9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-10-30 10:18:07 +01:00

added non_hermit_dav

This commit is contained in:
eginer 2023-02-06 19:03:22 +01:00
parent 3a68b36515
commit ca4cdf56d5
8 changed files with 5261 additions and 0 deletions

1
src/non_hermit_dav/NEED Normal file
View File

@ -0,0 +1 @@
utils

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,56 @@
subroutine bi_ortho_gram_schmidt(wi,vi,n,ni,wk,wk_schmidt)
implicit none
BEGIN_DOC
! you enter with a set of "ni" BI-ORTHONORMAL vectors of length "n"
!
! vi(j,i) = <j|vi>, wi(j,i) = <j|wi>, <vi|wj> = delta_{ij} S_ii, S_ii =<vi|wi>
!
! and a vector vk(j) = <j|vk>
!
! you go out with a vector vk_schmidt(j) = <j|vk_schmidt>
!
! which is Gram-Schmidt orthonormalized with respect to the "vi"
!
! <vi|wk_schmidt> = 0
!
! |wk_schmidt> = |wk> - \sum_{i=1}^ni (<vi|wk>/<vi|wi>) |wi>
!
! according to Eq. (5), (6) of Computers Structures, Vol 56, No. 4, pp 605-613, 1995
!
! https://doi.org/10.1016/0045-7949(94)00565-K
END_DOC
integer, intent(in) :: n,ni
double precision, intent(in) :: wi(n,ni),vi(n,ni),wk(n)
double precision, intent(out):: wk_schmidt(n)
double precision :: vi_wk,u_dot_v,tmp,u_dot_u
double precision, allocatable :: sii(:)
integer :: i,j
allocate( sii(ni) )
wk_schmidt = wk
do i = 1, ni
sii(i) = u_dot_v(vi(1,i),wi(1,i),n)
enddo
! do i = 1, n
! print*,i,'wk',wk(i)
! enddo
! print*,''
! print*,''
do i = 1, ni
! print*,'i',i
! Gram-Schmidt
vi_wk = u_dot_v(vi(1,i),wk,n)
vi_wk = vi_wk / sii(i)
! print*,''
do j = 1, n
! print*,j,vi_wk,wi(j,i)
wk_schmidt(j) -= vi_wk * wi(j,i)
enddo
enddo
tmp = u_dot_u(wk_schmidt,n)
tmp = 1.d0/dsqrt(tmp)
wk_schmidt = tmp * wk_schmidt
! do j = 1, n
! print*,j,'wk_scc',wk_schmidt(j)
! enddo
! pause
end

View File

@ -0,0 +1,93 @@
BEGIN_PROVIDER [ integer, n_mat]
implicit none
n_mat = 2
END_PROVIDER
BEGIN_PROVIDER [ double precision, h_non_hermit, (n_mat, n_mat)]
&BEGIN_PROVIDER [ double precision, h_non_hermit_transp, (n_mat, n_mat)]
&BEGIN_PROVIDER [ double precision, reigvec_ht, (n_mat, n_mat)]
&BEGIN_PROVIDER [ double precision, leigvec_ht, (n_mat, n_mat)]
&BEGIN_PROVIDER [ double precision, eigval_ht, (n_mat)]
&BEGIN_PROVIDER [ integer, n_real_ht, (n_mat)]
implicit none
integer :: i,j
do i = 1, n_mat
read(33,*)h_non_hermit(i,1:n_mat)
enddo
print*,''
print*,'H_mat '
print*,''
do i = 1, n_mat
write(*,'(1000(F16.10,X))')h_non_hermit(i,:)
enddo
do i = 1, n_mat
do j = 1, n_mat
h_non_hermit_transp(j,i) = h_non_hermit(i,j)
enddo
enddo
call non_hrmt_real_diag(n_mat,h_non_hermit,reigvec_ht,leigvec_ht,n_real_ht,eigval_ht)
END_PROVIDER
subroutine hcalc_r_tmp(v,u,N_st,sze) ! v = H u
implicit none
BEGIN_DOC
! Template of routine for the application of H
!
! Here, it is done with the Hamiltonian matrix
!
! on the set of determinants of psi_det
!
! Computes $v = H | u \rangle$
!
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u(sze,N_st)
double precision, intent(inout) :: v(sze,N_st)
integer :: i,j,istate
v = 0.d0
do istate = 1, N_st
do j = 1, sze
do i = 1, sze
v(i,istate) += h_non_hermit(i,j) * u(j,istate)
! print*,i,j,h_non_hermit(i,j),u(j,istate)
enddo
enddo
enddo
print*,'HU'
do i = 1, sze
print*,v(i,1)
enddo
end
subroutine hcalc_l_tmp(v,u,N_st,sze) ! v = H^\dagger u
implicit none
BEGIN_DOC
! Template of routine for the application of H
!
