_matrix_order_transp_reverse, &
! !$OMP psi_bilinear_matrix_columns_loc, &
! !$OMP psi_bilinear_matrix_transp_rows_loc, &
! !$OMP istart, iend, istep, irp_here, v_t, s_t, &
! !$OMP ishift, idx0, u_t, maxab) &
! !$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i,&
! !$OMP lcol, lrow, l_a, l_b, &
! !$OMP buffer, doubles, n_doubles, &
! !$OMP tmp_det2, idx, l, kcol_prev, &
! !$OMP singles_a, n_singles_a, singles_b, &
! !$OMP n_singles_b, k8)
! Alpha/Beta double excitations
! =============================
allocate( buffer($N_int,maxab), &
singles_a(maxab), &
singles_b(maxab), &
doubles(maxab), &
idx(maxab))
kcol_prev=-1
ASSERT (iend <= N_det)
ASSERT (istart > 0)
ASSERT (istep > 0)
!!$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
if (kcol /= kcol_prev) then
call get_all_spin_singles_$N_int( &
psi_det_beta_unique, idx0, &
tmp_det(1,2), N_det_beta_unique, &
singles_b, n_singles_b)
endif
kcol_prev = kcol
! Loop over singly excited beta columns
! -------------------------------------
do i=1,n_singles_b
lcol = singles_b(i)
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det)
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
ASSERT (l_a <= N_det)
idx(j) = l_a
l_a = l_a+1
enddo
j = j-1
call get_all_spin_singles_$N_int( &
buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a )
! Loop over alpha singles
! -----------------------
if(alpha_beta.or.spin_trace)then
do k = 1,n_singles_a
l_a = singles_a(k)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
c_average = 0.d0
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
call orb_range_off_diagonal_double_to_two_rdm_ab_dm(tmp_det,tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
enddo
endif
enddo
enddo
! !$OMP END DO
! !$OMP DO SCHEDULE(dynamic,64)
do k_a=istart+ishift,iend,istep
! Single and double alpha exitations
! ===================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
! Initial determinant is at k_b in beta-major representation
! ----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
spindet(1:$N_int) = tmp_det(1:$N_int,1)
! Loop inside the beta column to gather all the connected alphas
lcol = psi_bilinear_matrix_columns(k_a)
l_a = psi_bilinear_matrix_columns_loc(lcol)
do i=1,N_det_alpha_unique
if (l_a > N_det) exit
lcol = psi_bilinear_matrix_columns(l_a)
if (lcol /= kcol) exit
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
idx(i) = l_a
l_a = l_a+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_a, doubles, n_singles_a, n_doubles )
! Compute Hij for all alpha singles
! ----------------------------------
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
do i=1,n_singles_a
l_a = singles_a(i)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
c_average = 0.d0
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
if(alpha_beta.or.spin_trace.or.alpha_alpha)then
! increment the alpha/beta part for single excitations
call orb_range_off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
! increment the alpha/alpha part for single excitations
call orb_range_off_diagonal_single_to_two_rdm_aa_dm(tmp_det,tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
endif
enddo
! Compute Hij for all alpha doubles
! ----------------------------------
if(alpha_alpha.or.spin_trace)then
do i=1,n_doubles
l_a = doubles(i)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
c_average = 0.d0
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
call orb_range_off_diagonal_double_to_two_rdm_aa_dm(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
enddo
endif
! Single and double beta excitations
! ==================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
spindet(1:$N_int) = tmp_det(1:$N_int,2)
! Initial determinant is at k_b in beta-major representation
! -----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
ASSERT (k_b <= N_det)
! Loop inside the alpha row to gather all the connected betas
lrow = psi_bilinear_matrix_transp_rows(k_b)
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
do i=1,N_det_beta_unique
if (l_b > N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l_b)
if (lrow /= krow) exit
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
idx(i) = l_b
l_b = l_b+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_b, doubles, n_singles_b, n_doubles )
! Compute Hij for all beta singles
! ----------------------------------
