mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-09-11 02:14:45 +02:00
Merge branch 'dev-stable' of github.com:QuantumPackage/qp2 into dev-stable
Some checks failed
continuous-integration/drone/push Build is failing
Some checks failed
continuous-integration/drone/push Build is failing
This commit is contained in:
commit
c71c63d3d6
1
docs/source/programmers_guide/plugins_tuto_I.rst
Normal file
1
docs/source/programmers_guide/plugins_tuto_I.rst
Normal file
@ -0,0 +1 @@
|
||||
.. include:: ../../../plugins/local/tuto_plugins/tuto_I/tuto_I.rst
|
1
docs/source/programmers_guide/plugins_tuto_intro.rst
Normal file
1
docs/source/programmers_guide/plugins_tuto_intro.rst
Normal file
@ -0,0 +1 @@
|
||||
.. include:: ../../../plugins/README.rst
|
@ -960,7 +960,7 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
! endif
|
||||
e_pert(istate) = 0.25 * val / delta_E
|
||||
! e_pert(istate) = 0.5d0 * (tmp - delta_E)
|
||||
if(dsqrt(dabs(tmp)).gt.1.d-4.and.dabs(alpha_h_psi).gt.1.d-4)then
|
||||
if(dsqrt(tmp).gt.1.d-4.and.dabs(psi_h_alpha).gt.1.d-4)then
|
||||
coef(istate) = e_pert(istate) / psi_h_alpha
|
||||
else
|
||||
coef(istate) = alpha_h_psi / delta_E
|
||||
|
@ -522,6 +522,84 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
enddo
|
||||
endif
|
||||
|
||||
if (state_following) then
|
||||
if (.not. only_expected_s2) then
|
||||
print*,''
|
||||
print*,'!!! State following only available with only_expected_s2 = .True. !!!'
|
||||
STOP
|
||||
endif
|
||||
endif
|
||||
|
||||
if (state_following) then
|
||||
|
||||
integer :: state(N_st), idx
|
||||
double precision :: omax
|
||||
logical :: used
|
||||
logical, allocatable :: ok(:)
|
||||
double precision, allocatable :: overlp(:,:)
|
||||
|
||||
allocate(overlp(shift2,N_st),ok(shift2))
|
||||
|
||||
overlp = 0d0
|
||||
do j = 1, shift2-1, N_st_diag
|
||||
|
||||
! Computes some states from the guess vectors
|
||||
! Psi(:,j:j+N_st_diag) = U y(:,j:j+N_st_diag) and put them
|
||||
! in U(1,shift2+1:shift2+1+N_st_diag) as temporary array
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||
1.d0, U, size(U,1), y(1,j), size(y,1), 0.d0, U(1,shift2+1), size(U,1))
|
||||
|
||||
! Overlap
|
||||
do l = 1, N_st
|
||||
do k = 1, N_st_diag
|
||||
do i = 1, sze
|
||||
overlp(k+j-1,l) += U(i,l) * U(i,shift2+k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
state = 0
|
||||
do l = 1, N_st
|
||||
|
||||
omax = 0d0
|
||||
idx = 0
|
||||
do k = 1, shift2
|
||||
|
||||
! Already used ?
|
||||
used = .False.
|
||||
do i = 1, N_st
|
||||
if (state(i) == k) then
|
||||
used = .True.
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Maximum overlap
|
||||
if (dabs(overlp(k,l)) > omax .and. .not. used .and. state_ok(k)) then
|
||||
omax = dabs(overlp(k,l))
|
||||
idx = k
|
||||
endif
|
||||
enddo
|
||||
|
||||
state(l) = idx
|
||||
enddo
|
||||
|
||||
! tmp array before setting state_ok
|
||||
ok = .False.
|
||||
do l = 1, N_st
|
||||
ok(state(l)) = .True.
|
||||
enddo
|
||||
|
||||
do k = 1, shift2
|
||||
if (.not. ok(k)) then
|
||||
state_ok(k) = .False.
