9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-21 11:03:29 +01:00

Merge branch 'master' into biblio

This commit is contained in:
Anthony Scemama 2020-01-06 09:32:54 +01:00
commit c2a6c99c4c
117 changed files with 11468 additions and 1971 deletions

View File

@ -1,8 +1,12 @@
# Quantum Package 2.0
# Quantum Package 2.1
<img src="https://raw.githubusercontent.com/QuantumPackage/qp2/master/data/qp2.png" width="250">
[![DOI](https://zenodo.org/badge/167513335.svg)](https://zenodo.org/badge/latestdoi/167513335)
[*Quantum package 2.0: an open-source determinant-driven suite of programs*](https://pubs.acs.org/doi/10.1021/acs.jctc.9b00176)\
Y. Garniron, K. Gasperich, T. Applencourt, A. Benali, A. Ferté, J. Paquier, B. Pradines, R. Assaraf, P. Reinhardt, J. Toulouse, P. Barbaresco, N. Renon, G. David, J. P. Malrieu, M. Véril, M. Caffarel, P. F. Loos, E. Giner and A. Scemama\
[J. Chem. Theory Comput. 2019, 15, 6, 3591-3609](https://doi.org/10.1021/acs.jctc.9b00176)\

41
TODO
View File

@ -2,16 +2,8 @@
* Faire que le slave de Hartree-fock est le calcul des integrales AO en parallele
# Web/doc
* Creer une page web pas trop degueu et la mettre ici : http://lcpq.github.io/quantum_package
* Creer une page avec la liste de tous les exectuables
# Exterieur
* Molden format : http://cheminf.cmbi.ru.nl/molden/molden_format.html : read+write. Thomas est dessus
* Un module pour lire les integrales Moleculaires depuis un FCIDUMP
* Un module pour lire des integrales Atomiques (voir module de Mimi pour lire les AO Slater)
* Format Fchk (gaussian)
@ -24,51 +16,22 @@
# User doc:
* Videos:
+) RHF
* Renvoyer a la doc des modules : c'est pour les programmeurs au depart!
* Mettre le mp2 comme exercice
* Interfaces : molden/fcidump
* Natural orbitals
* Parameters for Hartree-Fock
* Parameters for Davidson
* Running in parallel
# Programmers doc:
* Example : Simple Hartree-Fock program from scratch
* Examples : subroutine example_module
# enleverle psi_det_size for all complicated stuffs with dimension of psi_coef
# Config file for Cray
# EZFIO sans fork
Refaire les benchmarks
# Documentation de qpsh
# Documentation de /etc
# Toto
Re-design de qp command
Doc: plugins et qp_plugins
Ajouter les symetries dans devel
<<<<<<< HEAD
Compiler ezfio avec openmp
# Parallelize i_H_psi
=======
# Parallelize i_H_psi
<<<<<<< HEAD
=======
>>>>>>> minor_modifs
IMPORTANT:
Davidson Diagonalization

73
configure vendored
View File

@ -3,11 +3,32 @@
# Quantum Package configuration script
#
unset CC
unset CXX
TEMP=$(getopt -o c:i:h -l config:,install:,help -n $0 -- "$@") || exit 1
eval set -- "$TEMP"
export QP_ROOT="$( cd "$(dirname "$0")" ; pwd -P )"
echo "QP_ROOT="$QP_ROOT
unset CC
unset CCXX
# When updating version, update also etc files
BATS_URL="https://github.com/bats-core/bats-core/archive/v1.1.0.tar.gz"
BUBBLE_URL="https://github.com/projectatomic/bubblewrap/releases/download/v0.3.3/bubblewrap-0.3.3.tar.xz"
DOCOPT_URL="https://github.com/docopt/docopt/archive/0.6.2.tar.gz"
EZFIO_URL="https://gitlab.com/scemama/EZFIO/-/archive/v1.6.1/EZFIO-v1.6.1.tar.gz"
F77ZMQ_URL="https://github.com/scemama/f77_zmq/archive/v4.2.5.tar.gz"
GMP_URL="ftp://ftp.gnu.org/gnu/gmp/gmp-6.1.2.tar.bz2"
IRPF90_URL="https://gitlab.com/scemama/irpf90/-/archive/v1.7.6/irpf90-v1.7.6.tar.gz"
LIBCAP_URL="https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git/snapshot/libcap-2.25.tar.gz"
NINJA_URL="https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip"
OCAML_URL="https://raw.githubusercontent.com/ocaml/opam/master/shell/install.sh"
RESULTS_URL="https://gitlab.com/scemama/resultsFile/-/archive/master/resultsFile-master.tar.gz"
ZEROMQ_URL="https://github.com/zeromq/libzmq/releases/download/v4.2.5/zeromq-4.2.5.tar.gz"
ZLIB_URL="https://www.zlib.net/zlib-1.2.11.tar.gz"
function help()
@ -183,9 +204,7 @@ for PACKAGE in ${PACKAGES} ; do
if [[ ${PACKAGE} = ninja ]] ; then
download \
"https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip" \
"${QP_ROOT}"/external/ninja.zip
download ${NINJA_URL} "${QP_ROOT}"/external/ninja.zip
execute << EOF
rm -f "\${QP_ROOT}"/bin/ninja
unzip "\${QP_ROOT}"/external/ninja.zip -d "\${QP_ROOT}"/bin
@ -194,9 +213,7 @@ EOF
elif [[ ${PACKAGE} = gmp ]] ; then
download \
"ftp://ftp.gnu.org/gnu/gmp/gmp-6.1.2.tar.bz2" \
"${QP_ROOT}"/external/gmp.tar.bz2
download ${GMP_URL} "${QP_ROOT}"/external/gmp.tar.bz2
execute << EOF
cd "\${QP_ROOT}"/external
tar --bzip2 --extract --file gmp.tar.bz2
@ -208,9 +225,7 @@ EOF
elif [[ ${PACKAGE} = libcap ]] ; then
download \
"https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git/snapshot/libcap-2.25.tar.gz" \
"${QP_ROOT}"/external/libcap.tar.gz
download ${LIBCAP_URL} "${QP_ROOT}"/external/libcap.tar.gz
execute << EOF
cd "\${QP_ROOT}"/external
tar --gunzip --extract --file libcap.tar.gz
@ -221,9 +236,7 @@ EOF
elif [[ ${PACKAGE} = bwrap ]] ; then
download \
"https://github.com/projectatomic/bubblewrap/releases/download/v0.3.3/bubblewrap-0.3.3.tar.xz" \
"${QP_ROOT}"/external/bwrap.tar.xz
download ${BUBBLE_URL} "${QP_ROOT}"/external/bwrap.tar.xz
execute << EOF
cd "\${QP_ROOT}"/external
tar --xz --extract --file bwrap.tar.xz
@ -236,9 +249,7 @@ EOF
elif [[ ${PACKAGE} = irpf90 ]] ; then
# When changing version of irpf90, don't forget to update etc/irpf90.rc
download \
"https://gitlab.com/scemama/irpf90/-/archive/v1.7.5/irpf90-v1.7.5.tar.gz" \
"${QP_ROOT}"/external/irpf90.tar.gz
download ${IRPF90_URL} "${QP_ROOT}"/external/irpf90.tar.gz
execute << EOF
cd "\${QP_ROOT}"/external
tar --gunzip --extract --file irpf90.tar.gz
@ -250,9 +261,7 @@ EOF
elif [[ ${PACKAGE} = zeromq ]] ; then
download \
"https://github.com/zeromq/libzmq/releases/download/v4.2.5/zeromq-4.2.5.tar.gz" \
"${QP_ROOT}"/external/zeromq.tar.gz
download ${ZEROMQ_URL} "${QP_ROOT}"/external/zeromq.tar.gz
execute << EOF
cd "\${QP_ROOT}"/external
tar --gunzip --extract --file zeromq.tar.gz
@ -266,9 +275,7 @@ EOF
elif [[ ${PACKAGE} = f77zmq ]] ; then
download \
"https://github.com/scemama/f77_zmq/archive/v4.2.5.tar.gz" \
"${QP_ROOT}"/external/f77_zmq.tar.gz
download ${F77ZMQ_URL} "${QP_ROOT}"/external/f77_zmq.tar.gz
execute << EOF
cd "\${QP_ROOT}"/external
tar --gunzip --extract --file f77_zmq.tar.gz
@ -284,9 +291,7 @@ EOF
elif [[ ${PACKAGE} = ocaml ]] ; then
download \
"https://raw.githubusercontent.com/ocaml/opam/master/shell/install.sh" \
"${QP_ROOT}"/external/opam_installer.sh
download ${OCAML_URL} "${QP_ROOT}"/external/opam_installer.sh
if [[ -n ${TRAVIS} ]] ; then
# Special commands for Travis CI
@ -338,9 +343,7 @@ EOF
elif [[ ${PACKAGE} = ezfio ]] ; then
download \
"https://gitlab.com/scemama/EZFIO/-/archive/v1.4.0/EZFIO-v1.4.0.tar.gz" \
"${QP_ROOT}"/external/ezfio.tar.gz
download ${EZFIO_URL} "${QP_ROOT}"/external/ezfio.tar.gz
execute << EOF
cd "\${QP_ROOT}"/external
tar --gunzip --extract --file ezfio.tar.gz
@ -351,9 +354,7 @@ EOF
elif [[ ${PACKAGE} = zlib ]] ; then
download \
"https://www.zlib.net/zlib-1.2.11.tar.gz" \
"${QP_ROOT}"/external/zlib.tar.gz
download ${ZLIB_URL} "${QP_ROOT}"/external/zlib.tar.gz
execute << EOF
cd "\${QP_ROOT}"/external
tar --gunzip --extract --file zlib.tar.gz
@ -366,9 +367,7 @@ EOF
elif [[ ${PACKAGE} = docopt ]] ; then
download \
"https://github.com/docopt/docopt/archive/0.6.2.tar.gz" \
"${QP_ROOT}"/external/docopt.tar.gz
download ${DOCOPT_URL} "${QP_ROOT}"/external/docopt.tar.gz
execute << EOF
cd "\${QP_ROOT}"/external
tar --gunzip --extract --file docopt.tar.gz
@ -379,9 +378,7 @@ EOF
elif [[ ${PACKAGE} = resultsFile ]] ; then
download \
"https://gitlab.com/scemama/resultsFile/-/archive/master/resultsFile-master.tar.gz" \
"${QP_ROOT}"/external/resultsFile.tar.gz
download ${RESULTS_URL} "${QP_ROOT}"/external/resultsFile.tar.gz
execute << EOF
cd "\${QP_ROOT}"/external
tar --gunzip --extract --file resultsFile.tar.gz
@ -391,9 +388,7 @@ EOF
elif [[ ${PACKAGE} = bats ]] ; then
download \
"https://github.com/bats-core/bats-core/archive/v1.1.0.tar.gz" \
"${QP_ROOT}"/external/bats.tar.gz
download ${BATS_URL} "${QP_ROOT}"/external/bats.tar.gz
execute << EOF
cd "\${QP_ROOT}"/external
tar -zxf bats.tar.gz

View File

@ -92,52 +92,58 @@ F 1
1 0.0816000 1.0000000
BERYLLIUM
S 9
1 6863.0000000 0.0002360
2 1030.0000000 0.0018260
3 234.7000000 0.0094520
4 66.5600000 0.0379570
5 21.6900000 0.1199650
6 7.7340000 0.2821620
7 2.9160000 0.4274040
8 1.1300000 0.2662780
9 0.1101000 -0.0072750
S 9
1 6863.0000000 -0.0000430
2 1030.0000000 -0.0003330
3 234.7000000 -0.0017360
4 66.5600000 -0.0070120
5 21.6900000 -0.0231260
6 7.7340000 -0.0581380
7 2.9160000 -0.1145560
8 1.1300000 -0.1359080
9 0.1101000 0.5774410
S 11
1 6.863000E+03 2.360000E-04
2 1.030000E+03 1.826000E-03
3 2.347000E+02 9.452000E-03
4 6.656000E+01 3.795700E-02
5 2.169000E+01 1.199650E-01
6 7.734000E+00 2.821620E-01
7 2.916000E+00 4.274040E-01
8 1.130000E+00 2.662780E-01
9 2.577000E-01 1.819300E-02
10 1.101000E-01 -7.275000E-03
11 4.409000E-02 1.903000E-03
S 11
1 6.863000E+03 -4.300000E-05
2 1.030000E+03 -3.330000E-04
3 2.347000E+02 -1.736000E-03
4 6.656000E+01 -7.012000E-03
5 2.169000E+01 -2.312600E-02
6 7.734000E+00 -5.813800E-02
7 2.916000E+00 -1.145560E-01
8 1.130000E+00 -1.359080E-01
9 2.577000E-01 2.280260E-01
10 1.101000E-01 5.774410E-01
11 4.409000E-02 3.178730E-01
S 1
1 0.2577000 1.0000000
1 2.577000E-01 1.000000E+00
S 1
1 0.0440900 1.0000000
1 4.409000E-02 1.000000E+00
S 1
1 0.0150300 1.0000000
P 3
1 7.4360000 0.0107360
2 1.5770000 0.0628540
3 0.4352000 0.2481800
1 1.470000E-02 1.000000E+00
P 5
1 7.436000E+00 1.073600E-02
2 1.577000E+00 6.285400E-02
3 4.352000E-01 2.481800E-01
4 1.438000E-01 5.236990E-01
5 4.994000E-02 3.534250E-01
P 1
1 0.1438000 1.0000000
1 1.438000E-01 1.000000E+00
P 1
1 0.0499400 1.0000000
1 4.994000E-02 1.000000E+00
P 1
1 0.0070600 1.0000000
1 9.300000E-03 1.000000E+00
D 1
1 0.3480000 1.0000000
1 3.493000E-01 1.000000E+00
D 1
1 0.1803000 1.0000000
1 1.724000E-01 1.000000E+00
D 1
1 0.0654000 1.0000000
1 5.880000E-02 1.000000E+00
F 1
1 0.3250000 1.0000000
1 3.423000E-01 1.0000000
F 1
1 0.1533000 1.0000000
1 1.188000E-01 1.000000E+00
BORON
S 8

View File

@ -1,4 +1,14 @@
%%% ARXIV TO BE UPDATED %%%
@article{Loos2019Oct,
author = {Loos, Pierre-François and Pradines, Barthélémy and Scemama, Anthony and Giner, Emmanuel and Toulouse, Julien},
title = {{A Density-Based Basis-Set Incompleteness Correction for GW Methods}},
journal = {arXiv},
year = {2019},
month = {Oct},
eprint = {1910.12238},
url = {https://arxiv.org/abs/1910.12238}
}
@article{Hollett2019Aug,
author = {Hollett, Joshua W. and Loos, Pierre-Fran{\c{c}}ois},
title = {{Capturing static and dynamic correlation with $\Delta \text{NO}$-MP2 and $\Delta \text{NO}$-CCSD}},

View File

@ -1,7 +1,7 @@
# Configuration of IRPF90 package
# Set the path of IRPF90 here:
export IRPF90_PATH=${QP_ROOT}/external/irpf90-v1.7.5
export IRPF90_PATH=${QP_ROOT}/external/irpf90-v1.7.6
export PATH=${PATH}:${IRPF90_PATH}/bin
export IRPF90=${IRPF90_PATH}/bin/irpf90

View File

@ -6,10 +6,6 @@ module Bitmasks : sig
type t =
{ n_int : N_int_number.t;
bit_kind : Bit_kind.t;
n_mask_gen : Bitmask_number.t;
generators : int64 array;
n_mask_cas : Bitmask_number.t;
cas : int64 array;
} [@@deriving sexp]
;;
val read : unit -> t option
@ -18,12 +14,7 @@ end = struct
type t =
{ n_int : N_int_number.t;
bit_kind : Bit_kind.t;
n_mask_gen : Bitmask_number.t;
generators : int64 array;
n_mask_cas : Bitmask_number.t;
cas : int64 array;
} [@@deriving sexp]
;;
let get_default = Qpackage.get_ezfio_default "bitmasks";;
@ -36,7 +27,6 @@ end = struct
;
Ezfio.get_bitmasks_n_int ()
|> N_int_number.of_int
;;
let read_bit_kind () =
if not (Ezfio.has_bitmasks_bit_kind ()) then
@ -46,89 +36,12 @@ end = struct
;
Ezfio.get_bitmasks_bit_kind ()
|> Bit_kind.of_int
;;
let read_n_mask_gen () =
if not (Ezfio.has_bitmasks_n_mask_gen ()) then
Ezfio.set_bitmasks_n_mask_gen 1
;
Ezfio.get_bitmasks_n_mask_gen ()
|> Bitmask_number.of_int
;;
let full_mask n_int =
let range = "[1-"^
(string_of_int (Ezfio.get_mo_basis_mo_num ()))^"]"
in
MO_class.create_active range
|> MO_class.to_bitlist n_int
;;
let read_generators () =
if not (Ezfio.has_bitmasks_generators ()) then
begin
let n_int =
read_n_int ()
in
let act =
full_mask n_int
in
let result = [ act ; act ; act ; act ; act ; act ]
|> List.map (fun x ->
let y = Bitlist.to_int64_list x in y@y )
|> List.concat
in
let generators = Ezfio.ezfio_array_of_list ~rank:4
~dim:([| (N_int_number.to_int n_int) ; 2; 6; 1|]) ~data:result
in
Ezfio.set_bitmasks_generators generators
end;
Ezfio.get_bitmasks_generators ()
|> Ezfio.flattened_ezfio
;;
let read_n_mask_cas () =
if not (Ezfio.has_bitmasks_n_mask_cas ()) then
Ezfio.set_bitmasks_n_mask_cas 1
;
Ezfio.get_bitmasks_n_mask_cas ()
|> Bitmask_number.of_int
;;
let read_cas () =
if not (Ezfio.has_bitmasks_cas ()) then
begin
let n_int =
read_n_int ()
in
let act =
full_mask n_int
in
let result = [ act ; act ]
|> List.map (fun x ->
let y = Bitlist.to_int64_list x in y@y )
|> List.concat
in
let cas = Ezfio.ezfio_array_of_list ~rank:3
~dim:([| (N_int_number.to_int n_int) ; 2; 1|]) ~data:result
in
Ezfio.set_bitmasks_cas cas
end;
Ezfio.get_bitmasks_cas ()
|> Ezfio.flattened_ezfio
;;
let read () =
if (Ezfio.has_mo_basis_mo_num ()) then
Some
{ n_int = read_n_int ();
bit_kind = read_bit_kind ();
n_mask_gen = read_n_mask_gen ();
generators = read_generators ();
n_mask_cas = read_n_mask_cas ();
cas = read_cas ();
}
else
None
@ -138,21 +51,9 @@ end = struct
Printf.sprintf "
n_int = %s
bit_kind = %s
n_mask_gen = %s
generators = %s
n_mask_cas = %s
cas = %s
"
(N_int_number.to_string b.n_int)
(Bit_kind.to_string b.bit_kind)
(Bitmask_number.to_string b.n_mask_gen)
(Array.to_list b.generators
|> List.map (fun x-> Int64.to_string x)
|> String.concat ", ")
(Bitmask_number.to_string b.n_mask_cas)
(Array.to_list b.cas
|> List.map (fun x-> Int64.to_string x)
|> String.concat ", ")
end

View File

@ -15,7 +15,7 @@ module Determinants_by_hand : sig
state_average_weight : Positive_float.t array;
} [@@deriving sexp]
val read : ?full:bool -> unit -> t option
val write : t -> unit
val write : ?force:bool -> t -> unit
val to_string : t -> string
val to_rst : t -> Rst_string.t
val of_rst : Rst_string.t -> t option
@ -318,22 +318,23 @@ end = struct
None
;;
let write { n_int ;
bit_kind ;
n_det ;
n_det_qp_edit ;
expected_s2 ;
psi_coef ;
psi_det ;
n_states ;
state_average_weight ;
} =
let write ?(force=false)
{ n_int ;
bit_kind ;
n_det ;
n_det_qp_edit ;
expected_s2 ;
psi_coef ;
psi_det ;
n_states ;
state_average_weight ;
} =
write_n_int n_int ;
write_bit_kind bit_kind;
write_n_det n_det;
write_n_states n_states;
write_expected_s2 expected_s2;
if n_det <= n_det_qp_edit then
if force || (n_det <= n_det_qp_edit) then
begin
write_n_det_qp_edit n_det;
write_psi_coef ~n_det:n_det ~n_states:n_states psi_coef ;
@ -596,7 +597,7 @@ psi_det = %s
let new_det =
{ det with n_det = (Det_number.of_int n_det_new) }
in
write new_det
write ~force:true new_det
;;
let extract_state istate =
@ -628,7 +629,7 @@ psi_det = %s
let new_det =
{ det with n_states = (States_number.of_int 1) }
in
write new_det
write ~force:true new_det
;;
let extract_states range =
@ -665,6 +666,7 @@ psi_det = %s
det.psi_coef.(!state_shift+i) <-
det.psi_coef.(i+ishift)
done
; Printf.printf "OK\n%!" ;
end;
state_shift := !state_shift + n_det
) sorted_list
@ -672,7 +674,7 @@ psi_det = %s
let new_det =
{ det with n_states = (States_number.of_int @@ List.length sorted_list) }
in
write new_det
write ~force:true new_det
;;
end

View File

@ -175,7 +175,7 @@ nucl_coord = %s
nucl_num
) :: (
List.init nucl_num (fun i->
Printf.sprintf " %-3s %d %s"
Printf.sprintf " %-3s %3d %s"
(b.nucl_label.(i) |> Element.to_string)
(b.nucl_charge.(i) |> Charge.to_int )
(b.nucl_coord.(i) |> Point3d.to_string ~units:Units.Angstrom) )

View File

@ -80,7 +80,7 @@ git:
./create_git_sha1.sh
${QP_EZFIO}/Ocaml/ezfio.ml:
$(NINJA) -C ${QP_EZFIO}
$(NINJA) -C ${QP_ROOT}/config ${QP_ROOT}/lib/libezfio_irp.a
qp_edit.ml: ../scripts/ezfio_interface/qp_edit_template

View File

@ -106,96 +106,6 @@ let set ~core ~inact ~act ~virt ~del =
MO_class.to_string virt |> print_endline ;
MO_class.to_string del |> print_endline ;
(* Create masks *)
let ia = Excitation.create_single inact act
and aa = Excitation.create_single act act
and av = Excitation.create_single act virt
in
let single_excitations = [ ia ; aa ; av ]
|> List.map (fun z ->
let open Excitation in
match z with
| Single (x,y) ->
( MO_class.to_bitlist n_int (Hole.to_mo_class x),
MO_class.to_bitlist n_int (Particle.to_mo_class y) )
| Double _ -> assert false
)
and double_excitations = [
Excitation.double_of_singles ia ia ;
Excitation.double_of_singles ia aa ;
Excitation.double_of_singles ia av ;
Excitation.double_of_singles aa aa ;
Excitation.double_of_singles aa av ;
Excitation.double_of_singles av av ]
|> List.map (fun x ->
let open Excitation in
match x with
| Single _ -> assert false
| Double (x,y,z,t) ->
( MO_class.to_bitlist n_int (Hole.to_mo_class x),
MO_class.to_bitlist n_int (Particle.to_mo_class y) ,
MO_class.to_bitlist n_int (Hole.to_mo_class z),
MO_class.to_bitlist n_int (Particle.to_mo_class t) )
)
in
let extract_hole (h,_) = h
and extract_particle (_,p) = p
and extract_hole1 (h,_,_,_) = h
and extract_particle1 (_,p,_,_) = p
and extract_hole2 (_,_,h,_) = h
and extract_particle2 (_,_,_,p) = p
in
let init = Bitlist.zero n_int in
let result = [
List.map extract_hole single_excitations
|> List.fold_left Bitlist.or_operator init;
List.map extract_particle single_excitations
|> List.fold_left Bitlist.or_operator init;
List.map extract_hole1 double_excitations
|> List.fold_left Bitlist.or_operator init;
List.map extract_particle1 double_excitations
|> List.fold_left Bitlist.or_operator init;
List.map extract_hole2 double_excitations
|> List.fold_left Bitlist.or_operator init;
List.map extract_particle2 double_excitations
|> List.fold_left Bitlist.or_operator init;
]
in
(* Debug masks in output
List.iter ~f:(fun x-> print_endline (Bitlist.to_string x)) result;
*)
(* Write masks *)
let result =
List.map (fun x ->
let y = Bitlist.to_int64_list x in y@y )
result
|> List.concat
in
Ezfio.set_bitmasks_n_int (N_int_number.to_int n_int);
Ezfio.set_bitmasks_bit_kind 8;
Ezfio.set_bitmasks_n_mask_gen 1;
Ezfio.ezfio_array_of_list ~rank:4 ~dim:([| (N_int_number.to_int n_int) ; 2; 6; 1|]) ~data:result
|> Ezfio.set_bitmasks_generators ;
let result =
let open Excitation in
match aa with
| Double _ -> assert false
| Single (x,y) ->
Bitlist.to_int64_list
( MO_class.to_bitlist n_int ( Hole.to_mo_class x) ) @
Bitlist.to_int64_list
( MO_class.to_bitlist n_int (Particle.to_mo_class y) )
in
Ezfio.set_bitmasks_n_mask_cas 1;
Ezfio.ezfio_array_of_list ~rank:3 ~dim:([| (N_int_number.to_int n_int) ; 2; 1|]) ~data:result
|> Ezfio.set_bitmasks_cas;
let data =
Array.to_list mo_class
|> List.map (fun x -> match x with

View File

@ -10,7 +10,6 @@ let localport = 42379
let in_time_sum = ref 1.e-9
and in_size_sum = ref 0.
let () =
let open Command_line in
begin

View File

@ -78,9 +78,6 @@ let input_data = "
| _ -> raise (Invalid_argument \"Bit_kind should be (1|2|4|8).\")
end;
* Bitmask_number : int
assert (x > 0) ;
* MO_coef : float
* MO_occ : float

View File

@ -839,21 +839,6 @@ if __name__ == "__main__":
l_module = d_binaries.keys()
# ~#~#~#~#~#~#~#~#~#~#~#~#~#~#~ #
# C h e c k _ c o h e r e n c y #
# ~#~#~#~#~#~#~#~#~#~#~#~#~#~#~ #
for module in dict_root_path.values():
if module not in d_binaries:
l_msg = ["{0} is a root module but does not contain a main file.",
"- Create it in {0}",
"- Or delete {0} `qp_module uninstall {0}`",
"- Or install a module that needs {0} with a main "]
print "\n".join(l_msg).format(module.rel)
sys.exit(1)
# ~#~#~#~#~#~#~#~#~#~#~#~ #
# G l o b a l _ b u i l d #
# ~#~#~#~#~#~#~#~#~#~#~#~ #

View File

@ -120,7 +120,7 @@ let set str s =
match s with
{write}
| Electrons -> write Electrons.(of_rst, write) s
| Determinants_by_hand -> write Determinants_by_hand.(of_rst, write) s
| Determinants_by_hand -> write Determinants_by_hand.(of_rst, write ~force:false) s
| Nuclei_by_hand -> write Nuclei_by_hand.(of_rst, write) s
| Ao_basis -> () (* TODO *)
| Mo_basis -> () (* TODO *)

View File

@ -64,7 +64,7 @@
enddo
! Ga-Kr
do i = 31, 36
do i = 31, 100
alpha_knowles(i) = 7.d0
enddo

