9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-17 23:21:38 +01:00

Merge branch 'dev-stable' of github.com:QuantumPackage/qp2 into dev-stable
Some checks failed
continuous-integration/drone/push Build is failing

This commit is contained in:
Anthony Scemama 2024-03-26 16:15:32 +01:00
commit c71c63d3d6
12 changed files with 215 additions and 42 deletions

View File

@ -0,0 +1 @@
.. include:: ../../../plugins/local/tuto_plugins/tuto_I/tuto_I.rst

View File

@ -0,0 +1 @@
.. include:: ../../../plugins/README.rst

View File

@ -960,7 +960,7 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
! endif ! endif
e_pert(istate) = 0.25 * val / delta_E e_pert(istate) = 0.25 * val / delta_E
! e_pert(istate) = 0.5d0 * (tmp - delta_E) ! e_pert(istate) = 0.5d0 * (tmp - delta_E)
if(dsqrt(dabs(tmp)).gt.1.d-4.and.dabs(alpha_h_psi).gt.1.d-4)then if(dsqrt(tmp).gt.1.d-4.and.dabs(psi_h_alpha).gt.1.d-4)then
coef(istate) = e_pert(istate) / psi_h_alpha coef(istate) = e_pert(istate) / psi_h_alpha
else else
coef(istate) = alpha_h_psi / delta_E coef(istate) = alpha_h_psi / delta_E

View File

@ -522,6 +522,84 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
enddo enddo
endif endif
if (state_following) then
if (.not. only_expected_s2) then
print*,''
print*,'!!! State following only available with only_expected_s2 = .True. !!!'
STOP
endif
endif
if (state_following) then
integer :: state(N_st), idx
double precision :: omax
logical :: used
logical, allocatable :: ok(:)
double precision, allocatable :: overlp(:,:)
allocate(overlp(shift2,N_st),ok(shift2))
overlp = 0d0
do j = 1, shift2-1, N_st_diag
! Computes some states from the guess vectors
! Psi(:,j:j+N_st_diag) = U y(:,j:j+N_st_diag) and put them
! in U(1,shift2+1:shift2+1+N_st_diag) as temporary array
call dgemm('N','N', sze, N_st_diag, shift2, &
1.d0, U, size(U,1), y(1,j), size(y,1), 0.d0, U(1,shift2+1), size(U,1))
! Overlap
do l = 1, N_st
do k = 1, N_st_diag
do i = 1, sze
overlp(k+j-1,l) += U(i,l) * U(i,shift2+k)
enddo
enddo
enddo
enddo
state = 0
do l = 1, N_st
omax = 0d0
idx = 0
do k = 1, shift2
! Already used ?
used = .False.
do i = 1, N_st
if (state(i) == k) then
used = .True.
endif
enddo
! Maximum overlap
if (dabs(overlp(k,l)) > omax .and. .not. used .and. state_ok(k)) then
omax = dabs(overlp(k,l))
idx = k
endif
enddo
state(l) = idx
enddo
! tmp array before setting state_ok
ok = .False.
do l = 1, N_st
ok(state(l)) = .True.
enddo
do k = 1, shift2
if (.not. ok(k)) then
state_ok(k) = .False.
endif
enddo
deallocate(overlp,ok)
endif
do k=1,shift2 do k=1,shift2
if (.not. state_ok(k)) then if (.not. state_ok(k)) then
do l=k+1,shift2 do l=k+1,shift2
@ -537,46 +615,46 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
endif endif
enddo enddo
if (state_following) then ! if (state_following) then
!
overlap = -1.d0 ! overlap = -1.d0
do k=1,shift2 ! do k=1,shift2
do i=1,shift2 ! do i=1,shift2
overlap(k,i) = dabs(y(k,i)) ! overlap(k,i) = dabs(y(k,i))
enddo ! enddo
enddo ! enddo
do k=1,N_st ! do k=1,N_st
cmax = -1.d0 ! cmax = -1.d0
do i=1,N_st ! do i=1,N_st
if (overlap(i,k) > cmax) then ! if (overlap(i,k) > cmax) then
cmax = overlap(i,k) ! cmax = overlap(i,k)
order(k) = i ! order(k) = i
endif ! endif
enddo ! enddo
do i=1,N_st_diag ! do i=1,N_st_diag
overlap(order(k),i) = -1.d0 ! overlap(order(k),i) = -1.d0
enddo ! enddo
enddo ! enddo
overlap = y ! overlap = y
do k=1,N_st ! do k=1,N_st
l = order(k) ! l = order(k)
if (k /= l) then ! if (k /= l) then
y(1:shift2,k) = overlap(1:shift2,l) ! y(1:shift2,k) = overlap(1:shift2,l)
endif ! endif
enddo ! enddo
do k=1,N_st ! do k=1,N_st
overlap(k,1) = lambda(k) ! overlap(k,1) = lambda(k)
overlap(k,2) = s2(k) ! overlap(k,2) = s2(k)
enddo ! enddo
do k=1,N_st ! do k=1,N_st
l = order(k) ! l = order(k)
if (k /= l) then ! if (k /= l) then
lambda(k) = overlap(l,1) ! lambda(k) = overlap(l,1)
s2(k) = overlap(l,2) ! s2(k) = overlap(l,2)
endif ! endif
enddo ! enddo
!
endif ! endif
! Express eigenvectors of h in the determinant basis ! Express eigenvectors of h in the determinant basis