|
||||
endif
|
||||
enddo
|
||||
|
||||
deallocate(overlp,ok)
|
||||
endif
|
||||
|
||||
do k=1,shift2
|
||||
if (.not. state_ok(k)) then
|
||||
do l=k+1,shift2
|
||||
@ -537,46 +615,46 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
endif
|
||||
enddo
|
||||
|
||||
if (state_following) then
|
||||
|
||||
overlap = -1.d0
|
||||
do k=1,shift2
|
||||
do i=1,shift2
|
||||
overlap(k,i) = dabs(y(k,i))
|
||||
enddo
|
||||
enddo
|
||||
do k=1,N_st
|
||||
cmax = -1.d0
|
||||
do i=1,N_st
|
||||
if (overlap(i,k) > cmax) then
|
||||
cmax = overlap(i,k)
|
||||
order(k) = i
|
||||
endif
|
||||
enddo
|
||||
do i=1,N_st_diag
|
||||
overlap(order(k),i) = -1.d0
|
||||
enddo
|
||||
enddo
|
||||
overlap = y
|
||||
do k=1,N_st
|
||||
l = order(k)
|
||||
if (k /= l) then
|
||||
y(1:shift2,k) = overlap(1:shift2,l)
|
||||
endif
|
||||
enddo
|
||||
do k=1,N_st
|
||||
overlap(k,1) = lambda(k)
|
||||
overlap(k,2) = s2(k)
|
||||
enddo
|
||||
do k=1,N_st
|
||||
l = order(k)
|
||||
if (k /= l) then
|
||||
lambda(k) = overlap(l,1)
|
||||
s2(k) = overlap(l,2)
|
||||
endif
|
||||
enddo
|
||||
|
||||
endif
|
||||
! if (state_following) then
|
||||
!
|
||||
! overlap = -1.d0
|
||||
! do k=1,shift2
|
||||
! do i=1,shift2
|
||||
! overlap(k,i) = dabs(y(k,i))
|
||||
! enddo
|
||||
! enddo
|
||||
! do k=1,N_st
|
||||
! cmax = -1.d0
|
||||
! do i=1,N_st
|
||||
! if (overlap(i,k) > cmax) then
|
||||
! cmax = overlap(i,k)
|
||||
! order(k) = i
|
||||
! endif
|
||||
! enddo
|
||||
! do i=1,N_st_diag
|
||||
! overlap(order(k),i) = -1.d0
|
||||
! enddo
|
||||
! enddo
|
||||
! overlap = y
|
||||
! do k=1,N_st
|
||||
! l = order(k)
|
||||
! if (k /= l) then
|
||||
! y(1:shift2,k) = overlap(1:shift2,l)
|
||||
! endif
|
||||
! enddo
|
||||
! do k=1,N_st
|
||||
! overlap(k,1) = lambda(k)
|
||||
! overlap(k,2) = s2(k)
|
||||
! enddo
|
||||
! do k=1,N_st
|
||||
! l = order(k)
|
||||
! if (k /= l) then
|
||||
! lambda(k) = overlap(l,1)
|
||||
! s2(k) = overlap(l,2)
|
||||
! endif
|
||||
! enddo
|
||||
!
|
||||
! endif
|
||||
|
||||
|
||||
! Express eigenvectors of h in the determinant basis
|
||||
|
@ -123,6 +123,7 @@ END_PROVIDER
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
if (N_states_diag > N_states_diag_save) then
|
||||
N_states_diag = N_states_diag_save
|
||||
TOUCH N_states_diag
|
||||
@ -133,24 +134,101 @@ END_PROVIDER
|
||||
print *, 'Diagonalization of H using Lapack'
|
||||
allocate (eigenvectors(size(H_matrix_all_dets,1),N_det))
|
||||
allocate (eigenvalues(N_det))
|
||||
|
||||
if (s2_eig) then
|
||||
|
||||
double precision, parameter :: alpha = 0.1d0
|
||||
allocate (H_prime(N_det,N_det) )
|
||||
|
||||
H_prime(1:N_det,1:N_det) = H_matrix_all_dets(1:N_det,1:N_det) + &
|
||||
alpha * S2_matrix_all_dets(1:N_det,1:N_det)
|
||||
|
||||
do j=1,N_det
|
||||
H_prime(j,j) = H_prime(j,j) - alpha*expected_s2
|
||||
enddo
|
||||
|
||||
call lapack_diag(eigenvalues,eigenvectors,H_prime,size(H_prime,1),N_det)
|
||||
call nullify_small_elements(N_det,N_det,eigenvectors,size(eigenvectors,1),1.d-12)
|
||||
|
||||
CI_electronic_energy(:) = 0.d0
|
||||
i_state = 0
|
||||
|
||||
allocate (s2_eigvalues(N_det))
|
||||
allocate(index_good_state_array(N_det),good_state_array(N_det))
|
||||
|
||||
good_state_array = .False.
|
||||
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
|
||||
N_det,size(eigenvectors,1))
|
||||
if (only_expected_s2) then
|
||||
|
||||
if (state_following) then
|
||||
if (.not. only_expected_s2) then
|
||||
print*,''
|
||||
print*,'!!! State following only available with only_expected_s2 = .True. !!!'
|
||||
STOP
|
||||
endif
|
||||
if (N_det < N_states) then
|
||||
print*,''
|
||||
print*,'!!! State following requires at least N_states determinants to be activated !!!'
