mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-05 18:08:36 +01:00
improv cpx erf
This commit is contained in:
parent
23a242052d
commit
cd3c0cb1a9
@ -3,10 +3,10 @@ program deb_ao_2e_int
|
|||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
|
|
||||||
call check_ao_two_e_integral_cosgtos()
|
!call check_ao_two_e_integral_cosgtos()
|
||||||
!call check_crint1()
|
!call check_crint1()
|
||||||
!call check_crint2()
|
!call check_crint2()
|
||||||
!call check_crint3()
|
call check_crint3()
|
||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
@ -26,31 +26,35 @@ subroutine check_ao_two_e_integral_cosgtos()
|
|||||||
acc = 0.d0
|
acc = 0.d0
|
||||||
nrm = 0.d0
|
nrm = 0.d0
|
||||||
|
|
||||||
i = 11
|
!i = 11
|
||||||
j = 100
|
!j = 100
|
||||||
k = 74
|
!k = 74
|
||||||
l = 104
|
!l = 104
|
||||||
! do i = 1, ao_num
|
do i = 1, ao_num
|
||||||
! do k = 1, ao_num
|
do k = 1, ao_num
|
||||||
! do j = 1, ao_num
|
j = i
|
||||||
! do l = 1, ao_num
|
l = k
|
||||||
|
!do j = 1, ao_num
|
||||||
|
! do l = 1, ao_num
|
||||||
|
|
||||||
tmp1 = ao_two_e_integral (i, j, k, l)
|
tmp1 = ao_two_e_integral (i, j, k, l)
|
||||||
tmp2 = ao_two_e_integral_cosgtos(i, j, k, l)
|
tmp2 = ao_two_e_integral_cosgtos(i, j, k, l)
|
||||||
|
|
||||||
dif = abs(tmp1 - tmp2)
|
dif = abs(tmp1 - tmp2)
|
||||||
!if(dif .gt. 1d-10) then
|
!if(dif .gt. 1d-10) then
|
||||||
|
if(tmp1 .lt. 0.d0) then
|
||||||
print*, ' error on:', i, j, k, l
|
print*, ' error on:', i, j, k, l
|
||||||
print*, tmp1, tmp2, dif
|
print*, tmp1, tmp2, dif
|
||||||
!stop
|
!stop
|
||||||
|
endif
|
||||||
!endif
|
!endif
|
||||||
|
|
||||||
acc += dif
|
acc += dif
|
||||||
nrm += abs(tmp1)
|
nrm += abs(tmp1)
|
||||||
! enddo
|
! enddo
|
||||||
! enddo
|
! enddo
|
||||||
! enddo
|
enddo
|
||||||
! enddo
|
enddo
|
||||||
|
|
||||||
print *, ' acc (%) = ', dif * 100.d0 / nrm
|
print *, ' acc (%) = ', dif * 100.d0 / nrm
|
||||||
|
|
||||||
@ -218,7 +222,7 @@ subroutine check_crint3()
|
|||||||
t_int1 = 0.d0
|
t_int1 = 0.d0
|
||||||
t_int2 = 0.d0
|
t_int2 = 0.d0
|
||||||
|
|
||||||
n_test = 5
|
n_test = 1
|
||||||
|
|
||||||
acc_re = 0.d0
|
acc_re = 0.d0
|
||||||
nrm_re = 0.d0
|
nrm_re = 0.d0
|
||||||
@ -249,9 +253,14 @@ subroutine check_crint3()
|
|||||||
n = int(x)
|
n = int(x)
|
||||||
!if(n.eq.0) cycle
|
!if(n.eq.0) cycle
|
||||||
|
|
||||||
|
n = 0
|
||||||
|
!rho = (-6.83897018210218d0, -7.24479852507338d0)
|
||||||
|
rho = (-9.83206247355480d0, 0.445269582329036d0)
|
||||||
|
|
||||||
print*, " n = ", n
|
print*, " n = ", n
|
||||||
print*, " rho = ", real(rho), aimag(rho)
|
print*, " rho = ", real(rho), aimag(rho)
|
||||||
|
|
||||||
|
|
||||||
call wall_time(t1)
|
call wall_time(t1)
|
||||||
int1_old = crint_2(n, rho)
|
int1_old = crint_2(n, rho)
|
||||||
!n_quad = 10000000
|
!n_quad = 10000000
|
||||||
|
@ -16,7 +16,6 @@ complex*16 function crint_1(n, rho)
