mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-21 11:03:29 +01:00
added Gill grid
This commit is contained in:
parent
19f2ede59c
commit
c9f579483a
@ -7,17 +7,17 @@ BEGIN_PROVIDER [integer, List_all_comb_b2_size]
|
||||
|
||||
PROVIDE j1b_type
|
||||
|
||||
if(j1b_type .eq. 3) then
|
||||
if((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
|
||||
|
||||
List_all_comb_b2_size = 2**nucl_num
|
||||
|
||||
elseif(j1b_type .eq. 4) then
|
||||
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
|
||||
|
||||
List_all_comb_b2_size = nucl_num + 1
|
||||
|
||||
else
|
||||
|
||||
print *, 'j1b_type = ', j1b_pen, 'is not implemented'
|
||||
print *, 'j1b_type = ', j1b_type, 'is not implemented'
|
||||
stop
|
||||
|
||||
endif
|
||||
@ -67,7 +67,7 @@ END_PROVIDER
|
||||
List_all_comb_b2_expo = 0.d0
|
||||
List_all_comb_b2_cent = 0.d0
|
||||
|
||||
if(j1b_type .eq. 3) then
|
||||
if((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
|
||||
|
||||
do i = 1, List_all_comb_b2_size
|
||||
|
||||
@ -121,7 +121,7 @@ END_PROVIDER
|
||||
List_all_comb_b2_coef(i) = (-1.d0)**dble(phase) * dexp(-List_all_comb_b2_coef(i))
|
||||
enddo
|
||||
|
||||
elseif(j1b_type .eq. 4) then
|
||||
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
|
||||
|
||||
List_all_comb_b2_coef( 1) = 1.d0
|
||||
List_all_comb_b2_expo( 1) = 0.d0
|
||||
@ -136,7 +136,7 @@ END_PROVIDER
|
||||
|
||||
else
|
||||
|
||||
print *, 'j1b_type = ', j1b_pen, 'is not implemented'
|
||||
print *, 'j1b_type = ', j1b_type, 'is not implemented'
|
||||
stop
|
||||
|
||||
endif
|
||||
@ -156,18 +156,18 @@ BEGIN_PROVIDER [ integer, List_all_comb_b3_size]
|
||||
implicit none
|
||||
double precision :: tmp
|
||||
|
||||
if(j1b_type .eq. 3) then
|
||||
if((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
|
||||
|
||||
List_all_comb_b3_size = 3**nucl_num
|
||||
|
||||
elseif(j1b_type .eq. 4) then
|
||||
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
|
||||
|
||||
tmp = 0.5d0 * dble(nucl_num) * (dble(nucl_num) + 3.d0)
|
||||
List_all_comb_b3_size = int(tmp) + 1
|
||||
|
||||
else
|
||||
|
||||
print *, 'j1b_type = ', j1b_pen, 'is not implemented'
|
||||
print *, 'j1b_type = ', j1b_type, 'is not implemented'
|
||||
stop
|
||||
|
||||
endif
|
||||
@ -230,7 +230,7 @@ END_PROVIDER
|
||||
List_all_comb_b3_expo = 0.d0
|
||||
List_all_comb_b3_cent = 0.d0
|
||||
|
||||
if(j1b_type .eq. 3) then
|
||||
if((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
|
||||
|
||||
do i = 1, List_all_comb_b3_size
|
||||
|
||||
@ -287,7 +287,7 @@ END_PROVIDER
|
||||
List_all_comb_b3_coef(i) = (-1.d0)**dble(phase) * facto * dexp(-List_all_comb_b3_coef(i))
|
||||
enddo
|
||||
|
||||
elseif(j1b_type .eq. 4) then
|
||||
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
|
||||
|
||||
ii = 1
|
||||
List_all_comb_b3_coef( ii) = 1.d0
|
||||
@ -347,7 +347,7 @@ END_PROVIDER
|
||||
|
||||
else
|
||||
|
||||
print *, 'j1b_type = ', j1b_pen, 'is not implemented'
|
||||
print *, 'j1b_type = ', j1b_type, 'is not implemented'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
@ -64,3 +64,15 @@ doc: Number of angular extra_grid points given from input. Warning, this number
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1202
|
||||
|
||||
[rad_grid_type]
|
||||
type: character*(32)
|
||||
doc: method used to sample the radial space. Possible choices are [KNOWLES | GILL]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: KNOWLES
|
||||
|
||||
[extra_rad_grid_type]
|
||||
type: character*(32)
|
||||
doc: method used to sample the radial space. Possible choices are [KNOWLES | GILL]
|
||||
interface: ezfio,provider,ocaml
|
||||
default: KNOWLES
|
||||
|
||||
|
@ -1,96 +1,149 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [integer, n_points_extra_radial_grid]
|
||||
&BEGIN_PROVIDER [integer, n_points_extra_integration_angular]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! n_points_extra_radial_grid = number of radial grid points_extra per atom
|
||||
!
|
||||
! n_points_extra_integration_angular = number of angular grid points_extra per atom
|
||||
!
|
||||
! These numbers are automatically set by setting the grid_type_sgn parameter
|
||||
END_DOC
|
||||
if(.not.my_extra_grid_becke)then
|
||||
select case (extra_grid_type_sgn)
|
||||
case(0)
|
||||
n_points_extra_radial_grid = 23
|
||||
n_points_extra_integration_angular = 170
|
||||
case(1)
|
||||
n_points_extra_radial_grid = 50
|
||||
n_points_extra_integration_angular = 194
|
||||
case(2)
|
||||
n_points_extra_radial_grid = 75
|
||||
n_points_extra_integration_angular = 302
|
||||
case(3)
|
||||
n_points_extra_radial_grid = 99
|
||||
n_points_extra_integration_angular = 590
|
||||
case default
|
||||
write(*,*) '!!! Quadrature grid not available !!!'
|
||||
stop
|
||||
end select
|
||||
else
|
||||
n_points_extra_radial_grid = my_n_pt_r_extra_grid
|
||||
n_points_extra_integration_angular = my_n_pt_a_extra_grid
|
||||
endif
|
||||
|
||||
BEGIN_DOC
|
||||
! n_points_extra_radial_grid = number of radial grid points_extra per atom
|
||||
!