View File

@ -3,28 +3,28 @@ integer function number_of_holes(key_in)
BEGIN_DOC
! Function that returns the number of holes in the inact space
!
! popcnt(
! xor(
! iand(
! reunion_of_core_inact_bitmask(1,1),
! xor(
! key_in(1,1),
! iand(
! key_in(1,1),
! cas_bitmask(1,1,1))
! )
! ),
! reunion_of_core_inact_bitmask(1,1)) )
!
! (key_in && cas_bitmask)
! +---------------------+
! electrons in cas xor key_in
! +---------------------------------+
! electrons outside of cas && reunion_of_core_inact_bitmask
! +------------------------------------------------------------------+
! electrons in the core/inact space xor reunion_of_core_inact_bitmask
! +---------------------------------------------------------------------------------+
! holes
! popcnt(
! xor(
! iand(
! reunion_of_core_inact_bitmask(1,1),
! xor(
! key_in(1,1),
! iand(
! key_in(1,1),
! act_bitmask(1,1))
! )
! ),
! reunion_of_core_inact_bitmask(1,1)) )
!
! (key_in && act_bitmask)
! +---------------------+
! electrons in cas xor key_in
! +---------------------------------+
! electrons outside of cas && reunion_of_core_inact_bitmask
! +------------------------------------------------------------------+
! electrons in the core/inact space xor reunion_of_core_inact_bitmask
! +---------------------------------------------------------------------------------+
! holes
END_DOC
implicit none
integer(bit_kind), intent(in) :: key_in(N_int,2)
@ -33,74 +33,32 @@ integer function number_of_holes(key_in)
if(N_int == 1)then
number_of_holes = number_of_holes &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) )
else if(N_int == 2)then
number_of_holes = number_of_holes &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) )
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1)))), reunion_of_core_inact_bitmask(2,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2)))), reunion_of_core_inact_bitmask(2,2)) )
else if(N_int == 3)then
number_of_holes = number_of_holes &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) )
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1)))), reunion_of_core_inact_bitmask(2,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2)))), reunion_of_core_inact_bitmask(2,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1)))), reunion_of_core_inact_bitmask(3,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),act_bitmask(3,2)))), reunion_of_core_inact_bitmask(3,2)) )
else if(N_int == 4)then
number_of_holes = number_of_holes &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) )
else if(N_int == 5)then
number_of_holes = number_of_holes &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,1), xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1)))), reunion_of_core_inact_bitmask(5,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,2), xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1)))), reunion_of_core_inact_bitmask(5,2)) )
else if(N_int == 6)then
number_of_holes = number_of_holes &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,1), xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1)))), reunion_of_core_inact_bitmask(5,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,2), xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1)))), reunion_of_core_inact_bitmask(5,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,1), xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1)))), reunion_of_core_inact_bitmask(6,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,2), xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1)))), reunion_of_core_inact_bitmask(6,2)) )
else if(N_int == 7)then
number_of_holes = number_of_holes &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,1), xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1)))), reunion_of_core_inact_bitmask(5,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,2), xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1)))), reunion_of_core_inact_bitmask(5,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,1), xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1)))), reunion_of_core_inact_bitmask(6,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,2), xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1)))), reunion_of_core_inact_bitmask(6,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(7,1), xor(key_in(7,1),iand(key_in(7,1),cas_bitmask(7,1,1)))), reunion_of_core_inact_bitmask(7,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(7,2), xor(key_in(7,2),iand(key_in(7,2),cas_bitmask(7,2,1)))), reunion_of_core_inact_bitmask(7,2)) )
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1)))), reunion_of_core_inact_bitmask(2,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2)))), reunion_of_core_inact_bitmask(2,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1)))), reunion_of_core_inact_bitmask(3,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),act_bitmask(3,2)))), reunion_of_core_inact_bitmask(3,2)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),act_bitmask(4,1)))), reunion_of_core_inact_bitmask(4,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),act_bitmask(4,2)))), reunion_of_core_inact_bitmask(4,2)) )
else
do i = 1, N_int
number_of_holes = number_of_holes &
@ -111,11 +69,11 @@ integer function number_of_holes(key_in)
xor( &
key_in(i,1), & ! MOs of key_in not in the CAS
iand( & ! MOs of key_in in the CAS
key_in(i,1), cas_bitmask(i,1,1) &
key_in(i,1), act_bitmask(i,1) &
) &
) &
), reunion_of_core_inact_bitmask(i,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(i,2), xor(key_in(i,2),iand(key_in(i,2),cas_bitmask(i,2,1)))), reunion_of_core_inact_bitmask(i,2)) )
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(i,2), xor(key_in(i,2),iand(key_in(i,2),act_bitmask(i,2)))), reunion_of_core_inact_bitmask(i,2)) )
enddo
endif
end
@ -131,97 +89,37 @@ integer function number_of_particles(key_in)
number_of_particles= 0
if(N_int == 1)then
number_of_particles= number_of_particles &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) )
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) )) &
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ))
else if(N_int == 2)then
number_of_particles= number_of_particles &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) )
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) ) ) &
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ) ) &
+ popcnt( iand( xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1))), virt_bitmask(2,1) ) ) &
+ popcnt( iand( xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2))), virt_bitmask(2,2) ) )
else if(N_int == 3)then
number_of_particles= number_of_particles &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) )
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) )) &
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) )) &
+ popcnt( iand( xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1))), virt_bitmask(2,1) )) &
+ popcnt( iand( xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2))), virt_bitmask(2,2) )) &
+ popcnt( iand( xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1))), virt_bitmask(3,1) )) &
+ popcnt( iand( xor(key_in(3,2),iand(key_in(3,2),act_bitmask(3,2))), virt_bitmask(3,2) ))
else if(N_int == 4)then
number_of_particles= number_of_particles &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) )
else if(N_int == 5)then
number_of_particles= number_of_particles &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) )
else if(N_int == 6)then
number_of_particles= number_of_particles &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) ) &
+ popcnt( iand( iand( xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1))), virt_bitmask(6,1) ), virt_bitmask(6,1)) ) &
+ popcnt( iand( iand( xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1))), virt_bitmask(6,2) ), virt_bitmask(6,2)) )
else if(N_int == 7)then
number_of_particles= number_of_particles &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) ) &
+ popcnt( iand( iand( xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1))), virt_bitmask(6,1) ), virt_bitmask(6,1)) ) &
+ popcnt( iand( iand( xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1))), virt_bitmask(6,2) ), virt_bitmask(6,2)) ) &
+ popcnt( iand( iand( xor(key_in(7,1),iand(key_in(7,1),cas_bitmask(7,1,1))), virt_bitmask(7,1) ), virt_bitmask(7,1)) ) &
+ popcnt( iand( iand( xor(key_in(7,2),iand(key_in(7,2),cas_bitmask(7,2,1))), virt_bitmask(7,2) ), virt_bitmask(7,2)) )
else if(N_int == 8)then
number_of_particles= number_of_particles &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) ) &
+ popcnt( iand( iand( xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1))), virt_bitmask(6,1) ), virt_bitmask(6,1)) ) &
+ popcnt( iand( iand( xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1))), virt_bitmask(6,2) ), virt_bitmask(6,2)) ) &
+ popcnt( iand( iand( xor(key_in(7,1),iand(key_in(7,1),cas_bitmask(7,1,1))), virt_bitmask(7,1) ), virt_bitmask(7,1)) ) &
+ popcnt( iand( iand( xor(key_in(7,2),iand(key_in(7,2),cas_bitmask(7,2,1))), virt_bitmask(7,2) ), virt_bitmask(7,2)) ) &
+ popcnt( iand( iand( xor(key_in(8,1),iand(key_in(8,1),cas_bitmask(8,1,1))), virt_bitmask(8,1) ), virt_bitmask(8,1)) ) &
+ popcnt( iand( iand( xor(key_in(8,2),iand(key_in(8,2),cas_bitmask(8,2,1))), virt_bitmask(8,2) ), virt_bitmask(8,2)) )
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) ) ) &
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ) ) &
+ popcnt( iand( xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1))), virt_bitmask(2,1) ) ) &
+ popcnt( iand( xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2))), virt_bitmask(2,2) ) ) &
+ popcnt( iand( xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1))), virt_bitmask(3,1) ) ) &
+ popcnt( iand( xor(key_in(3,2),iand(key_in(3,2),act_bitmask(3,2))), virt_bitmask(3,2) ) ) &
+ popcnt( iand( xor(key_in(4,1),iand(key_in(4,1),act_bitmask(4,1))), virt_bitmask(4,1) ) ) &
+ popcnt( iand( xor(key_in(4,2),iand(key_in(4,2),act_bitmask(4,2))), virt_bitmask(4,2) ) )
else
do i = 1, N_int
number_of_particles= number_of_particles &
+ popcnt( iand( iand( xor(key_in(i,1),iand(key_in(i,1),cas_bitmask(i,1,1))), virt_bitmask(i,1) ), virt_bitmask(i,1)) ) &
+ popcnt( iand( iand( xor(key_in(i,2),iand(key_in(i,2),cas_bitmask(i,2,1))), virt_bitmask(i,2) ), virt_bitmask(i,2)) )
number_of_particles= number_of_particles &
+ popcnt( iand( xor(key_in(i,1),iand(key_in(i,1),act_bitmask(i,1))), virt_bitmask(i,1) )) &
+ popcnt( iand( xor(key_in(i,2),iand(key_in(i,2),act_bitmask(i,2))), virt_bitmask(i,2) ))
enddo
endif
end
@ -230,7 +128,7 @@ logical function is_a_two_holes_two_particles(key_in)
BEGIN_DOC
! logical function that returns True if the determinant 'key_in'
! belongs to the 2h-2p excitation class of the DDCI space
! this is calculated using the CAS_bitmask that defines the active
! this is calculated using the act_bitmask that defines the active
! orbital space, the inact_bitmasl that defines the inactive oribital space
! and the virt_bitmask that defines the virtual orbital space
END_DOC
@ -246,174 +144,62 @@ logical function is_a_two_holes_two_particles(key_in)
i_diff = 0
if(N_int == 1)then
i_diff = i_diff &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) )
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) ) &
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) ) ) &
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ) )
else if(N_int == 2)then
i_diff = i_diff &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) ) &
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) )
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) ) &
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) ) ) &
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2)))), reunion_of_core_inact_bitmask(2,2)) ) &
+ popcnt( iand( xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1))), virt_bitmask(2,1) )) &
+ popcnt( iand( xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2))), virt_bitmask(2,2) ))
else if(N_int == 3)then
i_diff = i_diff &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) ) &
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) ) &
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) )
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) ) &
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) ) ) &
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2)))), reunion_of_core_inact_bitmask(2,2)) ) &
+ popcnt( iand( xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1))), virt_bitmask(2,1) ) ) &
+ popcnt( iand( xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2))), virt_bitmask(2,2) ) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),act_bitmask(3,2)))), reunion_of_core_inact_bitmask(3,2)) ) &
+ popcnt( iand( xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1))), virt_bitmask(3,1) ) ) &
+ popcnt( iand( xor(key_in(3,2),iand(key_in(3,2),act_bitmask(3,2))), virt_bitmask(3,2) ) )
else if(N_int == 4)then
i_diff = i_diff &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) ) &
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) ) &
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) ) &
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) )
else if(N_int == 5)then
i_diff = i_diff &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) ) &
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) ) &
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) ) &
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,1), xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1)))), reunion_of_core_inact_bitmask(5,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,2), xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1)))), reunion_of_core_inact_bitmask(5,2)) ) &
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) )
else if(N_int == 6)then
i_diff = i_diff &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) ) &
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) ) &
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) ) &
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,1), xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1)))), reunion_of_core_inact_bitmask(5,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,2), xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1)))), reunion_of_core_inact_bitmask(5,2)) ) &
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,1), xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1)))), reunion_of_core_inact_bitmask(6,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,2), xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1)))), reunion_of_core_inact_bitmask(6,2)) ) &
+ popcnt( iand( iand( xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1))), virt_bitmask(6,1) ), virt_bitmask(6,1)) ) &
+ popcnt( iand( iand( xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1))), virt_bitmask(6,2) ), virt_bitmask(6,2)) )
else if(N_int == 7)then
i_diff = i_diff &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) ) &
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) ) &
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) ) &
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,1), xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1)))), reunion_of_core_inact_bitmask(5,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,2), xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1)))), reunion_of_core_inact_bitmask(5,2)) ) &
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,1), xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1)))), reunion_of_core_inact_bitmask(6,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,2), xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1)))), reunion_of_core_inact_bitmask(6,2)) ) &
+ popcnt( iand( iand( xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1))), virt_bitmask(6,1) ), virt_bitmask(6,1)) ) &
+ popcnt( iand( iand( xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1))), virt_bitmask(6,2) ), virt_bitmask(6,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(7,1), xor(key_in(7,1),iand(key_in(7,1),cas_bitmask(7,1,1)))), reunion_of_core_inact_bitmask(7,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(7,2), xor(key_in(7,2),iand(key_in(7,2),cas_bitmask(7,2,1)))), reunion_of_core_inact_bitmask(7,2)) ) &
+ popcnt( iand( iand( xor(key_in(7,1),iand(key_in(7,1),cas_bitmask(7,1,1))), virt_bitmask(7,1) ), virt_bitmask(7,1)) ) &
+ popcnt( iand( iand( xor(key_in(7,2),iand(key_in(7,2),cas_bitmask(7,2,1))), virt_bitmask(7,2) ), virt_bitmask(7,2)) )
else if(N_int == 8)then
i_diff = i_diff &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) ) &
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) ) &
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) ) &
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,1), xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1)))), reunion_of_core_inact_bitmask(5,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,2), xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1)))), reunion_of_core_inact_bitmask(5,2)) ) &
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,1), xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1)))), reunion_of_core_inact_bitmask(6,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,2), xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1)))), reunion_of_core_inact_bitmask(6,2)) ) &
+ popcnt( iand( iand( xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1))), virt_bitmask(6,1) ), virt_bitmask(6,1)) ) &
+ popcnt( iand( iand( xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1))), virt_bitmask(6,2) ), virt_bitmask(6,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(7,1), xor(key_in(7,1),iand(key_in(7,1),cas_bitmask(7,1,1)))), reunion_of_core_inact_bitmask(7,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(7,2), xor(key_in(7,2),iand(key_in(7,2),cas_bitmask(7,2,1)))), reunion_of_core_inact_bitmask(7,2)) ) &
+ popcnt( iand( iand( xor(key_in(7,1),iand(key_in(7,1),cas_bitmask(7,1,1))), virt_bitmask(7,1) ), virt_bitmask(7,1)) ) &
+ popcnt( iand( iand( xor(key_in(7,2),iand(key_in(7,2),cas_bitmask(7,2,1))), virt_bitmask(7,2) ), virt_bitmask(7,2)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(8,1), xor(key_in(8,1),iand(key_in(8,1),cas_bitmask(8,1,1)))), reunion_of_core_inact_bitmask(8,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(8,2), xor(key_in(8,2),iand(key_in(8,2),cas_bitmask(8,2,1)))), reunion_of_core_inact_bitmask(8,2)) ) &
+ popcnt( iand( iand( xor(key_in(8,1),iand(key_in(8,1),cas_bitmask(8,1,1))), virt_bitmask(8,1) ), virt_bitmask(8,1)) ) &
+ popcnt( iand( iand( xor(key_in(8,2),iand(key_in(8,2),cas_bitmask(8,2,1))), virt_bitmask(8,2) ), virt_bitmask(8,2)) )
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) ) &
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) ) ) &
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2)))), reunion_of_core_inact_bitmask(2,2)) ) &
+ popcnt( iand( xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1))), virt_bitmask(2,1) ) ) &
+ popcnt( iand( xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2))), virt_bitmask(2,2) ) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),act_bitmask(3,2)))), reunion_of_core_inact_bitmask(3,2)) ) &
+ popcnt( iand( xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1))), virt_bitmask(3,1) ) ) &
+ popcnt( iand( xor(key_in(4,2),iand(key_in(3,2),act_bitmask(3,2))), virt_bitmask(3,2) ) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),act_bitmask(4,1)))), reunion_of_core_inact_bitmask(4,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),act_bitmask(4,2)))), reunion_of_core_inact_bitmask(4,2)) ) &
+ popcnt( iand( xor(key_in(4,1),iand(key_in(4,1),act_bitmask(4,1))), virt_bitmask(4,1) ) ) &
+ popcnt( iand( xor(key_in(4,2),iand(key_in(4,2),act_bitmask(4,2))), virt_bitmask(4,2) ) )
else
do i = 1, N_int
i_diff = i_diff &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(i,1), xor(key_in(i,1),iand(key_in(i,1),cas_bitmask(i,1,1)))), reunion_of_core_inact_bitmask(i,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(i,2), xor(key_in(i,2),iand(key_in(i,2),cas_bitmask(i,2,1)))), reunion_of_core_inact_bitmask(i,2)) ) &
+ popcnt( iand( iand( xor(key_in(i,1),iand(key_in(i,1),cas_bitmask(i,1,1))), virt_bitmask(i,1) ), virt_bitmask(i,1)) ) &
+ popcnt( iand( iand( xor(key_in(i,2),iand(key_in(i,2),cas_bitmask(i,2,1))), virt_bitmask(i,2) ), virt_bitmask(i,2)) )
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(i,1), xor(key_in(i,1),iand(key_in(i,1),act_bitmask(i,1)))), reunion_of_core_inact_bitmask(i,1)) ) &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(i,2), xor(key_in(i,2),iand(key_in(i,2),act_bitmask(i,2)))), reunion_of_core_inact_bitmask(i,2)) ) &
+ popcnt( iand( xor(key_in(i,1),iand(key_in(i,1),act_bitmask(i,1))), virt_bitmask(i,1) )) &
+ popcnt( iand( xor(key_in(i,2),iand(key_in(i,2),act_bitmask(i,2))), virt_bitmask(i,2) ))
enddo
endif
is_a_two_holes_two_particles = (i_diff >3)
@ -434,8 +220,8 @@ integer function number_of_holes_verbose(key_in)
print*,'jey_in = '
call debug_det(key_in,N_int)
number_of_holes_verbose = 0
key_tmp(1,1) = xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))
key_tmp(1,2) = xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,1,1)))
key_tmp(1,1) = xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))
key_tmp(1,2) = xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,1)))
call debug_det(key_tmp,N_int)
key_tmp(1,1) = iand(key_tmp(1,1),reunion_of_core_inact_bitmask(1,1))
key_tmp(1,2) = iand(key_tmp(1,2),reunion_of_core_inact_bitmask(1,2))
@ -446,8 +232,8 @@ integer function number_of_holes_verbose(key_in)
! number_of_holes_verbose = number_of_holes_verbose + popcnt(key_tmp(1,1)) &
! + popcnt(key_tmp(1,2))
number_of_holes_verbose = number_of_holes_verbose &
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) )
print*,'----------------------'
end
@ -464,8 +250,8 @@ integer function number_of_particles_verbose(key_in)
print*,'jey_in = '
call debug_det(key_in,N_int)
number_of_particles_verbose = 0
key_tmp(1,1) = xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,1,1)))
key_tmp(1,2) = xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,1,1)))
key_tmp(1,1) = xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,1)))
key_tmp(1,2) = xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,1)))
call debug_det(key_tmp,N_int)
key_tmp(1,1) = iand(key_tmp(1,2),virt_bitmask(1,2))
key_tmp(1,2) = iand(key_tmp(1,2),virt_bitmask(1,2))
@ -476,18 +262,16 @@ integer function number_of_particles_verbose(key_in)
! number_of_particles_verbose = number_of_particles_verbose + popcnt(key_tmp(1,1)) &
! + popcnt(key_tmp(1,2))
number_of_particles_verbose = number_of_particles_verbose &
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) )
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ), virt_bitmask(1,2)) )
end
logical function is_a_1h1p(key_in)
implicit none
integer(bit_kind), intent(in) :: key_in(N_int,2)
integer :: number_of_particles, number_of_holes
is_a_1h1p = .False.
if(number_of_holes(key_in).eq.1 .and. number_of_particles(key_in).eq.1)then
is_a_1h1p = .True.
endif
is_a_1h1p = (number_of_holes(key_in) == 1) .and. (number_of_particles(key_in) == 1)
end
@ -495,10 +279,8 @@ logical function is_a_1h2p(key_in)
implicit none
integer(bit_kind), intent(in) :: key_in(N_int,2)
integer :: number_of_particles, number_of_holes
is_a_1h2p = .False.
if(number_of_holes(key_in).eq.1 .and. number_of_particles(key_in).eq.2)then
is_a_1h2p = .True.
endif
is_a_1h2p = (number_of_holes(key_in) == 1) .and. (number_of_particles(key_in) == 2)
end
@ -506,10 +288,8 @@ logical function is_a_2h1p(key_in)
implicit none
integer(bit_kind), intent(in) :: key_in(N_int,2)
integer :: number_of_particles, number_of_holes
is_a_2h1p = .False.
if(number_of_holes(key_in).eq.2 .and. number_of_particles(key_in).eq.1)then
is_a_2h1p = .True.
endif
is_a_2h1p = (number_of_holes(key_in) == 2) .and. (number_of_particles(key_in) == 1)
end
@ -517,10 +297,8 @@ logical function is_a_1h(key_in)
implicit none
integer(bit_kind), intent(in) :: key_in(N_int,2)
integer :: number_of_particles, number_of_holes
is_a_1h = .False.
if(number_of_holes(key_in).eq.1 .and. number_of_particles(key_in).eq.0)then
is_a_1h = .True.
endif
is_a_1h = (number_of_holes(key_in) == 1) .and. (number_of_particles(key_in) == 0)
end
@ -528,10 +306,8 @@ logical function is_a_1p(key_in)
implicit none
integer(bit_kind), intent(in) :: key_in(N_int,2)
integer :: number_of_particles, number_of_holes
is_a_1p = .False.
if(number_of_holes(key_in).eq.0 .and. number_of_particles(key_in).eq.1)then
is_a_1p = .True.
endif
is_a_1p = (number_of_holes(key_in) == 0) .and. (number_of_particles(key_in) == 1)
end
@ -539,10 +315,8 @@ logical function is_a_2p(key_in)
implicit none
integer(bit_kind), intent(in) :: key_in(N_int,2)
integer :: number_of_particles, number_of_holes
is_a_2p = .False.
if(number_of_holes(key_in).eq.0 .and. number_of_particles(key_in).eq.2)then
is_a_2p = .True.
endif
is_a_2p = (number_of_holes(key_in) == 0) .and. (number_of_particles(key_in) == 2)
end
@ -550,10 +324,8 @@ logical function is_a_2h(key_in)
implicit none
integer(bit_kind), intent(in) :: key_in(N_int,2)
integer :: number_of_particles, number_of_holes
is_a_2h = .False.
if(number_of_holes(key_in).eq.2 .and. number_of_particles(key_in).eq.0)then
is_a_2h = .True.
endif
is_a_2h = (number_of_holes(key_in) == 2) .and. (number_of_particles(key_in) == 0)
end

View File

@ -1,8 +1,4 @@
bitmasks
N_int integer
bit_kind integer
N_mask_gen integer
generators integer*8 (bitmasks_N_int*bitmasks_bit_kind/8,2,6,bitmasks_N_mask_gen)
N_mask_cas integer
cas integer*8 (bitmasks_N_int*bitmasks_bit_kind/8,2,bitmasks_N_mask_cas)

