9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-21 11:03:29 +01:00

Fixed tests

This commit is contained in:
Anthony Scemama 2019-06-05 18:57:17 +02:00
parent 3c6b417ae7
commit c7ef5fc8c7
2 changed files with 38 additions and 41 deletions

View File

@ -5,7 +5,7 @@ subroutine run_cipsi
! stochastic PT2.
END_DOC
integer :: i,j,k
double precision, allocatable :: pt2(:), variance(:), norm(:), rpt2(:)
double precision, allocatable :: pt2(:), variance(:), norm(:), rpt2(:), zeros(:)
integer :: n_det_before, to_select
double precision :: rss
@ -13,7 +13,7 @@ subroutine run_cipsi
rss = memory_of_double(N_states)*4.d0
call check_mem(rss,irp_here)
allocate (pt2(N_states), rpt2(N_states), norm(N_states), variance(N_states))
allocate (pt2(N_states), zeros(N_states), rpt2(N_states), norm(N_states), variance(N_states))
double precision :: hf_energy_ref
logical :: has
@ -23,10 +23,11 @@ subroutine run_cipsi
relative_error=PT2_relative_error
zeros = 0.d0
pt2 = -huge(1.e0)
rpt2 = -huge(1.e0)
norm = 0.d0
variance = 0.d0
variance = huge(1.e0)
if (s2_eig) then
call make_s2_eigenfunction
@ -66,6 +67,7 @@ subroutine run_cipsi
do while ( &
(N_det < N_det_max) .and. &
(maxval(abs(rpt2(1:N_states))) > pt2_max) .and. &
(maxval(variance(1:N_states)) > variance_max) .and. &
(correlation_energy_ratio <= correlation_energy_ratio_max) &
)
write(*,'(A)') '--------------------------------------------------------------------------------'
@ -83,17 +85,17 @@ subroutine run_cipsi
SOFT_TOUCH threshold_generators
endif
do k=1,N_states
rpt2(k) = pt2(k)/(1.d0 + norm(k))
enddo
correlation_energy_ratio = (psi_energy_with_nucl_rep(1) - hf_energy_ref) / &
(psi_energy_with_nucl_rep(1) + pt2(1) - hf_energy_ref)
(psi_energy_with_nucl_rep(1) + rpt2(1) - hf_energy_ref)
correlation_energy_ratio = min(1.d0,correlation_energy_ratio)
call write_double(6,correlation_energy_ratio, 'Correlation ratio')
call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2)
do k=1,N_states
rpt2(k) = pt2(k)/(1.d0 + norm(k))
enddo
call save_energy(psi_energy_with_nucl_rep, rpt2)
call save_iterations(psi_energy_with_nucl_rep(1:N_states),rpt2,N_det)
@ -103,7 +105,7 @@ subroutine run_cipsi
if (qp_stop()) exit
n_det_before = N_det
to_select = int(sqrt(dble(N_states)*dble(N_det))*selection_factor)
to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor)
to_select = max(N_states_diag, to_select)
call ZMQ_selection(to_select, pt2, variance, norm)
@ -113,32 +115,30 @@ subroutine run_cipsi
call diagonalize_CI
call save_wavefunction
rpt2(:) = 0.d0
call save_energy(psi_energy_with_nucl_rep, rpt2)
call save_energy(psi_energy_with_nucl_rep, zeros)
if (qp_stop()) exit
print *, (N_det < N_det_max)
print *, (maxval(abs(rpt2(1:N_states))) > pt2_max)
print *, (maxval(variance(1:N_states)) > variance_max)
print *, (correlation_energy_ratio <= correlation_energy_ratio_max)
enddo
if (.not.qp_stop()) then
if (N_det < N_det_max) then
call diagonalize_CI
call save_wavefunction
rpt2(:) = 0.d0
call save_energy(psi_energy_with_nucl_rep, rpt2)
call save_energy(psi_energy_with_nucl_rep, zeros)
endif
if (do_pt2) then
pt2 = 0.d0
variance = 0.d0
norm = 0.d0
pt2(:) = 0.d0
variance(:) = 0.d0
norm(:) = 0.d0
threshold_generators = 1d0
SOFT_TOUCH threshold_generators
call ZMQ_pt2(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, &
norm,0) ! Stochastic PT2
SOFT_TOUCH threshold_generators
do k=1,N_states
rpt2(k) = pt2(k)/(1.d0 + norm(k))
enddo
call save_energy(psi_energy_with_nucl_rep, pt2)
endif
print *, 'N_det = ', N_det
print *, 'N_sop = ', N_occ_pattern
@ -149,10 +149,9 @@ subroutine run_cipsi
do k=1,N_states
rpt2(k) = pt2(k)/(1.d0 + norm(k))
enddo
call save_energy(psi_energy_with_nucl_rep, rpt2)
call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2)
call save_energy(psi_energy_with_nucl_rep, pt2)
call save_energy(psi_energy_with_nucl_rep, rpt2)
call save_iterations(psi_energy_with_nucl_rep(1:N_states),rpt2,N_det)
call print_extrapolated_energy()
endif