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
do i=1,n_singles_b
l_b = singles_b(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
l_a = psi_bilinear_matrix_transp_order(l_b)
c_average = 0.d0
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
if(alpha_beta.or.spin_trace.or.beta_beta)then
! increment the alpha/beta part for single excitations
call orb_range_off_diagonal_single_to_two_rdm_ab_dm(tmp_det, tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
! increment the beta /beta part for single excitations
call orb_range_off_diagonal_single_to_two_rdm_bb_dm(tmp_det, tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
endif
enddo
! Compute Hij for all beta doubles
! ----------------------------------
if(beta_beta.or.spin_trace)then
do i=1,n_doubles
l_b = doubles(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
l_a = psi_bilinear_matrix_transp_order(l_b)
c_average = 0.d0
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
c_average += c_1(l) * c_2(l) * state_weights(l)
enddo
call orb_range_off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_beta_unique(1, lcol),c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
ASSERT (l_a <= N_det)
enddo
endif
! Diagonal contribution
! =====================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
double precision, external :: diag_wee_mat_elem, diag_S_mat_elem
double precision :: c_1(N_states),c_2(N_states)
c_average = 0.d0
do l = 1, N_states
c_1(l) = u_t(l,k_a)
c_average += c_1(l) * c_1(l) * state_weights(l)
enddo
call orb_range_diagonal_contrib_to_all_two_rdm_dm(tmp_det,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
end do
!!$OMP END DO
deallocate(buffer, singles_a, singles_b, doubles, idx)
!!$OMP END PARALLEL
end
SUBST [ N_int ]
1;;
2;;
3;;
4;;
N_int;;
END_TEMPLATE

View File

@ -1,97 +0,0 @@
BEGIN_PROVIDER [double precision, state_av_act_two_rdm_alpha_alpha_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
double precision, allocatable :: state_weights(:)
BEGIN_DOC
! state_av_act_two_rdm_alpha_alpha_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM of alpha electrons
!
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \alpha} a_{l \alpha} a_{k \alpha} |Psi>
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
END_DOC
allocate(state_weights(N_states))
state_weights = state_average_weight
integer :: ispin
! condition for alpha/beta spin
ispin = 1
state_av_act_two_rdm_alpha_alpha_mo = 0.D0
call orb_range_two_rdm_state_av(state_av_act_two_rdm_alpha_alpha_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
END_PROVIDER
BEGIN_PROVIDER [double precision, state_av_act_two_rdm_beta_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
double precision, allocatable :: state_weights(:)
BEGIN_DOC
! state_av_act_two_rdm_beta_beta_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM of beta electrons
!
! <Psi| a^{\dagger}_{i \beta} a^{\dagger}_{j \beta} a_{l \beta} a_{k \beta} |Psi>
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
END_DOC
allocate(state_weights(N_states))
state_weights = state_average_weight
integer :: ispin
! condition for alpha/beta spin
ispin = 2
state_av_act_two_rdm_beta_beta_mo = 0.d0
call orb_range_two_rdm_state_av(state_av_act_two_rdm_beta_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
END_PROVIDER
BEGIN_PROVIDER [double precision, state_av_act_two_rdm_alpha_beta_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
double precision, allocatable :: state_weights(:)
BEGIN_DOC
! state_av_act_two_rdm_alpha_beta_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM of alpha/beta electrons
!
! <Psi| a^{\dagger}_{i \alpha} a^{\dagger}_{j \beta} a_{l \beta} a_{k \alpha} |Psi>
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
END_DOC
allocate(state_weights(N_states))
state_weights = state_average_weight
integer :: ispin
! condition for alpha/beta spin
print*,''
print*,''
print*,''
print*,'providint state_av_act_two_rdm_alpha_beta_mo '
ispin = 3
print*,'ispin = ',ispin
state_av_act_two_rdm_alpha_beta_mo = 0.d0
call orb_range_two_rdm_state_av(state_av_act_two_rdm_alpha_beta_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
END_PROVIDER
BEGIN_PROVIDER [double precision, state_av_act_two_rdm_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
BEGIN_DOC
! state_av_act_two_rdm_spin_trace_mo(i,j,k,l) = STATE AVERAGE physicist notation for 2RDM
!