View File

@ -11,7 +11,7 @@ BEGIN_PROVIDER [ integer, N_int ]
if (N_int > N_int_max) then
stop 'N_int > N_int_max'
endif
END_PROVIDER
@ -20,7 +20,7 @@ BEGIN_PROVIDER [ integer(bit_kind), full_ijkl_bitmask, (N_int) ]
BEGIN_DOC
! Bitmask to include all possible MOs
END_DOC
integer :: i,j,k
k=0
do j=1,N_int
@ -37,34 +37,34 @@ END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), full_ijkl_bitmask_4, (N_int,4) ]
implicit none
integer :: i
integer :: i
do i=1,N_int
full_ijkl_bitmask_4(i,1) = full_ijkl_bitmask(i)
full_ijkl_bitmask_4(i,2) = full_ijkl_bitmask(i)
full_ijkl_bitmask_4(i,3) = full_ijkl_bitmask(i)
full_ijkl_bitmask_4(i,4) = full_ijkl_bitmask(i)
full_ijkl_bitmask_4(i,1) = full_ijkl_bitmask(i)
full_ijkl_bitmask_4(i,2) = full_ijkl_bitmask(i)
full_ijkl_bitmask_4(i,3) = full_ijkl_bitmask(i)
full_ijkl_bitmask_4(i,4) = full_ijkl_bitmask(i)
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), core_inact_act_bitmask_4, (N_int,4) ]
implicit none
integer :: i
integer :: i
do i=1,N_int
core_inact_act_bitmask_4(i,1) = reunion_of_core_inact_act_bitmask(i,1)
core_inact_act_bitmask_4(i,2) = reunion_of_core_inact_act_bitmask(i,1)
core_inact_act_bitmask_4(i,3) = reunion_of_core_inact_act_bitmask(i,1)
core_inact_act_bitmask_4(i,4) = reunion_of_core_inact_act_bitmask(i,1)
core_inact_act_bitmask_4(i,1) = reunion_of_core_inact_act_bitmask(i,1)
core_inact_act_bitmask_4(i,2) = reunion_of_core_inact_act_bitmask(i,1)
core_inact_act_bitmask_4(i,3) = reunion_of_core_inact_act_bitmask(i,1)
core_inact_act_bitmask_4(i,4) = reunion_of_core_inact_act_bitmask(i,1)
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), virt_bitmask_4, (N_int,4) ]
implicit none
integer :: i
integer :: i
do i=1,N_int
virt_bitmask_4(i,1) = virt_bitmask(i,1)
virt_bitmask_4(i,2) = virt_bitmask(i,1)
virt_bitmask_4(i,3) = virt_bitmask(i,1)
virt_bitmask_4(i,4) = virt_bitmask(i,1)
virt_bitmask_4(i,1) = virt_bitmask(i,1)
virt_bitmask_4(i,2) = virt_bitmask(i,1)
virt_bitmask_4(i,3) = virt_bitmask(i,1)
virt_bitmask_4(i,4) = virt_bitmask(i,1)
enddo
END_PROVIDER
@ -78,491 +78,165 @@ BEGIN_PROVIDER [ integer(bit_kind), HF_bitmask, (N_int,2)]
END_DOC
integer :: i,j,n
integer :: occ(elec_alpha_num)
HF_bitmask = 0_bit_kind
do i=1,elec_alpha_num
occ(i) = i
occ(i) = i
enddo
call list_to_bitstring( HF_bitmask(1,1), occ, elec_alpha_num, N_int)
! elec_alpha_num <= elec_beta_num, so occ is already OK.
call list_to_bitstring( HF_bitmask(1,2), occ, elec_beta_num, N_int)
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), ref_bitmask, (N_int,2)]
implicit none
BEGIN_DOC
! Reference bit mask, used in Slater rules, chosen as Hartree-Fock bitmask
END_DOC
ref_bitmask = HF_bitmask
END_PROVIDER
BEGIN_PROVIDER [ integer, N_generators_bitmask ]
implicit none
BEGIN_DOC
! Number of bitmasks for generators
END_DOC
logical :: exists
PROVIDE ezfio_filename N_int
if (mpi_master) then
call ezfio_has_bitmasks_N_mask_gen(exists)
if (exists) then
call ezfio_get_bitmasks_N_mask_gen(N_generators_bitmask)
integer :: N_int_check
integer :: bit_kind_check
call ezfio_get_bitmasks_bit_kind(bit_kind_check)
if (bit_kind_check /= bit_kind) then
print *, bit_kind_check, bit_kind
print *, 'Error: bit_kind is not correct in EZFIO file'
endif
call ezfio_get_bitmasks_N_int(N_int_check)
if (N_int_check /= N_int) then
print *, N_int_check, N_int
print *, 'Error: N_int is not correct in EZFIO file'
endif
else
N_generators_bitmask = 1
endif
ASSERT (N_generators_bitmask > 0)
call write_int(6,N_generators_bitmask,'N_generators_bitmask')
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( N_generators_bitmask, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read N_generators_bitmask with MPI'
endif
IRP_ENDIF
END_PROVIDER
BEGIN_PROVIDER [ integer, N_generators_bitmask_restart ]
implicit none
BEGIN_DOC
! Number of bitmasks for generators
END_DOC
logical :: exists
PROVIDE ezfio_filename N_int
if (mpi_master) then
call ezfio_has_bitmasks_N_mask_gen(exists)
if (exists) then
call ezfio_get_bitmasks_N_mask_gen(N_generators_bitmask_restart)
integer :: N_int_check
integer :: bit_kind_check
call ezfio_get_bitmasks_bit_kind(bit_kind_check)
if (bit_kind_check /= bit_kind) then
print *, bit_kind_check, bit_kind
print *, 'Error: bit_kind is not correct in EZFIO file'
endif
call ezfio_get_bitmasks_N_int(N_int_check)
if (N_int_check /= N_int) then
print *, N_int_check, N_int
print *, 'Error: N_int is not correct in EZFIO file'
endif
else
N_generators_bitmask_restart = 1
endif
ASSERT (N_generators_bitmask_restart > 0)
call write_int(6,N_generators_bitmask_restart,'N_generators_bitmask_restart')
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( N_generators_bitmask_restart, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read N_generators_bitmask_restart with MPI'
endif
IRP_ENDIF
implicit none
BEGIN_DOC
! Reference bit mask, used in Slater rules, chosen as Hartree-Fock bitmask
END_DOC
ref_bitmask = HF_bitmask
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), generators_bitmask_restart, (N_int,2,6,N_generators_bitmask_restart) ]
implicit none
BEGIN_DOC
! Bitmasks for generator determinants.
! (N_int, alpha/beta, hole/particle, generator).
!
! 3rd index is :
!
! * 1 : hole for single exc
!
! * 2 : particle for single exc
!
! * 3 : hole for 1st exc of double
!
! * 4 : particle for 1st exc of double
!
! * 5 : hole for 2nd exc of double
!
! * 6 : particle for 2nd exc of double
!
END_DOC
logical :: exists
PROVIDE ezfio_filename full_ijkl_bitmask N_generators_bitmask N_int
PROVIDE generators_bitmask_restart
if (mpi_master) then
call ezfio_has_bitmasks_generators(exists)
if (exists) then
call ezfio_get_bitmasks_generators(generators_bitmask_restart)
else
integer :: k, ispin
do k=1,N_generators_bitmask
do ispin=1,2
do i=1,N_int
generators_bitmask_restart(i,ispin,s_hole ,k) = full_ijkl_bitmask(i)
generators_bitmask_restart(i,ispin,s_part ,k) = full_ijkl_bitmask(i)
generators_bitmask_restart(i,ispin,d_hole1,k) = full_ijkl_bitmask(i)
generators_bitmask_restart(i,ispin,d_part1,k) = full_ijkl_bitmask(i)
generators_bitmask_restart(i,ispin,d_hole2,k) = full_ijkl_bitmask(i)
generators_bitmask_restart(i,ispin,d_part2,k) = full_ijkl_bitmask(i)
enddo
enddo
enddo
endif
integer :: i
do k=1,N_generators_bitmask
do ispin=1,2
BEGIN_PROVIDER [ integer(bit_kind), generators_bitmask, (N_int,2,6) ]
implicit none
BEGIN_DOC
! Bitmasks for generator determinants.
! (N_int, alpha/beta, hole/particle, generator).
!
! 3rd index is :
!
! * 1 : hole for single exc
!
! * 2 : particle for single exc
!
! * 3 : hole for 1st exc of double
!
! * 4 : particle for 1st exc of double
!
! * 5 : hole for 2nd exc of double
!
! * 6 : particle for 2nd exc of double
!
END_DOC
logical :: exists
PROVIDE ezfio_filename full_ijkl_bitmask
integer :: ispin, i
do ispin=1,2
do i=1,N_int
generators_bitmask_restart(i,ispin,s_hole ,k) = iand(full_ijkl_bitmask(i),generators_bitmask_restart(i,ispin,s_hole,k) )
generators_bitmask_restart(i,ispin,s_part ,k) = iand(full_ijkl_bitmask(i),generators_bitmask_restart(i,ispin,s_part,k) )
generators_bitmask_restart(i,ispin,d_hole1,k) = iand(full_ijkl_bitmask(i),generators_bitmask_restart(i,ispin,d_hole1,k) )
generators_bitmask_restart(i,ispin,d_part1,k) = iand(full_ijkl_bitmask(i),generators_bitmask_restart(i,ispin,d_part1,k) )
generators_bitmask_restart(i,ispin,d_hole2,k) = iand(full_ijkl_bitmask(i),generators_bitmask_restart(i,ispin,d_hole2,k) )
generators_bitmask_restart(i,ispin,d_part2,k) = iand(full_ijkl_bitmask(i),generators_bitmask_restart(i,ispin,d_part2,k) )
generators_bitmask(i,ispin,s_hole ) = reunion_of_inact_act_bitmask(i,ispin)
generators_bitmask(i,ispin,s_part ) = reunion_of_act_virt_bitmask(i,ispin)
generators_bitmask(i,ispin,d_hole1) = reunion_of_inact_act_bitmask(i,ispin)
generators_bitmask(i,ispin,d_part1) = reunion_of_act_virt_bitmask(i,ispin)
generators_bitmask(i,ispin,d_hole2) = reunion_of_inact_act_bitmask(i,ispin)
generators_bitmask(i,ispin,d_part2) = reunion_of_act_virt_bitmask(i,ispin)
enddo
enddo
enddo
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( generators_bitmask_restart, N_int*2*6*N_generators_bitmask_restart, MPI_BIT_KIND, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read generators_bitmask_restart with MPI'
endif
IRP_ENDIF
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), generators_bitmask, (N_int,2,6,N_generators_bitmask) ]
implicit none
BEGIN_DOC
! Bitmasks for generator determinants.
! (N_int, alpha/beta, hole/particle, generator).
!
! 3rd index is :
!
! * 1 : hole for single exc
!
! * 2 : particle for single exc
!
! * 3 : hole for 1st exc of double
!
! * 4 : particle for 1st exc of double
!
! * 5 : hole for 2nd exc of double
!
! * 6 : particle for 2nd exc of double
!
END_DOC
logical :: exists
PROVIDE ezfio_filename full_ijkl_bitmask N_generators_bitmask
if (mpi_master) then
call ezfio_has_bitmasks_generators(exists)
if (exists) then
call ezfio_get_bitmasks_generators(generators_bitmask)
else
integer :: k, ispin, i
do k=1,N_generators_bitmask
do ispin=1,2
do i=1,N_int
generators_bitmask(i,ispin,s_hole ,k) = full_ijkl_bitmask(i)
generators_bitmask(i,ispin,s_part ,k) = full_ijkl_bitmask(i)
generators_bitmask(i,ispin,d_hole1,k) = full_ijkl_bitmask(i)
generators_bitmask(i,ispin,d_part1,k) = full_ijkl_bitmask(i)
generators_bitmask(i,ispin,d_hole2,k) = full_ijkl_bitmask(i)
generators_bitmask(i,ispin,d_part2,k) = full_ijkl_bitmask(i)
enddo
enddo
enddo
endif
do k=1,N_generators_bitmask
do ispin=1,2
do i=1,N_int
generators_bitmask(i,ispin,s_hole ,k) = iand(full_ijkl_bitmask(i),generators_bitmask(i,ispin,s_hole,k) )
generators_bitmask(i,ispin,s_part ,k) = iand(full_ijkl_bitmask(i),generators_bitmask(i,ispin,s_part,k) )
generators_bitmask(i,ispin,d_hole1,k) = iand(full_ijkl_bitmask(i),generators_bitmask(i,ispin,d_hole1,k) )
generators_bitmask(i,ispin,d_part1,k) = iand(full_ijkl_bitmask(i),generators_bitmask(i,ispin,d_part1,k) )
generators_bitmask(i,ispin,d_hole2,k) = iand(full_ijkl_bitmask(i),generators_bitmask(i,ispin,d_hole2,k) )
generators_bitmask(i,ispin,d_part2,k) = iand(full_ijkl_bitmask(i),generators_bitmask(i,ispin,d_part2,k) )
enddo
enddo
enddo
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( generators_bitmask, N_int*2*6*N_generators_bitmask, MPI_BIT_KIND, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read generators_bitmask with MPI'
endif
IRP_ENDIF
END_PROVIDER
BEGIN_PROVIDER [ integer, N_cas_bitmask ]
implicit none
BEGIN_DOC
! Number of bitmasks for CAS
END_DOC
logical :: exists
PROVIDE ezfio_filename
PROVIDE N_cas_bitmask N_int
if (mpi_master) then
call ezfio_has_bitmasks_N_mask_cas(exists)
if (exists) then
call ezfio_get_bitmasks_N_mask_cas(N_cas_bitmask)
integer :: N_int_check
integer :: bit_kind_check
call ezfio_get_bitmasks_bit_kind(bit_kind_check)
if (bit_kind_check /= bit_kind) then
print *, bit_kind_check, bit_kind
print *, 'Error: bit_kind is not correct in EZFIO file'
endif
call ezfio_get_bitmasks_N_int(N_int_check)
if (N_int_check /= N_int) then
print *, N_int_check, N_int
print *, 'Error: N_int is not correct in EZFIO file'
endif
else
N_cas_bitmask = 1
endif
call write_int(6,N_cas_bitmask,'N_cas_bitmask')
endif
ASSERT (N_cas_bitmask > 0)
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( N_cas_bitmask, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read N_cas_bitmask with MPI'
endif
IRP_ENDIF
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), cas_bitmask, (N_int,2,N_cas_bitmask) ]
implicit none
BEGIN_DOC
! Bitmasks for CAS reference determinants. (N_int, alpha/beta, CAS reference)
END_DOC
logical :: exists
integer :: i,i_part,i_gen,j,k
PROVIDE ezfio_filename generators_bitmask_restart full_ijkl_bitmask
PROVIDE n_generators_bitmask HF_bitmask
if (mpi_master) then
call ezfio_has_bitmasks_cas(exists)
if (exists) then
call ezfio_get_bitmasks_cas(cas_bitmask)
else
if(N_generators_bitmask == 1)then
do j=1, N_cas_bitmask
do i=1, N_int
cas_bitmask(i,1,j) = iand(not(HF_bitmask(i,1)),full_ijkl_bitmask(i))
cas_bitmask(i,2,j) = iand(not(HF_bitmask(i,2)),full_ijkl_bitmask(i))
enddo
enddo
else
i_part = 2
i_gen = 1
do j=1, N_cas_bitmask
do i=1, N_int
cas_bitmask(i,1,j) = generators_bitmask_restart(i,1,i_part,i_gen)
cas_bitmask(i,2,j) = generators_bitmask_restart(i,2,i_part,i_gen)
enddo
enddo
endif
endif
do i=1,N_cas_bitmask
do j = 1, N_cas_bitmask
do k=1,N_int
cas_bitmask(k,j,i) = iand(cas_bitmask(k,j,i),full_ijkl_bitmask(k))
enddo
enddo
BEGIN_PROVIDER [ integer(bit_kind), reunion_of_core_inact_bitmask, (N_int,2)]
implicit none
BEGIN_DOC
! Reunion of the core and inactive and virtual bitmasks
END_DOC
integer :: i
do i = 1, N_int
reunion_of_core_inact_bitmask(i,1) = ior(core_bitmask(i,1),inact_bitmask(i,1))
reunion_of_core_inact_bitmask(i,2) = ior(core_bitmask(i,2),inact_bitmask(i,2))
enddo
write(*,*) 'Read CAS bitmask'
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( cas_bitmask, N_int*2*N_cas_bitmask, MPI_BIT_KIND, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read cas_bitmask with MPI'
endif
IRP_ENDIF
END_PROVIDER
BEGIN_PROVIDER [ integer, n_core_inact_orb ]
implicit none
integer :: i
n_core_inact_orb = 0
do i = 1, N_int
n_core_inact_orb += popcnt(reunion_of_core_inact_bitmask(i,1))
enddo
ENd_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), reunion_of_core_inact_bitmask, (N_int,2)]
implicit none
BEGIN_DOC
! Reunion of the core and inactive and virtual bitmasks
END_DOC
integer :: i
do i = 1, N_int
reunion_of_core_inact_bitmask(i,1) = ior(core_bitmask(i,1),inact_bitmask(i,1))
reunion_of_core_inact_bitmask(i,2) = ior(core_bitmask(i,2),inact_bitmask(i,2))
enddo
END_PROVIDER
BEGIN_PROVIDER [integer(bit_kind), reunion_of_inact_act_bitmask, (N_int,2)]
implicit none
BEGIN_DOC
! Reunion of the inactive and active bitmasks
END_DOC
integer :: i,j
do i = 1, N_int
reunion_of_inact_act_bitmask(i,1) = ior(inact_bitmask(i,1),act_bitmask(i,1))
reunion_of_inact_act_bitmask(i,2) = ior(inact_bitmask(i,2),act_bitmask(i,2))
enddo
END_PROVIDER
BEGIN_PROVIDER [integer(bit_kind), reunion_of_act_virt_bitmask, (N_int,2)]
implicit none
BEGIN_DOC
! Reunion of the inactive and active bitmasks
END_DOC
integer :: i,j
do i = 1, N_int
reunion_of_act_virt_bitmask(i,1) = ior(virt_bitmask(i,1),act_bitmask(i,1))
reunion_of_act_virt_bitmask(i,2) = ior(virt_bitmask(i,2),act_bitmask(i,2))
enddo
END_PROVIDER
BEGIN_PROVIDER [integer(bit_kind), reunion_of_core_inact_act_bitmask, (N_int,2)]
implicit none
BEGIN_DOC
! Reunion of the core, inactive and active bitmasks
END_DOC
integer :: i,j
do i = 1, N_int
reunion_of_core_inact_act_bitmask(i,1) = ior(reunion_of_core_inact_bitmask(i,1),act_bitmask(i,1))
reunion_of_core_inact_act_bitmask(i,2) = ior(reunion_of_core_inact_bitmask(i,2),act_bitmask(i,2))
enddo
END_PROVIDER
BEGIN_PROVIDER [integer(bit_kind), reunion_of_core_inact_act_bitmask, (N_int,2)]
implicit none
BEGIN_DOC
! Reunion of the core, inactive and active bitmasks
END_DOC
integer :: i,j
do i = 1, N_int
reunion_of_core_inact_act_bitmask(i,1) = ior(reunion_of_core_inact_bitmask(i,1),act_bitmask(i,1))
reunion_of_core_inact_act_bitmask(i,2) = ior(reunion_of_core_inact_bitmask(i,2),act_bitmask(i,2))
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), reunion_of_bitmask, (N_int,2)]
implicit none
BEGIN_DOC
! Reunion of the inactive, active and virtual bitmasks
END_DOC
integer :: i,j
do i = 1, N_int
reunion_of_bitmask(i,1) = ior(ior(cas_bitmask(i,1,1),inact_bitmask(i,1)),virt_bitmask(i,1))
reunion_of_bitmask(i,2) = ior(ior(cas_bitmask(i,2,1),inact_bitmask(i,2)),virt_bitmask(i,2))
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), reunion_of_bitmask, (N_int,2)]
implicit none
BEGIN_DOC
! Reunion of the inactive, active and virtual bitmasks
END_DOC
integer :: i,j
do i = 1, N_int
reunion_of_bitmask(i,1) = ior(ior(act_bitmask(i,1),inact_bitmask(i,1)),virt_bitmask(i,1))
reunion_of_bitmask(i,2) = ior(ior(act_bitmask(i,2),inact_bitmask(i,2)),virt_bitmask(i,2))
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), inact_virt_bitmask, (N_int,2)]
&BEGIN_PROVIDER [ integer(bit_kind), core_inact_virt_bitmask, (N_int,2)]
implicit none
BEGIN_DOC
! Reunion of the inactive and virtual bitmasks
END_DOC
integer :: i,j
do i = 1, N_int
inact_virt_bitmask(i,1) = ior(inact_bitmask(i,1),virt_bitmask(i,1))
inact_virt_bitmask(i,2) = ior(inact_bitmask(i,2),virt_bitmask(i,2))
core_inact_virt_bitmask(i,1) = ior(core_bitmask(i,1),inact_virt_bitmask(i,1))
core_inact_virt_bitmask(i,2) = ior(core_bitmask(i,2),inact_virt_bitmask(i,2))
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer, i_bitmask_gen ]
implicit none
BEGIN_DOC
! Current bitmask for the generators
END_DOC
i_bitmask_gen = 1
implicit none
BEGIN_DOC
! Reunion of the inactive and virtual bitmasks
END_DOC
integer :: i,j
do i = 1, N_int
inact_virt_bitmask(i,1) = ior(inact_bitmask(i,1),virt_bitmask(i,1))
inact_virt_bitmask(i,2) = ior(inact_bitmask(i,2),virt_bitmask(i,2))
core_inact_virt_bitmask(i,1) = ior(core_bitmask(i,1),inact_virt_bitmask(i,1))
core_inact_virt_bitmask(i,2) = ior(core_bitmask(i,2),inact_virt_bitmask(i,2))
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), unpaired_alpha_electrons, (N_int)]
implicit none
BEGIN_DOC
! Bitmask reprenting the unpaired alpha electrons in the HF_bitmask
END_DOC
integer :: i
unpaired_alpha_electrons = 0_bit_kind
do i = 1, N_int
unpaired_alpha_electrons(i) = xor(HF_bitmask(i,1),HF_bitmask(i,2))
enddo
END_PROVIDER
BEGIN_PROVIDER [integer(bit_kind), closed_shell_ref_bitmask, (N_int,2)]
implicit none
integer :: i,j
do i = 1, N_int
closed_shell_ref_bitmask(i,1) = ior(ref_bitmask(i,1),cas_bitmask(i,1,1))
closed_shell_ref_bitmask(i,2) = ior(ref_bitmask(i,2),cas_bitmask(i,2,1))
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), reunion_of_cas_inact_bitmask, (N_int,2)]
implicit none
BEGIN_DOC
! Reunion of the inactive, active and virtual bitmasks
END_DOC
integer :: i,j
do i = 1, N_int
reunion_of_cas_inact_bitmask(i,1) = ior(act_bitmask(i,1),inact_bitmask(i,1))
reunion_of_cas_inact_bitmask(i,2) = ior(act_bitmask(i,2),inact_bitmask(i,2))
enddo
END_PROVIDER
BEGIN_PROVIDER [integer, n_core_orb_allocate]
implicit none
n_core_orb_allocate = max(n_core_orb,1)
END_PROVIDER
BEGIN_PROVIDER [integer, n_inact_orb_allocate]
implicit none
n_inact_orb_allocate = max(n_inact_orb,1)
END_PROVIDER
BEGIN_PROVIDER [integer, n_virt_orb_allocate]
implicit none
n_virt_orb_allocate = max(n_virt_orb,1)
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), unpaired_alpha_electrons, (N_int)]
implicit none
BEGIN_DOC
! Bitmask reprenting the unpaired alpha electrons in the HF_bitmask
END_DOC
integer :: i
unpaired_alpha_electrons = 0_bit_kind
do i = 1, N_int
unpaired_alpha_electrons(i) = xor(HF_bitmask(i,1),HF_bitmask(i,2))
enddo
END_PROVIDER
BEGIN_PROVIDER [integer(bit_kind), closed_shell_ref_bitmask, (N_int,2)]
implicit none
integer :: i,j
do i = 1, N_int
closed_shell_ref_bitmask(i,1) = ior(ref_bitmask(i,1),act_bitmask(i,1))
closed_shell_ref_bitmask(i,2) = ior(ref_bitmask(i,2),act_bitmask(i,2))
enddo
END_PROVIDER

View File

@ -33,7 +33,7 @@ subroutine bitstring_to_list( string, list, n_elements, Nint)
use bitmasks
implicit none
BEGIN_DOC
! Gives the inidices(+1) of the bits set to 1 in the bit string
! Gives the indices(+1) of the bits set to 1 in the bit string
END_DOC
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: string(Nint)
@ -213,3 +213,34 @@ subroutine print_spindet(string,Nint)
print *, trim(output(1))
end
logical function is_integer_in_string(bite,string,Nint)
use bitmasks
implicit none
integer, intent(in) :: bite,Nint
integer(bit_kind), intent(in) :: string(Nint)
integer(bit_kind) :: string_bite(Nint)
integer :: i,itot,itot_and
character*(2048) :: output(1)
string_bite = 0_bit_kind
call set_bit_to_integer(bite,string_bite,Nint)
itot = 0
itot_and = 0
is_integer_in_string = .False.
!print*,''
!print*,''
!print*,'bite = ',bite
!call bitstring_to_str( output(1), string_bite, Nint )
! print *, trim(output(1))
!call bitstring_to_str( output(1), string, Nint )
! print *, trim(output(1))
do i = 1, Nint
itot += popcnt(string(i))
itot_and += popcnt(ior(string(i),string_bite(i)))
enddo
!print*,'itot,itot_and',itot,itot_and
if(itot == itot_and)then
is_integer_in_string = .True.
endif
!pause
end