|
|||||||
complex*16 :: sq_rho, rho_inv, rho_exp
|
complex*16 :: sq_rho, rho_inv, rho_exp
|
||||||
|
|
||||||
complex*16 :: crint_smallz, cpx_erf_1
|
complex*16 :: crint_smallz, cpx_erf_1
|
||||||
complex*16 :: cpx_erf_2
|
|
||||||
|
|
||||||
rho_re = real (rho)
|
rho_re = real (rho)
|
||||||
rho_im = aimag(rho)
|
rho_im = aimag(rho)
|
||||||
@ -48,10 +47,6 @@ complex*16 function crint_1(n, rho)
|
|||||||
rho_exp = 0.5d0 * zexp(-rho)
|
rho_exp = 0.5d0 * zexp(-rho)
|
||||||
rho_inv = (1.d0, 0.d0) / rho
|
rho_inv = (1.d0, 0.d0) / rho
|
||||||
|
|
||||||
!print*, sq_rho_re, sq_rho_im
|
|
||||||
!print*, cpx_erf_1(sq_rho_re, sq_rho_im)
|
|
||||||
!print*, cpx_erf_2(sq_rho_re, sq_rho_im)
|
|
||||||
|
|
||||||
crint_1 = 0.5d0 * sqpi * cpx_erf_1(sq_rho_re, sq_rho_im) / sq_rho
|
crint_1 = 0.5d0 * sqpi * cpx_erf_1(sq_rho_re, sq_rho_im) / sq_rho
|
||||||
mmax = n
|
mmax = n
|
||||||
if(mmax .gt. 0) then
|
if(mmax .gt. 0) then
|
||||||
@ -185,7 +180,7 @@ complex*16 function crint_smallz(n, rho)
|
|||||||
complex*16, intent(in) :: rho
|
complex*16, intent(in) :: rho
|
||||||
|
|
||||||
integer, parameter :: kmax = 40
|
integer, parameter :: kmax = 40
|
||||||
double precision, parameter :: eps = 1.d-13
|
double precision, parameter :: eps = 1.d-10
|
||||||
|
|
||||||
integer :: k
|
integer :: k
|
||||||
double precision :: delta_mod
|
double precision :: delta_mod
|
||||||
@ -207,7 +202,8 @@ complex*16 function crint_smallz(n, rho)
|
|||||||
|
|
||||||
if(delta_mod > eps) then
|
if(delta_mod > eps) then
|
||||||
write(*,*) ' pb in crint_smallz !'
|
write(*,*) ' pb in crint_smallz !'
|
||||||
write(*,*) ' n, rho = ', n, rho
|
write(*,*) ' n, rho = ', n, rho
|
||||||
|
write(*,*) ' value = ', crint_smallz
|
||||||
write(*,*) ' delta_mod = ', delta_mod
|
write(*,*) ' delta_mod = ', delta_mod
|
||||||
!stop 1
|
!stop 1
|
||||||
endif
|
endif
|
||||||
@ -229,29 +225,93 @@ complex*16 function crint_2(n, rho)
|
|||||||
|
|
||||||
complex*16, external :: crint_smallz
|
complex*16, external :: crint_smallz
|
||||||
|
|
||||||
if(abs(rho) < 10.d0) then
|
if(abs(rho) < 3.5d0) then
|
||||||
|
|
||||||
|
if(abs(rho) .lt. 0.35d0) then
|
||||||
|
|
||||||
|
select case(n)
|
||||||
|
case(0)
|
||||||
|
crint_2 = (((((((((1.3122532963802805073d-08 * rho &
|
||||||
|
- 1.450385222315046877d-07) * rho &
|
||||||
|
+ 1.458916900093370682d-06) * rho &
|
||||||
|
- 0.132275132275132275d-04) * rho &
|
||||||
|
+ 0.106837606837606838d-03) * rho &
|
||||||
|
- 0.757575757575757576d-03) * rho &
|
||||||
|
+ 0.462962962962962963d-02) * rho &
|
||||||
|
- 0.238095238095238095d-01) * rho &
|
||||||
|
+ 0.10000000000000000000d0) * rho &
|
||||||
|
- 0.33333333333333333333d0) * rho &
|
||||||
|
+ 1.0d0
|
||||||
|
case(1)
|
||||||
|
crint_2 = (((((((((1.198144314086343d-08 * rho &
|
||||||
|
- 1.312253296380281d-07) * rho &
|
||||||