! \sum_{\sigma, \sigma'} <Psi| a^{\dagger}_{i \sigma} a^{\dagger}_{j \sigma'} a_{l \sigma'} a_{k \sigma} |Psi>
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
END_DOC
double precision, allocatable :: state_weights(:)
allocate(state_weights(N_states))
state_weights = state_average_weight
integer :: ispin
! condition for alpha/beta spin
ispin = 4
state_av_act_two_rdm_spin_trace_mo = 0.d0
integer :: i
double precision :: wall_0,wall_1
call wall_time(wall_0)
print*,'providing the state average TWO-RDM ...'
print*,'psi_det_size = ',psi_det_size
print*,'N_det = ',N_det
call orb_range_two_rdm_state_av(state_av_act_two_rdm_spin_trace_mo,n_act_orb,n_act_orb,list_act,list_act_reverse,state_weights,ispin,psi_coef,N_states,size(psi_coef,1))
call wall_time(wall_1)
print*,'Time to provide the state average TWO-RDM',wall_1 - wall_0
END_PROVIDER

View File

@ -1,670 +0,0 @@
subroutine orb_range_diagonal_contrib_to_two_rdm_ab_dm(det_1,c_1,big_array,dim1,orb_bitmask)
use bitmasks
BEGIN_DOC
! routine that update the DIAGONAL PART of the alpha/beta two body rdm in a specific range of orbitals
! c_1 is supposed to be a scalar quantity, such as state averaged coef
END_DOC
implicit none
integer, intent(in) :: dim1
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int,2)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
double precision, intent(in) :: c_1
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
do i = 1, n_occ_ab(1)
h1 = occ(i,1)
do j = 1, n_occ_ab(2)
h2 = occ(j,2)
big_array(h1,h2,h1,h2) += c_1
enddo
enddo
end
subroutine orb_range_diagonal_contrib_to_all_two_rdm_dm(det_1,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
use bitmasks
BEGIN_DOC
! routine that update the DIAGONAL PART of the two body rdms in a specific range of orbitals for a given determinant det_1
!
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!
! ispin determines which spin-spin component of the two-rdm you will update
!
! ispin == 1 :: alpha/ alpha
! ispin == 2 :: beta / beta
! ispin == 3 :: alpha/ beta
! ispin == 4 :: spin traced <=> total two-rdm
END_DOC
implicit none
integer, intent(in) :: dim1,ispin
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int,2)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
double precision, intent(in) :: c_1
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2
integer(bit_kind) :: det_1_act(N_int,2)
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
do i = 1, N_int
det_1_act(i,1) = iand(det_1(i,1),orb_bitmask(i))
det_1_act(i,2) = iand(det_1(i,2),orb_bitmask(i))
enddo
!print*,'ahah'
!call debug_det(det_1_act,N_int)
!pause
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
endif
BEGIN_DOC
! no factor 1/2 have to be taken into account as the permutations are already taken into account
END_DOC
call bitstring_to_list_ab(det_1_act, occ, n_occ_ab, N_int)
logical :: is_integer_in_string
integer :: i1,i2
if(alpha_beta)then
do i = 1, n_occ_ab(1)
i1 = occ(i,1)
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
do j = 1, n_occ_ab(2)
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
i2 = occ(j,2)
h1 = list_orb_reverse(i1)
h2 = list_orb_reverse(i2)
big_array(h1,h2,h1,h2) += c_1
enddo
enddo
else if (alpha_alpha)then
do i = 1, n_occ_ab(1)
i1 = occ(i,1)
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
do j = 1, n_occ_ab(1)
i2 = occ(j,1)
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
h1 = list_orb_reverse(i1)
h2 = list_orb_reverse(i2)
big_array(h1,h2,h1,h2) += 0.5d0 * c_1