|
||||
STOP
|
||||
endif
|
||||
endif
|
||||
|
||||
if (state_following .and. only_expected_s2) then
|
||||
|
||||
integer :: state(N_states), idx,l
|
||||
double precision :: omax
|
||||
double precision, allocatable :: overlp(:)
|
||||
logical :: used
|
||||
logical, allocatable :: ok(:)
|
||||
|
||||
allocate(overlp(N_det), ok(N_det))
|
||||
|
||||
i_state = 0
|
||||
state = 0
|
||||
do l = 1, N_states
|
||||
|
||||
! Overlap wrt each state
|
||||
overlp = 0d0
|
||||
do k = 1, N_det
|
||||
do i = 1, N_det
|
||||
overlp(k) = overlp(k) + psi_coef(i,l) * eigenvectors(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Idx of the state with the maximum overlap not already "used"
|
||||
omax = 0d0
|
||||
idx = 0
|
||||
do k = 1, N_det
|
||||
|
||||
! Already used ?
|
||||
used = .False.
|
||||
do i = 1, N_states
|
||||
if (state(i) == k) then
|
||||
used = .True.
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Maximum overlap
|
||||
if (dabs(overlp(k)) > omax .and. .not. used) then
|
||||
if (dabs(s2_eigvalues(k)-expected_s2) > 0.5d0) cycle
|
||||
omax = dabs(overlp(k))
|
||||
idx = k
|
||||
endif
|
||||
enddo
|
||||
|
||||
state(l) = idx
|
||||
i_state +=1
|
||||
enddo
|
||||
|
||||
deallocate(overlp, ok)
|
||||
|
||||
do i = 1, i_state
|
||||
index_good_state_array(i) = state(i)
|
||||
good_state_array(i) = .True.
|
||||
enddo
|
||||
|
||||
else if (only_expected_s2) then
|
||||
|
||||
do j=1,N_det
|
||||
! Select at least n_states states with S^2 values closed to "expected_s2"
|
||||
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
|
||||
@ -158,17 +236,23 @@ END_PROVIDER
|
||||
index_good_state_array(i_state) = j
|
||||
good_state_array(j) = .True.
|
||||
endif
|
||||
|
||||
if(i_state.eq.N_states) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
do j=1,N_det
|
||||
index_good_state_array(j) = j
|
||||
good_state_array(j) = .True.
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
if(i_state .ne.0)then
|
||||
|
||||
! Fill the first "i_state" states that have a correct S^2 value
|
||||
do j = 1, i_state
|
||||
do i=1,N_det
|
||||
@ -177,6 +261,7 @@ END_PROVIDER
|
||||
CI_electronic_energy(j) = eigenvalues(index_good_state_array(j))
|
||||
CI_s2(j) = s2_eigvalues(index_good_state_array(j))
|
||||
enddo
|
||||
|
||||
i_other_state = 0
|
||||
do j = 1, N_det
|
||||
if(good_state_array(j))cycle
|
||||
@ -201,6 +286,7 @@ END_PROVIDER
|
||||
print*,' as the CI_eigenvectors'
|
||||
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
|
||||
print*,''
|
||||
|
||||
do j=1,min(N_states_diag,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors(i,j) = eigenvectors(i,j)
|
||||
@ -209,14 +295,18 @@ END_PROVIDER
|
||||
CI_s2(j) = s2_eigvalues(j)
|
||||
enddo
|
||||
endif
|
||||
|
||||
deallocate(index_good_state_array,good_state_array)
|
||||
deallocate(s2_eigvalues)
|
||||
|
||||
else
|
||||
|
||||
call lapack_diag(eigenvalues,eigenvectors, &
|
||||
H_matrix_all_dets,size(H_matrix_all_dets,1),N_det)
|
||||
CI_electronic_energy(:) = 0.d0
|
||||
call u_0_S2_u_0(CI_s2,eigenvectors,N_det,psi_det,N_int, &
|
||||
min(N_det,N_states_diag),size(eigenvectors,1))
|
||||
|
||||
! Select the "N_states_diag" states of lowest energy
|
||||
do j=1,min(N_det,N_states_diag)
|
||||
do i=1,N_det
|
||||
@ -224,7 +314,9 @@ END_PROVIDER
|
||||
enddo
|
||||
CI_electronic_energy(j) = eigenvalues(j)
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
do k=1,N_states_diag
|
||||
CI_electronic_energy(k) = 0.d0
|
||||
do j=1,N_det
|
||||
@ -235,6 +327,7 @@ END_PROVIDER
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
deallocate(eigenvectors,eigenvalues)
|
||||
endif
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user