|
||||
! n_points_extra_integration_angular = number of angular grid points_extra per atom
|
||||
!
|
||||
! These numbers are automatically set by setting the grid_type_sgn parameter
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
if(.not.my_extra_grid_becke)then
|
||||
select case (extra_grid_type_sgn)
|
||||
case(0)
|
||||
n_points_extra_radial_grid = 23
|
||||
n_points_extra_integration_angular = 170
|
||||
case(1)
|
||||
n_points_extra_radial_grid = 50
|
||||
n_points_extra_integration_angular = 194
|
||||
case(2)
|
||||
n_points_extra_radial_grid = 75
|
||||
n_points_extra_integration_angular = 302
|
||||
case(3)
|
||||
n_points_extra_radial_grid = 99
|
||||
n_points_extra_integration_angular = 590
|
||||
case default
|
||||
write(*,*) '!!! Quadrature grid not available !!!'
|
||||
stop
|
||||
end select
|
||||
else
|
||||
n_points_extra_radial_grid = my_n_pt_r_extra_grid
|
||||
n_points_extra_integration_angular = my_n_pt_a_extra_grid
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [integer, n_points_extra_grid_per_atom]
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Number of grid points_extra per atom
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
n_points_extra_grid_per_atom = n_points_extra_integration_angular * n_points_extra_radial_grid
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, grid_points_extra_radial, (n_points_extra_radial_grid)]
|
||||
&BEGIN_PROVIDER [double precision, dr_radial_extra_integral]
|
||||
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! points_extra in [0,1] to map the radial integral [0,\infty]
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i
|
||||
|
||||
dr_radial_extra_integral = 1.d0/dble(n_points_extra_radial_grid-1)
|
||||
integer :: i
|
||||
do i = 1, n_points_extra_radial_grid
|
||||
grid_points_extra_radial(i) = dble(i-1) * dr_radial_extra_integral
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, grid_points_extra_per_atom, (3,n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! x,y,z coordinates of grid points_extra used for integration in 3d space
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,j,k
|
||||
double precision :: dr,x_ref,y_ref,z_ref
|
||||
double precision :: knowles_function
|
||||
do i = 1, nucl_num
|
||||
x_ref = nucl_coord(i,1)
|
||||
y_ref = nucl_coord(i,2)
|
||||
z_ref = nucl_coord(i,3)
|
||||
do j = 1, n_points_extra_radial_grid-1
|
||||
double precision :: x,r
|
||||
! x value for the mapping of the [0, +\infty] to [0,1]
|
||||
x = grid_points_extra_radial(j)
|
||||
integer :: i, j, k
|
||||
double precision :: dr, x_ref, y_ref, z_ref
|
||||
double precision :: x, r, tmp
|
||||
double precision, external :: knowles_function
|
||||
|
||||
! value of the radial coordinate for the integration
|
||||
r = knowles_function(alpha_knowles(grid_atomic_number(i)),m_knowles,x)
|
||||
grid_points_extra_per_atom = 0.d0
|
||||
|
||||
! explicit values of the grid points_extra centered around each atom
|
||||
do k = 1, n_points_extra_integration_angular
|
||||
grid_points_extra_per_atom(1,k,j,i) = &
|
||||
x_ref + angular_quadrature_points_extra(k,1) * r
|
||||
grid_points_extra_per_atom(2,k,j,i) = &
|
||||
y_ref + angular_quadrature_points_extra(k,2) * r
|
||||
grid_points_extra_per_atom(3,k,j,i) = &
|
||||
z_ref + angular_quadrature_points_extra(k,3) * r
|
||||
PROVIDE extra_rad_grid_type
|
||||
if(extra_rad_grid_type .eq. "KNOWLES") then
|
||||
|
||||
do i = 1, nucl_num
|
||||
x_ref = nucl_coord(i,1)
|
||||
y_ref = nucl_coord(i,2)
|
||||
z_ref = nucl_coord(i,3)
|
||||
do j = 1, n_points_extra_radial_grid-1
|
||||
|
||||
! x value for the mapping of the [0, +\infty] to [0,1]
|
||||
x = grid_points_extra_radial(j)
|
||||
! value of the radial coordinate for the integration
|
||||
r = knowles_function(alpha_knowles(grid_atomic_number(i)), m_knowles, x)
|
||||
|
||||
! explicit values of the grid points_extra centered around each atom
|
||||
do k = 1, n_points_extra_integration_angular
|
||||
grid_points_extra_per_atom(1,k,j,i) = x_ref + angular_quadrature_points_extra(k,1) * r
|
||||
grid_points_extra_per_atom(2,k,j,i) = y_ref + angular_quadrature_points_extra(k,2) * r
|
||||
grid_points_extra_per_atom(3,k,j,i) = z_ref + angular_quadrature_points_extra(k,3) * r
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
elseif(extra_rad_grid_type .eq. "GILL") then
|
||||
! GILL & CHIEN, 2002
|
||||
|
||||
do i = 1, nucl_num
|
||||
x_ref = nucl_coord(i,1)
|
||||
y_ref = nucl_coord(i,2)
|
||||
z_ref = nucl_coord(i,3)
|
||||
do j = 1, n_points_extra_radial_grid-1
|
||||
|
||||
r = R_gill * dble(j-1)**2 / dble(n_points_extra_radial_grid-j+1)**2
|
||||
|
||||
! explicit values of the grid points_extra centered around each atom
|
||||
do k = 1, n_points_extra_integration_angular
|
||||
grid_points_extra_per_atom(1,k,j,i) = x_ref + angular_quadrature_points_extra(k,1) * r
|
||||
grid_points_extra_per_atom(2,k,j,i) = y_ref + angular_quadrature_points_extra(k,2) * r
|
||||
grid_points_extra_per_atom(3,k,j,i) = z_ref + angular_quadrature_points_extra(k,3) * r
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
print*, " extra_rad_grid_type = ", extra_rad_grid_type, ' is not implemented'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, weight_at_r_extra, (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num) ]
|
||||
|
||||
BEGIN_DOC
|
||||
! Weight function at grid points_extra : w_n(r) according to the equation (22)
|
||||
! of Becke original paper (JCP, 88, 1988)
|
||||
@ -99,11 +152,14 @@ BEGIN_PROVIDER [double precision, weight_at_r_extra, (n_points_extra_integration
|
||||
! represented by the last dimension and the points_extra are labelled by the
|
||||
! other dimensions.