|
+ 1.305346700083542d-06) * rho &
|
||||||
|
- 1.167133520074696d-05) * rho &
|
||||||
|
+ 9.259259259259259d-05) * rho &
|
||||||
|
- 6.410256410256410d-04) * rho &
|
||||||
|
+ 3.787878787878788d-03) * rho &
|
||||||
|
- 1.851851851851852d-02) * rho &
|
||||||
|
+ 7.142857142857142d-02) * rho &
|
||||||
|
- 2.000000000000000d-01) * rho &
|
||||||
|
+ 3.333333333333333d-01
|
||||||
|
case(2)
|
||||||
|
crint_2 = (((((((((1.102292768959436d-08 * rho &
|
||||||
|
- 1.198144314086343d-07) * rho &
|
||||||
|
+ 1.181027966742252d-06) * rho &
|
||||||
|
- 1.044277360066834d-05) * rho &
|
||||||
|
+ 8.169934640522875d-05) * rho &
|
||||||
|
- 5.555555555555556d-04) * rho &
|
||||||
|
+ 3.205128205128205d-03) * rho &
|
||||||
|
- 1.515151515151515d-02) * rho &
|
||||||
|
+ 5.555555555555555d-02) * rho &
|
||||||
|
- 1.428571428571428d-01) * rho &
|
||||||
|
+ 2.000000000000000d-01
|
||||||
|
case(3)
|
||||||
|
crint_2 = (((((((((1.020641452740218d-08 * rho &
|
||||||
|
- 1.102292768959436d-07) * rho &
|
||||||
|
+ 1.078329882677709d-06) * rho &
|
||||||
|
- 9.448223733938020d-06) * rho &
|
||||||
|
+ 7.309941520467836d-05) * rho &
|
||||||
|
- 4.901960784313725d-04) * rho &
|
||||||
|
+ 2.777777777777778d-03) * rho &
|
||||||
|
- 1.282051282051282d-02) * rho &
|
||||||
|
+ 4.545454545454546d-02) * rho &
|
||||||
|
- 1.111111111111111d-01) * rho &
|
||||||
|
+ 1.428571428571428d-01
|
||||||
|
case default
|
||||||
|
tmp = dble(n + n + 1)
|
||||||
|
crint_2 = (((((((((2.755731922398589d-07 * rho / (tmp + 20.d0) &
|
||||||
|
- 2.755731922398589d-06 / (tmp + 18.d0)) * rho &
|
||||||
|
+ 2.480158730158730d-05 / (tmp + 16.d0)) * rho &
|
||||||
|
- 1.984126984126984d-04 / (tmp + 14.d0)) * rho &
|
||||||
|
+ 1.388888888888889d-03 / (tmp + 12.d0)) * rho &
|
||||||
|
- 8.333333333333333d-03 / (tmp + 10.d0)) * rho &
|
||||||
|
+ 4.166666666666666d-02 / (tmp + 8.d0)) * rho &
|
||||||
|
- 1.666666666666667d-01 / (tmp + 6.d0)) * rho &
|
||||||
|
+ 5.000000000000000d-01 / (tmp + 4.d0)) * rho &
|
||||||
|
- 1.000000000000000d+00 / (tmp + 2.d0)) * rho &
|
||||||
|
+ 1.0d0 / tmp
|
||||||
|
end select
|
||||||
|
|
||||||
if(abs(rho) .lt. 1d-6) then
|
|
||||||
tmp = dble(n + n)
|
|
||||||
rho2 = rho * rho
|
|
||||||
crint_2 = - 0.16666666666666666d0 * rho * rho2 / (tmp + 7.d0) &
|
|
||||||
+ 0.5d0 * rho2 / (tmp + 5.d0) &
|
|
||||||
- rho / (tmp + 3.d0) &
|
|
||||||
+ 1.d0 / (tmp + 1.d0)
|
|
||||||
else
|
else
|
||||||
|
|
||||||
crint_2 = crint_smallz(n, rho)
|
crint_2 = crint_smallz(n, rho)
|
||||||
|
|
||||||
endif
|
endif
|
||||||
|
|
||||||
else
|
else
|
||||||
|
|
||||||
if(real(rho) .ge. 0.d0) then
|
if(real(rho) .ge. 0.d0) then
|
||||||
|
|
||||||
call zboysfun(n, rho, vals)
|
call zboysfun(n, rho, vals)
|
||||||
crint_2 = vals(n)
|
crint_2 = vals(n)
|
||||||
|
|
||||||
else
|
else
|
||||||
|
|
||||||