View File

@ -4,7 +4,7 @@ subroutine run_stochastic_cipsi
! Selected Full Configuration Interaction with Stochastic selection and PT2.
END_DOC
integer :: i,j,k
double precision, allocatable :: pt2(:), variance(:), norm(:), rpt2(:)
double precision, allocatable :: pt2(:), variance(:), norm(:), rpt2(:), zeros(:)
integer :: to_select
logical, external :: qp_stop
@ -18,7 +18,7 @@ subroutine run_stochastic_cipsi
rss = memory_of_double(N_states)*4.d0
call check_mem(rss,irp_here)
allocate (pt2(N_states), rpt2(N_states), norm(N_states), variance(N_states))
allocate (pt2(N_states), zeros(N_states), rpt2(N_states), norm(N_states), variance(N_states))
double precision :: hf_energy_ref
logical :: has
@ -26,6 +26,7 @@ subroutine run_stochastic_cipsi
relative_error=PT2_relative_error
zeros = 0.d0
pt2 = -huge(1.e0)
rpt2 = -huge(1.e0)
norm = 0.d0
@ -63,14 +64,14 @@ subroutine run_stochastic_cipsi
do while ( &
(N_det < N_det_max) .and. &
(maxval(abs(pt2(1:N_states))) > pt2_max) .and. &
(maxval(abs(rpt2(1:N_states))) > pt2_max) .and. &
(maxval(abs(variance(1:N_states))) > variance_max) .and. &
(correlation_energy_ratio <= correlation_energy_ratio_max) &
)
write(*,'(A)') '--------------------------------------------------------------------------------'
to_select = int(sqrt(dble(N_states)*dble(N_det))*selection_factor)
to_select = int(sqrt(dble(N_states))*dble(N_det)*selection_factor)
to_select = max(N_states_diag, to_select)
pt2 = 0.d0
@ -79,17 +80,17 @@ subroutine run_stochastic_cipsi
call ZMQ_pt2(psi_energy_with_nucl_rep,pt2,relative_error,error, variance, &
norm, to_select) ! Stochastic PT2 and selection
correlation_energy_ratio = (psi_energy_with_nucl_rep(1) - hf_energy_ref) / &
(psi_energy_with_nucl_rep(1) + pt2(1) - hf_energy_ref)
correlation_energy_ratio = min(1.d0,correlation_energy_ratio)
call save_energy(psi_energy_with_nucl_rep, rpt2)
call write_double(6,correlation_energy_ratio, 'Correlation ratio')
call print_summary(psi_energy_with_nucl_rep,pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2)
do k=1,N_states
rpt2(k) = pt2(k)/(1.d0 + norm(k))
enddo
correlation_energy_ratio = (psi_energy_with_nucl_rep(1) - hf_energy_ref) / &
(psi_energy_with_nucl_rep(1) + rpt2(1) - hf_energy_ref)
correlation_energy_ratio = min(1.d0,correlation_energy_ratio)
call write_double(6,correlation_energy_ratio, 'Correlation ratio')
call print_summary(psi_energy_with_nucl_rep,pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2)
call save_energy(psi_energy_with_nucl_rep, rpt2)
call save_iterations(psi_energy_with_nucl_rep(1:N_states),rpt2,N_det)
@ -108,8 +109,7 @@ subroutine run_stochastic_cipsi
call diagonalize_CI
call save_wavefunction
rpt2(:) = 0.d0
call save_energy(psi_energy_with_nucl_rep, rpt2)
call save_energy(psi_energy_with_nucl_rep, zeros)
if (qp_stop()) exit
enddo
@ -117,20 +117,18 @@ subroutine run_stochastic_cipsi
if (N_det < N_det_max) then
call diagonalize_CI
call save_wavefunction
rpt2(:) = 0.d0
call save_energy(psi_energy_with_nucl_rep, rpt2)
call save_energy(psi_energy_with_nucl_rep, zeros)
endif
pt2 = 0.d0
variance = 0.d0
norm = 0.d0
pt2(:) = 0.d0
variance(:) = 0.d0
norm(:) = 0.d0
call ZMQ_pt2(psi_energy_with_nucl_rep, pt2,relative_error,error,variance, &
norm,0) ! Stochastic PT2
do k=1,N_states
rpt2(k) = pt2(k)/(1.d0 + norm(k))
enddo
call save_energy(psi_energy_with_nucl_rep, rpt2)
call save_energy(psi_energy_with_nucl_rep, rpt2)
call print_summary(psi_energy_with_nucl_rep(1:N_states),pt2,error,variance,norm,N_det,N_occ_pattern,N_states,psi_s2)