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,j,k,l,m
|
||||
double precision :: r(3)
|
||||
double precision :: accu,cell_function_becke
|
||||
double precision :: tmp_array(nucl_num)
|
||||
integer :: i, j, k, l, m
|
||||
double precision :: r(3)
|
||||
double precision :: accu
|
||||
double precision :: tmp_array(nucl_num)
|
||||
double precision, external :: cell_function_becke
|
||||
|
||||
! run over all points_extra in space
|
||||
! that are referred to each atom
|
||||
do j = 1, nucl_num
|
||||
@ -114,6 +170,7 @@ BEGIN_PROVIDER [double precision, weight_at_r_extra, (n_points_extra_integration
|
||||
r(1) = grid_points_extra_per_atom(1,l,k,j)
|
||||
r(2) = grid_points_extra_per_atom(2,l,k,j)
|
||||
r(3) = grid_points_extra_per_atom(3,l,k,j)
|
||||
|
||||
accu = 0.d0
|
||||
! For each of these points_extra in space, ou need to evaluate the P_n(r)
|
||||
do i = 1, nucl_num
|
||||
@ -124,18 +181,19 @@ BEGIN_PROVIDER [double precision, weight_at_r_extra, (n_points_extra_integration
|
||||
enddo
|
||||
accu = 1.d0/accu
|
||||
weight_at_r_extra(l,k,j) = tmp_array(j) * accu
|
||||
|
||||
if(isnan(weight_at_r_extra(l,k,j)))then
|
||||
print*,'isnan(weight_at_r_extra(l,k,j))'
|
||||
print*,l,k,j
|
||||
accu = 0.d0
|
||||
do i = 1, nucl_num
|
||||
! function defined for each atom "i" by equation (13) and (21) with k == 3
|
||||
tmp_array(i) = cell_function_becke(r,i) ! P_n(r)
|
||||
print*,i,tmp_array(i)
|
||||
! Then you compute the summ the P_n(r) function for each of the "r" points_extra
|
||||
accu += tmp_array(i)
|
||||
enddo
|
||||
write(*,'(100(F16.10,X))')tmp_array(j) , accu
|
||||
print*,'isnan(weight_at_r_extra(l,k,j))'
|
||||
print*,l,k,j
|
||||
accu = 0.d0
|
||||
do i = 1, nucl_num
|
||||
! function defined for each atom "i" by equation (13) and (21) with k == 3
|
||||
tmp_array(i) = cell_function_becke(r,i) ! P_n(r)
|
||||
print*,i,tmp_array(i)
|
||||
! Then you compute the summ the P_n(r) function for each of the "r" points_extra
|
||||
accu += tmp_array(i)
|
||||
enddo
|
||||
write(*,'(100(F16.10,X))')tmp_array(j) , accu
|
||||
stop
|
||||
endif
|
||||
enddo
|
||||
@ -144,35 +202,73 @@ BEGIN_PROVIDER [double precision, weight_at_r_extra, (n_points_extra_integration
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, final_weight_at_r_extra, (n_points_extra_integration_angular,n_points_extra_radial_grid,nucl_num) ]
|
||||
|
||||
BEGIN_DOC
|
||||
! Total weight on each grid point which takes into account all Lebedev, Voronoi and radial weights.
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,j,k,l,m
|
||||
double precision :: r(3)
|
||||
double precision :: accu,cell_function_becke
|
||||
double precision :: tmp_array(nucl_num)
|
||||
double precision :: contrib_integration,x
|
||||
double precision :: derivative_knowles_function,knowles_function
|
||||
! run over all points_extra in space
|
||||
do j = 1, nucl_num ! that are referred to each atom
|
||||
do i = 1, n_points_extra_radial_grid -1 !for each radial grid attached to the "jth" atom
|
||||
x = grid_points_extra_radial(i) ! x value for the mapping of the [0, +\infty] to [0,1]
|
||||
do k = 1, n_points_extra_integration_angular ! for each angular point attached to the "jth" atom
|
||||
contrib_integration = derivative_knowles_function(alpha_knowles(grid_atomic_number(j)),m_knowles,x)&
|
||||
*knowles_function(alpha_knowles(grid_atomic_number(j)),m_knowles,x)**2
|
||||
final_weight_at_r_extra(k,i,j) = weights_angular_points_extra(k) * weight_at_r_extra(k,i,j) * contrib_integration * dr_radial_extra_integral
|
||||
if(isnan(final_weight_at_r_extra(k,i,j)))then
|
||||
print*,'isnan(final_weight_at_r_extra(k,i,j))'
|
||||
print*,k,i,j
|
||||
write(*,'(100(F16.10,X))')weights_angular_points_extra(k) , weight_at_r_extra(k,i,j) , contrib_integration , dr_radial_extra_integral
|
||||
stop
|
||||
endif
|
||||
integer :: i, j, k, l, m
|
||||
double precision :: r(3)
|
||||
double precision :: tmp_array(nucl_num)
|
||||
double precision :: contrib_integration, x, tmp
|
||||
double precision, external :: derivative_knowles_function, knowles_function
|
||||
|
||||
PROVIDE extra_rad_grid_type
|
||||
if(extra_rad_grid_type .eq. "KNOWLES") then
|
||||
|
||||
! run over all points_extra in space
|
||||
do j = 1, nucl_num ! that are referred to each atom
|
||||
do i = 1, n_points_extra_radial_grid -1 !for each radial grid attached to the "jth" atom
|
||||
x = grid_points_extra_radial(i) ! x value for the mapping of the [0, +\infty] to [0,1]
|
||||
do k = 1, n_points_extra_integration_angular ! for each angular point attached to the "jth" atom
|
||||
contrib_integration = derivative_knowles_function(alpha_knowles(grid_atomic_number(j)),m_knowles,x)&
|
||||
* knowles_function(alpha_knowles(grid_atomic_number(j)),m_knowles,x)**2
|
||||