View File

@ -1,246 +1,415 @@
use bitmasks
BEGIN_PROVIDER [ integer, n_core_orb]
implicit none
BEGIN_DOC
! Number of core MOs
END_DOC
integer :: i
n_core_orb = 0
do i = 1, mo_num
if(mo_class(i) == 'Core')then
n_core_orb += 1
endif
enddo
call write_int(6,n_core_orb, 'Number of core MOs')
END_PROVIDER
BEGIN_PROVIDER [ integer, n_core_orb]
&BEGIN_PROVIDER [ integer, n_inact_orb ]
&BEGIN_PROVIDER [ integer, n_act_orb]
&BEGIN_PROVIDER [ integer, n_virt_orb ]
&BEGIN_PROVIDER [ integer, n_del_orb ]
implicit none
BEGIN_DOC
! inact_bitmask : Bitmask of the inactive orbitals which are supposed to be doubly excited
! in post CAS methods
! n_inact_orb : Number of inactive orbitals
! virt_bitmask : Bitmaks of vritual orbitals which are supposed to be recieve electrons
! in post CAS methods
! n_virt_orb : Number of virtual orbitals
! list_inact : List of the inactive orbitals which are supposed to be doubly excited
! in post CAS methods
! list_virt : List of vritual orbitals which are supposed to be recieve electrons
! in post CAS methods
! list_inact_reverse : reverse list of inactive orbitals
! list_inact_reverse(i) = 0 ::> not an inactive
! list_inact_reverse(i) = k ::> IS the kth inactive
! list_virt_reverse : reverse list of virtual orbitals
! list_virt_reverse(i) = 0 ::> not an virtual
! list_virt_reverse(i) = k ::> IS the kth virtual
! list_act(i) = index of the ith active orbital
!
! list_act_reverse : reverse list of active orbitals
! list_act_reverse(i) = 0 ::> not an active
! list_act_reverse(i) = k ::> IS the kth active orbital
END_DOC
logical :: exists
integer :: j,i
BEGIN_PROVIDER [ integer, n_inact_orb ]
implicit none
BEGIN_DOC
! Number of inactive MOs
END_DOC
integer :: i
n_inact_orb = 0
do i = 1, mo_num
if (mo_class(i) == 'Inactive')then
n_inact_orb += 1
endif
enddo
call write_int(6,n_inact_orb,'Number of inactive MOs')
END_PROVIDER
n_core_orb = 0
n_inact_orb = 0
n_act_orb = 0
n_virt_orb = 0
n_del_orb = 0
do i = 1, mo_num
if(mo_class(i) == 'Core')then
n_core_orb += 1
else if (mo_class(i) == 'Inactive')then
n_inact_orb += 1
else if (mo_class(i) == 'Active')then
n_act_orb += 1
else if (mo_class(i) == 'Virtual')then
n_virt_orb += 1
else if (mo_class(i) == 'Deleted')then
n_del_orb += 1
endif
enddo
BEGIN_PROVIDER [ integer, n_act_orb]
implicit none
BEGIN_DOC
! Number of active MOs
END_DOC
integer :: i
n_act_orb = 0
do i = 1, mo_num
if (mo_class(i) == 'Active')then
n_act_orb += 1
endif
enddo
call write_int(6,n_act_orb, 'Number of active MOs')
END_PROVIDER
BEGIN_PROVIDER [ integer, n_virt_orb ]
implicit none
BEGIN_DOC
! Number of virtual MOs
END_DOC
integer :: i
n_virt_orb = 0
do i = 1, mo_num
if (mo_class(i) == 'Virtual')then
n_virt_orb += 1
endif
enddo
call write_int(6,n_virt_orb, 'Number of virtual MOs')
END_PROVIDER
BEGIN_PROVIDER [ integer, n_del_orb ]
implicit none
BEGIN_DOC
! Number of deleted MOs
END_DOC
integer :: i
n_del_orb = 0
do i = 1, mo_num
if (mo_class(i) == 'Deleted')then
n_del_orb += 1
endif
enddo
call write_int(6,n_del_orb, 'Number of deleted MOs')
END_PROVIDER
call write_int(6,n_core_orb, 'Number of core MOs')
call write_int(6,n_inact_orb,'Number of inactive MOs')
call write_int(6,n_act_orb, 'Number of active MOs')
call write_int(6,n_virt_orb, 'Number of virtual MOs')
call write_int(6,n_del_orb, 'Number of deleted MOs')
BEGIN_PROVIDER [ integer, n_core_inact_orb ]
implicit none
BEGIN_DOC
! n_core + n_inact
END_DOC
integer :: i
n_core_inact_orb = 0
do i = 1, N_int
n_core_inact_orb += popcnt(reunion_of_core_inact_bitmask(i,1))
enddo
END_PROVIDER
BEGIN_PROVIDER [integer, n_inact_act_orb ]
implicit none
BEGIN_DOC
! n_inact + n_act
END_DOC
n_inact_act_orb = (n_inact_orb+n_act_orb)
END_PROVIDER
BEGIN_PROVIDER [integer, dim_list_core_orb]
implicit none
BEGIN_DOC
! dimensions for the allocation of list_core.
! it is at least 1
END_DOC
dim_list_core_orb = max(n_core_orb,1)
END_PROVIDER
BEGIN_PROVIDER [integer, dim_list_inact_orb]
implicit none
BEGIN_DOC
! dimensions for the allocation of list_inact.
! it is at least 1
END_DOC
dim_list_inact_orb = max(n_inact_orb,1)
END_PROVIDER
BEGIN_PROVIDER [integer, dim_list_core_inact_orb]
implicit none
BEGIN_DOC
! dimensions for the allocation of list_core.
! it is at least 1
END_DOC
dim_list_core_inact_orb = max(n_core_inact_orb,1)
END_PROVIDER
BEGIN_PROVIDER [integer, dim_list_act_orb]
implicit none
BEGIN_DOC
! dimensions for the allocation of list_act.
! it is at least 1
END_DOC
dim_list_act_orb = max(n_act_orb,1)
END_PROVIDER
BEGIN_PROVIDER [integer, dim_list_virt_orb]
implicit none
BEGIN_DOC
! dimensions for the allocation of list_virt.
! it is at least 1
END_DOC
dim_list_virt_orb = max(n_virt_orb,1)
END_PROVIDER
BEGIN_PROVIDER [integer, dim_list_del_orb]
implicit none
BEGIN_DOC
! dimensions for the allocation of list_del.
! it is at least 1
END_DOC
dim_list_del_orb = max(n_del_orb,1)
END_PROVIDER
BEGIN_PROVIDER [integer, n_core_inact_act_orb ]
implicit none
BEGIN_DOC
! Number of core inactive and active MOs
END_DOC
n_core_inact_act_orb = (n_core_orb + n_inact_orb + n_act_orb)
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), core_bitmask , (N_int,2) ]
implicit none
BEGIN_DOC
! Bitmask identifying the core MOs
END_DOC
core_bitmask = 0_bit_kind
if(n_core_orb > 0)then
call list_to_bitstring( core_bitmask(1,1), list_core, n_core_orb, N_int)
call list_to_bitstring( core_bitmask(1,2), list_core, n_core_orb, N_int)
endif
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), inact_bitmask, (N_int,2) ]
implicit none
BEGIN_DOC
! Bitmask identifying the inactive MOs
END_DOC
inact_bitmask = 0_bit_kind
if(n_inact_orb > 0)then
call list_to_bitstring( inact_bitmask(1,1), list_inact, n_inact_orb, N_int)
call list_to_bitstring( inact_bitmask(1,2), list_inact, n_inact_orb, N_int)
endif
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), act_bitmask , (N_int,2) ]
implicit none
BEGIN_DOC
! Bitmask identifying the active MOs
END_DOC
act_bitmask = 0_bit_kind
if(n_act_orb > 0)then
call list_to_bitstring( act_bitmask(1,1), list_act, n_act_orb, N_int)
call list_to_bitstring( act_bitmask(1,2), list_act, n_act_orb, N_int)
endif
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), virt_bitmask , (N_int,2) ]
implicit none
BEGIN_DOC
! Bitmask identifying the virtual MOs
END_DOC
virt_bitmask = 0_bit_kind
if(n_virt_orb > 0)then
call list_to_bitstring( virt_bitmask(1,1), list_virt, n_virt_orb, N_int)
call list_to_bitstring( virt_bitmask(1,2), list_virt, n_virt_orb, N_int)
endif
END_PROVIDER
BEGIN_PROVIDER [ integer(bit_kind), del_bitmask , (N_int,2) ]
implicit none
BEGIN_DOC
! Bitmask identifying the deleted MOs
END_DOC
del_bitmask = 0_bit_kind
if(n_del_orb > 0)then
call list_to_bitstring( del_bitmask(1,1), list_del, n_del_orb, N_int)
call list_to_bitstring( del_bitmask(1,2), list_del, n_del_orb, N_int)
endif
END_PROVIDER
BEGIN_PROVIDER [integer, dim_list_core_orb]
&BEGIN_PROVIDER [integer, dim_list_inact_orb]
&BEGIN_PROVIDER [integer, dim_list_virt_orb]
&BEGIN_PROVIDER [integer, dim_list_act_orb]
&BEGIN_PROVIDER [integer, dim_list_del_orb]
implicit none
BEGIN_DOC
! dimensions for the allocation of list_inact, list_virt, list_core and list_act
! it is at least 1
END_DOC
dim_list_core_orb = max(n_core_orb,1)
dim_list_inact_orb = max(n_inact_orb,1)
dim_list_virt_orb = max(n_virt_orb,1)
dim_list_act_orb = max(n_act_orb,1)
dim_list_del_orb = max(n_del_orb,1)
END_PROVIDER
BEGIN_PROVIDER [ integer, list_inact, (dim_list_inact_orb)]
&BEGIN_PROVIDER [ integer, list_virt, (dim_list_virt_orb)]
&BEGIN_PROVIDER [ integer, list_inact_reverse, (mo_num)]
&BEGIN_PROVIDER [ integer, list_virt_reverse, (mo_num)]
&BEGIN_PROVIDER [ integer, list_del_reverse, (mo_num)]
&BEGIN_PROVIDER [ integer, list_del, (mo_num)]
&BEGIN_PROVIDER [integer, list_core, (dim_list_core_orb)]
&BEGIN_PROVIDER [integer, list_core_reverse, (mo_num)]
&BEGIN_PROVIDER [integer, list_act, (dim_list_act_orb)]
&BEGIN_PROVIDER [integer, list_act_reverse, (mo_num)]
&BEGIN_PROVIDER [ integer(bit_kind), core_bitmask, (N_int,2)]
&BEGIN_PROVIDER [ integer(bit_kind), inact_bitmask, (N_int,2) ]
&BEGIN_PROVIDER [ integer(bit_kind), act_bitmask, (N_int,2) ]
&BEGIN_PROVIDER [ integer(bit_kind), virt_bitmask, (N_int,2) ]
&BEGIN_PROVIDER [ integer(bit_kind), del_bitmask, (N_int,2) ]
implicit none
BEGIN_DOC
! inact_bitmask : Bitmask of the inactive orbitals which are supposed to be doubly excited
! in post CAS methods
! n_inact_orb : Number of inactive orbitals
! virt_bitmask : Bitmaks of vritual orbitals which are supposed to be recieve electrons
! in post CAS methods
! n_virt_orb : Number of virtual orbitals
! list_inact : List of the inactive orbitals which are supposed to be doubly excited
! in post CAS methods
! list_virt : List of vritual orbitals which are supposed to be recieve electrons
! in post CAS methods
! list_inact_reverse : reverse list of inactive orbitals
! list_inact_reverse(i) = 0 ::> not an inactive
! list_inact_reverse(i) = k ::> IS the kth inactive
! list_virt_reverse : reverse list of virtual orbitals
! list_virt_reverse(i) = 0 ::> not an virtual
! list_virt_reverse(i) = k ::> IS the kth virtual
! list_act(i) = index of the ith active orbital
!
! list_act_reverse : reverse list of active orbitals
! list_act_reverse(i) = 0 ::> not an active
! list_act_reverse(i) = k ::> IS the kth active orbital
END_DOC
logical :: exists
integer :: j,i
integer :: n_core_orb_tmp, n_inact_orb_tmp, n_act_orb_tmp, n_virt_orb_tmp,n_del_orb_tmp
integer :: list_core_tmp(N_int*bit_kind_size)
integer :: list_inact_tmp(N_int*bit_kind_size)
integer :: list_act_tmp(N_int*bit_kind_size)
integer :: list_virt_tmp(N_int*bit_kind_size)
integer :: list_del_tmp(N_int*bit_kind_size)
list_core = 0
list_inact = 0
list_act = 0
list_virt = 0
list_del = 0
list_core_reverse = 0
list_inact_reverse = 0
list_act_reverse = 0
list_virt_reverse = 0
list_del_reverse = 0
n_core_orb_tmp = 0
n_inact_orb_tmp = 0
n_act_orb_tmp = 0
n_virt_orb_tmp = 0
n_del_orb_tmp = 0
do i = 1, mo_num
if(mo_class(i) == 'Core')then
n_core_orb_tmp += 1
list_core(n_core_orb_tmp) = i
list_core_tmp(n_core_orb_tmp) = i
list_core_reverse(i) = n_core_orb_tmp
else if (mo_class(i) == 'Inactive')then
n_inact_orb_tmp += 1
list_inact(n_inact_orb_tmp) = i
list_inact_tmp(n_inact_orb_tmp) = i
list_inact_reverse(i) = n_inact_orb_tmp
else if (mo_class(i) == 'Active')then
n_act_orb_tmp += 1
list_act(n_act_orb_tmp) = i
list_act_tmp(n_act_orb_tmp) = i
list_act_reverse(i) = n_act_orb_tmp
else if (mo_class(i) == 'Virtual')then
n_virt_orb_tmp += 1
list_virt(n_virt_orb_tmp) = i
list_virt_tmp(n_virt_orb_tmp) = i
list_virt_reverse(i) = n_virt_orb_tmp
else if (mo_class(i) == 'Deleted')then
n_del_orb_tmp += 1
list_del(n_del_orb_tmp) = i
list_del_tmp(n_del_orb_tmp) = i
list_del_reverse(i) = n_del_orb_tmp
endif
enddo
if(n_core_orb.ne.0)then
call list_to_bitstring( core_bitmask(1,1), list_core, n_core_orb, N_int)
call list_to_bitstring( core_bitmask(1,2), list_core, n_core_orb, N_int)
endif
if(n_inact_orb.ne.0)then
call list_to_bitstring( inact_bitmask(1,1), list_inact, n_inact_orb, N_int)
call list_to_bitstring( inact_bitmask(1,2), list_inact, n_inact_orb, N_int)
endif
if(n_act_orb.ne.0)then
call list_to_bitstring( act_bitmask(1,1), list_act, n_act_orb, N_int)
call list_to_bitstring( act_bitmask(1,2), list_act, n_act_orb, N_int)
endif
if(n_virt_orb.ne.0)then
call list_to_bitstring( virt_bitmask(1,1), list_virt, n_virt_orb, N_int)
call list_to_bitstring( virt_bitmask(1,2), list_virt, n_virt_orb, N_int)
endif
if(n_del_orb.ne.0)then
call list_to_bitstring( del_bitmask(1,1), list_del, n_del_orb, N_int)
call list_to_bitstring( del_bitmask(1,2), list_del, n_del_orb, N_int)
endif
END_PROVIDER
BEGIN_PROVIDER [ integer, list_core , (dim_list_core_orb) ]
&BEGIN_PROVIDER [ integer, list_core_reverse, (mo_num) ]
implicit none
BEGIN_DOC
! List of MO indices which are in the core.
END_DOC
integer :: i, n
list_core = 0
list_core_reverse = 0
BEGIN_PROVIDER [integer, n_inact_act_orb ]
implicit none
n_inact_act_orb = (n_inact_orb+n_act_orb)
n=0
do i = 1, mo_num
if(mo_class(i) == 'Core')then
n += 1
list_core(n) = i
list_core_reverse(i) = n
endif
enddo
print *, 'Core MOs:'
print *, list_core(1:n_core_orb)
END_PROVIDER
BEGIN_PROVIDER [ integer, list_inact , (dim_list_inact_orb) ]
&BEGIN_PROVIDER [ integer, list_inact_reverse, (mo_num) ]
implicit none
BEGIN_DOC
! List of MO indices which are inactive.
END_DOC
integer :: i, n
list_inact = 0
list_inact_reverse = 0
END_PROVIDER
n=0
do i = 1, mo_num
if (mo_class(i) == 'Inactive')then
n += 1
list_inact(n) = i
list_inact_reverse(i) = n
endif
enddo
print *, 'Inactive MOs:'
print *, list_inact(1:n_inact_orb)
END_PROVIDER
BEGIN_PROVIDER [ integer, list_virt , (dim_list_virt_orb) ]
&BEGIN_PROVIDER [ integer, list_virt_reverse, (mo_num) ]
implicit none
BEGIN_DOC
! List of MO indices which are virtual
END_DOC
integer :: i, n
list_virt = 0
list_virt_reverse = 0
BEGIN_PROVIDER [integer, list_inact_act, (n_inact_act_orb)]
integer :: i,itmp
itmp = 0
do i = 1, n_inact_orb
itmp += 1
list_inact_act(itmp) = list_inact(i)
enddo
do i = 1, n_act_orb
itmp += 1
list_inact_act(itmp) = list_act(i)
enddo
END_PROVIDER
n=0
do i = 1, mo_num
if (mo_class(i) == 'Virtual')then
n += 1
list_virt(n) = i
list_virt_reverse(i) = n
endif
enddo
print *, 'Virtual MOs:'
print *, list_virt(1:n_virt_orb)
END_PROVIDER
BEGIN_PROVIDER [ integer, list_del , (dim_list_del_orb) ]
&BEGIN_PROVIDER [ integer, list_del_reverse, (mo_num) ]
implicit none
BEGIN_DOC
! List of MO indices which are deleted.
END_DOC
integer :: i, n
list_del = 0
list_del_reverse = 0
BEGIN_PROVIDER [integer, n_core_inact_act_orb ]
implicit none
n_core_inact_act_orb = (n_core_orb + n_inact_orb + n_act_orb)
n=0
do i = 1, mo_num
if (mo_class(i) == 'Deleted')then
n += 1
list_del(n) = i
list_del_reverse(i) = n
endif
enddo
print *, 'Deleted MOs:'
print *, list_del(1:n_del_orb)
END_PROVIDER
BEGIN_PROVIDER [ integer, list_act , (dim_list_act_orb) ]
&BEGIN_PROVIDER [ integer, list_act_reverse, (mo_num) ]
implicit none
BEGIN_DOC
! List of MO indices which are in the active.
END_DOC
integer :: i, n
list_act = 0
list_act_reverse = 0
END_PROVIDER
n=0
do i = 1, mo_num
if (mo_class(i) == 'Active')then
n += 1
list_act(n) = i
list_act_reverse(i) = n
endif
enddo
print *, 'Active MOs:'
print *, list_act(1:n_act_orb)
END_PROVIDER
BEGIN_PROVIDER [integer, list_core_inact_act, (n_core_inact_act_orb)]
&BEGIN_PROVIDER [ integer, list_core_inact_act_reverse, (n_core_inact_act_orb)]
integer :: i,itmp
itmp = 0
do i = 1, n_core_orb
itmp += 1
list_core_inact_act(itmp) = list_core(i)
enddo
do i = 1, n_inact_orb
itmp += 1
list_core_inact_act(itmp) = list_inact(i)
enddo
do i = 1, n_act_orb
itmp += 1
list_core_inact_act(itmp) = list_act(i)
enddo
integer :: occ_inact(N_int*bit_kind_size)
occ_inact = 0
call bitstring_to_list(reunion_of_core_inact_act_bitmask(1,1), occ_inact(1), itest, N_int)
list_inact_reverse = 0
do i = 1, n_core_inact_act_orb
list_core_inact_act_reverse(occ_inact(i)) = i
enddo
END_PROVIDER
BEGIN_PROVIDER [ integer, list_core_inact , (dim_list_core_inact_orb) ]
&BEGIN_PROVIDER [ integer, list_core_inact_reverse, (mo_num) ]
implicit none
BEGIN_DOC
! List of indices of the core and inactive MOs
END_DOC
integer :: i,itmp
call bitstring_to_list(reunion_of_core_inact_bitmask(1,1), list_core_inact, itmp, N_int)
list_core_inact_reverse = 0
ASSERT (itmp == n_core_inact_orb)
do i = 1, n_core_inact_orb
list_core_inact_reverse(list_core_inact(i)) = i
enddo
print *, 'Core and Inactive MOs:'
print *, list_core_inact(1:n_core_inact_orb)
END_PROVIDER
BEGIN_PROVIDER [ integer, list_core_inact_act , (n_core_inact_act_orb) ]
&BEGIN_PROVIDER [ integer, list_core_inact_act_reverse, (mo_num) ]
implicit none
BEGIN_DOC
! List of indices of the core inactive and active MOs
END_DOC
integer :: i,itmp
call bitstring_to_list(reunion_of_core_inact_act_bitmask(1,1), list_core_inact_act, itmp, N_int)
list_core_inact_act_reverse = 0
ASSERT (itmp == n_core_inact_act_orb)
do i = 1, n_core_inact_act_orb
list_core_inact_act_reverse(list_core_inact_act(i)) = i
enddo
print *, 'Core, Inactive and Active MOs:'
print *, list_core_inact_act(1:n_core_inact_act_orb)
END_PROVIDER
BEGIN_PROVIDER [ integer, list_inact_act , (n_inact_act_orb) ]
&BEGIN_PROVIDER [ integer, list_inact_act_reverse, (mo_num) ]
implicit none
BEGIN_DOC
! List of indices of the inactive and active MOs
END_DOC
integer :: i,itmp
call bitstring_to_list(reunion_of_inact_act_bitmask(1,1), list_inact_act, itmp, N_int)
list_inact_act_reverse = 0
ASSERT (itmp == n_inact_act_orb)
do i = 1, n_inact_act_orb
list_inact_act_reverse(list_inact_act(i)) = i
enddo
print *, 'Inactive and Active MOs:'
print *, list_inact_act(1:n_inact_act_orb)
END_PROVIDER

View File

@ -1,26 +1,5 @@
use bitmasks
subroutine initialize_bitmask_to_restart_ones
implicit none
integer :: i,j,k,l,m
integer :: ispin
BEGIN_DOC
! Initialization of the generators_bitmask to the restart bitmask
END_DOC
do i = 1, N_int
do k=1,N_generators_bitmask
do ispin=1,2
generators_bitmask(i,ispin,s_hole ,k) = generators_bitmask_restart(i,ispin,s_hole ,k)
generators_bitmask(i,ispin,s_part ,k) = generators_bitmask_restart(i,ispin,s_part ,k)
generators_bitmask(i,ispin,d_hole1,k) = generators_bitmask_restart(i,ispin,d_hole1,k)
generators_bitmask(i,ispin,d_part1,k) = generators_bitmask_restart(i,ispin,d_part1,k)
generators_bitmask(i,ispin,d_hole2,k) = generators_bitmask_restart(i,ispin,d_hole2,k)
generators_bitmask(i,ispin,d_part2,k) = generators_bitmask_restart(i,ispin,d_part2,k)
enddo
enddo
enddo
end
subroutine modify_bitmasks_for_hole(i_hole)
implicit none
@ -33,26 +12,22 @@ subroutine modify_bitmasks_for_hole(i_hole)
END_DOC
! Set to Zero the holes
do k=1,N_generators_bitmask
do l = 1, 3
do l = 1, 3
i = index_holes_bitmask(l)
do ispin=1,2
do j = 1, N_int
generators_bitmask(j,ispin,i,k) = 0_bit_kind
generators_bitmask(j,ispin,i) = 0_bit_kind
enddo
enddo
enddo
enddo
k = shiftr(i_hole-1,bit_kind_shift)+1
j = i_hole-shiftl(k-1,bit_kind_shift)-1
do m = 1, N_generators_bitmask
do l = 1, 3
do l = 1, 3
i = index_holes_bitmask(l)
do ispin=1,2
generators_bitmask(k,ispin,i,m) = ibset(generators_bitmask(k,ispin,i,m),j)
generators_bitmask(k,ispin,i) = ibset(generators_bitmask(k,ispin,i),j)
enddo
enddo
enddo
end
@ -69,13 +44,11 @@ subroutine modify_bitmasks_for_hole_in_out(i_hole)
k = shiftr(i_hole-1,bit_kind_shift)+1
j = i_hole-shiftl(k-1,bit_kind_shift)-1
do m = 1, N_generators_bitmask
do l = 1, 3
do l = 1, 3
i = index_holes_bitmask(l)
do ispin=1,2
generators_bitmask(k,ispin,i,m) = ibset(generators_bitmask(k,ispin,i,m),j)
generators_bitmask(k,ispin,i) = ibset(generators_bitmask(k,ispin,i),j)
enddo
enddo
enddo
end
@ -91,75 +64,67 @@ subroutine modify_bitmasks_for_particl(i_part)
END_DOC
! Set to Zero the particles
do k=1,N_generators_bitmask
do l = 1, 3
do l = 1, 3
i = index_particl_bitmask(l)
do ispin=1,2
do ispin=1,2
do j = 1, N_int
generators_bitmask(j,ispin,i,k) = 0_bit_kind
generators_bitmask(j,ispin,i) = 0_bit_kind
enddo
enddo
enddo
enddo
k = shiftr(i_part-1,bit_kind_shift)+1
j = i_part-shiftl(k-1,bit_kind_shift)-1
do m = 1, N_generators_bitmask
do l = 1, 3
do l = 1, 3
i = index_particl_bitmask(l)
do ispin=1,2
generators_bitmask(k,ispin,i,m) = ibset(generators_bitmask(k,ispin,i,m),j)
generators_bitmask(k,ispin,i) = ibset(generators_bitmask(k,ispin,i),j)
enddo
enddo
enddo
end
subroutine set_bitmask_particl_as_input(input_bimask)
subroutine set_bitmask_particl_as_input(input_bitmask)
implicit none
integer(bit_kind), intent(in) :: input_bimask(N_int,2)
integer(bit_kind), intent(in) :: input_bitmask(N_int,2)
integer :: i,j,k,l,m
integer :: ispin
BEGIN_DOC
! set the generators_bitmask for the particles
! as the input_bimask
! as the input_bitmask
END_DOC
do k=1,N_generators_bitmask
do l = 1, 3
do l = 1, 3
i = index_particl_bitmask(l)
do ispin=1,2
do ispin=1,2
do j = 1, N_int
generators_bitmask(j,ispin,i,k) = input_bimask(j,ispin)
generators_bitmask(j,ispin,i) = input_bitmask(j,ispin)
enddo
enddo
enddo
enddo
touch generators_bitmask
end
subroutine set_bitmask_hole_as_input(input_bimask)
subroutine set_bitmask_hole_as_input(input_bitmask)
implicit none
integer(bit_kind), intent(in) :: input_bimask(N_int,2)
integer(bit_kind), intent(in) :: input_bitmask(N_int,2)
integer :: i,j,k,l,m
integer :: ispin
BEGIN_DOC
! set the generators_bitmask for the holes
! as the input_bimask
! as the input_bitmask
END_DOC
do k=1,N_generators_bitmask
do l = 1, 3
do l = 1, 3
i = index_holes_bitmask(l)
do ispin=1,2
do j = 1, N_int
generators_bitmask(j,ispin,i,k) = input_bimask(j,ispin)
generators_bitmask(j,ispin,i) = input_bitmask(j,ispin)
enddo
enddo
enddo
enddo
touch generators_bitmask
@ -173,11 +138,10 @@ subroutine print_generators_bitmasks_holes
allocate(key_tmp(N_int,2))
do l = 1, 3
k = 1
i = index_holes_bitmask(l)
i = index_holes_bitmask(l)
do j = 1, N_int
key_tmp(j,1) = generators_bitmask(j,1,i,k)
key_tmp(j,2) = generators_bitmask(j,2,i,k)
key_tmp(j,1) = generators_bitmask(j,1,i)
key_tmp(j,2) = generators_bitmask(j,2,i)
enddo
print*,''
print*,'index hole = ',i
@ -195,57 +159,10 @@ subroutine print_generators_bitmasks_particles
allocate(key_tmp(N_int,2))
do l = 1, 3
k = 1
i = index_particl_bitmask(l)
i = index_particl_bitmask(l)
do j = 1, N_int
key_tmp(j,1) = generators_bitmask(j,1,i,k)
key_tmp(j,2) = generators_bitmask(j,2,i,k)
enddo
print*,''
print*,'index particl ',i
call print_det(key_tmp,N_int)
print*,''
enddo
deallocate(key_tmp)
end
subroutine print_generators_bitmasks_holes_for_one_generator(i_gen)
implicit none
integer, intent(in) :: i_gen
integer :: i,j,k,l
integer(bit_kind),allocatable :: key_tmp(:,:)
allocate(key_tmp(N_int,2))
do l = 1, 3
k = i_gen
i = index_holes_bitmask(l)
do j = 1, N_int
key_tmp(j,1) = generators_bitmask(j,1,i,k)
key_tmp(j,2) = generators_bitmask(j,2,i,k)
enddo
print*,''
print*,'index hole = ',i
call print_det(key_tmp,N_int)
print*,''
enddo
deallocate(key_tmp)
end
subroutine print_generators_bitmasks_particles_for_one_generator(i_gen)
implicit none
integer, intent(in) :: i_gen
integer :: i,j,k,l
integer(bit_kind),allocatable :: key_tmp(:,:)
allocate(key_tmp(N_int,2))
do l = 1, 3
k = i_gen
i = index_particl_bitmask(l)
do j = 1, N_int
key_tmp(j,1) = generators_bitmask(j,1,i,k)
key_tmp(j,2) = generators_bitmask(j,2,i,k)
key_tmp(j,1) = generators_bitmask(j,1,i)
key_tmp(j,2) = generators_bitmask(j,2,i)
enddo
print*,''
print*,'index particl ',i
@ -257,7 +174,7 @@ subroutine print_generators_bitmasks_particles_for_one_generator(i_gen)
end
BEGIN_PROVIDER [integer, index_holes_bitmask, (3)]
BEGIN_PROVIDER [integer, index_holes_bitmask, (3)]
implicit none
BEGIN_DOC
! Index of the holes in the generators_bitmasks

49
src/casscf/50.casscf.bats Normal file
View File

@ -0,0 +1,49 @@
#!/usr/bin/env bats
source $QP_ROOT/tests/bats/common.bats.sh
source $QP_ROOT/quantum_package.rc
function run_stoch() {
thresh=$2
test_exe casscf || skip
qp set perturbation do_pt2 True
qp set determinants n_det_max $3
qp set davidson threshold_davidson 1.e-10
qp set davidson n_states_diag 4
qp run casscf | tee casscf.out
energy1="$(ezfio get casscf energy_pt2 | tr '[]' ' ' | cut -d ',' -f 1)"
eq $energy1 $1 $thresh
}
@test "F2" { # 18.0198s
rm -rf f2_casscf
qp_create_ezfio -b aug-cc-pvdz ../input/f2.zmt -o f2_casscf
qp set_file f2_casscf
qp run scf
qp set_mo_class --core="[1-6,8-9]" --act="[7,10]" --virt="[11-46]"
run_stoch -198.773366970 1.e-4 100000
}
@test "N2" { # 18.0198s
rm -rf n2_casscf
qp_create_ezfio -b aug-cc-pvdz ../input/n2.xyz -o n2_casscf
qp set_file n2_casscf
qp run scf
qp set_mo_class --core="[1-4]" --act="[5-10]" --virt="[11-46]"
run_stoch -109.0961643162 1.e-4 100000
}
@test "N2_stretched" {
rm -rf n2_stretched_casscf
qp_create_ezfio -b aug-cc-pvdz -m 7 ../input/n2_stretched.xyz -o n2_stretched_casscf
qp set_file n2_stretched_casscf
qp run scf | tee scf.out
qp set_mo_class --core="[1-4]" --act="[5-10]" --virt="[11-46]"
qp set electrons elec_alpha_num 7
qp set electrons elec_beta_num 7
run_stoch -108.7860471300 1.e-4 100000
#
}

31
src/casscf/EZFIO.cfg Normal file
View File

@ -0,0 +1,31 @@
[energy]
type: double precision
doc: Calculated Selected |FCI| energy
interface: ezfio
size: (determinants.n_states)
[energy_pt2]
type: double precision
doc: Calculated |FCI| energy + |PT2|
interface: ezfio
size: (determinants.n_states)
[cisd_guess]
type: logical
doc: If true, the CASSCF starts with a CISD wave function
interface: ezfio,provider,ocaml
default: True
[state_following_casscf]
type: logical
doc: If |true|, the CASSCF will try to follow the guess CI vector and orbitals
interface: ezfio,provider,ocaml
default: False
[level_shift_casscf]
type: Positive_float
doc: Energy shift on the virtual MOs to improve SCF convergence
interface: ezfio,provider,ocaml
default: 0.005

1
src/casscf/MORALITY Normal file
View File

@ -0,0 +1 @@
the CASCF can be obtained if a proper guess is given to the WF part

4
src/casscf/NEED Normal file
View File

@ -0,0 +1,4 @@
cipsi
selectors_full
generators_cas
two_body_rdm

5
src/casscf/README.rst Normal file
View File

@ -0,0 +1,5 @@
======
casscf
======
|CASSCF| program with the CIPSI algorithm.