View File

@ -123,6 +123,7 @@ END_PROVIDER
endif endif
enddo enddo
if (N_states_diag > N_states_diag_save) then if (N_states_diag > N_states_diag_save) then
N_states_diag = N_states_diag_save N_states_diag = N_states_diag_save
TOUCH N_states_diag TOUCH N_states_diag
@ -133,24 +134,101 @@ END_PROVIDER
print *, 'Diagonalization of H using Lapack' print *, 'Diagonalization of H using Lapack'
allocate (eigenvectors(size(H_matrix_all_dets,1),N_det)) allocate (eigenvectors(size(H_matrix_all_dets,1),N_det))
allocate (eigenvalues(N_det)) allocate (eigenvalues(N_det))
if (s2_eig) then if (s2_eig) then
double precision, parameter :: alpha = 0.1d0 double precision, parameter :: alpha = 0.1d0
allocate (H_prime(N_det,N_det) ) allocate (H_prime(N_det,N_det) )
H_prime(1:N_det,1:N_det) = H_matrix_all_dets(1:N_det,1:N_det) + & H_prime(1:N_det,1:N_det) = H_matrix_all_dets(1:N_det,1:N_det) + &
alpha * S2_matrix_all_dets(1:N_det,1:N_det) alpha * S2_matrix_all_dets(1:N_det,1:N_det)
do j=1,N_det do j=1,N_det
H_prime(j,j) = H_prime(j,j) - alpha*expected_s2 H_prime(j,j) = H_prime(j,j) - alpha*expected_s2
enddo enddo
call lapack_diag(eigenvalues,eigenvectors,H_prime,size(H_prime,1),N_det) call lapack_diag(eigenvalues,eigenvectors,H_prime,size(H_prime,1),N_det)
call nullify_small_elements(N_det,N_det,eigenvectors,size(eigenvectors,1),1.d-12) call nullify_small_elements(N_det,N_det,eigenvectors,size(eigenvectors,1),1.d-12)
CI_electronic_energy(:) = 0.d0 CI_electronic_energy(:) = 0.d0
i_state = 0 i_state = 0
allocate (s2_eigvalues(N_det)) allocate (s2_eigvalues(N_det))
allocate(index_good_state_array(N_det),good_state_array(N_det)) allocate(index_good_state_array(N_det),good_state_array(N_det))
good_state_array = .False. good_state_array = .False.
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,& call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
N_det,size(eigenvectors,1)) N_det,size(eigenvectors,1))
if (only_expected_s2) then
if (state_following) then
if (.not. only_expected_s2) then
print*,''
print*,'!!! State following only available with only_expected_s2 = .True. !!!'
STOP
endif
if (N_det < N_states) then
print*,''
print*,'!!! State following requires at least N_states determinants to be activated !!!'
STOP
endif
endif
if (state_following .and. only_expected_s2) then
integer :: state(N_states), idx,l
double precision :: omax
double precision, allocatable :: overlp(:)
logical :: used
logical, allocatable :: ok(:)
allocate(overlp(N_det), ok(N_det))
i_state = 0
state = 0
do l = 1, N_states
! Overlap wrt each state
overlp = 0d0
do k = 1, N_det
do i = 1, N_det
overlp(k) = overlp(k) + psi_coef(i,l) * eigenvectors(i,k)
enddo
enddo
! Idx of the state with the maximum overlap not already "used"
omax = 0d0
idx = 0
do k = 1, N_det
! Already used ?
used = .False.
do i = 1, N_states
if (state(i) == k) then
used = .True.
endif
enddo
! Maximum overlap
if (dabs(overlp(k)) > omax .and. .not. used) then
if (dabs(s2_eigvalues(k)-expected_s2) > 0.5d0) cycle
omax = dabs(overlp(k))
idx = k
endif
enddo
state(l) = idx
i_state +=1
enddo
deallocate(overlp, ok)
do i = 1, i_state
index_good_state_array(i) = state(i)