final_weight_at_r_extra(k,i,j) = weights_angular_points_extra(k) * weight_at_r_extra(k,i,j) * contrib_integration * dr_radial_extra_integral
|
||||
if(isnan(final_weight_at_r_extra(k,i,j)))then
|
||||
print*,'isnan(final_weight_at_r_extra(k,i,j))'
|
||||
print*,k,i,j
|
||||
write(*,'(100(F16.10,X))')weights_angular_points_extra(k) , weight_at_r_extra(k,i,j) , contrib_integration , dr_radial_extra_integral
|
||||
stop
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
elseif(extra_rad_grid_type .eq. "GILL") then
|
||||
! GILL & CHIEN, 2002
|
||||
|
||||
PROVIDE R_gill
|
||||
tmp = 2.d0 * R_gill * R_gill * R_gill * dble(n_points_extra_radial_grid)
|
||||
|
||||
! run over all points_extra in space
|
||||
do j = 1, nucl_num ! that are referred to each atom
|
||||
do i = 1, n_points_extra_radial_grid -1 !for each radial grid attached to the "jth" atom
|
||||
contrib_integration = tmp * dble(i-1)**5 / dble(n_points_extra_radial_grid-i+1)**7
|
||||
|
||||
do k = 1, n_points_extra_integration_angular ! for each angular point attached to the "jth" atom
|
||||
final_weight_at_r_extra(k,i,j) = weights_angular_points_extra(k) * weight_at_r_extra(k,i,j) * contrib_integration
|
||||
if(isnan(final_weight_at_r_extra(k,i,j)))then
|
||||
print*,'isnan(final_weight_at_r_extra(k,i,j))'
|
||||
print*,k,i,j
|
||||
write(*,'(100(F16.10,X))') weights_angular_points_extra(k), weight_at_r_extra(k,i,j), contrib_integration
|
||||
stop
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
print*, " extra_rad_grid_type = ", extra_rad_grid_type, ' is not implemented'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -1,26 +1,35 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [integer, n_points_extra_final_grid]
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Number of points_extra which are non zero
|
||||
END_DOC
|
||||
integer :: i,j,k,l
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, l
|
||||
|
||||
n_points_extra_final_grid = 0
|
||||
|
||||
do j = 1, nucl_num
|
||||
do i = 1, n_points_extra_radial_grid -1
|
||||
do k = 1, n_points_extra_integration_angular
|
||||
if(dabs(final_weight_at_r_extra(k,i,j)) < thresh_extra_grid)then
|
||||
if(dabs(final_weight_at_r_extra(k,i,j)) < thresh_extra_grid) then
|
||||
cycle
|
||||
endif
|
||||
n_points_extra_final_grid += 1
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print*,'n_points_extra_final_grid = ',n_points_extra_final_grid
|
||||
print*,'n max point = ',n_points_extra_integration_angular*(n_points_extra_radial_grid*nucl_num - 1)
|
||||
! call ezfio_set_becke_numerical_grid_n_points_extra_final_grid(n_points_extra_final_grid)
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, final_grid_points_extra, (3,n_points_extra_final_grid)]
|
||||
&BEGIN_PROVIDER [double precision, final_weight_at_r_vector_extra, (n_points_extra_final_grid) ]
|
||||
&BEGIN_PROVIDER [integer, index_final_points_extra, (3,n_points_extra_final_grid) ]
|
||||
|
@ -1,103 +1,174 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [integer, n_points_radial_grid]
|
||||
&BEGIN_PROVIDER [integer, n_points_integration_angular]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! n_points_radial_grid = number of radial grid points per atom
|
||||
!
|
||||
! n_points_integration_angular = number of angular grid points per atom
|
||||
!
|
||||
! These numbers are automatically set by setting the grid_type_sgn parameter
|
||||
END_DOC
|
||||
if(.not.my_grid_becke)then
|
||||
select case (grid_type_sgn)
|
||||
case(0)
|
||||
n_points_radial_grid = 23
|
||||
n_points_integration_angular = 170
|
||||
case(1)
|
||||
n_points_radial_grid = 50
|
||||
n_points_integration_angular = 194
|
||||
case(2)
|
||||
n_points_radial_grid = 75
|
||||
n_points_integration_angular = 302
|
||||
case(3)
|
||||
n_points_radial_grid = 99
|
||||
n_points_integration_angular = 590
|
||||
case default
|
||||
write(*,*) '!!! Quadrature grid not available !!!'
|
||||
stop
|
||||
end select
|
||||
else
|
||||
n_points_radial_grid = my_n_pt_r_grid
|
||||
n_points_integration_angular = my_n_pt_a_grid
|
||||
endif
|
||||
|
||||
BEGIN_DOC
|
||||
! n_points_radial_grid = number of radial grid points per atom
|
||||
!
|
||||
! n_points_integration_angular = number of angular grid points per atom
|
||||
!
|
||||
! These numbers are automatically set by setting the grid_type_sgn parameter
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
if(.not.my_grid_becke)then
|
||||
select case (grid_type_sgn)
|
||||
case(0)
|
||||
n_points_radial_grid = 23
|
||||
n_points_integration_angular = 170
|
||||
case(1)
|
||||
n_points_radial_grid = 50
|
||||
n_points_integration_angular = 194
|
||||
case(2)
|
||||
n_points_radial_grid = 75
|
||||
n_points_integration_angular = 302
|
||||
case(3)
|
||||
n_points_radial_grid = 99
|
||||
n_points_integration_angular = 590
|
||||
case default
|
||||
write(*,*) '!!! Quadrature grid not available !!!'