big_array(h1,h2,h2,h1) -= 0.5d0 * c_1
enddo
enddo
else if (beta_beta)then
do i = 1, n_occ_ab(2)
i1 = occ(i,2)
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
do j = 1, n_occ_ab(2)
i2 = occ(j,2)
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
h1 = list_orb_reverse(i1)
h2 = list_orb_reverse(i2)
big_array(h1,h2,h1,h2) += 0.5d0 * c_1
big_array(h1,h2,h2,h1) -= 0.5d0 * c_1
enddo
enddo
else if(spin_trace)then
! 0.5 * (alpha beta + beta alpha)
do i = 1, n_occ_ab(1)
i1 = occ(i,1)
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
do j = 1, n_occ_ab(2)
i2 = occ(j,2)
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
h1 = list_orb_reverse(i1)
h2 = list_orb_reverse(i2)
big_array(h1,h2,h1,h2) += 0.5d0 * (c_1 )
big_array(h2,h1,h2,h1) += 0.5d0 * (c_1 )
enddo
enddo
!stop
do i = 1, n_occ_ab(1)
i1 = occ(i,1)
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
do j = 1, n_occ_ab(1)
i2 = occ(j,1)
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
h1 = list_orb_reverse(i1)
h2 = list_orb_reverse(i2)
big_array(h1,h2,h1,h2) += 0.5d0 * c_1
big_array(h1,h2,h2,h1) -= 0.5d0 * c_1
enddo
enddo
do i = 1, n_occ_ab(2)
i1 = occ(i,2)
! if(.not.is_integer_in_string(i1,orb_bitmask,N_int))cycle
do j = 1, n_occ_ab(2)
i2 = occ(j,2)
! if(.not.is_integer_in_string(i2,orb_bitmask,N_int))cycle
h1 = list_orb_reverse(i1)
h2 = list_orb_reverse(i2)
big_array(h1,h2,h1,h2) += 0.5d0 * c_1
big_array(h1,h2,h2,h1) -= 0.5d0 * c_1
enddo
enddo
endif
end
subroutine orb_range_off_diagonal_double_to_two_rdm_ab_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
use bitmasks
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
!
! a given couple of determinant det_1, det_2 being a alpha/beta DOUBLE excitation with respect to one another
!
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!
! ispin determines which spin-spin component of the two-rdm you will update
!
! ispin == 1 :: alpha/ alpha
! ispin == 2 :: beta / beta
! ispin == 3 :: alpha/ beta
! ispin == 4 :: spin traced <=> total two-rdm
!
! here, only ispin == 3 or 4 will do something
END_DOC
implicit none
integer, intent(in) :: dim1,ispin
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(in) :: c_1
integer :: i,j,h1,h2,p1,p2
integer :: exc(0:2,2,2)
double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
logical :: is_integer_in_string
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
endif
!print*,''
!do i = 1, mo_num
! print*,'list_orb',i,list_orb_reverse(i)
!enddo
call get_double_excitation(det_1,det_2,exc,phase,N_int)
h1 = exc(1,1,1)
!print*,'h1',h1
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
!print*,'passed h1 = ',h1
h2 = exc(1,1,2)
!print*,'h2',h2
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))return
h2 = list_orb_reverse(h2)
!print*,'passed h2 = ',h2
p1 = exc(1,2,1)
!print*,'p1',p1
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
!print*,'passed p1 = ',p1
p2 = exc(1,2,2)
!print*,'p2',p2
if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return
p2 = list_orb_reverse(p2)
!print*,'passed p2 = ',p2
if(alpha_beta)then
big_array(h1,h2,p1,p2) += c_1 * phase
else if(spin_trace)then
big_array(h1,h2,p1,p2) += 0.5d0 * c_1 * phase
big_array(p1,p2,h1,h2) += 0.5d0 * c_1 * phase
!print*,'h1,h2,p1,p2',h1,h2,p1,p2
!print*,'',big_array(h1,h2,p1,p2)
endif
end
subroutine orb_range_off_diagonal_single_to_two_rdm_ab_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
use bitmasks
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
!