6
src/casscf/bavard.irp.f Normal file
View File

@ -0,0 +1,6 @@
! -*- F90 -*-
BEGIN_PROVIDER [logical, bavard]
! bavard=.true.
bavard=.false.
END_PROVIDER

155
src/casscf/bielec.irp.f Normal file
View File

@ -0,0 +1,155 @@
BEGIN_PROVIDER [real*8, bielec_PQxx, (mo_num, mo_num,n_core_inact_act_orb,n_core_inact_act_orb)]
BEGIN_DOC
! bielec_PQxx : integral (pq|xx) with p,q arbitrary, x core or active
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
real*8 :: mo_two_e_integral
bielec_PQxx(:,:,:,:) = 0.d0
PROVIDE mo_two_e_integrals_in_map
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,ii,j,jj,i3,j3) &
!$OMP SHARED(n_core_inact_orb,list_core_inact,mo_num,bielec_PQxx, &
!$OMP n_act_orb,mo_integrals_map,list_act)
!$OMP DO
do i=1,n_core_inact_orb
ii=list_core_inact(i)
do j=i,n_core_inact_orb
jj=list_core_inact(j)
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i,j),mo_integrals_map)
bielec_PQxx(:,:,j,i)=bielec_PQxx(:,:,i,j)
end do
do j=1,n_act_orb
jj=list_act(j)
j3=j+n_core_inact_orb
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i,j3),mo_integrals_map)
bielec_PQxx(:,:,j3,i)=bielec_PQxx(:,:,i,j3)
end do
end do
!$OMP END DO
!$OMP DO
do i=1,n_act_orb
ii=list_act(i)
i3=i+n_core_inact_orb
do j=i,n_act_orb
jj=list_act(j)
j3=j+n_core_inact_orb
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i3,j3),mo_integrals_map)
bielec_PQxx(:,:,j3,i3)=bielec_PQxx(:,:,i3,j3)
end do
end do
!$OMP END DO
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [real*8, bielec_PxxQ, (mo_num,n_core_inact_act_orb,n_core_inact_act_orb, mo_num)]
BEGIN_DOC
! bielec_PxxQ : integral (px|xq) with p,q arbitrary, x core or active
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
double precision, allocatable :: integrals_array(:,:)
real*8 :: mo_two_e_integral
PROVIDE mo_two_e_integrals_in_map
bielec_PxxQ = 0.d0
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,ii,j,jj,i3,j3,integrals_array) &
!$OMP SHARED(n_core_inact_orb,list_core_inact,mo_num,bielec_PxxQ, &
!$OMP n_act_orb,mo_integrals_map,list_act)
allocate(integrals_array(mo_num,mo_num))
!$OMP DO
do i=1,n_core_inact_orb
ii=list_core_inact(i)
do j=i,n_core_inact_orb
jj=list_core_inact(j)
call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map)
do q=1,mo_num
do p=1,mo_num
bielec_PxxQ(p,i,j,q)=integrals_array(p,q)
bielec_PxxQ(p,j,i,q)=integrals_array(q,p)
end do
end do
end do
do j=1,n_act_orb
jj=list_act(j)
j3=j+n_core_inact_orb
call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map)
do q=1,mo_num
do p=1,mo_num
bielec_PxxQ(p,i,j3,q)=integrals_array(p,q)
bielec_PxxQ(p,j3,i,q)=integrals_array(q,p)
end do
end do
end do
end do
!$OMP END DO
! (ip|qj)
!$OMP DO
do i=1,n_act_orb
ii=list_act(i)
i3=i+n_core_inact_orb
do j=i,n_act_orb
jj=list_act(j)
j3=j+n_core_inact_orb
call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map)
do q=1,mo_num
do p=1,mo_num
bielec_PxxQ(p,i3,j3,q)=integrals_array(p,q)
bielec_PxxQ(p,j3,i3,q)=integrals_array(q,p)
end do
end do
end do
end do
!$OMP END DO
deallocate(integrals_array)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [real*8, bielecCI, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
BEGIN_DOC
! bielecCI : integrals (tu|vp) with p arbitrary, tuv active
! index p runs over the whole basis, t,u,v only over the active orbitals
END_DOC
implicit none
integer :: i,j,k,p,t,u,v
double precision, external :: mo_two_e_integral
PROVIDE mo_two_e_integrals_in_map
!$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,p,t,u,v) &
!$OMP SHARED(mo_num,n_act_orb,list_act,bielecCI)
do p=1,mo_num
do j=1,n_act_orb
u=list_act(j)
do k=1,n_act_orb
v=list_act(k)
do i=1,n_act_orb
t=list_act(i)
bielecCI(i,k,j,p) = mo_two_e_integral(t,u,v,p)
end do
end do
end do
end do
!$OMP END PARALLEL DO
END_PROVIDER

View File

@ -0,0 +1,369 @@
BEGIN_PROVIDER [real*8, bielec_PQxx_no, (mo_num, mo_num,n_core_inact_act_orb,n_core_inact_act_orb)]
BEGIN_DOC
! integral (pq|xx) in the basis of natural MOs
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,k,l,t,u,p,q
double precision, allocatable :: f(:,:,:), d(:,:,:)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,l,p,d,f) &
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
!$OMP bielec_PQxx_no,bielec_PQxx,list_act,natorbsCI)
allocate (f(n_act_orb,mo_num,n_core_inact_act_orb), &
d(n_act_orb,mo_num,n_core_inact_act_orb))
!$OMP DO
do l=1,n_core_inact_act_orb
bielec_PQxx_no(:,:,:,l) = bielec_PQxx(:,:,:,l)
do k=1,n_core_inact_act_orb
do j=1,mo_num
do p=1,n_act_orb
f(p,j,k)=bielec_PQxx_no(list_act(p),j,k,l)
end do
end do
end do
call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, &
natorbsCI, size(natorbsCI,1), &
f, n_act_orb, &
0.d0, &
d, n_act_orb)
do k=1,n_core_inact_act_orb
do j=1,mo_num
do p=1,n_act_orb
bielec_PQxx_no(list_act(p),j,k,l)=d(p,j,k)
end do
end do
do j=1,mo_num
do p=1,n_act_orb
f(p,j,k)=bielec_PQxx_no(j,list_act(p),k,l)
end do
end do
end do
call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, &
natorbsCI, n_act_orb, &
f, n_act_orb, &
0.d0, &
d, n_act_orb)
do k=1,n_core_inact_act_orb
do p=1,n_act_orb
do j=1,mo_num
bielec_PQxx_no(j,list_act(p),k,l)=d(p,j,k)
end do
end do
end do
end do
!$OMP END DO NOWAIT
deallocate (f,d)
allocate (f(mo_num,mo_num,n_act_orb),d(mo_num,mo_num,n_act_orb))
!$OMP DO
do l=1,n_core_inact_act_orb
do p=1,n_act_orb
do k=1,mo_num
do j=1,mo_num
f(j,k,p) = bielec_PQxx_no(j,k,n_core_inact_orb+p,l)
end do
end do
end do
call dgemm('N','N',mo_num*mo_num,n_act_orb,n_act_orb,1.d0, &
f, mo_num*mo_num, &
natorbsCI, n_act_orb, &
0.d0, &
d, mo_num*mo_num)
do p=1,n_act_orb
do k=1,mo_num
do j=1,mo_num
bielec_PQxx_no(j,k,n_core_inact_orb+p,l)=d(j,k,p)
end do
end do
end do
end do
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP DO
do l=1,n_core_inact_act_orb
do p=1,n_act_orb
do k=1,mo_num
do j=1,mo_num
f(j,k,p) = bielec_PQxx_no(j,k,l,n_core_inact_orb+p)
end do
end do
end do
call dgemm('N','N',mo_num*mo_num,n_act_orb,n_act_orb,1.d0, &
f, mo_num*mo_num, &
natorbsCI, n_act_orb, &
0.d0, &
d, mo_num*mo_num)
do p=1,n_act_orb
do k=1,mo_num
do j=1,mo_num
bielec_PQxx_no(j,k,l,n_core_inact_orb+p)=d(j,k,p)
end do
end do
end do
end do
!$OMP END DO
deallocate (f,d)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_inact_act_orb,n_core_inact_act_orb, mo_num)]
BEGIN_DOC
! integral (px|xq) in the basis of natural MOs
! indices are unshifted orbital numbers
END_DOC
implicit none
integer :: i,j,k,l,t,u,p,q
double precision, allocatable :: f(:,:,:), d(:,:,:)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,l,p,d,f) &
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
!$OMP bielec_PxxQ_no,bielec_PxxQ,list_act,natorbsCI)
allocate (f(n_act_orb,n_core_inact_act_orb,n_core_inact_act_orb), &
d(n_act_orb,n_core_inact_act_orb,n_core_inact_act_orb))
!$OMP DO
do j=1,mo_num
bielec_PxxQ_no(:,:,:,j) = bielec_PxxQ(:,:,:,j)
do l=1,n_core_inact_act_orb
do k=1,n_core_inact_act_orb
do p=1,n_act_orb
f(p,k,l) = bielec_PxxQ_no(list_act(p),k,l,j)
end do
end do
end do
call dgemm('T','N',n_act_orb,n_core_inact_act_orb**2,n_act_orb,1.d0, &
natorbsCI, size(natorbsCI,1), &
f, n_act_orb, &
0.d0, &
d, n_act_orb)
do l=1,n_core_inact_act_orb
do k=1,n_core_inact_act_orb
do p=1,n_act_orb
bielec_PxxQ_no(list_act(p),k,l,j)=d(p,k,l)
end do
end do
end do
end do
!$OMP END DO NOWAIT
deallocate (f,d)
allocate (f(n_act_orb,mo_num,n_core_inact_act_orb), &
d(n_act_orb,mo_num,n_core_inact_act_orb))
!$OMP DO
do k=1,mo_num
do l=1,n_core_inact_act_orb
do j=1,mo_num
do p=1,n_act_orb
f(p,j,l) = bielec_PxxQ_no(j,n_core_inact_orb+p,l,k)
end do
end do
end do
call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, &
natorbsCI, size(natorbsCI,1), &
f, n_act_orb, &
0.d0, &
d, n_act_orb)
do l=1,n_core_inact_act_orb
do j=1,mo_num
do p=1,n_act_orb
bielec_PxxQ_no(j,n_core_inact_orb+p,l,k)=d(p,j,l)
end do
end do
end do
end do
!$OMP END DO NOWAIT
deallocate(f,d)
allocate(f(mo_num,n_core_inact_act_orb,n_act_orb), &
d(mo_num,n_core_inact_act_orb,n_act_orb) )
!$OMP DO
do k=1,mo_num
do p=1,n_act_orb
do l=1,n_core_inact_act_orb
do j=1,mo_num
f(j,l,p) = bielec_PxxQ_no(j,l,n_core_inact_orb+p,k)
end do
end do
end do
call dgemm('N','N',mo_num*n_core_inact_act_orb,n_act_orb,n_act_orb,1.d0, &
f, mo_num*n_core_inact_act_orb, &
natorbsCI, size(natorbsCI,1), &
0.d0, &
d, mo_num*n_core_inact_act_orb)
do p=1,n_act_orb
do l=1,n_core_inact_act_orb
do j=1,mo_num
bielec_PxxQ_no(j,l,n_core_inact_orb+p,k)=d(j,l,p)
end do
end do
end do
end do
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP DO
do l=1,n_core_inact_act_orb
do p=1,n_act_orb
do k=1,n_core_inact_act_orb
do j=1,mo_num
f(j,k,p) = bielec_PxxQ_no(j,k,l,n_core_inact_orb+p)
end do
end do
end do
call dgemm('N','N',mo_num*n_core_inact_act_orb,n_act_orb,n_act_orb,1.d0, &
f, mo_num*n_core_inact_act_orb, &
natorbsCI, size(natorbsCI,1), &
0.d0, &
d, mo_num*n_core_inact_act_orb)
do p=1,n_act_orb
do k=1,n_core_inact_act_orb
do j=1,mo_num
bielec_PxxQ_no(j,k,l,n_core_inact_orb+p)=d(j,k,p)
end do
end do
end do
end do
!$OMP END DO NOWAIT
deallocate(f,d)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
BEGIN_DOC
! integrals (tu|vp) in the basis of natural MOs
! index p runs over the whole basis, t,u,v only over the active orbitals
END_DOC
implicit none
integer :: i,j,k,l,t,u,p,q
double precision, allocatable :: f(:,:,:), d(:,:,:)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(j,k,l,p,d,f) &
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
!$OMP bielecCI_no,bielecCI,list_act,natorbsCI)
allocate (f(n_act_orb,n_act_orb,mo_num), &
d(n_act_orb,n_act_orb,mo_num))
!$OMP DO
do l=1,mo_num
bielecCI_no(:,:,:,l) = bielecCI(:,:,:,l)
do k=1,n_act_orb
do j=1,n_act_orb
do p=1,n_act_orb
f(p,j,k)=bielecCI_no(p,j,k,l)
end do
end do
end do
call dgemm('T','N',n_act_orb,n_act_orb*n_act_orb,n_act_orb,1.d0, &
natorbsCI, size(natorbsCI,1), &
f, n_act_orb, &
0.d0, &
d, n_act_orb)
do k=1,n_act_orb
do j=1,n_act_orb
do p=1,n_act_orb
bielecCI_no(p,j,k,l)=d(p,j,k)
end do
end do
do j=1,n_act_orb
do p=1,n_act_orb
f(p,j,k)=bielecCI_no(j,p,k,l)
end do
end do
end do
call dgemm('T','N',n_act_orb,n_act_orb*n_act_orb,n_act_orb,1.d0, &
natorbsCI, n_act_orb, &
f, n_act_orb, &
0.d0, &
d, n_act_orb)
do k=1,n_act_orb
do p=1,n_act_orb
do j=1,n_act_orb
bielecCI_no(j,p,k,l)=d(p,j,k)
end do
end do
end do
do p=1,n_act_orb
do k=1,n_act_orb
do j=1,n_act_orb
f(j,k,p)=bielecCI_no(j,k,p,l)
end do
end do
end do
call dgemm('N','N',n_act_orb*n_act_orb,n_act_orb,n_act_orb,1.d0, &
f, n_act_orb*n_act_orb, &
natorbsCI, n_act_orb, &
0.d0, &
d, n_act_orb*n_act_orb)
do p=1,n_act_orb
do k=1,n_act_orb
do j=1,n_act_orb
bielecCI_no(j,k,p,l)=d(j,k,p)
end do
end do
end do
end do
!$OMP END DO
!$OMP DO
do l=1,n_act_orb
do p=1,n_act_orb
do k=1,n_act_orb
do j=1,n_act_orb
f(j,k,p)=bielecCI_no(j,k,l,list_act(p))
end do
end do
end do
call dgemm('N','N',n_act_orb*n_act_orb,n_act_orb,n_act_orb,1.d0, &
f, n_act_orb*n_act_orb, &
natorbsCI, n_act_orb, &
0.d0, &
d, n_act_orb*n_act_orb)
do p=1,n_act_orb
do k=1,n_act_orb
do j=1,n_act_orb
bielecCI_no(j,k,l,list_act(p))=d(j,k,p)
end do
end do
end do
end do
!$OMP END DO
deallocate(d,f)
!$OMP END PARALLEL
END_PROVIDER

57
src/casscf/casscf.irp.f Normal file
View File

@ -0,0 +1,57 @@
program casscf
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
call reorder_orbitals_for_casscf
no_vvvv_integrals = .True.
pt2_max = 0.02
SOFT_TOUCH no_vvvv_integrals pt2_max
call run_stochastic_cipsi
call run
end
subroutine run
implicit none
double precision :: energy_old, energy
logical :: converged,state_following_casscf_save
integer :: iteration
converged = .False.
energy = 0.d0
mo_label = "MCSCF"
iteration = 1
state_following_casscf_save = state_following_casscf
state_following_casscf = .True.
touch state_following_casscf
do while (.not.converged)
call run_stochastic_cipsi
energy_old = energy
energy = eone+etwo+ecore
call write_time(6)
call write_int(6,iteration,'CAS-SCF iteration')
call write_double(6,energy,'CAS-SCF energy')
call write_double(6,energy_improvement, 'Predicted energy improvement')
converged = dabs(energy_improvement) < thresh_scf
pt2_max = dabs(energy_improvement / pt2_relative_error)
mo_coef = NewOrbs
mo_occ = occnum
call save_mos
iteration += 1
N_det = max(N_det/2 ,N_states)
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
read_wf = .True.
call clear_mo_map
SOFT_TOUCH mo_coef N_det pt2_max psi_det psi_coef
if(iteration .gt. 3)then
state_following_casscf = state_following_casscf_save
touch state_following_casscf
endif
enddo
end

12
src/casscf/class.irp.f Normal file
View File

@ -0,0 +1,12 @@
BEGIN_PROVIDER [ logical, do_only_1h1p ]
&BEGIN_PROVIDER [ logical, do_only_cas ]
&BEGIN_PROVIDER [ logical, do_ddci ]
implicit none
BEGIN_DOC
! In the CAS case, all those are always false except do_only_cas
END_DOC
do_only_cas = .True.
do_only_1h1p = .False.
do_ddci = .False.
END_PROVIDER

View File

@ -0,0 +1,67 @@
use bitmasks
BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ]
implicit none
BEGIN_DOC
! the first-order density matrix in the basis of the starting MOs.
! matrix is state averaged.
END_DOC
integer :: t,u
do u=1,n_act_orb
do t=1,n_act_orb
D0tu(t,u) = one_e_dm_mo_alpha_average( list_act(t), list_act(u) ) + &
one_e_dm_mo_beta_average ( list_act(t), list_act(u) )
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
BEGIN_DOC
! The second-order density matrix in the basis of the starting MOs ONLY IN THE RANGE OF ACTIVE MOS
! The values are state averaged
!
! We use the spin-free generators of mono-excitations
! E_pq destroys q and creates p
! D_pq = <0|E_pq|0> = D_qp
! P_pqrs = 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
!
! P0tuvx(p,q,r,s) = chemist notation : 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
END_DOC
implicit none
integer :: t,u,v,x
integer :: tt,uu,vv,xx
integer :: mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
integer :: ierr
real*8 :: phase1,phase11,phase12,phase2,phase21,phase22
integer :: nu1,nu2,nu11,nu12,nu21,nu22
integer :: ierr1,ierr2,ierr11,ierr12,ierr21,ierr22
real*8 :: cI_mu(N_states),term
integer(bit_kind), dimension(N_int,2) :: det_mu, det_mu_ex
integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12
integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22
if (bavard) then
write(6,*) ' providing the 2 body RDM on the active part'
endif
P0tuvx= 0.d0
do istate=1,N_states
do x = 1, n_act_orb
xx = list_act(x)
do v = 1, n_act_orb
vv = list_act(v)
do u = 1, n_act_orb
uu = list_act(u)
do t = 1, n_act_orb
tt = list_act(t)
P0tuvx(t,u,v,x) = state_av_act_two_rdm_spin_trace_mo(t,v,u,x)
! P0tuvx(t,u,v,x) = act_two_rdm_spin_trace_mo(t,v,u,x)
enddo
enddo
enddo
enddo
enddo
END_PROVIDER

125
src/casscf/det_manip.irp.f Normal file
View File

@ -0,0 +1,125 @@
use bitmasks
subroutine do_signed_mono_excitation(key1,key2,nu,ihole,ipart, &
ispin,phase,ierr)
BEGIN_DOC
! we create the mono-excitation, and determine, if possible,
! the phase and the number in the list of determinants
END_DOC
implicit none
integer(bit_kind) :: key1(N_int,2),key2(N_int,2)
integer(bit_kind), allocatable :: keytmp(:,:)
integer :: exc(0:2,2,2),ihole,ipart,ierr,nu,ispin
real*8 :: phase
logical :: found
allocate(keytmp(N_int,2))
nu=-1
phase=1.D0
ierr=0
call det_copy(key1,key2,N_int)
! write(6,*) ' key2 before excitation ',ihole,' -> ',ipart,' spin = ',ispin
! call print_det(key2,N_int)
call do_single_excitation(key2,ihole,ipart,ispin,ierr)
! write(6,*) ' key2 after ',ihole,' -> ',ipart,' spin = ',ispin
! call print_det(key2,N_int)
! write(6,*) ' excitation ',ihole,' -> ',ipart,' gives ierr = ',ierr
if (ierr.eq.1) then
! excitation is possible
! get the phase
call get_single_excitation(key1,key2,exc,phase,N_int)
! get the number in the list
found=.false.
nu=0
!TODO BOTTLENECK
do while (.not.found)
nu+=1
if (nu.gt.N_det) then
! the determinant is possible, but not in the list
found=.true.
nu=-1
else
call det_extract(keytmp,nu,N_int)
integer :: i,ii
found=.true.
do ii=1,2
do i=1,N_int
if (keytmp(i,ii).ne.key2(i,ii)) then
found=.false.
end if
end do
end do
end if
end do
end if
!
! we found the new string, the phase, and possibly the number in the list
!
end subroutine do_signed_mono_excitation
subroutine det_extract(key,nu,Nint)
BEGIN_DOC
! extract a determinant from the list of determinants
END_DOC
implicit none
integer :: ispin,i,nu,Nint
integer(bit_kind) :: key(Nint,2)
do ispin=1,2
do i=1,Nint
key(i,ispin)=psi_det(i,ispin,nu)
end do
end do
end subroutine det_extract
subroutine det_copy(key1,key2,Nint)
use bitmasks ! you need to include the bitmasks_module.f90 features
BEGIN_DOC
! copy a determinant from key1 to key2
END_DOC
implicit none
integer :: ispin,i,Nint
integer(bit_kind) :: key1(Nint,2),key2(Nint,2)
do ispin=1,2
do i=1,Nint
key2(i,ispin)=key1(i,ispin)
end do
end do
end subroutine det_copy
subroutine do_spinfree_mono_excitation(key_in,key_out1,key_out2 &
,nu1,nu2,ihole,ipart,phase1,phase2,ierr,jerr)
BEGIN_DOC
! we create the spin-free mono-excitation E_pq=(a^+_p a_q + a^+_P a_Q)
! we may create two determinants as result
!
END_DOC
implicit none
integer(bit_kind) :: key_in(N_int,2),key_out1(N_int,2)
integer(bit_kind) :: key_out2(N_int,2)
integer :: ihole,ipart,ierr,jerr,nu1,nu2
integer :: ispin
real*8 :: phase1,phase2
! write(6,*) ' applying E_',ipart,ihole,' on determinant '
! call print_det(key_in,N_int)
! spin alpha
ispin=1
call do_signed_mono_excitation(key_in,key_out1,nu1,ihole &
,ipart,ispin,phase1,ierr)
! if (ierr.eq.1) then
! write(6,*) ' 1 result is ',nu1,phase1
! call print_det(key_out1,N_int)
! end if
! spin beta
ispin=2
call do_signed_mono_excitation(key_in,key_out2,nu2,ihole &
,ipart,ispin,phase2,jerr)
! if (jerr.eq.1) then
! write(6,*) ' 2 result is ',nu2,phase2
! call print_det(key_out2,N_int)
! end if
end subroutine do_spinfree_mono_excitation

View File

@ -0,0 +1,3 @@
subroutine driver_optorb
implicit none
end

104
src/casscf/get_energy.irp.f Normal file
View File

@ -0,0 +1,104 @@
program print_2rdm
implicit none
BEGIN_DOC
! get the active part of the bielectronic energy on a given wave function.
!
! useful to test the active part of the spin trace 2 rdms
END_DOC
!no_vvvv_integrals = .True.
read_wf = .True.
!touch read_wf no_vvvv_integrals
!call routine
!call routine_bis
call print_grad
end
subroutine print_grad
implicit none
integer :: i
do i = 1, nMonoEx
if(dabs(gradvec2(i)).gt.1.d-5)then
print*,''
print*,i,gradvec2(i),excit(:,i)
endif
enddo
end
subroutine routine_bis
implicit none
integer :: i,j
double precision :: accu_d,accu_od
!accu_d = 0.d0
!accu_od = 0.d0
!print*,''
!print*,''
!print*,''
!do i = 1, mo_num
! write(*,'(100(F8.5,X))')super_ci_dm(i,:)
! accu_d += super_ci_dm(i,i)
! do j = i+1, mo_num
! accu_od += dabs(super_ci_dm(i,j) - super_ci_dm(j,i))
! enddo
!enddo
!print*,''
!print*,''
!print*,'accu_d = ',accu_d
!print*,'n_elec = ',elec_num
!print*,'accu_od= ',accu_od
!print*,''
!accu_d = 0.d0
!do i = 1, N_det
! accu_d += psi_coef(i,1)**2
!enddo
!print*,'accu_d = ',accu_d
!provide superci_natorb
provide switch_mo_coef
mo_coef = switch_mo_coef
call save_mos
end
subroutine routine
integer :: i,j,k,l
integer :: ii,jj,kk,ll
double precision :: accu(4),twodm,thr,act_twodm2,integral,get_two_e_integral
thr = 1.d-10
accu = 0.d0
do ll = 1, n_act_orb
l = list_act(ll)
do kk = 1, n_act_orb
k = list_act(kk)
do jj = 1, n_act_orb
j = list_act(jj)
do ii = 1, n_act_orb
i = list_act(ii)
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
accu(1) += state_av_act_two_rdm_spin_trace_mo(ii,jj,kk,ll) * integral
enddo
enddo
enddo
enddo
print*,'accu = ',accu(1)
accu = 0.d0
do ll = 1, n_act_orb
l = list_act(ll)
do kk = 1, n_act_orb
k = list_act(kk)
do jj = 1, n_act_orb
j = list_act(jj)
do ii = 1, n_act_orb
i = list_act(ii)
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
accu(1) += state_av_act_two_rdm_openmp_spin_trace_mo(ii,jj,kk,ll) * integral
enddo
enddo
enddo
enddo
print*,'accu = ',accu(1)
print*,'psi_energy_two_e = ',psi_energy_two_e
print *, psi_energy_with_nucl_rep
end