|
||||
stop
|
||||
end select
|
||||
else
|
||||
n_points_radial_grid = my_n_pt_r_grid
|
||||
n_points_integration_angular = my_n_pt_a_grid
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [integer, n_points_grid_per_atom]
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Number of grid points per atom
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
n_points_grid_per_atom = n_points_integration_angular * n_points_radial_grid
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer , m_knowles]
|
||||
implicit none
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [integer, m_knowles]
|
||||
|
||||
BEGIN_DOC
|
||||
! value of the "m" parameter in the equation (7) of the paper of Knowles (JCP, 104, 1996)
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
m_knowles = 3
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, R_gill]
|
||||
|
||||
implicit none
|
||||
|
||||
R_gill = 3.d0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, grid_points_radial, (n_points_radial_grid)]
|
||||
&BEGIN_PROVIDER [double precision, dr_radial_integral]
|
||||
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! points in [0,1] to map the radial integral [0,\infty]
|
||||
END_DOC
|
||||
dr_radial_integral = 1.d0/dble(n_points_radial_grid-1)
|
||||
integer :: i
|
||||
|
||||
implicit none
|
||||
integer :: i
|
||||
|
||||
dr_radial_integral = 1.d0 / dble(n_points_radial_grid-1)
|
||||
|
||||
do i = 1, n_points_radial_grid
|
||||
grid_points_radial(i) = dble(i-1) * dr_radial_integral
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, grid_points_per_atom, (3,n_points_integration_angular,n_points_radial_grid,nucl_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! x,y,z coordinates of grid points used for integration in 3d space
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,j,k
|
||||
double precision :: dr,x_ref,y_ref,z_ref
|
||||
double precision :: knowles_function
|
||||
do i = 1, nucl_num
|
||||
x_ref = nucl_coord(i,1)
|
||||
y_ref = nucl_coord(i,2)
|
||||
z_ref = nucl_coord(i,3)
|
||||
do j = 1, n_points_radial_grid-1
|
||||
double precision :: x,r
|
||||
! x value for the mapping of the [0, +\infty] to [0,1]
|
||||
x = grid_points_radial(j)
|
||||
integer :: i, j, k
|
||||
double precision :: dr, x_ref, y_ref, z_ref
|
||||
double precision :: x, r, tmp
|
||||
double precision, external :: knowles_function
|
||||
|
||||
! value of the radial coordinate for the integration
|
||||
r = knowles_function(alpha_knowles(grid_atomic_number(i)),m_knowles,x)
|
||||
grid_points_per_atom = 0.d0
|
||||
|
||||
! explicit values of the grid points centered around each atom
|
||||
do k = 1, n_points_integration_angular
|
||||
grid_points_per_atom(1,k,j,i) = &
|
||||
x_ref + angular_quadrature_points(k,1) * r
|
||||
grid_points_per_atom(2,k,j,i) = &
|
||||
y_ref + angular_quadrature_points(k,2) * r
|
||||
grid_points_per_atom(3,k,j,i) = &
|
||||
z_ref + angular_quadrature_points(k,3) * r
|
||||
PROVIDE rad_grid_type
|
||||
if(rad_grid_type .eq. "KNOWLES") then
|
||||
|
||||
do i = 1, nucl_num
|
||||
x_ref = nucl_coord(i,1)
|
||||
y_ref = nucl_coord(i,2)
|
||||
z_ref = nucl_coord(i,3)
|
||||
do j = 1, n_points_radial_grid-1
|
||||
|
||||
! x value for the mapping of the [0, +\infty] to [0,1]
|
||||
x = grid_points_radial(j)
|
||||
! value of the radial coordinate for the integration
|
||||
r = knowles_function(alpha_knowles(grid_atomic_number(i)), m_knowles, x)
|
||||
|
||||
! explicit values of the grid points centered around each atom
|
||||
do k = 1, n_points_integration_angular
|
||||
grid_points_per_atom(1,k,j,i) = x_ref + angular_quadrature_points(k,1) * r
|
||||
grid_points_per_atom(2,k,j,i) = y_ref + angular_quadrature_points(k,2) * r
|
||||
grid_points_per_atom(3,k,j,i) = z_ref + angular_quadrature_points(k,3) * r
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
elseif(rad_grid_type .eq. "GILL") then
|
||||
! GILL & CHIEN, 2002
|
||||
|
||||
do i = 1, nucl_num
|
||||
x_ref = nucl_coord(i,1)
|
||||
y_ref = nucl_coord(i,2)
|
||||
z_ref = nucl_coord(i,3)
|
||||
do j = 1, n_points_radial_grid-1
|
||||
|
||||
r = R_gill * dble(j-1)**2 / dble(n_points_radial_grid-j+1)**2
|
||||
|
||||
! explicit values of the grid points centered around each atom
|
||||
do k = 1, n_points_integration_angular
|
||||
grid_points_per_atom(1,k,j,i) = x_ref + angular_quadrature_points(k,1) * r
|
||||
grid_points_per_atom(2,k,j,i) = y_ref + angular_quadrature_points(k,2) * r
|
||||
grid_points_per_atom(3,k,j,i) = z_ref + angular_quadrature_points(k,3) * r
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
print*, " rad_grid_type = ", rad_grid_type, ' is not implemented'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, weight_at_r, (n_points_integration_angular,n_points_radial_grid,nucl_num) ]
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, weight_at_r, (n_points_integration_angular,n_points_radial_grid,nucl_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! Weight function at grid points : w_n(r) according to the equation (22)
|
||||
! of Becke original paper (JCP, 88, 1988)
|
||||
@ -106,11 +177,13 @@ BEGIN_PROVIDER [double precision, weight_at_r, (n_points_integration_angular,n_p
|
||||
! represented by the last dimension and the points are labelled by the
|
||||
! other dimensions.