call zboysfunnrp(n, rho, vals)
|
call zboysfunnrp(n, rho, vals)
|
||||||
crint_2 = vals(n) * zexp(-rho)
|
crint_2 = vals(n) * zexp(-rho)
|
||||||
endif
|
|
||||||
|
|
||||||
|
endif
|
||||||
endif
|
endif
|
||||||
|
|
||||||
return
|
return
|
||||||
@ -380,29 +440,82 @@ subroutine crint_2_vec(n_max, rho, vals)
|
|||||||
|
|
||||||
abs_rho = abs(rho)
|
abs_rho = abs(rho)
|
||||||
|
|
||||||
if(abs_rho < 10.d0) then
|
if(abs_rho < 3.5d0) then
|
||||||
|
|
||||||
if(abs_rho .lt. 1d-6) then
|
if(abs_rho .lt. 0.35d0) then
|
||||||
|
|
||||||
! use finite expansion for very small rho
|
vals(0) = (((((((((1.3122532963802805073d-08 * rho &
|
||||||
|
- 1.450385222315046877d-07) * rho &
|
||||||
|
+ 1.458916900093370682d-06) * rho &
|
||||||
|
- 0.132275132275132275d-04) * rho &
|
||||||
|
+ 0.106837606837606838d-03) * rho &
|
||||||
|
- 0.757575757575757576d-03) * rho &
|
||||||
|
+ 0.462962962962962963d-02) * rho &
|
||||||
|
- 0.238095238095238095d-01) * rho &
|
||||||
|
+ 0.10000000000000000000d0) * rho &
|
||||||
|
- 0.33333333333333333333d0) * rho &
|
||||||
|
+ 1.0d0
|
||||||
|
|
||||||
!! rho^2 / 2
|
if(n > 0) then
|
||||||
!rho2 = 0.5d0 * rho * rho
|
|
||||||
!! rho^3 / 6
|
|
||||||
!rho3 = 0.3333333333333333d0 * rho * rho2
|
|
||||||
!vals(0) = 1.d0 - 0.3333333333333333d0 * rho + 0.2d0 * rho2 - 0.14285714285714285d0 * rho3
|
|
||||||
!do n = 1, n_max
|
|
||||||
! tmp = 2.d0 * dble(n)
|
|
||||||
! vals(n) = 1.d0 / (tmp + 1.d0) - rho / (tmp + 3.d0) &
|
|
||||||
! + rho2 / (tmp + 5.d0) - rho3 / (tmp + 7.d0)
|
|
||||||
!enddo
|
|
||||||
|
|
||||||
! TODO (last term)
|
vals(1) = (((((((((1.198144314086343d-08 * rho &
|
||||||
vals(0) = 1.d0 + rho * (-0.3333333333333333d0 + rho*(0.1d0 - 0.047619047619047616d0*rho))
|
- 1.312253296380281d-07) * rho &
|
||||||
do n = 1, n_max
|
+ 1.305346700083542d-06) * rho &
|
||||||
tmp = 2.d0 * dble(n)
|
- 1.167133520074696d-05) * rho &
|
||||||
vals(n) = 1.d0 / (tmp + 1.d0) + rho * (-1.d0/(tmp+3.d0) + rho*(0.5d0/(tmp+5.d0) - 0.3333333333333333d0*rho/(tmp+7.d0)))
|
+ 9.259259259259259d-05) * rho &
|
||||||
enddo
|
- 6.410256410256410d-04) * rho &
|
||||||
|
+ 3.787878787878788d-03) * rho &
|
||||||
|
- 1.851851851851852d-02) * rho &
|
||||||
|
+ 7.142857142857142d-02) * rho &
|
||||||
|
- 2.000000000000000d-01) * rho &
|
||||||
|
+ 3.333333333333333d-01
|
||||||
|
|
||||||
|
if(n > 1) then
|
||||||
|
|
||||||
|
vals(2) = (((((((((1.102292768959436d-08 * rho &
|
||||||
|
- 1.198144314086343d-07) * rho &
|
||||||
|
+ 1.181027966742252d-06) * rho &
|
||||||
|
- 1.044277360066834d-05) * rho &
|
||||||
|
+ 8.169934640522875d-05) * rho &
|
||||||
|
- 5.555555555555556d-04) * rho &
|
||||||
|
+ 3.205128205128205d-03) * rho &
|
||||||
|
- 1.515151515151515d-02) * rho &
|
||||||
|
+ 5.555555555555555d-02) * rho &
|
||||||
|
- 1.428571428571428d-01) * rho &
|
||||||
|
+ 2.000000000000000d-01