! Here, it is done with the Hamiltonian matrix
!
! on the set of determinants of psi_det
!
! Computes $v = H | u \rangle$
!
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u(sze,N_st)
double precision, intent(inout) :: v(sze,N_st)
integer :: i,j,istate
v = 0.d0
do istate = 1, N_st
do j = 1, sze
do i = 1, sze
v(i,istate) += h_non_hermit_transp(i,j) * u(j,istate)
enddo
enddo
enddo
print*,'HU'
do i = 1, sze
print*,v(i,1)
enddo
end

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,670 @@
subroutine non_hrmt_diag_split_degen_bi_orthog(n, A, leigvec, reigvec, n_real_eigv, eigval)
BEGIN_DOC
!
! routine which returns the sorted REAL EIGENVALUES ONLY and corresponding LEFT/RIGHT eigenvetors
!
! of a non hermitian matrix A(n,n)
!
! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n"
!
END_DOC
implicit none
integer, intent(in) :: n
double precision, intent(in) :: A(n,n)
integer, intent(out) :: n_real_eigv
double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n)
double precision, allocatable :: reigvec_tmp(:,:), leigvec_tmp(:,:)
integer :: i, j, n_degen,k , iteration
double precision :: shift_current
double precision :: r,thr,accu_d, accu_nd
integer, allocatable :: iorder_origin(:),iorder(:)
double precision, allocatable :: WR(:), WI(:), Vl(:,:), VR(:,:),S(:,:)
double precision, allocatable :: Aw(:,:),diag_elem(:),A_save(:,:)
double precision, allocatable :: im_part(:),re_part(:)
double precision :: accu,thr_cut, thr_norm=1d0
thr_cut = 1.d-15
print*,'Computing the left/right eigenvectors ...'
print*,'Using the degeneracy splitting algorithm'
! initialization
shift_current = 1.d-15
iteration = 0
print*,'***** iteration = ',iteration
! pre-processing the matrix :: sorting by diagonal elements
allocate(reigvec_tmp(n,n), leigvec_tmp(n,n))
allocate(diag_elem(n),iorder_origin(n),A_save(n,n))
! print*,'Aw'
do i = 1, n
iorder_origin(i) = i
diag_elem(i) = A(i,i)
! write(*,'(100(F16.10,X))')A(:,i)
enddo
call dsort(diag_elem, iorder_origin, n)
do i = 1, n
do j = 1, n
A_save(j,i) = A(iorder_origin(j),iorder_origin(i))
enddo
enddo
allocate(WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n))
allocate(im_part(n),iorder(n))
allocate( S(n,n) )
Aw = A_save
call cancel_small_elmts(aw,n,thr_cut)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv += 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
do while(n_real_eigv.ne.n)
iteration += 1
print*,'***** iteration = ',iteration
if(shift_current.gt.1.d-3)then
print*,'shift_current > 1.d-3 !!'
print*,'Your matrix intrinsically contains complex eigenvalues'
stop
endif
Aw = A_save
call cancel_small_elmts(Aw,n,thr_cut)
call split_matrix_degen(Aw,n,shift_current)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv+= 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
enddo
!!!!!!!!!!!!!!!! SORTING THE EIGENVALUES
do i = 1, n
eigval(i) = WR(i)
iorder(i) = i
enddo
call dsort(eigval,iorder,n)
do i = 1, n
! print*,'eigval(i) = ',eigval(i)
reigvec_tmp(:,i) = VR(:,iorder(i))
leigvec_tmp(:,i) = Vl(:,iorder(i))
enddo
!!! ONCE ALL EIGENVALUES ARE REAL ::: CHECK BI-ORTHONORMALITY
! check bi-orthogonality
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print *, ' '
print *, ' bi-orthogonality: not imposed yet'
print *, ' '
print *, ' '
print *, ' orthog between degen eigenvect'
print *, ' '
double precision, allocatable :: S_nh_inv_half(:,:)
allocate(S_nh_inv_half(n,n))
logical :: complex_root
deallocate(S_nh_inv_half)
call impose_orthog_degen_eigvec(n, eigval, reigvec_tmp)
call impose_orthog_degen_eigvec(n, eigval, leigvec_tmp)
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ',accu_nd
call impose_biorthog_qr(n, n, leigvec_tmp, reigvec_tmp, S)
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ',accu_nd
print*,'Must be a deep problem ...'