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,j,k,l,m
|
||||
double precision :: r(3)
|
||||
double precision :: accu,cell_function_becke
|
||||
double precision :: tmp_array(nucl_num)
|
||||
integer :: i, j, k, l, m
|
||||
double precision :: r(3), accu
|
||||
double precision :: tmp_array(nucl_num)
|
||||
double precision, external :: cell_function_becke
|
||||
|
||||
! run over all points in space
|
||||
! that are referred to each atom
|
||||
do j = 1, nucl_num
|
||||
@ -121,28 +194,30 @@ BEGIN_PROVIDER [double precision, weight_at_r, (n_points_integration_angular,n_p
|
||||
r(1) = grid_points_per_atom(1,l,k,j)
|
||||
r(2) = grid_points_per_atom(2,l,k,j)
|
||||
r(3) = grid_points_per_atom(3,l,k,j)
|
||||
|
||||
accu = 0.d0
|
||||
! For each of these points in space, ou need to evaluate the P_n(r)
|
||||
do i = 1, nucl_num
|
||||
! function defined for each atom "i" by equation (13) and (21) with k == 3
|
||||
tmp_array(i) = cell_function_becke(r,i) ! P_n(r)
|
||||
tmp_array(i) = cell_function_becke(r, i) ! P_n(r)
|
||||
! Then you compute the summ the P_n(r) function for each of the "r" points
|
||||
accu += tmp_array(i)
|
||||
enddo
|
||||
accu = 1.d0/accu
|
||||
weight_at_r(l,k,j) = tmp_array(j) * accu
|
||||
if(isnan(weight_at_r(l,k,j)))then
|
||||
print*,'isnan(weight_at_r(l,k,j))'
|
||||
print*,l,k,j
|
||||
accu = 0.d0
|
||||
do i = 1, nucl_num
|
||||
! function defined for each atom "i" by equation (13) and (21) with k == 3
|
||||
tmp_array(i) = cell_function_becke(r,i) ! P_n(r)
|
||||
print*,i,tmp_array(i)
|
||||
! Then you compute the summ the P_n(r) function for each of the "r" points
|
||||
accu += tmp_array(i)
|
||||
enddo
|
||||
write(*,'(100(F16.10,X))')tmp_array(j) , accu
|
||||
|
||||
if(isnan(weight_at_r(l,k,j))) then
|
||||
print*,'isnan(weight_at_r(l,k,j))'
|
||||
print*,l,k,j
|
||||
accu = 0.d0
|
||||
do i = 1, nucl_num
|
||||
! function defined for each atom "i" by equation (13) and (21) with k == 3
|
||||
tmp_array(i) = cell_function_becke(r,i) ! P_n(r)
|
||||
print*,i,tmp_array(i)
|
||||
! Then you compute the summ the P_n(r) function for each of the "r" points
|
||||
accu += tmp_array(i)
|
||||
enddo
|
||||
write(*,'(100(F16.10,X))')tmp_array(j) , accu
|
||||
stop
|
||||
endif
|
||||
enddo
|
||||
@ -151,35 +226,76 @@ BEGIN_PROVIDER [double precision, weight_at_r, (n_points_integration_angular,n_p
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, final_weight_at_r, (n_points_integration_angular,n_points_radial_grid,nucl_num)]
|
||||
|
||||
BEGIN_PROVIDER [double precision, final_weight_at_r, (n_points_integration_angular,n_points_radial_grid,nucl_num) ]
|
||||
BEGIN_DOC
|
||||
! Total weight on each grid point which takes into account all Lebedev, Voronoi and radial weights.
|
||||
! Total weight on each grid point which takes into account all Lebedev, Voronoi and radial weights.
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,j,k,l,m
|
||||
double precision :: r(3)
|
||||
double precision :: accu,cell_function_becke
|
||||
double precision :: tmp_array(nucl_num)
|
||||
double precision :: contrib_integration,x
|
||||
double precision :: derivative_knowles_function,knowles_function
|
||||
! run over all points in space
|
||||
do j = 1, nucl_num ! that are referred to each atom
|
||||
do i = 1, n_points_radial_grid -1 !for each radial grid attached to the "jth" atom
|
||||
x = grid_points_radial(i) ! x value for the mapping of the [0, +\infty] to [0,1]
|
||||
do k = 1, n_points_integration_angular ! for each angular point attached to the "jth" atom
|
||||
contrib_integration = derivative_knowles_function(alpha_knowles(grid_atomic_number(j)),m_knowles,x)&
|
||||
*knowles_function(alpha_knowles(grid_atomic_number(j)),m_knowles,x)**2
|
||||
final_weight_at_r(k,i,j) = weights_angular_points(k) * weight_at_r(k,i,j) * contrib_integration * dr_radial_integral
|
||||
if(isnan(final_weight_at_r(k,i,j)))then
|
||||
print*,'isnan(final_weight_at_r(k,i,j))'
|
||||
print*,k,i,j
|
||||
write(*,'(100(F16.10,X))')weights_angular_points(k) , weight_at_r(k,i,j) , contrib_integration , dr_radial_integral
|
||||
stop
|
||||
endif
|
||||
integer :: i, j, k, l, m
|
||||
double precision :: r(3)
|
||||
double precision :: tmp_array(nucl_num)
|
||||
double precision :: contrib_integration, x, tmp
|
||||
double precision, external :: derivative_knowles_function, knowles_function
|
||||
|
||||
final_weight_at_r = 0.d0
|
||||
|
||||
PROVIDE rad_grid_type
|
||||
if(rad_grid_type .eq. "KNOWLES") then
|
||||
|
||||
! run over all points in space
|
||||
do j = 1, nucl_num ! that are referred to each atom
|
||||
do i = 1, n_points_radial_grid -1 !for each radial grid attached to the "jth" atom
|
||||
x = grid_points_radial(i) ! x value for the mapping of the [0, +\infty] to [0,1]
|
||||
|
||||
do k = 1, n_points_integration_angular ! for each angular point attached to the "jth" atom
|
||||
contrib_integration = derivative_knowles_function(alpha_knowles(grid_atomic_number(j)), m_knowles, x) &
|
||||
* knowles_function(alpha_knowles(grid_atomic_number(j)), m_knowles, x)**2
|
||||
|
||||
final_weight_at_r(k,i,j) = weights_angular_points(k) * weight_at_r(k,i,j) * contrib_integration * dr_radial_integral
|
||||
|
||||
if(isnan(final_weight_at_r(k,i,j))) then
|
||||
print*,'isnan(final_weight_at_r(k,i,j))'
|
||||
print*,k,i,j
|
||||
write(*,'(100(F16.10,X))') weights_angular_points(k), weight_at_r(k,i,j), contrib_integration
|
||||
stop
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
elseif(rad_grid_type .eq. "GILL") then
|
||||
! GILL & CHIEN, 2002
|
||||
|
||||
tmp = 2.d0 * R_gill * R_gill * R_gill * dble(n_points_radial_grid)
|
||||
|
||||
! run over all points in space
|
||||
do j = 1, nucl_num ! that are referred to each atom
|
||||
do i = 1, n_points_radial_grid - 1 !for each radial grid attached to the "jth" atom
|
||||
contrib_integration = tmp * dble(i-1)**5 / dble(n_points_radial_grid-i+1)**7
|
||||
do k = 1, n_points_integration_angular ! for each angular point attached to the "jth" atom
|
||||
final_weight_at_r(k,i,j) = weights_angular_points(k) * weight_at_r(k,i,j) * contrib_integration
|
||||
|
||||
if(isnan(final_weight_at_r(k,i,j))) then
|
||||
print*,'isnan(final_weight_at_r(k,i,j))'
|
||||
print*,k,i,j
|
||||
write(*,'(100(F16.10,X))') weights_angular_points(k), weight_at_r(k,i,j), contrib_integration, dr_radial_integral
|
||||
stop
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
print*, " rad_grid_type = ", rad_grid_type, ' is not implemented'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
@ -21,22 +21,27 @@ BEGIN_PROVIDER [integer, n_points_final_grid]
|
||||
call ezfio_set_becke_numerical_grid_n_points_final_grid(n_points_final_grid)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, final_grid_points, (3,n_points_final_grid)]
|
||||
&BEGIN_PROVIDER [double precision, final_weight_at_r_vector, (n_points_final_grid) ]
|
||||
&BEGIN_PROVIDER [integer, index_final_points, (3,n_points_final_grid) ]
|
||||
&BEGIN_PROVIDER [integer, index_final_points_reverse, (n_points_integration_angular,n_points_radial_grid,nucl_num) ]
|
||||
implicit none
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, final_grid_points, (3,n_points_final_grid)]
|
||||
&BEGIN_PROVIDER [double precision, final_weight_at_r_vector, (n_points_final_grid)]
|
||||
&BEGIN_PROVIDER [integer, index_final_points, (3,n_points_final_grid)]
|
||||
&BEGIN_PROVIDER [integer, index_final_points_reverse, (n_points_integration_angular,n_points_radial_grid,nucl_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
! final_grid_points(1:3,j) = (/ x, y, z /) of the jth grid point
|
||||
!