! a given couple of determinant det_1, det_2 being a SINGLE excitation with respect to one another
!
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!
! ispin determines which spin-spin component of the two-rdm you will update
!
! ispin == 1 :: alpha/ alpha
! ispin == 2 :: beta / beta
! ispin == 3 :: alpha/ beta
! ispin == 4 :: spin traced <=> total two-rdm
!
! here, only ispin == 3 or 4 will do something
END_DOC
implicit none
integer, intent(in) :: dim1,ispin
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(in) :: c_1
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,p1
integer :: exc(0:2,2,2)
double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
logical :: is_integer_in_string
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
endif
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
call get_single_excitation(det_1,det_2,exc,phase,N_int)
if(alpha_beta)then
if (exc(0,1,1) == 1) then
! Mono alpha
h1 = exc(1,1,1)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
p1 = exc(1,2,1)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
do i = 1, n_occ_ab(2)
h2 = occ(i,2)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
h2 = list_orb_reverse(h2)
big_array(h1,h2,p1,h2) += c_1 * phase
enddo
else
! Mono beta
h1 = exc(1,1,2)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
p1 = exc(1,2,2)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
do i = 1, n_occ_ab(1)
h2 = occ(i,1)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
h2 = list_orb_reverse(h2)
big_array(h2,h1,h2,p1) += c_1 * phase
enddo
endif
else if(spin_trace)then
if (exc(0,1,1) == 1) then
! Mono alpha
h1 = exc(1,1,1)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
p1 = exc(1,2,1)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
do i = 1, n_occ_ab(2)
h2 = occ(i,2)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
h2 = list_orb_reverse(h2)
big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
enddo
else
! Mono beta
h1 = exc(1,1,2)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
p1 = exc(1,2,2)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
do i = 1, n_occ_ab(1)
h2 = occ(i,1)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
h2 = list_orb_reverse(h2)
big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
enddo
endif
endif
end
subroutine orb_range_off_diagonal_single_to_two_rdm_aa_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
!
! a given couple of determinant det_1, det_2 being a ALPHA SINGLE excitation with respect to one another
!
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!
! ispin determines which spin-spin component of the two-rdm you will update
!
! ispin == 1 :: alpha/ alpha
! ispin == 2 :: beta / beta
! ispin == 3 :: alpha/ beta
! ispin == 4 :: spin traced <=> total two-rdm
!
! here, only ispin == 1 or 4 will do something
END_DOC
use bitmasks
implicit none
integer, intent(in) :: dim1,ispin
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(in) :: c_1
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,p1
integer :: exc(0:2,2,2)
double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
logical :: is_integer_in_string
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
endif
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
call get_single_excitation(det_1,det_2,exc,phase,N_int)
if(alpha_alpha.or.spin_trace)then
if (exc(0,1,1) == 1) then
! Mono alpha
h1 = exc(1,1,1)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
p1 = exc(1,2,1)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
do i = 1, n_occ_ab(1)
h2 = occ(i,1)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
h2 = list_orb_reverse(h2)
big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
big_array(h1,h2,h2,p1) -= 0.5d0 * c_1 * phase
big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
big_array(h2,h1,p1,h2) -= 0.5d0 * c_1 * phase
enddo
else
return
endif
endif
end
subroutine orb_range_off_diagonal_single_to_two_rdm_bb_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
use bitmasks
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
!
! a given couple of determinant det_1, det_2 being a BETA SINGLE excitation with respect to one another
!
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!
! ispin determines which spin-spin component of the two-rdm you will update
!
! ispin == 1 :: alpha/ alpha
! ispin == 2 :: beta / beta
! ispin == 3 :: alpha/ beta
! ispin == 4 :: spin traced <=> total two-rdm
!