good_state_array(i) = .True.
enddo
else if (only_expected_s2) then
do j=1,N_det do j=1,N_det
! Select at least n_states states with S^2 values closed to "expected_s2" ! Select at least n_states states with S^2 values closed to "expected_s2"
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
@ -158,17 +236,23 @@ END_PROVIDER
index_good_state_array(i_state) = j index_good_state_array(i_state) = j
good_state_array(j) = .True. good_state_array(j) = .True.
endif endif
if(i_state.eq.N_states) then if(i_state.eq.N_states) then
exit exit
endif endif
enddo enddo
else else
do j=1,N_det do j=1,N_det
index_good_state_array(j) = j index_good_state_array(j) = j
good_state_array(j) = .True. good_state_array(j) = .True.
enddo enddo
endif endif
if(i_state .ne.0)then if(i_state .ne.0)then
! Fill the first "i_state" states that have a correct S^2 value ! Fill the first "i_state" states that have a correct S^2 value
do j = 1, i_state do j = 1, i_state
do i=1,N_det do i=1,N_det
@ -177,6 +261,7 @@ END_PROVIDER
CI_electronic_energy(j) = eigenvalues(index_good_state_array(j)) CI_electronic_energy(j) = eigenvalues(index_good_state_array(j))
CI_s2(j) = s2_eigvalues(index_good_state_array(j)) CI_s2(j) = s2_eigvalues(index_good_state_array(j))
enddo enddo
i_other_state = 0 i_other_state = 0
do j = 1, N_det do j = 1, N_det
if(good_state_array(j))cycle if(good_state_array(j))cycle
@ -201,6 +286,7 @@ END_PROVIDER
print*,' as the CI_eigenvectors' print*,' as the CI_eigenvectors'
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space' print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
print*,'' print*,''
do j=1,min(N_states_diag,N_det) do j=1,min(N_states_diag,N_det)
do i=1,N_det do i=1,N_det
CI_eigenvectors(i,j) = eigenvectors(i,j) CI_eigenvectors(i,j) = eigenvectors(i,j)
@ -209,14 +295,18 @@ END_PROVIDER
CI_s2(j) = s2_eigvalues(j) CI_s2(j) = s2_eigvalues(j)
enddo enddo
endif endif
deallocate(index_good_state_array,good_state_array) deallocate(index_good_state_array,good_state_array)
deallocate(s2_eigvalues) deallocate(s2_eigvalues)
else else
call lapack_diag(eigenvalues,eigenvectors, & call lapack_diag(eigenvalues,eigenvectors, &
H_matrix_all_dets,size(H_matrix_all_dets,1),N_det) H_matrix_all_dets,size(H_matrix_all_dets,1),N_det)
CI_electronic_energy(:) = 0.d0 CI_electronic_energy(:) = 0.d0
call u_0_S2_u_0(CI_s2,eigenvectors,N_det,psi_det,N_int, & call u_0_S2_u_0(CI_s2,eigenvectors,N_det,psi_det,N_int, &
min(N_det,N_states_diag),size(eigenvectors,1)) min(N_det,N_states_diag),size(eigenvectors,1))
! Select the "N_states_diag" states of lowest energy ! Select the "N_states_diag" states of lowest energy
do j=1,min(N_det,N_states_diag) do j=1,min(N_det,N_states_diag)
do i=1,N_det do i=1,N_det
@ -224,7 +314,9 @@ END_PROVIDER
enddo enddo
CI_electronic_energy(j) = eigenvalues(j) CI_electronic_energy(j) = eigenvalues(j)
enddo enddo
endif endif
do k=1,N_states_diag do k=1,N_states_diag
CI_electronic_energy(k) = 0.d0 CI_electronic_energy(k) = 0.d0
do j=1,N_det do j=1,N_det
@ -235,6 +327,7 @@ END_PROVIDER
enddo enddo
enddo enddo
enddo enddo
deallocate(eigenvectors,eigenvalues) deallocate(eigenvectors,eigenvalues)
endif endif