|
||||
! final_weight_at_r_vector(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
|
||||
!
|
||||
! index_final_points(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
|
||||
!
|
||||
! index_final_points_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
|
||||
! final_grid_points(1:3,j) = (/ x, y, z /) of the jth grid point
|
||||
!
|
||||
! final_weight_at_r_vector(i) = Total weight function of the ith grid point which contains the Lebedev, Voronoi and radial weights contributions
|
||||
!
|
||||
! index_final_points(1:3,i) = gives the angular, radial and atomic indices associated to the ith grid point
|
||||
!
|
||||
! index_final_points_reverse(i,j,k) = index of the grid point having i as angular, j as radial and l as atomic indices
|
||||
END_DOC
|
||||
integer :: i,j,k,l,i_count
|
||||
double precision :: r(3)
|
||||
|
||||
implicit none
|
||||
integer :: i, j, k, l, i_count
|
||||
double precision :: r(3)
|
||||
|
||||
i_count = 0
|
||||
do j = 1, nucl_num
|
||||
do i = 1, n_points_radial_grid -1
|
||||
@ -59,6 +64,8 @@ END_PROVIDER
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, final_grid_points_transp, (n_points_final_grid,3)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
|
@ -1,71 +1,93 @@
|
||||
double precision function knowles_function(alpha,m,x)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Function proposed by Knowles (JCP, 104, 1996) for distributing the radial points :
|
||||
! the Log "m" function ( equation (7) in the paper )
|
||||
END_DOC
|
||||
double precision, intent(in) :: alpha,x
|
||||
integer, intent(in) :: m
|
||||
!print*, x
|
||||
knowles_function = -alpha * dlog(1.d0-x**m)
|
||||
end
|
||||
|
||||
double precision function derivative_knowles_function(alpha,m,x)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Derivative of the function proposed by Knowles (JCP, 104, 1996) for distributing the radial points
|
||||
END_DOC
|
||||
double precision, intent(in) :: alpha,x
|
||||
integer, intent(in) :: m
|
||||
double precision :: f
|
||||
f = x**(m-1)
|
||||
derivative_knowles_function = alpha * dble(m) * f / (1.d0 - x*f)
|
||||
end
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, alpha_knowles, (100)]
|
||||
implicit none
|
||||
integer :: i
|
||||
BEGIN_DOC
|
||||
! Recommended values for the alpha parameters according to the paper of Knowles (JCP, 104, 1996)
|
||||
! as a function of the nuclear charge
|
||||
END_DOC
|
||||
double precision function knowles_function(alpha, m, x)
|
||||
|
||||
! H-He
|
||||
alpha_knowles(1) = 5.d0
|
||||
alpha_knowles(2) = 5.d0
|
||||
BEGIN_DOC
|
||||
! Function proposed by Knowles (JCP, 104, 1996) for distributing the radial points :
|
||||
! the Log "m" function ( equation (7) in the paper )
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: alpha, x
|
||||
integer, intent(in) :: m
|
||||
|
||||
! Li-Be
|
||||
alpha_knowles(3) = 7.d0
|
||||
alpha_knowles(4) = 7.d0
|
||||
!print*, x
|
||||
knowles_function = -alpha * dlog(1.d0-x**m)
|
||||
|
||||
! B-Ne
|
||||
do i = 5, 10
|
||||
alpha_knowles(i) = 5.d0
|
||||
enddo
|
||||
return
|
||||
end
|
||||
|
||||
! Na-Mg
|
||||
do i = 11, 12
|
||||
alpha_knowles(i) = 7.d0
|
||||
enddo
|
||||
! ---
|
||||
|
||||
! Al-Ar
|
||||
do i = 13, 18
|
||||
alpha_knowles(i) = 5.d0
|
||||
enddo
|
||||
double precision function derivative_knowles_function(alpha, m, x)
|
||||
|
||||
! K-Ca
|
||||
do i = 19, 20
|
||||
alpha_knowles(i) = 7.d0
|
||||
enddo
|
||||
BEGIN_DOC
|
||||
! Derivative of the function proposed by Knowles (JCP, 104, 1996) for distributing the radial points
|
||||
END_DOC
|
||||
|
||||
! Sc-Zn
|
||||
do i = 21, 30
|
||||
alpha_knowles(i) = 5.d0
|
||||
enddo
|
||||
implicit none
|
||||
double precision, intent(in) :: alpha, x
|
||||
integer, intent(in) :: m
|
||||
double precision :: f
|
||||
|
||||
! Ga-Kr
|
||||
do i = 31, 100
|
||||
alpha_knowles(i) = 7.d0
|
||||
enddo
|
||||
f = x**(m-1)
|
||||
derivative_knowles_function = alpha * dble(m) * f / (1.d0 - x*f)
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [double precision, alpha_knowles, (100)]
|
||||
|
||||
BEGIN_DOC
|
||||