! here, only ispin == 2 or 4 will do something
END_DOC
implicit none
integer, intent(in) :: dim1,ispin
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(in) :: c_1
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,p1
integer :: exc(0:2,2,2)
double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
logical :: is_integer_in_string
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
endif
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
call get_single_excitation(det_1,det_2,exc,phase,N_int)
if(beta_beta.or.spin_trace)then
if (exc(0,1,1) == 1) then
return
else
! Mono beta
h1 = exc(1,1,2)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
p1 = exc(1,2,2)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
do i = 1, n_occ_ab(2)
h2 = occ(i,2)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
h2 = list_orb_reverse(h2)
big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
big_array(h1,h2,h2,p1) -= 0.5d0 * c_1 * phase
big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
big_array(h2,h1,p1,h2) -= 0.5d0 * c_1 * phase
enddo
endif
endif
end
subroutine orb_range_off_diagonal_double_to_two_rdm_aa_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
use bitmasks
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
!
! a given couple of determinant det_1, det_2 being a ALPHA/ALPHA DOUBLE excitation with respect to one another
!
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!
! ispin determines which spin-spin component of the two-rdm you will update
!
! ispin == 1 :: alpha/ alpha
! ispin == 2 :: beta / beta
! ispin == 3 :: alpha/ beta
! ispin == 4 :: spin traced <=> total two-rdm
!
! here, only ispin == 1 or 4 will do something
END_DOC
implicit none
integer, intent(in) :: dim1,ispin
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(in) :: c_1
integer :: i,j,h1,h2,p1,p2
integer :: exc(0:2,2)
double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
logical :: is_integer_in_string
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
endif
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
h1 =exc(1,1)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
h2 =exc(2,1)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))return
h2 = list_orb_reverse(h2)
p1 =exc(1,2)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
p2 =exc(2,2)
if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return
p2 = list_orb_reverse(p2)
if(alpha_alpha.or.spin_trace)then
big_array(h1,h2,p1,p2) += 0.5d0 * c_1 * phase
big_array(h1,h2,p2,p1) -= 0.5d0 * c_1 * phase
big_array(h2,h1,p2,p1) += 0.5d0 * c_1 * phase
big_array(h2,h1,p1,p2) -= 0.5d0 * c_1 * phase
endif
end
subroutine orb_range_off_diagonal_double_to_two_rdm_bb_dm(det_1,det_2,c_1,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
use bitmasks
BEGIN_DOC
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
!
! a given couple of determinant det_1, det_2 being a BETA /BETA DOUBLE excitation with respect to one another
!
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
!
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
!
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
!
! ispin determines which spin-spin component of the two-rdm you will update
!
! ispin == 1 :: alpha/ alpha
! ispin == 2 :: beta / beta
! ispin == 3 :: alpha/ beta
! ispin == 4 :: spin traced <=> total two-rdm
!
! here, only ispin == 2 or 4 will do something
END_DOC
implicit none
integer, intent(in) :: dim1,ispin
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
integer, intent(in) :: list_orb_reverse(mo_num)
double precision, intent(in) :: c_1
integer :: i,j,h1,h2,p1,p2
integer :: exc(0:2,2)
double precision :: phase
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
logical :: is_integer_in_string
alpha_alpha = .False.
beta_beta = .False.
alpha_beta = .False.
spin_trace = .False.
if( ispin == 1)then
alpha_alpha = .True.
else if(ispin == 2)then
beta_beta = .True.
else if(ispin == 3)then
alpha_beta = .True.
else if(ispin == 4)then
spin_trace = .True.
endif
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
h1 =exc(1,1)
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
h1 = list_orb_reverse(h1)
h2 =exc(2,1)
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))return
h2 = list_orb_reverse(h2)
p1 =exc(1,2)
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
p1 = list_orb_reverse(p1)
p2 =exc(2,2)
if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return
p2 = list_orb_reverse(p2)
if(beta_beta.or.spin_trace)then
big_array(h1,h2,p1,p2) += 0.5d0 * c_1* phase
big_array(h1,h2,p2,p1) -= 0.5d0 * c_1* phase
big_array(h2,h1,p2,p1) += 0.5d0 * c_1* phase
big_array(h2,h1,p1,p2) -= 0.5d0 * c_1* phase
endif
end