9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-22 03:23:29 +01:00

Optimized direct 5idx

This commit is contained in:
Anthony Scemama 2023-06-02 09:11:32 +02:00
parent fb5300a8e5
commit c4612318ae
2 changed files with 297 additions and 265 deletions

View File

@ -7,7 +7,8 @@ program bi_ort_ints
my_n_pt_r_grid = 10
my_n_pt_a_grid = 14
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call test_3e
! call test_3e
call test_5idx
end
subroutine test_3e
@ -19,15 +20,13 @@ subroutine test_3e
n = 0
accu = 0.d0
do i = 1, mo_num
do k = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
new = three_e_5_idx_exch12_bi_ort(m,l,j,k,i)
ref = three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i)
! do n = 1, mo_num
! call give_integrals_3_body_bi_ort(n, l, k, m, j, i, new)
! call give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, ref)
do n = 1, mo_num
call give_integrals_3_body_bi_ort(n, l, k, m, j, i, new)
call give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, ref)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. 1.d-10)then
@ -36,7 +35,7 @@ subroutine test_3e
print*,ref,new,contrib
stop
endif
! enddo
enddo
enddo
enddo
enddo
@ -46,3 +45,48 @@ subroutine test_3e
end
subroutine test_5idx
implicit none
integer :: i,k,j,l,m,n,ipoint
double precision :: accu, contrib,new,ref
i = 1
k = 1
n = 0
accu = 0.d0
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
new = three_e_5_idx_direct_bi_ort(m,l,j,k,i)
ref = three_e_5_idx_direct_bi_ort_old(m,l,j,k,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. 1.d-10)then
print*,'direct'
print*,i,k,j,l,m
print*,ref,new,contrib
stop
endif
! new = three_e_5_idx_exch12_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'exch12'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
enddo
enddo
enddo
enddo
enddo
print*,'accu = ',accu/dble(mo_num)**5
end

View File

@ -1,7 +1,8 @@
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
@ -12,257 +13,6 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num,
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_direct_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_direct_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, j, i, integral)
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_direct_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = <mlk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_1_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_cycle_1_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, i, m, integral)
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_1_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = <mlk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_2_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_cycle_2_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
do l = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, m, j, integral)
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_2_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch23_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_exch23_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, m, i, integral)
three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch23_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = <mlk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch13_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_exch13_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, j, m, integral)
three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch13_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = <mlk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
! Equivalent to:
!
! call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
!
! three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: wall1, wall0
@ -279,7 +29,7 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num,
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
print *, ' Providing the three_e_5_idx_exch12_bi_ort ...'
print *, ' Providing the three_e_5_idx_direct_bi_ort ...'
call wall_time(wall0)
do m = 1, mo_num
@ -322,6 +72,7 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num,
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = - tmp_mat(l,j,k,i) - tmp_mat(k,i,l,j)
three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = - tmp_mat(l,i,k,j) - tmp_mat(k,j,l,i)
enddo
enddo
@ -339,8 +90,8 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num,
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = &
three_e_5_idx_exch12_bi_ort(m,l,j,k,i) - tmp_mat(l,i,k,j)
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = three_e_5_idx_direct_bi_ort(m,l,j,k,i) - tmp_mat(l,j,k,i)
three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = three_e_5_idx_exch12_bi_ort(m,l,j,k,i) - tmp_mat(l,i,k,j)
enddo
enddo
enddo
@ -350,9 +101,246 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num,
enddo
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch12_bi_ort', wall1 - wall0
print *, ' wall time for three_e_5_idx_direct_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = <mlk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
double precision :: integral
integer :: i, j, k, m, l
double precision :: wall1, wall0
integer :: ipoint
double precision :: weight
double precision, allocatable :: grad_mli(:,:,:), m2grad_r(:,:,:,:), m2grad_l(:,:,:,:)
double precision, allocatable :: tmp_mat(:,:,:,:), orb_mat(:,:,:)
allocate(m2grad_r(n_points_final_grid,3,mo_num,mo_num))
allocate(m2grad_l(n_points_final_grid,3,mo_num,mo_num))
allocate(tmp_mat(mo_num,mo_num,mo_num,mo_num))
allocate(grad_mli(n_points_final_grid,mo_num,mo_num))
allocate(orb_mat(n_points_final_grid,mo_num,mo_num))
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
print *, ' Providing the three_e_5_idx_cycle_1_bi_ort ...'
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, i, m, integral)
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_1_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = <mlk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
double precision :: integral
integer :: i, j, k, m, l
double precision :: wall1, wall0
integer :: ipoint
double precision :: weight
double precision, allocatable :: grad_mli(:,:,:), m2grad_r(:,:,:,:), m2grad_l(:,:,:,:)
double precision, allocatable :: tmp_mat(:,:,:,:), orb_mat(:,:,:)
allocate(m2grad_r(n_points_final_grid,3,mo_num,mo_num))
allocate(m2grad_l(n_points_final_grid,3,mo_num,mo_num))
allocate(tmp_mat(mo_num,mo_num,mo_num,mo_num))
allocate(grad_mli(n_points_final_grid,mo_num,mo_num))
allocate(orb_mat(n_points_final_grid,mo_num,mo_num))
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
print *, ' Providing the three_e_5_idx_cycle_2_bi_ort ...'
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
do l = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, m, j, integral)
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_2_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
double precision :: integral
integer :: i, j, k, m, l
double precision :: wall1, wall0
integer :: ipoint
double precision :: weight
double precision, allocatable :: grad_mli(:,:,:), m2grad_r(:,:,:,:), m2grad_l(:,:,:,:)
double precision, allocatable :: tmp_mat(:,:,:,:), orb_mat(:,:,:)
allocate(m2grad_r(n_points_final_grid,3,mo_num,mo_num))
allocate(m2grad_l(n_points_final_grid,3,mo_num,mo_num))
allocate(tmp_mat(mo_num,mo_num,mo_num,mo_num))
allocate(grad_mli(n_points_final_grid,mo_num,mo_num))
allocate(orb_mat(n_points_final_grid,mo_num,mo_num))
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
print *, ' Providing the three_e_5_idx_exch23_bi_ort ...'
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, m, i, integral)
three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch23_bi_ort', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = <mlk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
double precision :: integral
integer :: i, j, k, m, l
double precision :: wall1, wall0
integer :: ipoint
double precision :: weight
double precision, allocatable :: grad_mli(:,:,:), m2grad_r(:,:,:,:), m2grad_l(:,:,:,:)
double precision, allocatable :: tmp_mat(:,:,:,:), orb_mat(:,:,:)
allocate(m2grad_r(n_points_final_grid,3,mo_num,mo_num))
allocate(m2grad_l(n_points_final_grid,3,mo_num,mo_num))
allocate(tmp_mat(mo_num,mo_num,mo_num,mo_num))
allocate(grad_mli(n_points_final_grid,mo_num,mo_num))
allocate(orb_mat(n_points_final_grid,mo_num,mo_num))
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
print *, ' Providing the three_e_5_idx_exch13_bi_ort ...'
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, j, m, integral)
three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch13_bi_ort', wall1 - wall0
END_PROVIDER
! ---