stop
endif
endif
endif
!! EIGENVECTORS SORTED AND BI-ORTHONORMAL
do i = 1, n
do j = 1, n
VR(iorder_origin(j),i) = reigvec_tmp(j,i)
VL(iorder_origin(j),i) = leigvec_tmp(j,i)
enddo
enddo
!! RECOMPUTING THE EIGENVALUES
eigval = 0.d0
do i = 1, n
iorder(i) = i
accu = 0.d0
do j = 1, n
accu += VL(j,i) * VR(j,i)
do k = 1, n
eigval(i) += VL(j,i) * A(j,k) * VR(k,i)
enddo
enddo
eigval(i) *= 1.d0/accu
! print*,'eigval(i) = ',eigval(i)
enddo
!! RESORT JUST TO BE SURE
call dsort(eigval, iorder, n)
do i = 1, n
do j = 1, n
reigvec(j,i) = VR(j,iorder(i))
leigvec(j,i) = VL(j,iorder(i))
enddo
enddo
print*,'Checking for final reigvec/leigvec'
shift_current = max(1.d-10,shift_current)
print*,'Thr for eigenvectors = ',shift_current
call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, shift_current, thr_norm, .false.)
call check_biorthog(n, n, leigvec, reigvec, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'Something went wrong in non_hrmt_diag_split_degen_bi_orthog'
print*,'Eigenvectors are not bi orthonormal ..'
print*,'accu_nd = ',accu_nd
stop
endif
end
subroutine non_hrmt_diag_split_degen_s_inv_half(n, A, leigvec, reigvec, n_real_eigv, eigval)
BEGIN_DOC
!
! routine which returns the sorted REAL EIGENVALUES ONLY and corresponding LEFT/RIGHT eigenvetors
!
! of a non hermitian matrix A(n,n)
!
! n_real_eigv is the number of real eigenvalues, which might be smaller than the dimension "n"
!
END_DOC
implicit none
integer, intent(in) :: n
double precision, intent(in) :: A(n,n)
integer, intent(out) :: n_real_eigv
double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n)
double precision, allocatable :: reigvec_tmp(:,:), leigvec_tmp(:,:)
integer :: i, j, n_degen,k , iteration
double precision :: shift_current
double precision :: r,thr,accu_d, accu_nd
integer, allocatable :: iorder_origin(:),iorder(:)
double precision, allocatable :: WR(:), WI(:), Vl(:,:), VR(:,:),S(:,:)
double precision, allocatable :: Aw(:,:),diag_elem(:),A_save(:,:)
double precision, allocatable :: im_part(:),re_part(:)
double precision :: accu,thr_cut, thr_norm=1.d0
double precision, allocatable :: S_nh_inv_half(:,:)
logical :: complex_root
thr_cut = 1.d-15
print*,'Computing the left/right eigenvectors ...'
print*,'Using the degeneracy splitting algorithm'
! initialization
shift_current = 1.d-15
iteration = 0
print*,'***** iteration = ',iteration
! pre-processing the matrix :: sorting by diagonal elements
allocate(reigvec_tmp(n,n), leigvec_tmp(n,n))
allocate(diag_elem(n),iorder_origin(n),A_save(n,n))
! print*,'Aw'
do i = 1, n
iorder_origin(i) = i
diag_elem(i) = A(i,i)
! write(*,'(100(F16.10,X))')A(:,i)
enddo
call dsort(diag_elem, iorder_origin, n)
do i = 1, n
do j = 1, n
A_save(j,i) = A(iorder_origin(j),iorder_origin(i))
enddo
enddo
allocate(WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n))
allocate(im_part(n),iorder(n))
allocate( S(n,n) )
allocate(S_nh_inv_half(n,n))
Aw = A_save
call cancel_small_elmts(aw,n,thr_cut)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv += 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
do while(n_real_eigv.ne.n)
iteration += 1
print*,'***** iteration = ',iteration
if(shift_current.gt.1.d-3)then
print*,'shift_current > 1.d-3 !!'
print*,'Your matrix intrinsically contains complex eigenvalues'
stop
endif
Aw = A_save
! thr_cut = shift_current
call cancel_small_elmts(Aw,n,thr_cut)
call split_matrix_degen(Aw,n,shift_current)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv+= 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
enddo
!!!!!!!!!!!!!!!! SORTING THE EIGENVALUES
do i = 1, n
eigval(i) = WR(i)
iorder(i) = i
enddo
call dsort(eigval,iorder,n)
do i = 1, n
! print*,'eigval(i) = ',eigval(i)
reigvec_tmp(:,i) = VR(:,iorder(i))
leigvec_tmp(:,i) = Vl(:,iorder(i))
enddo
!!! ONCE ALL EIGENVALUES ARE REAL ::: CHECK BI-ORTHONORMALITY
! check bi-orthogonality
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print *, ' '
print *, ' bi-orthogonality: not imposed yet'
if(complex_root) then
print *, ' '
print *, ' '
print *, ' orthog between degen eigenvect'
print *, ' '
! bi-orthonormalization using orthogonalization of left, right and then QR between left and right
call impose_orthog_degen_eigvec(n, eigval, reigvec_tmp) ! orthogonalization of reigvec
call impose_orthog_degen_eigvec(n, eigval, leigvec_tmp) ! orthogonalization of leigvec
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ', accu_nd
call get_inv_half_nonsymmat_diago(S, n, S_nh_inv_half, complex_root)
if(complex_root)then
call impose_biorthog_qr(n, n, leigvec_tmp, reigvec_tmp, S) ! bi-orthonormalization using QR
else
print*,'S^{-1/2} exists !!'