74
src/casscf/grad_old.irp.f Normal file
View File

@ -0,0 +1,74 @@
BEGIN_PROVIDER [real*8, gradvec_old, (nMonoEx)]
BEGIN_DOC
! calculate the orbital gradient <Psi| H E_pq |Psi> by hand, i.e. for
! each determinant I we determine the string E_pq |I> (alpha and beta
! separately) and generate <Psi|H E_pq |I>
! sum_I c_I <Psi|H E_pq |I> is then the pq component of the orbital
! gradient
! E_pq = a^+_pa_q + a^+_Pa_Q
END_DOC
implicit none
integer :: ii,tt,aa,indx,ihole,ipart,istate
real*8 :: res
do indx=1,nMonoEx
ihole=excit(1,indx)
ipart=excit(2,indx)
call calc_grad_elem(ihole,ipart,res)
gradvec_old(indx)=res
end do
real*8 :: norm_grad
norm_grad=0.d0
do indx=1,nMonoEx
norm_grad+=gradvec_old(indx)*gradvec_old(indx)
end do
norm_grad=sqrt(norm_grad)
if (bavard) then
write(6,*)
write(6,*) ' Norm of the orbital gradient (via <0|EH|0>) : ', norm_grad
write(6,*)
endif
END_PROVIDER
subroutine calc_grad_elem(ihole,ipart,res)
BEGIN_DOC
! eq 18 of Siegbahn et al, Physica Scripta 1980
! we calculate 2 <Psi| H E_pq | Psi>, q=hole, p=particle
END_DOC
implicit none
integer :: ihole,ipart,mu,iii,ispin,ierr,nu,istate
real*8 :: res
integer(bit_kind), allocatable :: det_mu(:,:),det_mu_ex(:,:)
real*8 :: i_H_psi_array(N_states),phase
allocate(det_mu(N_int,2))
allocate(det_mu_ex(N_int,2))
res=0.D0
do mu=1,n_det
! get the string of the determinant
call det_extract(det_mu,mu,N_int)
do ispin=1,2
! do the monoexcitation on it
call det_copy(det_mu,det_mu_ex,N_int)
call do_signed_mono_excitation(det_mu,det_mu_ex,nu &
,ihole,ipart,ispin,phase,ierr)
if (ierr.eq.1) then
call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase
end do
end if
end do
end do
! state-averaged gradient
res*=2.D0/dble(N_states)
end subroutine calc_grad_elem

171
src/casscf/gradient.irp.f Normal file
View File

@ -0,0 +1,171 @@
use bitmasks
BEGIN_PROVIDER [ integer, nMonoEx ]
BEGIN_DOC
! Number of single excitations
END_DOC
implicit none
nMonoEx=n_core_inact_orb*n_act_orb+n_core_inact_orb*n_virt_orb+n_act_orb*n_virt_orb
END_PROVIDER
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
&BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)]
BEGIN_DOC
! a list of the orbitals involved in the excitation
END_DOC
implicit none
integer :: i,t,a,ii,tt,aa,indx
indx=0
do ii=1,n_core_inact_orb
i=list_core_inact(ii)
do tt=1,n_act_orb
t=list_act(tt)
indx+=1
excit(1,indx)=i
excit(2,indx)=t
excit_class(indx)='c-a'
end do
end do
do ii=1,n_core_inact_orb
i=list_core_inact(ii)
do aa=1,n_virt_orb
a=list_virt(aa)
indx+=1
excit(1,indx)=i
excit(2,indx)=a
excit_class(indx)='c-v'
end do
end do
do tt=1,n_act_orb
t=list_act(tt)
do aa=1,n_virt_orb
a=list_virt(aa)
indx+=1
excit(1,indx)=t
excit(2,indx)=a
excit_class(indx)='a-v'
end do
end do
if (bavard) then
write(6,*) ' Filled the table of the Monoexcitations '
do indx=1,nMonoEx
write(6,*) ' ex ',indx,' : ',excit(1,indx),' -> ' &
,excit(2,indx),' ',excit_class(indx)
end do
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)]
BEGIN_DOC
! calculate the orbital gradient <Psi| H E_pq |Psi> from density
! matrices and integrals; Siegbahn et al, Phys Scr 1980
! eqs 14 a,b,c
END_DOC
implicit none
integer :: i,t,a,indx
real*8 :: gradvec_it,gradvec_ia,gradvec_ta
real*8 :: norm_grad
indx=0
do i=1,n_core_inact_orb
do t=1,n_act_orb
indx+=1
gradvec2(indx)=gradvec_it(i,t)
end do
end do
do i=1,n_core_inact_orb
do a=1,n_virt_orb
indx+=1
gradvec2(indx)=gradvec_ia(i,a)
end do
end do
do t=1,n_act_orb
do a=1,n_virt_orb
indx+=1
gradvec2(indx)=gradvec_ta(t,a)
end do
end do
norm_grad=0.d0
do indx=1,nMonoEx
norm_grad+=gradvec2(indx)*gradvec2(indx)
end do
norm_grad=sqrt(norm_grad)
write(6,*)
write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad
write(6,*)
END_PROVIDER
real*8 function gradvec_it(i,t)
BEGIN_DOC
! the orbital gradient core/inactive -> active
! we assume natural orbitals
END_DOC
implicit none
integer :: i,t
integer :: ii,tt,v,vv,x,y
integer :: x3,y3
ii=list_core_inact(i)
tt=list_act(t)
gradvec_it=2.D0*(Fipq(tt,ii)+Fapq(tt,ii))
gradvec_it-=occnum(tt)*Fipq(ii,tt)
do v=1,n_act_orb
vv=list_act(v)
do x=1,n_act_orb
x3=x+n_core_inact_orb
do y=1,n_act_orb
y3=y+n_core_inact_orb
gradvec_it-=2.D0*P0tuvx_no(t,v,x,y)*bielec_PQxx_no(ii,vv,x3,y3)
end do
end do
end do
gradvec_it*=2.D0
end function gradvec_it
real*8 function gradvec_ia(i,a)
BEGIN_DOC
! the orbital gradient core/inactive -> virtual
END_DOC
implicit none
integer :: i,a,ii,aa
ii=list_core_inact(i)
aa=list_virt(a)
gradvec_ia=2.D0*(Fipq(aa,ii)+Fapq(aa,ii))
gradvec_ia*=2.D0
end function gradvec_ia
real*8 function gradvec_ta(t,a)
BEGIN_DOC
! the orbital gradient active -> virtual
! we assume natural orbitals
END_DOC
implicit none
integer :: t,a,tt,aa,v,vv,x,y
tt=list_act(t)
aa=list_virt(a)
gradvec_ta=0.D0
gradvec_ta+=occnum(tt)*Fipq(aa,tt)
do v=1,n_act_orb
do x=1,n_act_orb
do y=1,n_act_orb
gradvec_ta+=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
end do
end do
end do
gradvec_ta*=2.D0
end function gradvec_ta

656
src/casscf/hessian.irp.f Normal file
View File

@ -0,0 +1,656 @@
use bitmasks
BEGIN_PROVIDER [real*8, hessmat, (nMonoEx,nMonoEx)]
BEGIN_DOC
! calculate the orbital hessian 2 <Psi| E_pq H E_rs |Psi>
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi> by hand,
! determinant per determinant, as for the gradient
!
! we assume that we have natural active orbitals
END_DOC
implicit none
integer :: indx,ihole,ipart
integer :: jndx,jhole,jpart
character*3 :: iexc,jexc
real*8 :: res
if (bavard) then
write(6,*) ' providing Hessian matrix hessmat '
write(6,*) ' nMonoEx = ',nMonoEx
endif
do indx=1,nMonoEx
do jndx=1,nMonoEx
hessmat(indx,jndx)=0.D0
end do
end do
do indx=1,nMonoEx
ihole=excit(1,indx)
ipart=excit(2,indx)
iexc=excit_class(indx)
do jndx=indx,nMonoEx
jhole=excit(1,jndx)
jpart=excit(2,jndx)
jexc=excit_class(jndx)
call calc_hess_elem(ihole,ipart,jhole,jpart,res)
hessmat(indx,jndx)=res
hessmat(jndx,indx)=res
end do
end do
END_PROVIDER
subroutine calc_hess_elem(ihole,ipart,jhole,jpart,res)
BEGIN_DOC
! eq 19 of Siegbahn et al, Physica Scripta 1980
! we calculate 2 <Psi| E_pq H E_rs |Psi>
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi>
! average over all states is performed.
! no transition between states.
END_DOC
implicit none
integer :: ihole,ipart,ispin,mu,istate
integer :: jhole,jpart,jspin
integer :: mu_pq, mu_pqrs, mu_rs, mu_rspq, nu_rs,nu
real*8 :: res
integer(bit_kind), allocatable :: det_mu(:,:)
integer(bit_kind), allocatable :: det_nu(:,:)
integer(bit_kind), allocatable :: det_mu_pq(:,:)
integer(bit_kind), allocatable :: det_mu_rs(:,:)
integer(bit_kind), allocatable :: det_nu_rs(:,:)
integer(bit_kind), allocatable :: det_mu_pqrs(:,:)
integer(bit_kind), allocatable :: det_mu_rspq(:,:)
real*8 :: i_H_psi_array(N_states),phase,phase2,phase3
real*8 :: i_H_j_element
allocate(det_mu(N_int,2))
allocate(det_nu(N_int,2))
allocate(det_mu_pq(N_int,2))
allocate(det_mu_rs(N_int,2))
allocate(det_nu_rs(N_int,2))
allocate(det_mu_pqrs(N_int,2))
allocate(det_mu_rspq(N_int,2))
integer :: mu_pq_possible
integer :: mu_rs_possible
integer :: nu_rs_possible
integer :: mu_pqrs_possible
integer :: mu_rspq_possible
res=0.D0
! the terms <0|E E H |0>
do mu=1,n_det
! get the string of the determinant
call det_extract(det_mu,mu,N_int)
do ispin=1,2
! do the monoexcitation pq on it
call det_copy(det_mu,det_mu_pq,N_int)
call do_signed_mono_excitation(det_mu,det_mu_pq,mu_pq &
,ihole,ipart,ispin,phase,mu_pq_possible)
if (mu_pq_possible.eq.1) then
! possible, but not necessarily in the list
! do the second excitation
do jspin=1,2
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
,jhole,jpart,jspin,phase2,mu_pqrs_possible)
! excitation possible
if (mu_pqrs_possible.eq.1) then
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
end do
end if
! try the de-excitation with opposite sign
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
,jpart,jhole,jspin,phase2,mu_pqrs_possible)
phase2=-phase2
! excitation possible
if (mu_pqrs_possible.eq.1) then
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
end do
end if
end do
end if
! exchange the notion of pq and rs
! do the monoexcitation rs on the initial determinant
call det_copy(det_mu,det_mu_rs,N_int)
call do_signed_mono_excitation(det_mu,det_mu_rs,mu_rs &
,jhole,jpart,ispin,phase2,mu_rs_possible)
if (mu_rs_possible.eq.1) then
! do the second excitation
do jspin=1,2
call det_copy(det_mu_rs,det_mu_rspq,N_int)
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
,ihole,ipart,jspin,phase3,mu_rspq_possible)
! excitation possible (of course, the result is outside the CAS)
if (mu_rspq_possible.eq.1) then
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
end do
end if
! we may try the de-excitation, with opposite sign
call det_copy(det_mu_rs,det_mu_rspq,N_int)
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
,ipart,ihole,jspin,phase3,mu_rspq_possible)
phase3=-phase3
! excitation possible (of course, the result is outside the CAS)
if (mu_rspq_possible.eq.1) then
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
,N_det,N_det,N_states,i_H_psi_array)
do istate=1,N_states
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
end do
end if
end do
end if
!
! the operator E H E, we have to do a double loop over the determinants
! we still have the determinant mu_pq and the phase in memory
if (mu_pq_possible.eq.1) then
do nu=1,N_det
call det_extract(det_nu,nu,N_int)
do jspin=1,2
call det_copy(det_nu,det_nu_rs,N_int)
call do_signed_mono_excitation(det_nu,det_nu_rs,nu_rs &
,jhole,jpart,jspin,phase2,nu_rs_possible)
! excitation possible ?
if (nu_rs_possible.eq.1) then
call i_H_j(det_mu_pq,det_nu_rs,N_int,i_H_j_element)
do istate=1,N_states
res+=2.D0*i_H_j_element*psi_coef(mu,istate) &
*psi_coef(nu,istate)*phase*phase2
end do
end if
end do
end do
end if
end do
end do
! state-averaged Hessian
res*=1.D0/dble(N_states)
end subroutine calc_hess_elem
BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
BEGIN_DOC
! explicit hessian matrix from density matrices and integrals
! of course, this will be used for a direct Davidson procedure later
! we will not store the matrix in real life
! formulas are broken down as functions for the 6 classes of matrix elements
!
END_DOC
implicit none
integer :: i,j,t,u,a,b,indx,jndx,bstart,ustart,indx_shift
real*8 :: hessmat_itju
real*8 :: hessmat_itja
real*8 :: hessmat_itua
real*8 :: hessmat_iajb
real*8 :: hessmat_iatb
real*8 :: hessmat_taub
if (bavard) then
write(6,*) ' providing Hessian matrix hessmat2 '
write(6,*) ' nMonoEx = ',nMonoEx
endif
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(hessmat2,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) &
!$OMP PRIVATE(i,indx,jndx,j,ustart,t,u,a,bstart,indx_shift)
!$OMP DO
do i=1,n_core_inact_orb
do t=1,n_act_orb
indx = t + (i-1)*n_act_orb
jndx=indx
do j=i,n_core_inact_orb
if (i.eq.j) then
ustart=t
else
ustart=1
end if
do u=ustart,n_act_orb
hessmat2(jndx,indx)=hessmat_itju(i,t,j,u)
jndx+=1
end do
end do
do j=1,n_core_inact_orb
do a=1,n_virt_orb
hessmat2(jndx,indx)=hessmat_itja(i,t,j,a)
jndx+=1
end do
end do
do u=1,n_act_orb
do a=1,n_virt_orb
hessmat2(jndx,indx)=hessmat_itua(i,t,u,a)
jndx+=1
end do
end do
end do
end do
!$OMP END DO NOWAIT
indx_shift = n_core_inact_orb*n_act_orb
!$OMP DO
do a=1,n_virt_orb
do i=1,n_core_inact_orb
indx = a + (i-1)*n_virt_orb + indx_shift
jndx=indx
do j=i,n_core_inact_orb
if (i.eq.j) then
bstart=a
else
bstart=1
end if
do b=bstart,n_virt_orb
hessmat2(jndx,indx)=hessmat_iajb(i,a,j,b)
jndx+=1
end do
end do
do t=1,n_act_orb
do b=1,n_virt_orb
hessmat2(jndx,indx)=hessmat_iatb(i,a,t,b)
jndx+=1
end do
end do
end do
end do
!$OMP END DO NOWAIT
indx_shift += n_core_inact_orb*n_virt_orb
!$OMP DO
do a=1,n_virt_orb
do t=1,n_act_orb
indx = a + (t-1)*n_virt_orb + indx_shift
jndx=indx
do u=t,n_act_orb
if (t.eq.u) then
bstart=a
else
bstart=1
end if
do b=bstart,n_virt_orb
hessmat2(jndx,indx)=hessmat_taub(t,a,u,b)
jndx+=1
end do
end do
end do
end do
!$OMP END DO
!$OMP END PARALLEL
do jndx=1,nMonoEx
do indx=1,jndx-1
hessmat2(indx,jndx) = hessmat2(jndx,indx)
enddo
enddo
END_PROVIDER
real*8 function hessmat_itju(i,t,j,u)
BEGIN_DOC
! the orbital hessian for core/inactive -> active, core/inactive -> active
! i, t, j, u are list indices, the corresponding orbitals are ii,tt,jj,uu
!
! we assume natural orbitals
END_DOC
implicit none
integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj
real*8 :: term,t2
ii=list_core_inact(i)
tt=list_act(t)
if (i.eq.j) then
if (t.eq.u) then
! diagonal element
term=occnum(tt)*Fipq(ii,ii)+2.D0*(Fipq(tt,tt)+Fapq(tt,tt)) &
-2.D0*(Fipq(ii,ii)+Fapq(ii,ii))
term+=2.D0*(3.D0*bielec_pxxq_no(tt,i,i,tt)-bielec_pqxx_no(tt,tt,i,i))
term-=2.D0*occnum(tt)*(3.D0*bielec_pxxq_no(tt,i,i,tt) &
-bielec_pqxx_no(tt,tt,i,i))
term-=occnum(tt)*Fipq(tt,tt)
do v=1,n_act_orb
vv=list_act(v)
do x=1,n_act_orb
xx=list_act(x)
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
bielec_pxxq_no(vv,i,i,xx))
do y=1,n_act_orb
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
end do
end do
end do
else
! it/iu, t != u
uu=list_act(u)
term=2.D0*(Fipq(tt,uu)+Fapq(tt,uu))
term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
-bielec_PQxx_no(tt,uu,i,j))
term-=occnum(tt)*Fipq(uu,tt)
term-=(occnum(tt)+occnum(uu)) &
*(3.D0*bielec_PxxQ_no(tt,i,i,uu)-bielec_PQxx_no(uu,tt,i,i))
do v=1,n_act_orb
vv=list_act(v)
! term-=D0tu(u,v)*Fipq(tt,vv) ! published, but inverting t and u seems more correct
do x=1,n_act_orb
xx=list_act(x)
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
*bielec_pxxq_no(vv,i,i,xx))
do y=1,n_act_orb
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(u,v,y,xx)
end do
end do
end do
end if
else
! it/ju
jj=list_core_inact(j)
uu=list_act(u)
if (t.eq.u) then
term=occnum(tt)*Fipq(ii,jj)
term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj))
else
term=0.D0
end if
term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
-bielec_PQxx_no(tt,uu,i,j))
term-=(occnum(tt)+occnum(uu))* &
(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
-bielec_PQxx_no(uu,tt,i,j))
do v=1,n_act_orb
vv=list_act(v)
do x=1,n_act_orb
xx=list_act(x)
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,j) &
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
*bielec_pxxq_no(vv,i,j,xx))
end do
end do
end if
term*=2.D0
hessmat_itju=term
end function hessmat_itju
real*8 function hessmat_itja(i,t,j,a)
BEGIN_DOC
! the orbital hessian for core/inactive -> active, core/inactive -> virtual
END_DOC
implicit none
integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y
real*8 :: term
! it/ja
ii=list_core_inact(i)
tt=list_act(t)
jj=list_core_inact(j)
aa=list_virt(a)
term=2.D0*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
-bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
term-=occnum(tt)*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
-bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
if (i.eq.j) then
term+=2.D0*(Fipq(aa,tt)+Fapq(aa,tt))
term-=0.5D0*occnum(tt)*Fipq(aa,tt)
do v=1,n_act_orb
do x=1,n_act_orb
do y=1,n_act_orb
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
end do
end do
end do
end if
term*=2.D0
hessmat_itja=term
end function hessmat_itja
real*8 function hessmat_itua(i,t,u,a)
BEGIN_DOC
! the orbital hessian for core/inactive -> active, active -> virtual
END_DOC
implicit none
integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3
real*8 :: term
ii=list_core_inact(i)
tt=list_act(t)
t3=t+n_core_inact_orb
uu=list_act(u)
u3=u+n_core_inact_orb
aa=list_virt(a)
if (t.eq.u) then
term=-occnum(tt)*Fipq(aa,ii)
else
term=0.D0
end if
term-=occnum(uu)*(bielec_pqxx_no(aa,ii,t3,u3)-4.D0*bielec_pqxx_no(aa,uu,t3,i)&
+bielec_pxxq_no(aa,t3,u3,ii))
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_inact_orb
do x=1,n_act_orb
integer :: x3
xx=list_act(x)
x3=x+n_core_inact_orb
term-=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,ii,v3,x3) &
+(P0tuvx_no(t,v,u,x)+P0tuvx_no(t,v,x,u)) &
*bielec_pqxx_no(aa,xx,v3,i))
end do
end do
if (t.eq.u) then
term+=Fipq(aa,ii)+Fapq(aa,ii)
end if
term*=2.D0
hessmat_itua=term
end function hessmat_itua
real*8 function hessmat_iajb(i,a,j,b)
BEGIN_DOC
! the orbital hessian for core/inactive -> virtual, core/inactive -> virtual
END_DOC
implicit none
integer :: i,a,j,b,ii,aa,jj,bb
real*8 :: term
ii=list_core_inact(i)
aa=list_virt(a)
if (i.eq.j) then
if (a.eq.b) then
! ia/ia
term=2.D0*(Fipq(aa,aa)+Fapq(aa,aa)-Fipq(ii,ii)-Fapq(ii,ii))
term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,aa)-bielec_pqxx_no(aa,aa,i,i))
else
bb=list_virt(b)
! ia/ib
term=2.D0*(Fipq(aa,bb)+Fapq(aa,bb))
term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,bb)-bielec_pqxx_no(aa,bb,i,i))
end if
else
! ia/jb
jj=list_core_inact(j)
bb=list_virt(b)
term=2.D0*(4.D0*bielec_pxxq_no(aa,i,j,bb)-bielec_pqxx_no(aa,bb,i,j) &
-bielec_pxxq_no(aa,j,i,bb))
if (a.eq.b) then
term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj))
end if
end if
term*=2.D0
hessmat_iajb=term
end function hessmat_iajb
real*8 function hessmat_iatb(i,a,t,b)
BEGIN_DOC
! the orbital hessian for core/inactive -> virtual, active -> virtual
END_DOC
implicit none
integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3
real*8 :: term
ii=list_core_inact(i)
aa=list_virt(a)
tt=list_act(t)
bb=list_virt(b)
t3=t+n_core_inact_orb
term=occnum(tt)*(4.D0*bielec_pxxq_no(aa,i,t3,bb)-bielec_pxxq_no(aa,t3,i,bb)&
-bielec_pqxx_no(aa,bb,i,t3))
if (a.eq.b) then
term-=Fipq(tt,ii)+Fapq(tt,ii)
term-=0.5D0*occnum(tt)*Fipq(tt,ii)
do v=1,n_act_orb
do x=1,n_act_orb
do y=1,n_act_orb
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,ii)
end do
end do
end do
end if
term*=2.D0
hessmat_iatb=term
end function hessmat_iatb
real*8 function hessmat_taub(t,a,u,b)
BEGIN_DOC
! the orbital hessian for act->virt,act->virt
END_DOC
implicit none
integer :: t,a,u,b,tt,aa,uu,bb,v,vv,x,xx,y
integer :: v3,x3
real*8 :: term,t1,t2,t3
tt=list_act(t)
aa=list_virt(a)
if (t == u) then
if (a == b) then
! ta/ta
t1=occnum(tt)*Fipq(aa,aa)
t2=0.D0
t3=0.D0
t1-=occnum(tt)*Fipq(tt,tt)
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_inact_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_inact_orb
t2+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,aa,v3,x3) &
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
bielec_pxxq_no(aa,x3,v3,aa))
do y=1,n_act_orb
t3-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
end do
end do
end do
term=t1+t2+t3
else
bb=list_virt(b)
! ta/tb b/=a
term=occnum(tt)*Fipq(aa,bb)
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_inact_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_inact_orb
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v)) &
*bielec_pxxq_no(aa,x3,v3,bb))
end do
end do
end if
else
! ta/ub t/=u
uu=list_act(u)
bb=list_virt(b)
term=0.D0
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_inact_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_inact_orb
term+=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
+(P0tuvx_no(t,x,v,u)+P0tuvx_no(t,x,u,v)) &
*bielec_pxxq_no(aa,x3,v3,bb))
end do
end do
if (a.eq.b) then
term-=0.5D0*(occnum(tt)*Fipq(uu,tt)+occnum(uu)*Fipq(tt,uu))
do v=1,n_act_orb
do y=1,n_act_orb
do x=1,n_act_orb
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,uu)
term-=P0tuvx_no(u,v,x,y)*bielecCI_no(x,y,v,tt)
end do
end do
end do
end if
end if
term*=2.D0
hessmat_taub=term
end function hessmat_taub
BEGIN_PROVIDER [real*8, hessdiag, (nMonoEx)]
BEGIN_DOC
! the diagonal of the Hessian, needed for the Davidson procedure
END_DOC
implicit none
integer :: i,t,a,indx,indx_shift
real*8 :: hessmat_itju,hessmat_iajb,hessmat_taub
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(hessdiag,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) &
!$OMP PRIVATE(i,indx,t,a,indx_shift)
!$OMP DO
do i=1,n_core_inact_orb
do t=1,n_act_orb
indx = t + (i-1)*n_act_orb
hessdiag(indx)=hessmat_itju(i,t,i,t)
end do
end do
!$OMP END DO NOWAIT
indx_shift = n_core_inact_orb*n_act_orb
!$OMP DO
do a=1,n_virt_orb
do i=1,n_core_inact_orb
indx = a + (i-1)*n_virt_orb + indx_shift
hessdiag(indx)=hessmat_iajb(i,a,i,a)
end do
end do
!$OMP END DO NOWAIT
indx_shift += n_core_inact_orb*n_virt_orb
!$OMP DO
do a=1,n_virt_orb
do t=1,n_act_orb
indx = a + (t-1)*n_virt_orb + indx_shift
hessdiag(indx)=hessmat_taub(t,a,t,a)
end do
end do
!$OMP END DO
!$OMP END PARALLEL
END_PROVIDER

View File

@ -0,0 +1,80 @@
BEGIN_PROVIDER [real*8, Fipq, (mo_num,mo_num) ]
BEGIN_DOC
! the inactive Fock matrix, in molecular orbitals
END_DOC
implicit none
integer :: p,q,k,kk,t,tt,u,uu
do q=1,mo_num
do p=1,mo_num
Fipq(p,q)=one_ints_no(p,q)
end do
end do
! the inactive Fock matrix
do k=1,n_core_inact_orb
kk=list_core_inact(k)
do q=1,mo_num
do p=1,mo_num
Fipq(p,q)+=2.D0*bielec_pqxx_no(p,q,k,k) -bielec_pxxq_no(p,k,k,q)
end do
end do
end do
if (bavard) then
integer :: i
write(6,*)
write(6,*) ' the diagonal of the inactive effective Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
write(6,*)
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, Fapq, (mo_num,mo_num) ]
BEGIN_DOC
! the active active Fock matrix, in molecular orbitals
! we create them in MOs, quite expensive
!
! for an implementation in AOs we need first the natural orbitals
! for forming an active density matrix in AOs
!
END_DOC
implicit none
integer :: p,q,k,kk,t,tt,u,uu
Fapq = 0.d0
! the active Fock matrix, D0tu is diagonal
do t=1,n_act_orb
tt=list_act(t)
do q=1,mo_num
do p=1,mo_num
Fapq(p,q)+=occnum(tt) &
*(bielec_pqxx_no(p,q,tt,tt)-0.5D0*bielec_pxxq_no(p,tt,tt,q))
end do
end do
end do
if (bavard) then
integer :: i
write(6,*)
write(6,*) ' the effective Fock matrix over MOs'
write(6,*)
write(6,*)
write(6,*) ' the diagonal of the inactive effective Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
write(6,*)
write(6,*)
write(6,*) ' the diagonal of the active Fock matrix '
write(6,'(5(i3,F12.5))') (i,Fapq(i,i),i=1,mo_num)
write(6,*)
end if
END_PROVIDER