|
||||||
|
|
||||||
|
if(n > 2) then
|
||||||
|
|
||||||
|
vals(3) = (((((((((1.020641452740218d-08 * rho &
|
||||||
|
- 1.102292768959436d-07) * rho &
|
||||||
|
+ 1.078329882677709d-06) * rho &
|
||||||
|
- 9.448223733938020d-06) * rho &
|
||||||
|
+ 7.309941520467836d-05) * rho &
|
||||||
|
- 4.901960784313725d-04) * rho &
|
||||||
|
+ 2.777777777777778d-03) * rho &
|
||||||
|
- 1.282051282051282d-02) * rho &
|
||||||
|
+ 4.545454545454546d-02) * rho &
|
||||||
|
- 1.111111111111111d-01) * rho &
|
||||||
|
+ 1.428571428571428d-01
|
||||||
|
|
||||||
|
do n = 4, n_max
|
||||||
|
tmp = dble(n + n + 1)
|
||||||
|
vals(n) = (((((((((2.755731922398589d-07 * rho / (tmp + 20.d0) &
|
||||||
|
- 2.755731922398589d-06 / (tmp + 18.d0)) * rho &
|
||||||
|
+ 2.480158730158730d-05 / (tmp + 16.d0)) * rho &
|
||||||
|
- 1.984126984126984d-04 / (tmp + 14.d0)) * rho &
|
||||||
|
+ 1.388888888888889d-03 / (tmp + 12.d0)) * rho &
|
||||||
|
- 8.333333333333333d-03 / (tmp + 10.d0)) * rho &
|
||||||
|
+ 4.166666666666666d-02 / (tmp + 8.d0)) * rho &
|
||||||
|
- 1.666666666666667d-01 / (tmp + 6.d0)) * rho &
|
||||||
|
+ 5.000000000000000d-01 / (tmp + 4.d0)) * rho &
|
||||||
|
- 1.000000000000000d+00 / (tmp + 2.d0)) * rho &
|
||||||
|
+ 1.0d0 / tmp
|
||||||
|
enddo
|
||||||
|
|
||||||
|
endif ! n > 2
|
||||||
|
endif ! n > 1
|
||||||
|
endif ! n > 0
|
||||||
|
|
||||||
else
|
else
|
||||||
|
|
||||||
@ -445,7 +558,7 @@ subroutine crint_smallz_vec(n_max, rho, vals)
|
|||||||
complex*16, intent(out) :: vals(0:n_max)
|
complex*16, intent(out) :: vals(0:n_max)
|
||||||
|
|
||||||
integer, parameter :: kmax = 40
|
integer, parameter :: kmax = 40
|
||||||
double precision, parameter :: eps = 1.d-13
|
double precision, parameter :: eps = 1.d-10
|
||||||
|
|
||||||
integer :: k, n
|
integer :: k, n
|
||||||
complex*16 :: ct, delta_k
|
complex*16 :: ct, delta_k
|
||||||
@ -475,11 +588,12 @@ subroutine crint_smallz_vec(n_max, rho, vals)
|
|||||||
endif
|
endif
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
!if(abs(delta_k) > eps) then
|
if(abs(delta_k) > eps) then
|
||||||
! write(*,*) ' pb in crint_smallz_vec !'
|
write(*,*) ' pb in crint_smallz_vec !'
|
||||||
! write(*,*) ' n, rho = ', n, rho
|
write(*,*) ' n, rho = ', n, rho
|
||||||
! write(*,*) ' |delta_k| = ', abs(delta_k)
|
write(*,*) ' value = ', vals(n)
|
||||||
!endif
|
write(*,*) ' |delta_k| = ', abs(delta_k)
|
||||||
|
endif
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
deallocate(rho_k)
|
deallocate(rho_k)
|
||||||
|
@ -201,49 +201,6 @@ end
|
|||||||
|
|
||||||
! ---
|
! ---
|
||||||
|
|
||||||
complex*16 function cpx_erf_2(x, y)
|
|
||||||
|
|
||||||
BEGIN_DOC
|
|
||||||
!
|
|
||||||
! compute erf(z) for z = x + i y
|
|
||||||
!
|
|
||||||
! Beylkin & Sharma, J. Chem. Phys. 155, 174117 (2021)
|
|
||||||
! https://doi.org/10.1063/5.0062444
|
|
||||||
!