call bi_ortho_s_inv_half(n,leigvec_tmp,reigvec_tmp,S_nh_inv_half) ! use of S^{-1/2} bi-orthonormalization
endif
endif
else ! the matrix S^{-1/2} exists
print*,'S^{-1/2} exists !!'
call bi_ortho_s_inv_half(n,leigvec_tmp,reigvec_tmp,S_nh_inv_half) ! use of S^{-1/2} bi-orthonormalization
endif
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ',accu_nd
print*,'Must be a deep problem ...'
stop
endif
endif
!! EIGENVECTORS SORTED AND BI-ORTHONORMAL
do i = 1, n
do j = 1, n
VR(iorder_origin(j),i) = reigvec_tmp(j,i)
VL(iorder_origin(j),i) = leigvec_tmp(j,i)
enddo
enddo
!! RECOMPUTING THE EIGENVALUES
eigval = 0.d0
do i = 1, n
iorder(i) = i
accu = 0.d0
do j = 1, n
accu += VL(j,i) * VR(j,i)
do k = 1, n
eigval(i) += VL(j,i) * A(j,k) * VR(k,i)
enddo
enddo
eigval(i) *= 1.d0/accu
! print*,'eigval(i) = ',eigval(i)
enddo
!! RESORT JUST TO BE SURE
call dsort(eigval, iorder, n)
do i = 1, n
do j = 1, n
reigvec(j,i) = VR(j,iorder(i))
leigvec(j,i) = VL(j,iorder(i))
enddo
enddo
print*,'Checking for final reigvec/leigvec'
shift_current = max(1.d-10,shift_current)
print*,'Thr for eigenvectors = ',shift_current
call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, shift_current, thr_norm, .false.)
call check_biorthog(n, n, leigvec, reigvec, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'Something went wrong in non_hrmt_diag_split_degen_bi_orthog'
print*,'Eigenvectors are not bi orthonormal ..'
print*,'accu_nd = ',accu_nd
stop
endif
end
subroutine non_hrmt_fock_mat(n, A, leigvec, reigvec, n_real_eigv, eigval)
BEGIN_DOC
!
! routine returning the eigenvalues and left/right eigenvectors of the TC fock matrix
!
END_DOC
implicit none
integer, intent(in) :: n
double precision, intent(in) :: A(n,n)
integer, intent(out) :: n_real_eigv
double precision, intent(out) :: reigvec(n,n), leigvec(n,n), eigval(n)
double precision, allocatable :: reigvec_tmp(:,:), leigvec_tmp(:,:)
integer :: i, j, n_degen,k , iteration
double precision :: shift_current
double precision :: r,thr,accu_d, accu_nd
integer, allocatable :: iorder_origin(:),iorder(:)
double precision, allocatable :: WR(:), WI(:), Vl(:,:), VR(:,:),S(:,:)
double precision, allocatable :: Aw(:,:),diag_elem(:),A_save(:,:)
double precision, allocatable :: im_part(:),re_part(:)
double precision :: accu,thr_cut
double precision, allocatable :: S_nh_inv_half(:,:)
logical :: complex_root
double precision :: thr_norm=1d0
thr_cut = 1.d-15
print*,'Computing the left/right eigenvectors ...'
print*,'Using the degeneracy splitting algorithm'
! initialization
shift_current = 1.d-15
iteration = 0
print*,'***** iteration = ',iteration
! pre-processing the matrix :: sorting by diagonal elements
allocate(reigvec_tmp(n,n), leigvec_tmp(n,n))
allocate(diag_elem(n),iorder_origin(n),A_save(n,n))
! print*,'Aw'
do i = 1, n
iorder_origin(i) = i
diag_elem(i) = A(i,i)
! write(*,'(100(F16.10,X))')A(:,i)
enddo
call dsort(diag_elem, iorder_origin, n)
do i = 1, n
do j = 1, n
A_save(j,i) = A(iorder_origin(j),iorder_origin(i))
enddo
enddo
allocate(WR(n), WI(n), VL(n,n), VR(n,n), Aw(n,n))
allocate(im_part(n),iorder(n))
allocate( S(n,n) )
allocate(S_nh_inv_half(n,n))
Aw = A_save
call cancel_small_elmts(aw,n,thr_cut)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv += 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
do while(n_real_eigv.ne.n)
iteration += 1
print*,'***** iteration = ',iteration
if(shift_current.gt.1.d-3)then
print*,'shift_current > 1.d-3 !!'