231
src/casscf/natorb.irp.f Normal file
View File

@ -0,0 +1,231 @@
BEGIN_PROVIDER [real*8, occnum, (mo_num)]
implicit none
BEGIN_DOC
! MO occupation numbers
END_DOC
integer :: i
occnum=0.D0
do i=1,n_core_inact_orb
occnum(list_core_inact(i))=2.D0
end do
do i=1,n_act_orb
occnum(list_act(i))=occ_act(i)
end do
if (bavard) then
write(6,*) ' occupation numbers '
do i=1,mo_num
write(6,*) i,occnum(i)
end do
endif
END_PROVIDER
BEGIN_PROVIDER [ real*8, natorbsCI, (n_act_orb,n_act_orb) ]
&BEGIN_PROVIDER [ real*8, occ_act, (n_act_orb) ]
implicit none
BEGIN_DOC
! Natural orbitals of CI
END_DOC
integer :: i, j
double precision :: Vt(n_act_orb,n_act_orb)
! call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb)
call svd(D0tu, size(D0tu,1), natorbsCI,size(natorbsCI,1), occ_act, Vt, size(Vt,1),n_act_orb,n_act_orb)
if (bavard) then
write(6,*) ' found occupation numbers as '
do i=1,n_act_orb
write(6,*) i,occ_act(i)
end do
integer :: nmx
real*8 :: xmx
do i=1,n_act_orb
! largest element of the eigenvector should be positive
xmx=0.D0
nmx=0
do j=1,n_act_orb
if (abs(natOrbsCI(j,i)).gt.xmx) then
nmx=j
xmx=abs(natOrbsCI(j,i))
end if
end do
xmx=sign(1.D0,natOrbsCI(nmx,i))
do j=1,n_act_orb
natOrbsCI(j,i)*=xmx
end do
write(6,*) ' Eigenvector No ',i
write(6,'(5(I3,F12.5))') (j,natOrbsCI(j,i),j=1,n_act_orb)
end do
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
implicit none
BEGIN_DOC
! 4-index transformation of 2part matrices
END_DOC
integer :: i,j,k,l,p,q
real*8 :: d(n_act_orb)
! index per index
! first quarter
P0tuvx_no(:,:,:,:) = P0tuvx(:,:,:,:)
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=P0tuvx_no(q,j,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(p,j,k,l)=d(p)
end do
end do
end do
end do
! 2nd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=P0tuvx_no(j,q,k,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(j,p,k,l)=d(p)
end do
end do
end do
end do
! 3rd quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=P0tuvx_no(j,k,q,l)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(j,k,p,l)=d(p)
end do
end do
end do
end do
! 4th quarter
do j=1,n_act_orb
do k=1,n_act_orb
do l=1,n_act_orb
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=P0tuvx_no(j,k,l,q)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
P0tuvx_no(j,k,l,p)=d(p)
end do
end do
end do
end do
END_PROVIDER
BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
implicit none
BEGIN_DOC
! Transformed one-e integrals
END_DOC
integer :: i,j, p, q
real*8 :: d(n_act_orb)
one_ints_no(:,:)=mo_one_e_integrals(:,:)
! 1st half-trf
do j=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=one_ints_no(list_act(q),j)*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
one_ints_no(list_act(p),j)=d(p)
end do
end do
! 2nd half-trf
do j=1,mo_num
do p=1,n_act_orb
d(p)=0.D0
end do
do p=1,n_act_orb
do q=1,n_act_orb
d(p)+=one_ints_no(j,list_act(q))*natorbsCI(q,p)
end do
end do
do p=1,n_act_orb
one_ints_no(j,list_act(p))=d(p)
end do
end do
END_PROVIDER
BEGIN_PROVIDER [ double precision, NatOrbsCI_mos, (mo_num, mo_num) ]
implicit none
BEGIN_DOC
! Rotation matrix from current MOs to the CI natural MOs
END_DOC
integer :: p,q
NatOrbsCI_mos(:,:) = 0.d0
do q = 1,mo_num
NatOrbsCI_mos(q,q) = 1.d0
enddo
do q = 1,n_act_orb
do p = 1,n_act_orb
NatOrbsCI_mos(list_act(p),list_act(q)) = natorbsCI(p,q)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
implicit none
BEGIN_DOC
! FCI natural orbitals
END_DOC
call dgemm('N','N', ao_num,mo_num,mo_num,1.d0, &
mo_coef, size(mo_coef,1), &
NatOrbsCI_mos, size(NatOrbsCI_mos,1), 0.d0, &
NatOrbsFCI, size(NatOrbsFCI,1))
END_PROVIDER

221
src/casscf/neworbs.irp.f Normal file
View File

@ -0,0 +1,221 @@
BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)]
implicit none
BEGIN_DOC
! Single-excitation matrix
END_DOC
integer :: i,j
do i=1,nMonoEx+1
do j=1,nMonoEx+1
SXmatrix(i,j)=0.D0
end do
end do
do i=1,nMonoEx
SXmatrix(1,i+1)=gradvec2(i)
SXmatrix(1+i,1)=gradvec2(i)
end do
do i=1,nMonoEx
do j=1,nMonoEx
SXmatrix(i+1,j+1)=hessmat2(i,j)
SXmatrix(j+1,i+1)=hessmat2(i,j)
end do
end do
do i = 1, nMonoEx
SXmatrix(i+1,i+1) += level_shift_casscf
enddo
if (bavard) then
do i=2,nMonoEx
write(6,*) ' diagonal of the Hessian : ',i,hessmat2(i,i)
end do
end if
END_PROVIDER
BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)]
&BEGIN_PROVIDER [real*8, SXeigenval, (nMonoEx+1)]
implicit none
BEGIN_DOC
! Eigenvectors/eigenvalues of the single-excitation matrix
END_DOC
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
if (bavard) then
write(6,*) ' SXdiag : lowest 5 eigenvalues '
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
if(nmonoex.gt.0)then
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
endif
write(6,*)
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
endif
END_PROVIDER
BEGIN_PROVIDER [real*8, energy_improvement]
implicit none
if(state_following_casscf)then
energy_improvement = SXeigenval(best_vector_ovrlp_casscf)
else
energy_improvement = SXeigenval(1)
endif
END_PROVIDER
BEGIN_PROVIDER [ integer, best_vector_ovrlp_casscf ]
&BEGIN_PROVIDER [ double precision, best_overlap_casscf ]
implicit none
integer :: i
double precision :: c0
best_overlap_casscf = 0.D0
best_vector_ovrlp_casscf = -1000
do i=1,nMonoEx+1
if (SXeigenval(i).lt.0.D0) then
if (abs(SXeigenvec(1,i)).gt.best_overlap_casscf) then
best_overlap_casscf=abs(SXeigenvec(1,i))
best_vector_ovrlp_casscf = i
end if
end if
end do
if(best_vector_ovrlp_casscf.lt.0)then
best_vector_ovrlp_casscf = minloc(SXeigenval,nMonoEx+1)
endif
c0=SXeigenvec(1,best_vector_ovrlp_casscf)
if (bavard) then
write(6,*) ' SXdiag : eigenvalue for best overlap with '
write(6,*) ' previous orbitals = ',SXeigenval(best_vector_ovrlp_casscf)
write(6,*) ' weight of the 1st element ',c0
endif
END_PROVIDER
BEGIN_PROVIDER [double precision, SXvector, (nMonoEx+1)]
implicit none
BEGIN_DOC
! Best eigenvector of the single-excitation matrix
END_DOC
integer :: i
double precision :: c0
c0=SXeigenvec(1,best_vector_ovrlp_casscf)
do i=1,nMonoEx+1
SXvector(i)=SXeigenvec(i,best_vector_ovrlp_casscf)/c0
end do
END_PROVIDER
BEGIN_PROVIDER [double precision, NewOrbs, (ao_num,mo_num) ]
implicit none
BEGIN_DOC
! Updated orbitals
END_DOC
integer :: i,j,ialph
if(state_following_casscf)then
print*,'Using the state following casscf '
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
NatOrbsFCI, size(NatOrbsFCI,1), &
Umat, size(Umat,1), 0.d0, &
NewOrbs, size(NewOrbs,1))
level_shift_casscf *= 0.5D0
level_shift_casscf = max(level_shift_casscf,0.002d0)
!touch level_shift_casscf
else
if(best_vector_ovrlp_casscf.ne.1.and.n_orb_swap.ne.0)then
print*,'Taking the lowest root for the CASSCF'
print*,'!!! SWAPPING MOS !!!!!!'
level_shift_casscf *= 2.D0
level_shift_casscf = min(level_shift_casscf,0.5d0)
print*,'level_shift_casscf = ',level_shift_casscf
NewOrbs = switch_mo_coef
!mo_coef = switch_mo_coef
!soft_touch mo_coef
!call save_mos_no_occ
!stop
else
level_shift_casscf *= 0.5D0
level_shift_casscf = max(level_shift_casscf,0.002d0)
!touch level_shift_casscf
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
NatOrbsFCI, size(NatOrbsFCI,1), &
Umat, size(Umat,1), 0.d0, &
NewOrbs, size(NewOrbs,1))
endif
endif
END_PROVIDER
BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! Orbital rotation matrix
END_DOC
integer :: i,j,indx,k,iter,t,a,ii,tt,aa
logical :: converged
real*8 :: Tpotmat (mo_num,mo_num), Tpotmat2 (mo_num,mo_num)
real*8 :: Tmat(mo_num,mo_num)
real*8 :: f
! the orbital rotation matrix T
Tmat(:,:)=0.D0
indx=1
do i=1,n_core_inact_orb
ii=list_core_inact(i)
do t=1,n_act_orb
tt=list_act(t)
indx+=1
Tmat(ii,tt)= SXvector(indx)
Tmat(tt,ii)=-SXvector(indx)
end do
end do
do i=1,n_core_inact_orb
ii=list_core_inact(i)
do a=1,n_virt_orb
aa=list_virt(a)
indx+=1
Tmat(ii,aa)= SXvector(indx)
Tmat(aa,ii)=-SXvector(indx)
end do
end do
do t=1,n_act_orb
tt=list_act(t)
do a=1,n_virt_orb
aa=list_virt(a)
indx+=1
Tmat(tt,aa)= SXvector(indx)
Tmat(aa,tt)=-SXvector(indx)
end do
end do
! Form the exponential
Tpotmat(:,:)=0.D0
Umat(:,:) =0.D0
do i=1,mo_num
Tpotmat(i,i)=1.D0
Umat(i,i) =1.d0
end do
iter=0
converged=.false.
do while (.not.converged)
iter+=1
f = 1.d0 / dble(iter)
Tpotmat2(:,:) = Tpotmat(:,:) * f
call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, &
Tpotmat2, size(Tpotmat2,1), &
Tmat, size(Tmat,1), 0.d0, &
Tpotmat, size(Tpotmat,1))
Umat(:,:) = Umat(:,:) + Tpotmat(:,:)
converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
end do
END_PROVIDER

View File

@ -0,0 +1,70 @@
subroutine reorder_orbitals_for_casscf
implicit none
BEGIN_DOC
! routine that reorders the orbitals of the CASSCF in terms block of core, active and virtual
END_DOC
integer :: i,j,iorb
integer, allocatable :: iorder(:),array(:)
allocate(iorder(mo_num),array(mo_num))
do i = 1, n_core_orb
iorb = list_core(i)
array(iorb) = i
enddo
do i = 1, n_inact_orb
iorb = list_inact(i)
array(iorb) = mo_num + i
enddo
do i = 1, n_act_orb
iorb = list_act(i)
array(iorb) = 2 * mo_num + i
enddo
do i = 1, n_virt_orb
iorb = list_virt(i)
array(iorb) = 3 * mo_num + i
enddo
do i = 1, mo_num
iorder(i) = i
enddo
call isort(array,iorder,mo_num)
double precision, allocatable :: mo_coef_new(:,:)
allocate(mo_coef_new(ao_num,mo_num))
do i = 1, mo_num
mo_coef_new(:,i) = mo_coef(:,iorder(i))
enddo
mo_coef = mo_coef_new
touch mo_coef
list_core_reverse = 0
do i = 1, n_core_orb
list_core(i) = i
list_core_reverse(i) = i
mo_class(i) = "Core"
enddo
list_inact_reverse = 0
do i = 1, n_inact_orb
list_inact(i) = i + n_core_orb
list_inact_reverse(i+n_core_orb) = i
mo_class(i+n_core_orb) = "Inactive"
enddo
list_act_reverse = 0
do i = 1, n_act_orb
list_act(i) = n_core_inact_orb + i
list_act_reverse(n_core_inact_orb + i) = i
mo_class(n_core_inact_orb + i) = "Active"
enddo
list_virt_reverse = 0
do i = 1, n_virt_orb
list_virt(i) = n_core_inact_orb + n_act_orb + i
list_virt_reverse(n_core_inact_orb + n_act_orb + i) = i
mo_class(n_core_inact_orb + n_act_orb + i) = "Virtual"
enddo
touch list_core_reverse list_core list_inact list_inact_reverse list_act list_act_reverse list_virt list_virt_reverse
end

View File

@ -0,0 +1,9 @@
subroutine save_energy(E,pt2)
implicit none
BEGIN_DOC
! Saves the energy in |EZFIO|.
END_DOC
double precision, intent(in) :: E(N_states), pt2(N_states)
call ezfio_set_casscf_energy(E(1:N_states))
call ezfio_set_casscf_energy_pt2(E(1:N_states)+pt2(1:N_states))
end

207
src/casscf/superci_dm.irp.f Normal file
View File

@ -0,0 +1,207 @@
BEGIN_PROVIDER [double precision, super_ci_dm, (mo_num,mo_num)]
implicit none
BEGIN_DOC
! density matrix of the super CI matrix, in the basis of NATURAL ORBITALS OF THE CASCI WF
!
! This is obtained from annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
!
! WARNING ::: in the equation B3.d there is a TYPO with a forgotten MINUS SIGN (see variable mat_tmp_dm_super_ci )
END_DOC
super_ci_dm = 0.d0
integer :: i,j,iorb,jorb
integer :: a,aorb,b,borb
integer :: t,torb,v,vorb,u,uorb,x,xorb
double precision :: c0,ci
c0 = SXeigenvec(1,1)
! equation B3.a of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
! loop over the core/inact
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
super_ci_dm(iorb,iorb) = 2.d0 ! first term of B3.a
! loop over the core/inact
do j = 1, n_core_inact_orb
jorb = list_core_inact(j)
! loop over the virtual
do a = 1, n_virt_orb
aorb = list_virt(a)
super_ci_dm(jorb,iorb) += -2.d0 * lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,jorb) ! second term in B3.a
enddo
do t = 1, n_act_orb
torb = list_act(t)
! thrid term of the B3.a
super_ci_dm(jorb,iorb) += - lowest_super_ci_coef_mo(iorb,torb) * lowest_super_ci_coef_mo(jorb,torb) * (2.d0 - occ_act(t))
enddo
enddo
enddo
! equation B3.b of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
do t = 1, n_act_orb
torb = list_act(t)
super_ci_dm(iorb,torb) = c0 * lowest_super_ci_coef_mo(torb,iorb) * (2.d0 - occ_act(t))
super_ci_dm(torb,iorb) = c0 * lowest_super_ci_coef_mo(torb,iorb) * (2.d0 - occ_act(t))
do a = 1, n_virt_orb
aorb = list_virt(a)
super_ci_dm(iorb,torb) += - lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
super_ci_dm(torb,iorb) += - lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
enddo
enddo
enddo
! equation B3.c of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
do a = 1, n_virt_orb
aorb = list_virt(a)
super_ci_dm(aorb,iorb) = 2.d0 * c0 * lowest_super_ci_coef_mo(aorb,iorb)
super_ci_dm(iorb,aorb) = 2.d0 * c0 * lowest_super_ci_coef_mo(aorb,iorb)
enddo
enddo
! equation B3.d of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
do t = 1, n_act_orb
torb = list_act(t)
super_ci_dm(torb,torb) = occ_act(t) ! first term of equation B3.d
do x = 1, n_act_orb
xorb = list_act(x)
super_ci_dm(torb,torb) += - occ_act(x) * occ_act(t)* mat_tmp_dm_super_ci(x,x) ! second term involving the ONE-rdm
enddo
do u = 1, n_act_orb
uorb = list_act(u)
! second term of equation B3.d
do x = 1, n_act_orb
xorb = list_act(x)
do v = 1, n_act_orb
vorb = list_act(v)
super_ci_dm(torb,uorb) += 2.d0 * P0tuvx_no(v,x,t,u) * mat_tmp_dm_super_ci(v,x) ! second term involving the TWO-rdm
enddo
enddo
! third term of equation B3.d
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
super_ci_dm(torb,uorb) += lowest_super_ci_coef_mo(iorb,torb) * lowest_super_ci_coef_mo(iorb,uorb) * (2.d0 - occ_act(t) - occ_act(u))
enddo
enddo
enddo
! equation B3.e of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
do t = 1, n_act_orb
torb = list_act(t)
do a = 1, n_virt_orb
aorb = list_virt(a)
super_ci_dm(aorb,torb) += c0 * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
super_ci_dm(torb,aorb) += c0 * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
super_ci_dm(aorb,torb) += lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,torb) * (2.d0 - occ_act(t))
super_ci_dm(torb,aorb) += lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,torb) * (2.d0 - occ_act(t))
enddo
enddo
enddo
! equation B3.f of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
do a = 1, n_virt_orb
aorb = list_virt(a)
do b = 1, n_virt_orb
borb= list_virt(b)
! First term of equation B3.f
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
super_ci_dm(borb,aorb) += 2.d0 * lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,borb)
enddo
! Second term of equation B3.f
do t = 1, n_act_orb
torb = list_act(t)
super_ci_dm(borb,aorb) += lowest_super_ci_coef_mo(torb,aorb) * lowest_super_ci_coef_mo(torb,borb) * occ_act(t)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, superci_natorb, (ao_num,mo_num)
&BEGIN_PROVIDER [double precision, superci_nat_occ, (mo_num)
implicit none
call general_mo_coef_new_as_svd_vectors_of_mo_matrix_eig(super_ci_dm,mo_num,mo_num,mo_num,NatOrbsFCI,superci_nat_occ,superci_natorb)
END_PROVIDER
BEGIN_PROVIDER [double precision, mat_tmp_dm_super_ci, (n_act_orb,n_act_orb)]
implicit none
BEGIN_DOC
! computation of the term in [ ] in the equation B3.d of Roos et. al. Chemical Physics 48 (1980) 157-173
!
! !!!!! WARNING !!!!!! there is a TYPO: a MINUS SIGN SHOULD APPEAR in that term
END_DOC
integer :: a,aorb,i,iorb
integer :: x,xorb,v,vorb
mat_tmp_dm_super_ci = 0.d0
do v = 1, n_act_orb
vorb = list_act(v)
do x = 1, n_act_orb
xorb = list_act(x)
do a = 1, n_virt_orb
aorb = list_virt(a)
mat_tmp_dm_super_ci(x,v) += lowest_super_ci_coef_mo(aorb,vorb) * lowest_super_ci_coef_mo(aorb,xorb)
enddo
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
! MARK THE MINUS SIGN HERE !!!!!!!!!!! BECAUSE OF TYPO IN THE ORIGINAL PAPER
mat_tmp_dm_super_ci(x,v) -= lowest_super_ci_coef_mo(iorb,vorb) * lowest_super_ci_coef_mo(iorb,xorb)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, lowest_super_ci_coef_mo, (mo_num,mo_num)]
implicit none
integer :: i,j,iorb,jorb
integer :: a, aorb,t, torb
double precision :: sqrt2
sqrt2 = 1.d0/dsqrt(2.d0)
do i = 1, nMonoEx
iorb = excit(1,i)
jorb = excit(2,i)
lowest_super_ci_coef_mo(iorb,jorb) = SXeigenvec(i+1,1)
lowest_super_ci_coef_mo(jorb,iorb) = SXeigenvec(i+1,1)
enddo
! a_{it} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
do t = 1, n_act_orb
torb = list_act(t)
lowest_super_ci_coef_mo(torb,iorb) *= (2.d0 - occ_act(t))**(-0.5d0)
lowest_super_ci_coef_mo(iorb,torb) *= (2.d0 - occ_act(t))**(-0.5d0)
enddo
enddo
! a_{ia} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
do i = 1, n_core_inact_orb
iorb = list_core_inact(i)
do a = 1, n_virt_orb
aorb = list_virt(a)
lowest_super_ci_coef_mo(aorb,iorb) *= sqrt2
lowest_super_ci_coef_mo(iorb,aorb) *= sqrt2
enddo
enddo
! a_{ta} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
do a = 1, n_virt_orb
aorb = list_virt(a)
do t = 1, n_act_orb
torb = list_act(t)
lowest_super_ci_coef_mo(torb,aorb) *= occ_act(t)**(-0.5d0)
lowest_super_ci_coef_mo(aorb,torb) *= occ_act(t)**(-0.5d0)
enddo
enddo
END_PROVIDER

132
src/casscf/swap_orb.irp.f Normal file
View File

@ -0,0 +1,132 @@
BEGIN_PROVIDER [double precision, SXvector_lowest, (nMonoEx)]
implicit none
integer :: i
do i=2,nMonoEx+1
SXvector_lowest(i-1)=SXeigenvec(i,1)
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, thresh_overlap_switch]
implicit none
thresh_overlap_switch = 0.5d0
END_PROVIDER
BEGIN_PROVIDER [integer, max_overlap, (nMonoEx)]
&BEGIN_PROVIDER [integer, n_max_overlap]
&BEGIN_PROVIDER [integer, dim_n_max_overlap]
implicit none
double precision, allocatable :: vec_tmp(:)
integer, allocatable :: iorder(:)
allocate(vec_tmp(nMonoEx),iorder(nMonoEx))
integer :: i
do i = 1, nMonoEx
iorder(i) = i
vec_tmp(i) = -dabs(SXvector_lowest(i))
enddo
call dsort(vec_tmp,iorder,nMonoEx)
n_max_overlap = 0
do i = 1, nMonoEx
if(dabs(vec_tmp(i)).gt.thresh_overlap_switch)then
n_max_overlap += 1
max_overlap(n_max_overlap) = iorder(i)
endif
enddo
dim_n_max_overlap = max(1,n_max_overlap)
END_PROVIDER
BEGIN_PROVIDER [integer, orb_swap, (2,dim_n_max_overlap)]
&BEGIN_PROVIDER [integer, index_orb_swap, (dim_n_max_overlap)]
&BEGIN_PROVIDER [integer, n_orb_swap ]
implicit none
use bitmasks ! you need to include the bitmasks_module.f90 features
integer :: i,imono,iorb,jorb,j
n_orb_swap = 0
do i = 1, n_max_overlap
imono = max_overlap(i)
iorb = excit(1,imono)
jorb = excit(2,imono)
if (excit_class(imono) == "c-a" .and.hessmat2(imono,imono).gt.0.d0)then ! core --> active rotation
n_orb_swap += 1
orb_swap(1,n_orb_swap) = iorb ! core
orb_swap(2,n_orb_swap) = jorb ! active
index_orb_swap(n_orb_swap) = imono
else if (excit_class(imono) == "a-v" .and.hessmat2(imono,imono).gt.0.d0)then ! active --> virtual rotation
n_orb_swap += 1
orb_swap(1,n_orb_swap) = jorb ! virtual
orb_swap(2,n_orb_swap) = iorb ! active
index_orb_swap(n_orb_swap) = imono
endif
enddo
integer,allocatable :: orb_swap_tmp(:,:)
allocate(orb_swap_tmp(2,dim_n_max_overlap))
do i = 1, n_orb_swap
orb_swap_tmp(1,i) = orb_swap(1,i)
orb_swap_tmp(2,i) = orb_swap(2,i)
enddo
integer(bit_kind), allocatable :: det_i(:),det_j(:)
allocate(det_i(N_int),det_j(N_int))
logical, allocatable :: good_orb_rot(:)
allocate(good_orb_rot(n_orb_swap))
integer, allocatable :: index_orb_swap_tmp(:)
allocate(index_orb_swap_tmp(dim_n_max_overlap))
index_orb_swap_tmp = index_orb_swap
good_orb_rot = .True.
integer :: icount,k
do i = 1, n_orb_swap
if(.not.good_orb_rot(i))cycle
det_i = 0_bit_kind
call set_bit_to_integer(orb_swap(1,i),det_i,N_int)
call set_bit_to_integer(orb_swap(2,i),det_i,N_int)
do j = i+1, n_orb_swap
det_j = 0_bit_kind
call set_bit_to_integer(orb_swap(1,j),det_j,N_int)
call set_bit_to_integer(orb_swap(2,j),det_j,N_int)
icount = 0
do k = 1, N_int
icount += popcnt(ior(det_i(k),det_j(k)))
enddo
if (icount.ne.4)then
good_orb_rot(i) = .False.
good_orb_rot(j) = .False.
exit
endif
enddo
enddo
icount = n_orb_swap
n_orb_swap = 0
do i = 1, icount
if(good_orb_rot(i))then
n_orb_swap += 1
index_orb_swap(n_orb_swap) = index_orb_swap_tmp(i)
orb_swap(1,n_orb_swap) = orb_swap_tmp(1,i)
orb_swap(2,n_orb_swap) = orb_swap_tmp(2,i)
endif
enddo
if(n_orb_swap.gt.0)then
print*,'n_orb_swap = ',n_orb_swap
endif
do i = 1, n_orb_swap
print*,'imono = ',index_orb_swap(i)
print*,orb_swap(1,i),'-->',orb_swap(2,i)
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, switch_mo_coef, (ao_num,mo_num)]
implicit none
integer :: i,j,iorb,jorb
switch_mo_coef = NatOrbsFCI
do i = 1, n_orb_swap
iorb = orb_swap(1,i)
jorb = orb_swap(2,i)
do j = 1, ao_num
switch_mo_coef(j,jorb) = NatOrbsFCI(j,iorb)
enddo
do j = 1, ao_num
switch_mo_coef(j,iorb) = NatOrbsFCI(j,jorb)
enddo
enddo
END_PROVIDER

View File

@ -0,0 +1,29 @@
program test_pert_2rdm
implicit none
read_wf = .True.
touch read_wf
!call get_pert_2rdm
integer :: i,j,k,l,ii,jj,kk,ll
double precision :: accu , get_two_e_integral, integral
accu = 0.d0
print*,'n_orb_pert_rdm = ',n_orb_pert_rdm
do ii = 1, n_orb_pert_rdm
i = list_orb_pert_rdm(ii)
do jj = 1, n_orb_pert_rdm
j = list_orb_pert_rdm(jj)
do kk = 1, n_orb_pert_rdm
k= list_orb_pert_rdm(kk)
do ll = 1, n_orb_pert_rdm
l = list_orb_pert_rdm(ll)
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
! if(dabs(pert_2rdm_provider(ii,jj,kk,ll) * integral).gt.1.d-12)then
! print*,i,j,k,l
! print*,pert_2rdm_provider(ii,jj,kk,ll) * integral,pert_2rdm_provider(ii,jj,kk,ll), pert_2rdm_provider(ii,jj,kk,ll), integral
! endif
accu += pert_2rdm_provider(ii,jj,kk,ll) * integral
enddo
enddo
enddo
enddo
print*,'accu = ',accu
end