|
|
||||||
END_DOC
|
|
||||||
|
|
||||||
implicit none
|
|
||||||
|
|
||||||
double precision, intent(in) :: x, y
|
|
||||||
|
|
||||||
double precision :: yabs
|
|
||||||
complex*16 :: z
|
|
||||||
|
|
||||||
yabs = dabs(y)
|
|
||||||
|
|
||||||
if(yabs .lt. 1.d-15) then
|
|
||||||
|
|
||||||
cpx_erf_2 = (1.d0, 0.d0) * derf(x)
|
|
||||||
return
|
|
||||||
|
|
||||||
else
|
|
||||||
|
|
||||||
z = x + (0.d0, 1.d0) * y
|
|
||||||
|
|
||||||
if(x .ge. 0.d0) then
|
|
||||||
call zboysfun00(z, cpx_erf_2)
|
|
||||||
else
|
|
||||||
call zboysfun00nrp(z, cpx_erf_2)
|
|
||||||
cpx_erf_2 = cpx_erf_2 * zexp(-z)
|
|
||||||
endif
|
|
||||||
|
|
||||||
endif
|
|
||||||
|
|
||||||
return
|
|
||||||
end
|
|
||||||
|
|
||||||
! ---
|
|
||||||
|
|
||||||
subroutine zboysfun00(z, val)
|
subroutine zboysfun00(z, val)
|
||||||
|
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
@ -333,20 +290,18 @@ subroutine zboysfun00(z, val)
|
|||||||
complex*16, intent(out) :: val
|
complex*16, intent(out) :: val
|
||||||
|
|
||||||
integer :: k
|
integer :: k
|
||||||
complex*16 :: z1, zz, y
|
complex*16 :: z1, y
|
||||||
|
|
||||||
zz = zexp(-z)
|
|
||||||
|
|
||||||
if(abs(z) .ge. 100.0d0) then
|
if(abs(z) .ge. 100.0d0) then
|
||||||
|
|
||||||
! large |z|
|
! large |z|
|
||||||
z1 = (1.0d0, 0.d0) / zsqrt(z)
|
z1 = (1.d0, 0.d0) / zsqrt(z)
|
||||||
y = (1.0d0, 0.d0) / z
|
y = (1.d0, 0.d0) / z
|
||||||
val = asymcoef(7)
|
val = asymcoef(7)
|
||||||
do k = 6, 1, -1
|
do k = 6, 1, -1
|
||||||
val = val * y + asymcoef(k)
|
val = val * y + asymcoef(k)
|
||||||
enddo
|
enddo
|
||||||
val = zz * val * y + z1 * sqpio2
|
val = zexp(-z) * val * y + z1 * sqpio2
|
||||||
|
|
||||||
else if(abs(z) .le. 0.35d0) then
|
else if(abs(z) .le. 0.35d0) then
|
||||||
|
|
||||||
@ -359,12 +314,7 @@ subroutine zboysfun00(z, val)
|
|||||||
else
|
else
|
||||||
|
|
||||||
! intermediate |z|
|
! intermediate |z|
|
||||||
val = sqpio2 / zsqrt(z) - 0.5d0 * zz * sum(ff(1:22)/(z+pp(1:22)))
|
val = sqpio2 / zsqrt(z) - 0.5d0 * zexp(-z) * sum(ff(1:22)/(z+pp(1:22)))
|
||||||
!val = (0.d0, 0.d0)
|
|
||||||
!do k = 1, 22
|
|
||||||
! val += ff(k) / (z + pp(k))
|
|
||||||
!enddo
|
|
||||||
!val = sqpio2 / zsqrt(z) - 0.5d0 * zz * val
|
|
||||||
|
|
||||||
endif
|
endif
|
||||||
|
|
||||||
@ -533,8 +483,8 @@ subroutine zboysfun00nrp(z, val)
|
|||||||
|
|
||||||
if(abs(z) .ge. 100.0d0) then
|
if(abs(z) .ge. 100.0d0) then
|
||||||
! large |z|
|
! large |z|
|
||||||
z1 = (1.0d0, 0.d0) / zsqrt(z)
|
z1 = (1.d0, 0.d0) / zsqrt(z)
|
||||||
y = (1.0d0, 0.d0) / z
|
y = (1.d0, 0.d0) / z
|
||||||
val = asymcoef(7)
|
val = asymcoef(7)
|
||||||
do k = 6, 1, -1
|
do k = 6, 1, -1
|
||||||
val = val * y + asymcoef(k)
|
val = val * y + asymcoef(k)
|
||||||
|
Loading…
Reference in New Issue
Block a user