print*,'Your matrix intrinsically contains complex eigenvalues'
stop
endif
Aw = A_save
! thr_cut = shift_current
call cancel_small_elmts(Aw,n,thr_cut)
call split_matrix_degen(Aw,n,shift_current)
call lapack_diag_non_sym(n,Aw,WR,WI,VL,VR)
n_real_eigv = 0
do i = 1, n
if(dabs(WI(i)).lt.1.d-20)then
n_real_eigv+= 1
else
! print*,'Found an imaginary component to eigenvalue'
! print*,'Re(i) + Im(i)',WR(i),WI(i)
endif
enddo
if(n_real_eigv.ne.n)then
do i = 1, n
im_part(i) = -dabs(WI(i))
iorder(i) = i
enddo
call dsort(im_part, iorder, n)
shift_current = max(10.d0 * dabs(im_part(1)),shift_current*10.d0)
print*,'Largest imaginary part found in eigenvalues = ',im_part(1)
print*,'Splitting the degeneracies by ',shift_current
else
print*,'All eigenvalues are real !'
endif
enddo
!!!!!!!!!!!!!!!! SORTING THE EIGENVALUES
do i = 1, n
eigval(i) = WR(i)
iorder(i) = i
enddo
call dsort(eigval,iorder,n)
do i = 1, n
! print*,'eigval(i) = ',eigval(i)
reigvec_tmp(:,i) = VR(:,iorder(i))
leigvec_tmp(:,i) = Vl(:,iorder(i))
enddo
!!! ONCE ALL EIGENVALUES ARE REAL ::: CHECK BI-ORTHONORMALITY
! check bi-orthogonality
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print *, ' '
print *, ' bi-orthogonality: not imposed yet'
print *, ' '
print *, ' '
print *, ' Using impose_unique_biorthog_degen_eigvec'
print *, ' '
! bi-orthonormalization using orthogonalization of left, right and then QR between left and right
call impose_unique_biorthog_degen_eigvec(n, eigval, mo_coef, leigvec_tmp, reigvec_tmp)
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print*,'accu_nd = ',accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ',accu_nd
call get_inv_half_nonsymmat_diago(S, n, S_nh_inv_half,complex_root)
if(complex_root)then
print*,'S^{-1/2} does not exits, using QR bi-orthogonalization'
call impose_biorthog_qr(n, n, leigvec_tmp, reigvec_tmp, S) ! bi-orthonormalization using QR
else
print*,'S^{-1/2} exists !!'
call bi_ortho_s_inv_half(n,leigvec_tmp,reigvec_tmp,S_nh_inv_half) ! use of S^{-1/2} bi-orthonormalization
endif
endif
call check_biorthog(n, n, leigvec_tmp, reigvec_tmp, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'New vectors not bi-orthonormals at ',accu_nd
print*,'Must be a deep problem ...'
stop
endif
endif
!! EIGENVECTORS SORTED AND BI-ORTHONORMAL
do i = 1, n
do j = 1, n
VR(iorder_origin(j),i) = reigvec_tmp(j,i)
VL(iorder_origin(j),i) = leigvec_tmp(j,i)
enddo
enddo
!! RECOMPUTING THE EIGENVALUES
eigval = 0.d0
do i = 1, n
iorder(i) = i
accu = 0.d0
do j = 1, n
accu += VL(j,i) * VR(j,i)
do k = 1, n
eigval(i) += VL(j,i) * A(j,k) * VR(k,i)
enddo
enddo
eigval(i) *= 1.d0/accu
! print*,'eigval(i) = ',eigval(i)
enddo
!! RESORT JUST TO BE SURE
call dsort(eigval, iorder, n)
do i = 1, n
do j = 1, n
reigvec(j,i) = VR(j,iorder(i))
leigvec(j,i) = VL(j,iorder(i))
enddo
enddo
print*,'Checking for final reigvec/leigvec'
shift_current = max(1.d-10,shift_current)
print*,'Thr for eigenvectors = ',shift_current
call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, shift_current, thr_norm, .false.)
call check_biorthog(n, n, leigvec, reigvec, accu_d, accu_nd, S, thresh_biorthog_diag, thresh_biorthog_nondiag, .false.)
print *, ' accu_nd bi-orthog = ', accu_nd
if(accu_nd .lt. thresh_biorthog_nondiag) then
print *, ' bi-orthogonality: ok'
else
print*,'Something went wrong in non_hrmt_diag_split_degen_bi_orthog'
print*,'Eigenvectors are not bi orthonormal ..'
print*,'accu_nd = ',accu_nd
stop
endif
end

View File

@ -0,0 +1,53 @@
subroutine h_non_hermite(v,u,Hmat,a,N_st,sze)
implicit none
BEGIN_DOC
! Template of routine for the application of H
!