! Recommended values for the alpha parameters according to the paper of Knowles (JCP, 104, 1996)
|
||||
! as a function of the nuclear charge
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i
|
||||
|
||||
! H-He
|
||||
alpha_knowles(1) = 5.d0
|
||||
alpha_knowles(2) = 5.d0
|
||||
|
||||
! Li-Be
|
||||
alpha_knowles(3) = 7.d0
|
||||
alpha_knowles(4) = 7.d0
|
||||
|
||||
! B-Ne
|
||||
do i = 5, 10
|
||||
alpha_knowles(i) = 5.d0
|
||||
enddo
|
||||
|
||||
! Na-Mg
|
||||
do i = 11, 12
|
||||
alpha_knowles(i) = 7.d0
|
||||
enddo
|
||||
|
||||
! Al-Ar
|
||||
do i = 13, 18
|
||||
alpha_knowles(i) = 5.d0
|
||||
enddo
|
||||
|
||||
! K-Ca
|
||||
do i = 19, 20
|
||||
alpha_knowles(i) = 7.d0
|
||||
enddo
|
||||
|
||||
! Sc-Zn
|
||||
do i = 21, 30
|
||||
alpha_knowles(i) = 5.d0
|
||||
enddo
|
||||
|
||||
! Ga-Kr
|
||||
do i = 31, 100
|
||||
alpha_knowles(i) = 7.d0
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -20,31 +20,42 @@ double precision function f_function_becke(x)
|
||||
f_function_becke = 1.5d0 * x - 0.5d0 * x*x*x
|
||||
end
|
||||
|
||||
double precision function cell_function_becke(r,atom_number)
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
integer, intent(in) :: atom_number
|
||||
! ---
|
||||
|
||||
double precision function cell_function_becke(r, atom_number)
|
||||
|
||||
BEGIN_DOC
|
||||
! atom_number :: atom on which the cell function of Becke (1988, JCP,88(4))
|
||||
! atom_number :: atom on which the cell function of Becke (1988, JCP,88(4))
|
||||
! r(1:3) :: x,y,z coordinantes of the current point
|
||||
END_DOC
|
||||
double precision :: mu_ij,nu_ij
|
||||
double precision :: distance_i,distance_j,step_function_becke
|
||||
integer :: j
|
||||
distance_i = (r(1) - nucl_coord_transp(1,atom_number) ) * (r(1) - nucl_coord_transp(1,atom_number))
|
||||
|
||||
implicit none
|
||||
double precision, intent(in) :: r(3)
|
||||
integer, intent(in) :: atom_number
|
||||
integer :: j
|
||||
double precision :: mu_ij, nu_ij
|
||||
double precision :: distance_i, distance_j, step_function_becke
|
||||
|
||||
distance_i = (r(1) - nucl_coord_transp(1,atom_number) ) * (r(1) - nucl_coord_transp(1,atom_number))
|
||||
distance_i += (r(2) - nucl_coord_transp(2,atom_number) ) * (r(2) - nucl_coord_transp(2,atom_number))
|
||||
distance_i += (r(3) - nucl_coord_transp(3,atom_number) ) * (r(3) - nucl_coord_transp(3,atom_number))
|
||||
distance_i = dsqrt(distance_i)
|
||||
distance_i = dsqrt(distance_i)
|
||||
|
||||
cell_function_becke = 1.d0
|
||||
do j = 1, nucl_num
|
||||
if(j==atom_number)cycle
|
||||
distance_j = (r(1) - nucl_coord_transp(1,j) ) * (r(1) - nucl_coord_transp(1,j))
|
||||
distance_j+= (r(2) - nucl_coord_transp(2,j) ) * (r(2) - nucl_coord_transp(2,j))
|
||||
distance_j+= (r(3) - nucl_coord_transp(3,j) ) * (r(3) - nucl_coord_transp(3,j))
|
||||
distance_j = dsqrt(distance_j)
|
||||
mu_ij = (distance_i - distance_j)*nucl_dist_inv(atom_number,j)
|
||||
if(j==atom_number) cycle
|
||||
|
||||
distance_j = (r(1) - nucl_coord_transp(1,j) ) * (r(1) - nucl_coord_transp(1,j))
|
||||
distance_j += (r(2) - nucl_coord_transp(2,j) ) * (r(2) - nucl_coord_transp(2,j))
|
||||
distance_j += (r(3) - nucl_coord_transp(3,j) ) * (r(3) - nucl_coord_transp(3,j))
|
||||
distance_j = dsqrt(distance_j)
|
||||
|
||||
mu_ij = (distance_i - distance_j) * nucl_dist_inv(atom_number,j)
|
||||
nu_ij = mu_ij + slater_bragg_type_inter_distance_ua(atom_number,j) * (1.d0 - mu_ij*mu_ij)
|
||||
|
||||
cell_function_becke *= step_function_becke(nu_ij)
|
||||
enddo
|
||||
|
||||
return
|
||||
end
|
||||
|
||||
|
@ -59,7 +59,7 @@ BEGIN_PROVIDER [ double precision, v_1b, (n_points_final_grid)]
|
||||
|
||||
else
|
||||
|
||||
print*, 'j1b_type = ', j1b_pen, 'is not implemented for v_1b'
|
||||
print*, 'j1b_type = ', j1b_type, 'is not implemented for v_1b'
|
||||
stop
|
||||
|
||||
endif
|
||||
@ -158,7 +158,7 @@ BEGIN_PROVIDER [double precision, v_1b_grad, (3, n_points_final_grid)]
|
||||
|
||||
else
|
||||
|
||||
print*, 'j1b_type = ', j1b_pen, 'is not implemented'
|
||||
print*, 'j1b_type = ', j1b_type, 'is not implemented'
|
||||
stop
|
||||
|
||||
endif
|
||||
|
Loading…
Reference in New Issue
Block a user