! Here, it is done with the Hamiltonian matrix
!
! on the set of determinants of psi_det
!
! Computes $v = a * H | u \rangle$
!
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u(sze,N_st), Hmat(sze,sze), a
double precision, intent(inout) :: v(sze,N_st)
integer :: i,j,k
do k = 1, N_st
do j = 1, sze
do i = 1, sze
v(i,k) += a * u(j,k) * Hmat(i,j)
enddo
enddo
enddo
end
subroutine exp_tau_H(u,v,hmat,tau,et,N_st,sze)
implicit none
BEGIN_DOC
! realises v = (1 - tau (H - et)) u
END_DOC
integer, intent(in) :: N_st,sze
double precision, intent(in) :: hmat(sze,sze), u(sze,N_st), tau, et
double precision, intent(out):: v(sze,N_st)
double precision :: a
integer :: i,j
v = (1.d0 + tau * et) * u
a = -1.d0 * tau
call h_non_hermite(v,u,Hmat,a,N_st,sze)
end
double precision function project_phi0(u,Hmat0,N_st,sze)
implicit none
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u(sze,N_st), Hmat0(sze)
integer :: j
project_phi0 = 0.d0
do j = 1, sze
project_phi0 += u(j,1) * Hmat0(j)
enddo
project_phi0 *= 1.d0 / u(1,1)
end

View File

@ -0,0 +1,325 @@
subroutine get_inv_half_svd(matrix, n, matrix_inv_half)
BEGIN_DOC
! :math:`X = S^{-1/2}` obtained by SVD
END_DOC
implicit none
integer, intent(in) :: n
double precision, intent(in) :: matrix(n,n)
double precision, intent(out) :: matrix_inv_half(n,n)
integer :: num_linear_dependencies
integer :: LDA, LDC
integer :: info, i, j, k
double precision, parameter :: threshold = 1.d-6
double precision, allocatable :: U(:,:),Vt(:,:), D(:),matrix_half(:,:),D_half(:)
double precision :: accu_d,accu_nd
LDA = size(matrix, 1)
LDC = size(matrix_inv_half, 1)
if(LDA .ne. LDC) then
print*, ' LDA != LDC'
stop
endif
print*, ' n = ', n
print*, ' LDA = ', LDA
print*, ' LDC = ', LDC
double precision,allocatable :: WR(:),WI(:),VL(:,:),VR(:,:)
allocate(WR(n),WI(n),VL(n,n),VR(n,n))
call lapack_diag_non_sym(n,matrix,WR,WI,VL,VR)
do i = 1, n
print*,'WR,WI',WR(i),WI(i)
enddo
allocate(U(LDC,n), Vt(LDA,n), D(n))
call svd(matrix, LDA, U, LDC, D, Vt, LDA, n, n)
double precision, allocatable :: tmp1(:,:),tmp2(:,:),D_mat(:,:)
allocate(tmp1(n,n),tmp2(n,n),D_mat(n,n),matrix_half(n,n),D_half(n))
D_mat = 0.d0
do i = 1,n
D_mat(i,i) = D(i)
enddo
! matrix = U D Vt
! tmp1 = U D
tmp1 = 0.d0
call dgemm( 'N', 'N', n, n, n, 1.d0 &
, U, size(U, 1), D_mat, size(D_mat, 1) &
, 0.d0, tmp1, size(tmp1, 1) )
! tmp2 = tmp1 X Vt = matrix
tmp2 = 0.d0
call dgemm( 'N', 'N', n, n, n, 1.d0 &
, tmp1, size(tmp1, 1), Vt, size(Vt, 1) &
, 0.d0, tmp2, size(tmp2, 1) )
print*,'Checking the recomposition of the matrix'
accu_nd = 0.d0
accu_d = 0.d0
do i = 1, n
accu_d += dabs(tmp2(i,i) - matrix(i,i))
do j = 1, n
if(i==j)cycle
accu_nd += dabs(tmp2(j,i) - matrix(j,i))
enddo
enddo
print*,'accu_d =',accu_d
print*,'accu_nd =',accu_nd
print*,'passed the recomposition'
num_linear_dependencies = 0
do i = 1, n
if(abs(D(i)) <= threshold) then
D(i) = 0.d0
num_linear_dependencies += 1
else
ASSERT (D(i) > 0.d0)
D_half(i) = dsqrt(D(i))
D(i) = 1.d0 / dsqrt(D(i))
endif
enddo
write(*,*) ' linear dependencies', num_linear_dependencies
matrix_inv_half = 0.d0
matrix_half = 0.d0
do k = 1, n
if(D(k) /= 0.d0) then
do j = 1, n
do i = 1, n
! matrix_inv_half(i,j) = matrix_inv_half(i,j) + U(i,k) * D(k) * Vt(k,j)
matrix_inv_half(i,j) = matrix_inv_half(i,j) + U(i,k) * D(k) * Vt(j,k)
matrix_half(i,j) = matrix_half(i,j) + U(i,k) * D_half(k) * Vt(j,k)
enddo
enddo
endif
enddo
print*,'testing S^1/2 * S^1/2= S'
! tmp1 = S^1/2 X S^1/2
tmp1 = 0.d0
call dgemm( 'N', 'N', n, n, n, 1.d0 &
, matrix_half, size(matrix_half, 1), matrix_half, size(matrix_half, 1) &
, 0.d0, tmp1, size(tmp1, 1) )
accu_nd = 0.d0
accu_d = 0.d0
do i = 1, n
accu_d += dabs(tmp1(i,i) - matrix(i,i))
do j = 1, n
if(i==j)cycle
accu_nd += dabs(tmp1(j,i) - matrix(j,i))
enddo
enddo
print*,'accu_d =',accu_d
print*,'accu_nd =',accu_nd
! print*,'S inv half'
! do i = 1, n
! write(*, '(1000(F16.10,X))') matrix_inv_half(i,:)
! enddo
double precision, allocatable :: pseudo_inverse(:,:),identity(:,:)
allocate( pseudo_inverse(n,n),identity(n,n))
call get_pseudo_inverse(matrix,n,n,n,pseudo_inverse,n,threshold)
! S^-1 X S = 1
! identity = 0.d0
! call dgemm( 'N', 'N', n, n, n, 1.d0 &
! , matrix, size(matrix, 1), pseudo_inverse, size(pseudo_inverse, 1) &
! , 0.d0, identity, size(identity, 1) )
print*,'Checking S^-1/2 X S^-1/2 = S^-1 ?'
! S^-1/2 X S^-1/2 = S^-1 ?
tmp1 = 0.d0
call dgemm( 'N', 'N', n, n, n, 1.d0 &
,matrix_inv_half, size(matrix_inv_half, 1), matrix_inv_half, size(matrix_inv_half, 1) &
, 0.d0, tmp1, size(tmp1, 1) )
accu_nd = 0.d0
accu_d = 0.d0
do i = 1, n
accu_d += dabs(1.d0 - pseudo_inverse(i,i))
do j = 1, n
if(i==j)cycle
accu_nd += dabs(tmp1(j,i) - pseudo_inverse(j,i))
enddo
enddo
print*,'accu_d =',accu_d
print*,'accu_nd =',accu_nd
stop
!
! ! ( S^-1/2 x S ) x S^-1/2
! Stmp2 = 0.d0
! call dgemm( 'N', 'N', n, n, n, 1.d0 &
! , Stmp, size(Stmp, 1), matrix_inv_half, size(matrix_inv_half, 1) &
! , 0.d0, Stmp2, size(Stmp2, 1) )
! S^-1/2 x ( S^-1/2 x S )
! Stmp2 = 0.d0
! call dgemm( 'N', 'N', n, n, n, 1.d0 &
! , matrix_inv_half, size(matrix_inv_half, 1), Stmp, size(Stmp, 1) &
! , 0.d0, Stmp2, size(Stmp2, 1) )
! do i = 1, n
! do j = 1, n
! if(i==j) then
! accu_d += Stmp2(j,i)
! else
! accu_nd = accu_nd + Stmp2(j,i) * Stmp2(j,i)
! endif
! enddo
! enddo
! accu_nd = dsqrt(accu_nd)
! print*, ' after S^-1/2: sum of off-diag S elements = ', accu_nd
! print*, ' after S^-1/2: sum of diag S elements = ', accu_d
! do i = 1, n
! write(*,'(1000(F16.10,X))') Stmp2(i,:)
! enddo
!double precision :: thresh
!thresh = 1.d-10
!if( accu_nd.gt.thresh .or. dabs(accu_d-dble(n)).gt.thresh) then
! stop
!endif
end subroutine get_inv_half_svd
! ---
subroutine get_inv_half_nonsymmat_diago(matrix, n, matrix_inv_half, complex_root)
BEGIN_DOC
! input: S = matrix
! output: S^{-1/2} = matrix_inv_half obtained by diagonalization
!
! S = VR D VL^T
! = VR D^{1/2} D^{1/2} VL^T
! = VR D^{1/2} VL^T VR D^{1/2} VL^T
! = S^{1/2} S^{1/2} with S = VR D^{1/2} VL^T
!
! == > S^{-1/2} = VR D^{-1/2} VL^T
!
END_DOC
implicit none
integer, intent(in) :: n
double precision, intent(in) :: matrix(n,n)
logical, intent(out) :: complex_root
double precision, intent(out) :: matrix_inv_half(n,n)
integer :: i, j
double precision :: accu_d, accu_nd
double precision, allocatable :: WR(:), WI(:), VL(:,:), VR(:,:), S(:,:), S_diag(:)
double precision, allocatable :: tmp1(:,:), D_mat(:,:)
complex_root = .False.
matrix_inv_half = 0.D0
print*,'Computing S^{-1/2}'
allocate(WR(n), WI(n), VL(n,n), VR(n,n))
call lapack_diag_non_sym(n, matrix, WR, WI, VL, VR)
allocate(S(n,n))
call check_biorthog(n, n, VL, VR, accu_d, accu_nd, S)
print*,'accu_nd S^{-1/2}',accu_nd
if(accu_nd.gt.1.d-10) then
complex_root = .True. ! if vectors are not bi-orthogonal return
print*,'Eigenvectors of S are not bi-orthonormal, skipping S^{-1/2}'
return
endif
allocate(S_diag(n))
do i = 1, n
S_diag(i) = 1.d0/dsqrt(S(i,i))
if(dabs(WI(i)).gt.1.d-20.or.WR(i).lt.0.d0)then ! check that eigenvalues are real and positive
complex_root = .True.
print*,'Eigenvalues of S have imaginary part '
print*,'WR(i),WI(i)',WR(i), WR(i)
print*,'Skipping S^{-1/2}'
return
endif
enddo
deallocate(S)
if(complex_root) return
! normalization of vectors
do i = 1, n
if(S_diag(i).eq.1.d0) cycle
do j = 1,n
VL(j,i) *= S_diag(i)
VR(j,i) *= S_diag(i)
enddo
enddo
deallocate(S_diag)
allocate(tmp1(n,n), D_mat(n,n))
D_mat = 0.d0
do i = 1, n
D_mat(i,i) = 1.d0/dsqrt(WR(i))
enddo
deallocate(WR, WI)
! tmp1 = VR D^{-1/2}
tmp1 = 0.d0
call dgemm( 'N', 'N', n, n, n, 1.d0 &
, VR, size(VR, 1), D_mat, size(D_mat, 1) &
, 0.d0, tmp1, size(tmp1, 1) )
deallocate(VR, D_mat)
! S^{-1/2} = tmp1 X VL^T
matrix_inv_half = 0.d0
call dgemm( 'N', 'T', n, n, n, 1.d0 &
, tmp1, size(tmp1, 1), VL, size(VL, 1) &
, 0.d0, matrix_inv_half, size(matrix_inv_half, 1) )
deallocate(tmp1, VL)
end
! ---
subroutine bi_ortho_s_inv_half(n,leigvec,reigvec,S_nh_inv_half)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: S_nh_inv_half(n,n)
double precision, intent(inout) :: leigvec(n,n),reigvec(n,n)
BEGIN_DOC
! bi-orthonormalization of left and right vectors
!
! S = VL^T VR
!
! S^{-1/2} S S^{-1/2} = 1 = S^{-1/2} VL^T VR S^{-1/2} = VL_new^T VR_new
!
! VL_new = VL (S^{-1/2})^T
!
! VR_new = VR S^{^{-1/2}}
END_DOC
double precision,allocatable :: vl_tmp(:,:),vr_tmp(:,:)
print*,'Bi-orthonormalization using S^{-1/2}'
allocate(vl_tmp(n,n),vr_tmp(n,n))
vl_tmp = leigvec
vr_tmp = reigvec
! VL_new = VL (S^{-1/2})^T
call dgemm( 'N', 'T', n, n, n, 1.d0 &
, vl_tmp, size(vl_tmp, 1), S_nh_inv_half, size(S_nh_inv_half, 1) &
, 0.d0, leigvec, size(leigvec, 1) )
! VR_new = VR S^{^{-1/2}}
call dgemm( 'N', 'N', n, n, n, 1.d0 &
, vr_tmp, size(vr_tmp, 1), S_nh_inv_half, size(S_nh_inv_half, 1) &
, 0.d0, reigvec, size(reigvec, 1) )
double precision :: accu_d, accu_nd
double precision,allocatable :: S(:,:)
allocate(S(n,n))
call check_biorthog(n, n, leigvec, reigvec, accu_d, accu_nd, S)
if(dabs(accu_d - n).gt.1.d-10 .or. accu_nd .gt.1.d-8 )then
print*,'Pb in bi_ortho_s_inv_half !!'
print*,'accu_d =',accu_d
print*,'accu_nd =',accu_nd
stop
endif
end