101
src/casscf/tot_en.irp.f Normal file
View File

@ -0,0 +1,101 @@
BEGIN_PROVIDER [real*8, etwo]
&BEGIN_PROVIDER [real*8, eone]
&BEGIN_PROVIDER [real*8, eone_bis]
&BEGIN_PROVIDER [real*8, etwo_bis]
&BEGIN_PROVIDER [real*8, etwo_ter]
&BEGIN_PROVIDER [real*8, ecore]
&BEGIN_PROVIDER [real*8, ecore_bis]
implicit none
integer :: t,u,v,x,i,ii,tt,uu,vv,xx,j,jj,t3,u3,v3,x3
real*8 :: e_one_all,e_two_all
e_one_all=0.D0
e_two_all=0.D0
do i=1,n_core_inact_orb
ii=list_core_inact(i)
e_one_all+=2.D0*mo_one_e_integrals(ii,ii)
do j=1,n_core_inact_orb
jj=list_core_inact(j)
e_two_all+=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
end do
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_inact_orb
do u=1,n_act_orb
uu=list_act(u)
u3=u+n_core_inact_orb
e_two_all+=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
-bielec_PQxx(tt,ii,i,u3))
end do
end do
end do
do t=1,n_act_orb
tt=list_act(t)
do u=1,n_act_orb
uu=list_act(u)
e_one_all+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
do v=1,n_act_orb
v3=v+n_core_inact_orb
do x=1,n_act_orb
x3=x+n_core_inact_orb
e_two_all +=P0tuvx(t,u,v,x)*bielec_PQxx(tt,uu,v3,x3)
end do
end do
end do
end do
ecore =nuclear_repulsion
ecore_bis=nuclear_repulsion
do i=1,n_core_inact_orb
ii=list_core_inact(i)
ecore +=2.D0*mo_one_e_integrals(ii,ii)
ecore_bis+=2.D0*mo_one_e_integrals(ii,ii)
do j=1,n_core_inact_orb
jj=list_core_inact(j)
ecore +=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
ecore_bis+=2.D0*bielec_PxxQ(ii,i,j,jj)-bielec_PxxQ(ii,j,j,ii)
end do
end do
eone =0.D0
eone_bis=0.D0
etwo =0.D0
etwo_bis=0.D0
etwo_ter=0.D0
do t=1,n_act_orb
tt=list_act(t)
t3=t+n_core_inact_orb
do u=1,n_act_orb
uu=list_act(u)
u3=u+n_core_inact_orb
eone +=D0tu(t,u)*mo_one_e_integrals(tt,uu)
eone_bis+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
do i=1,n_core_inact_orb
ii=list_core_inact(i)
eone +=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
-bielec_PQxx(tt,ii,i,u3))
eone_bis+=D0tu(t,u)*(2.D0*bielec_PxxQ(tt,u3,i,ii) &
-bielec_PxxQ(tt,i,i,uu))
end do
do v=1,n_act_orb
vv=list_act(v)
v3=v+n_core_inact_orb
do x=1,n_act_orb
xx=list_act(x)
x3=x+n_core_inact_orb
real*8 :: h1,h2,h3
h1=bielec_PQxx(tt,uu,v3,x3)
h2=bielec_PxxQ(tt,u3,v3,xx)
h3=bielecCI(t,u,v,xx)
etwo +=P0tuvx(t,u,v,x)*h1
etwo_bis+=P0tuvx(t,u,v,x)*h2
etwo_ter+=P0tuvx(t,u,v,x)*h3
if ((h1.ne.h2).or.(h1.ne.h3)) then
write(6,9901) t,u,v,x,h1,h2,h3
9901 format('aie: ',4I4,3E20.12)
end if
end do
end do
end do
end do
END_PROVIDER

5
src/cipsi/EZFIO.cfg Normal file
View File

@ -0,0 +1,5 @@
[pert_2rdm]
type: logical
doc: If true, computes the one- and two-body rdms with perturbation theory
interface: ezfio,provider,ocaml
default: False

View File

@ -3,3 +3,4 @@ zmq
mpi
davidson_undressed
iterations
two_body_rdm

View File

@ -13,6 +13,7 @@ subroutine run_cipsi
rss = memory_of_double(N_states)*4.d0
call check_mem(rss,irp_here)
N_iter = 1
allocate (pt2(N_states), zeros(N_states), rpt2(N_states), norm(N_states), variance(N_states))
double precision :: hf_energy_ref

View File

View File

@ -0,0 +1,178 @@
use bitmasks
use omp_lib
BEGIN_PROVIDER [ integer(omp_lock_kind), pert_2rdm_lock]
use f77_zmq
implicit none
call omp_init_lock(pert_2rdm_lock)
END_PROVIDER
BEGIN_PROVIDER [integer, n_orb_pert_rdm]
implicit none
n_orb_pert_rdm = n_act_orb
END_PROVIDER
BEGIN_PROVIDER [integer, list_orb_reverse_pert_rdm, (mo_num)]
implicit none
list_orb_reverse_pert_rdm = list_act_reverse
END_PROVIDER
BEGIN_PROVIDER [integer, list_orb_pert_rdm, (n_orb_pert_rdm)]
implicit none
list_orb_pert_rdm = list_act
END_PROVIDER
BEGIN_PROVIDER [double precision, pert_2rdm_provider, (n_orb_pert_rdm,n_orb_pert_rdm,n_orb_pert_rdm,n_orb_pert_rdm)]
implicit none
pert_2rdm_provider = 0.d0
END_PROVIDER
subroutine fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf, psi_det_connection, psi_coef_connection_reverse, n_det_connection)
use bitmasks
use selection_types
implicit none
integer, intent(in) :: n_det_connection
double precision, intent(in) :: psi_coef_connection_reverse(N_states,n_det_connection)
integer(bit_kind), intent(in) :: psi_det_connection(N_int,2,n_det_connection)
integer, intent(in) :: i_generator, sp, h1, h2
double precision, intent(in) :: mat(N_states, mo_num, mo_num)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num)
double precision, intent(in) :: fock_diag_tmp(mo_num)
double precision, intent(in) :: E0(N_states)
double precision, intent(inout) :: pt2(N_states)
double precision, intent(inout) :: variance(N_states)
double precision, intent(inout) :: norm(N_states)
type(selection_buffer), intent(inout) :: buf
logical :: ok
integer :: s1, s2, p1, p2, ib, j, istate
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
double precision :: e_pert, delta_E, val, Hii, sum_e_pert, tmp, alpha_h_psi, coef(N_states)
double precision, external :: diag_H_mat_elem_fock
double precision :: E_shift
logical, external :: detEq
double precision, allocatable :: values(:)
integer, allocatable :: keys(:,:)
integer :: nkeys
integer :: sze_buff
sze_buff = 5 * mo_num ** 2
allocate(keys(4,sze_buff),values(sze_buff))
nkeys = 0
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
E_shift = 0.d0
if (h0_type == 'SOP') then
j = det_to_occ_pattern(i_generator)
E_shift = psi_det_Hii(i_generator) - psi_occ_pattern_Hii(j)
endif
do p1=1,mo_num
if(bannedOrb(p1, s1)) cycle
ib = 1
if(sp /= 3) ib = p1+1
do p2=ib,mo_num
! -----
! /!\ Generating only single excited determinants doesn't work because a
! determinant generated by a single excitation may be doubly excited wrt
! to a determinant of the future. In that case, the determinant will be
! detected as already generated when generating in the future with a
! double excitation.
!
! if (.not.do_singles) then
! if ((h1 == p1) .or. (h2 == p2)) then
! cycle
! endif
! endif
!
! if (.not.do_doubles) then
! if ((h1 /= p1).and.(h2 /= p2)) then
! cycle
! endif
! endif
! -----
if(bannedOrb(p2, s2)) cycle
if(banned(p1,p2)) cycle
if( sum(abs(mat(1:N_states, p1, p2))) == 0d0) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
if (do_only_cas) then
integer, external :: number_of_holes, number_of_particles
if (number_of_particles(det)>0) then
cycle
endif
if (number_of_holes(det)>0) then
cycle
endif
endif
if (do_ddci) then
logical, external :: is_a_two_holes_two_particles
if (is_a_two_holes_two_particles(det)) then
cycle
endif
endif
if (do_only_1h1p) then
logical, external :: is_a_1h1p
if (.not.is_a_1h1p(det)) cycle
endif
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
sum_e_pert = 0d0
integer :: degree
call get_excitation_degree(det,HF_bitmask,degree,N_int)
if(degree == 2)cycle
do istate=1,N_states
delta_E = E0(istate) - Hii + E_shift
alpha_h_psi = mat(istate, p1, p2)
val = alpha_h_psi + alpha_h_psi
tmp = dsqrt(delta_E * delta_E + val * val)
if (delta_E < 0.d0) then
tmp = -tmp
endif
e_pert = 0.5d0 * (tmp - delta_E)
coef(istate) = e_pert / alpha_h_psi
print*,e_pert,coef,alpha_h_psi
pt2(istate) = pt2(istate) + e_pert
variance(istate) = variance(istate) + alpha_h_psi * alpha_h_psi
norm(istate) = norm(istate) + coef(istate) * coef(istate)
if (weight_selection /= 5) then
! Energy selection
sum_e_pert = sum_e_pert + e_pert * selection_weight(istate)
else
! Variance selection
sum_e_pert = sum_e_pert - alpha_h_psi * alpha_h_psi * selection_weight(istate)
endif
end do
call give_2rdm_pert_contrib(det,coef,psi_det_connection,psi_coef_connection_reverse,n_det_connection,nkeys,keys,values,sze_buff)
if(sum_e_pert <= buf%mini) then
call add_to_selection_buffer(buf, det, sum_e_pert)
end if
end do
end do
call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
end

View File

@ -77,6 +77,7 @@ logical function testTeethBuilding(minF, N)
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
enddo
tilde_cW(:) = tilde_cW(:) + 1.d0
deallocate(tilde_w)
n0 = 0
testTeethBuilding = .false.
@ -89,19 +90,19 @@ logical function testTeethBuilding(minF, N)
r = tilde_cW(n0 + minF)
Wt = (1d0 - u0) * f
if (dabs(Wt) <= 1.d-3) then
return
exit
endif
if(Wt >= r - u0) then
testTeethBuilding = .true.
return
exit
end if
n0 += 1
! if(N_det_generators - n0 < minF * N) then
if(n0 > minFN) then
return
exit
end if
end do
stop "exited testTeethBuilding"
deallocate(tilde_cW)
end function
@ -129,13 +130,13 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp psi_det_sorted
PROVIDE psi_det_hii N_generators_bitmask selection_weight pseudo_sym
PROVIDE psi_det_hii selection_weight pseudo_sym
if (h0_type == 'SOP') then
PROVIDE psi_occ_pattern_hii det_to_occ_pattern
endif
if (N_det < max(4,N_states)) then
if (N_det <= max(4,N_states)) then
pt2=0.d0
variance=0.d0
norm=0.d0
@ -156,7 +157,7 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
do pt2_stoch_istate=1,N_states
state_average_weight(:) = 0.d0
state_average_weight(pt2_stoch_istate) = 1.d0
TOUCH state_average_weight pt2_stoch_istate
TOUCH state_average_weight pt2_stoch_istate selection_weight
PROVIDE nproc pt2_F mo_two_e_integrals_in_map mo_one_e_integrals pt2_w
PROVIDE psi_selectors pt2_u pt2_J pt2_R
@ -523,10 +524,24 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, varianc
exit
else
call pull_pt2_results(zmq_socket_pull, index, eI_task, vI_task, nI_task, task_id, n_tasks, b2)
if(n_tasks > pt2_n_tasks_max)then
print*,'PB !!!'
print*,'If you see this, send an email to Anthony scemama with the following content'
print*,irp_here
print*,'n_tasks,pt2_n_tasks_max = ',n_tasks,pt2_n_tasks_max
stop -1
endif
if (zmq_delete_tasks_async_send(zmq_to_qp_run_socket,task_id,n_tasks,sending) == -1) then
stop 'PT2: Unable to delete tasks (send)'
endif
do i=1,n_tasks
if(index(i).gt.size(eI,2).or.index(i).lt.1)then
print*,'PB !!!'
print*,'If you see this, send an email to Anthony scemama with the following content'
print*,irp_here
print*,'i,index(i),size(ei,2) = ',i,index(i),size(ei,2)
stop -1
endif
eI(1:N_states, index(i)) += eI_task(1:N_states,i)
vI(1:N_states, index(i)) += vI_task(1:N_states,i)
nI(1:N_states, index(i)) += nI_task(1:N_states,i)
@ -706,83 +721,95 @@ END_PROVIDER
BEGIN_PROVIDER [ double precision, pt2_w, (N_det_generators) ]
&BEGIN_PROVIDER [ double precision, pt2_cW, (0:N_det_generators) ]
&BEGIN_PROVIDER [ double precision, pt2_W_T ]
&BEGIN_PROVIDER [ double precision, pt2_u_0 ]
&BEGIN_PROVIDER [ integer, pt2_n_0, (pt2_N_teeth+1) ]
implicit none
integer :: i, t
double precision, allocatable :: tilde_w(:), tilde_cW(:)
double precision :: r, tooth_width
integer, external :: pt2_find_sample
BEGIN_PROVIDER [ double precision, pt2_w, (N_det_generators) ]
&BEGIN_PROVIDER [ double precision, pt2_cW, (0:N_det_generators) ]
&BEGIN_PROVIDER [ double precision, pt2_W_T ]
&BEGIN_PROVIDER [ double precision, pt2_u_0 ]
&BEGIN_PROVIDER [ integer, pt2_n_0, (pt2_N_teeth+1) ]
implicit none
integer :: i, t
double precision, allocatable :: tilde_w(:), tilde_cW(:)
double precision :: r, tooth_width
integer, external :: pt2_find_sample
double precision :: rss
double precision, external :: memory_of_double, memory_of_int
rss = memory_of_double(2*N_det_generators+1)
call check_mem(rss,irp_here)
if (N_det_generators == 1) then
pt2_w(1) = 1.d0
pt2_cw(1) = 1.d0
pt2_u_0 = 1.d0
pt2_W_T = 0.d0
pt2_n_0(1) = 0
pt2_n_0(2) = 1
else
allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators))
tilde_cW(0) = 0d0
do i=1,N_det_generators
tilde_w(i) = psi_coef_sorted_gen(i,pt2_stoch_istate)**2 !+ 1.d-20
enddo
double precision :: norm
norm = 0.d0
do i=N_det_generators,1,-1
norm += tilde_w(i)
enddo
tilde_w(:) = tilde_w(:) / norm
tilde_cW(0) = -1.d0
do i=1,N_det_generators
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
enddo
tilde_cW(:) = tilde_cW(:) + 1.d0
double precision :: rss
double precision, external :: memory_of_double, memory_of_int
rss = memory_of_double(2*N_det_generators+1)
call check_mem(rss,irp_here)
pt2_n_0(1) = 0
do
pt2_u_0 = tilde_cW(pt2_n_0(1))
r = tilde_cW(pt2_n_0(1) + pt2_minDetInFirstTeeth)
pt2_W_T = (1d0 - pt2_u_0) / dble(pt2_N_teeth)
if(pt2_W_T >= r - pt2_u_0) then
exit
end if
pt2_n_0(1) += 1
if(N_det_generators - pt2_n_0(1) < pt2_minDetInFirstTeeth * pt2_N_teeth) then
print *, "teeth building failed"
stop -1
end if
end do
do t=2, pt2_N_teeth
r = pt2_u_0 + pt2_W_T * dble(t-1)
pt2_n_0(t) = pt2_find_sample(r, tilde_cW)
end do
pt2_n_0(pt2_N_teeth+1) = N_det_generators
pt2_w(:pt2_n_0(1)) = tilde_w(:pt2_n_0(1))
do t=1, pt2_N_teeth
tooth_width = tilde_cW(pt2_n_0(t+1)) - tilde_cW(pt2_n_0(t))
if (tooth_width == 0.d0) then
tooth_width = sum(tilde_w(pt2_n_0(t):pt2_n_0(t+1)))
endif
ASSERT(tooth_width > 0.d0)
do i=pt2_n_0(t)+1, pt2_n_0(t+1)
pt2_w(i) = tilde_w(i) * pt2_W_T / tooth_width
end do
end do
pt2_cW(0) = 0d0
do i=1,N_det_generators
pt2_cW(i) = pt2_cW(i-1) + pt2_w(i)
end do
pt2_n_0(pt2_N_teeth+1) = N_det_generators
allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators))
tilde_cW(0) = 0d0
do i=1,N_det_generators
tilde_w(i) = psi_coef_sorted_gen(i,pt2_stoch_istate)**2 !+ 1.d-20
enddo
double precision :: norm
norm = 0.d0
do i=N_det_generators,1,-1
norm += tilde_w(i)
enddo
tilde_w(:) = tilde_w(:) / norm
tilde_cW(0) = -1.d0
do i=1,N_det_generators
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
enddo
tilde_cW(:) = tilde_cW(:) + 1.d0
pt2_n_0(1) = 0
do
pt2_u_0 = tilde_cW(pt2_n_0(1))
r = tilde_cW(pt2_n_0(1) + pt2_minDetInFirstTeeth)
pt2_W_T = (1d0 - pt2_u_0) / dble(pt2_N_teeth)
if(pt2_W_T >= r - pt2_u_0) then
exit
end if
pt2_n_0(1) += 1
if(N_det_generators - pt2_n_0(1) < pt2_minDetInFirstTeeth * pt2_N_teeth) then
stop "teeth building failed"
end if
end do
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
do t=2, pt2_N_teeth
r = pt2_u_0 + pt2_W_T * dble(t-1)
pt2_n_0(t) = pt2_find_sample(r, tilde_cW)
end do
pt2_n_0(pt2_N_teeth+1) = N_det_generators
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
pt2_w(:pt2_n_0(1)) = tilde_w(:pt2_n_0(1))
do t=1, pt2_N_teeth
tooth_width = tilde_cW(pt2_n_0(t+1)) - tilde_cW(pt2_n_0(t))
if (tooth_width == 0.d0) then
tooth_width = sum(tilde_w(pt2_n_0(t):pt2_n_0(t+1)))
endif
ASSERT(tooth_width > 0.d0)
do i=pt2_n_0(t)+1, pt2_n_0(t+1)
pt2_w(i) = tilde_w(i) * pt2_W_T / tooth_width
end do
end do
pt2_cW(0) = 0d0
do i=1,N_det_generators
pt2_cW(i) = pt2_cW(i-1) + pt2_w(i)
end do
pt2_n_0(pt2_N_teeth+1) = N_det_generators
endif
END_PROVIDER

View File

@ -61,7 +61,6 @@ subroutine run_selection_slave(thread,iproc,energy)
! Only first time
bsize = min(N, (elec_alpha_num * (mo_num-elec_alpha_num))**2)
call create_selection_buffer(bsize, bsize*2, buf)
! call create_selection_buffer(N, N*2, buf2)
buffer_ready = .True.
else
ASSERT (N == buf%N)

View File

@ -1,3 +1,4 @@
use bitmasks
BEGIN_PROVIDER [ double precision, pt2_match_weight, (N_states) ]
@ -69,8 +70,6 @@ subroutine update_pt2_and_variance_weights(pt2, variance, norm, N_st)
variance_match_weight(k) = product(memo_variance(k,:))
enddo
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
print *, '# var weight ', real(variance_match_weight(:),4)
SOFT_TOUCH pt2_match_weight variance_match_weight
end
@ -84,7 +83,7 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
case (0)
print *, 'Using input weights in selection'
selection_weight(1:N_states) = state_average_weight(1:N_states)
selection_weight(1:N_states) = c0_weight(1:N_states) * state_average_weight(1:N_states)
case (1)
print *, 'Using 1/c_max^2 weight in selection'
@ -93,20 +92,30 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
case (2)
print *, 'Using pt2-matching weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states)
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
case (3)
print *, 'Using variance-matching weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
print *, '# var weight ', real(variance_match_weight(:),4)
case (4)
print *, 'Using variance- and pt2-matching weights in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states) * pt2_match_weight(1:N_states)
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states))
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
print *, '# var weight ', real(variance_match_weight(:),4)
case (5)
print *, 'Using variance-matching weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
print *, '# var weight ', real(variance_match_weight(:),4)
case (6)
print *, 'Using CI coefficient weight in selection'
selection_weight(1:N_states) = c0_weight(1:N_states)
end select
print *, '# Total weight ', real(selection_weight(:),4)
END_PROVIDER
@ -164,15 +173,13 @@ subroutine select_connected(i_generator,E0,pt2,variance,norm,b,subset,csubset)
call build_fock_tmp(fock_diag_tmp,psi_det_generators(1,1,i_generator),N_int)
do l=1,N_generators_bitmask
do k=1,N_int
hole_mask(k,1) = iand(generators_bitmask(k,1,s_hole,l), psi_det_generators(k,1,i_generator))
hole_mask(k,2) = iand(generators_bitmask(k,2,s_hole,l), psi_det_generators(k,2,i_generator))
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part,l), not(psi_det_generators(k,1,i_generator)) )
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part,l), not(psi_det_generators(k,2,i_generator)) )
enddo
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,variance,norm,b,subset,csubset)
do k=1,N_int
hole_mask(k,1) = iand(generators_bitmask(k,1,s_hole), psi_det_generators(k,1,i_generator))
hole_mask(k,2) = iand(generators_bitmask(k,2,s_hole), psi_det_generators(k,2,i_generator))
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part), not(psi_det_generators(k,1,i_generator)) )
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part), not(psi_det_generators(k,2,i_generator)) )
enddo
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,variance,norm,b,subset,csubset)
deallocate(fock_diag_tmp)
end subroutine
@ -248,6 +255,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
integer,allocatable :: tmp_array(:)
integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :)
logical, allocatable :: banned(:,:,:), bannedOrb(:,:)
double precision, allocatable :: coef_fullminilist_rev(:,:)
double precision, allocatable :: mat(:,:,:)
@ -338,6 +346,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
call isort(indices,iorder,nmax)
deallocate(iorder)
! Start with 32 elements. Size will double along with the filtering.
allocate(preinteresting(0:32), prefullinteresting(0:32), &
interesting(0:32), fullinteresting(0:32))
preinteresting(:) = 0
@ -469,7 +478,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
if (nt > 4) exit
endif
end do
case default
case default
mobMask(1:N_int,1) = iand(negMask(1:N_int,1), psi_det_sorted(1:N_int,1,preinteresting(ii)))
mobMask(1:N_int,2) = iand(negMask(1:N_int,2), psi_det_sorted(1:N_int,2,preinteresting(ii)))
nt = 0
@ -546,6 +555,14 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
allocate (fullminilist (N_int, 2, fullinteresting(0)), &
minilist (N_int, 2, interesting(0)) )
if(pert_2rdm)then
allocate(coef_fullminilist_rev(N_states,fullinteresting(0)))
do i=1,fullinteresting(0)
do j = 1, N_states
coef_fullminilist_rev(j,i) = psi_coef_sorted(fullinteresting(i),j)
enddo
enddo
endif
do i=1,fullinteresting(0)
fullminilist(1:N_int,1:2,i) = psi_det_sorted(1:N_int,1:2,fullinteresting(i))
enddo
@ -597,12 +614,19 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting)
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf)
if(.not.pert_2rdm)then
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf)
else
call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0))
endif
end if
enddo
if(s1 /= s2) monoBdo = .false.
enddo
deallocate(fullminilist,minilist)
if(pert_2rdm)then
deallocate(coef_fullminilist_rev)
endif
enddo
enddo
deallocate(preinteresting, prefullinteresting, interesting, fullinteresting)
@ -628,11 +652,15 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
logical :: ok
integer :: s1, s2, p1, p2, ib, j, istate
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
double precision :: e_pert, delta_E, val, Hii, sum_e_pert, tmp, alpha_h_psi, coef
double precision :: e_pert, delta_E, val, Hii, w, tmp, alpha_h_psi, coef
double precision, external :: diag_H_mat_elem_fock
double precision :: E_shift
logical, external :: detEq
double precision, allocatable :: values(:)
integer, allocatable :: keys(:,:)
integer :: nkeys
if(sp == 3) then
s1 = 1
@ -683,6 +711,16 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
if( sum(abs(mat(1:N_states, p1, p2))) == 0d0) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
if (do_only_cas) then
integer, external :: number_of_holes, number_of_particles
if (number_of_particles(det)>0) then
cycle
endif
if (number_of_holes(det)>0) then
cycle
endif
endif
if (do_ddci) then
logical, external :: is_a_two_holes_two_particles
if (is_a_two_holes_two_particles(det)) then
@ -695,10 +733,14 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
if (.not.is_a_1h1p(det)) cycle
endif
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
sum_e_pert = 0d0
w = 0d0
! integer(bit_kind) :: occ(N_int,2), n
! call occ_pattern_of_det(det,occ,N_int)
! call occ_pattern_to_dets_size(occ,n,elec_alpha_num,N_int)
do istate=1,N_states
delta_E = E0(istate) - Hii + E_shift
@ -709,33 +751,63 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
tmp = -tmp
endif
e_pert = 0.5d0 * (tmp - delta_E)
coef = e_pert / alpha_h_psi
if (dabs(alpha_h_psi) > 1.d-4) then
coef = e_pert / alpha_h_psi
else
coef = alpha_h_psi / delta_E
endif
pt2(istate) = pt2(istate) + e_pert
variance(istate) = variance(istate) + alpha_h_psi * alpha_h_psi
norm(istate) = norm(istate) + coef * coef
if (weight_selection /= 5) then
! Energy selection
sum_e_pert = sum_e_pert + e_pert * selection_weight(istate)
else
! Variance selection
sum_e_pert = sum_e_pert - alpha_h_psi * alpha_h_psi * selection_weight(istate)
endif
!!!DEBUG
! integer :: k
! double precision :: alpha_h_psi_2,hij
! alpha_h_psi_2 = 0.d0
! do k = 1,N_det_selectors
! call i_H_j(det,psi_selectors(1,1,k),N_int,hij)
! alpha_h_psi_2 = alpha_h_psi_2 + psi_selectors_coef(k,istate) * hij
! enddo
! if(dabs(alpha_h_psi_2 - alpha_h_psi).gt.1.d-12)then
! call debug_det(psi_det_generators(1,1,i_generator),N_int)
! call debug_det(det,N_int)
! print*,'alpha_h_psi,alpha_h_psi_2 = ',alpha_h_psi,alpha_h_psi_2
! stop
! endif
!!!DEBUG
select case (weight_selection)
case(0:4)
! Energy selection
w = w + e_pert * selection_weight(istate)
case(5)
! Variance selection
w = w - alpha_h_psi * alpha_h_psi * selection_weight(istate)
case(6)
w = w - coef * coef * selection_weight(istate)
end select
end do
if(pseudo_sym)then
if(dabs(mat(1, p1, p2)).lt.thresh_sym)then
sum_e_pert = 10.d0
endif
if(dabs(mat(1, p1, p2)).lt.thresh_sym)then
w = 0.d0
endif
endif
if(sum_e_pert <= buf%mini) then
call add_to_selection_buffer(buf, det, sum_e_pert)
! w = dble(n) * w
if(w <= buf%mini) then
call add_to_selection_buffer(buf, det, w)
end if
end do
end do
end
subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, interesting)
use bitmasks
implicit none
@ -814,10 +886,13 @@ subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, intere
call get_mask_phase(psi_det_sorted(1,1,interesting(i)), phasemask,N_int)
if(nt == 4) then
! call get_d2_reference(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
call get_d2(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
else if(nt == 3) then
! call get_d1_reference(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
call get_d1(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
else
! call get_d0_reference(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
call get_d0(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
end if
else if(nt == 4) then
@ -975,7 +1050,7 @@ subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states)
@ -1058,8 +1133,10 @@ subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
call get_mo_two_e_integrals(hfix,pfix,p2,mo_num,hij_cache(1,2),mo_integrals_map)
putj = p1
do puti=1,mo_num
if(lbanned(puti,mi)) cycle
!p1 fixed
if(.not.(banned(putj,puti,bant).or.lbanned(puti,mi))) then
putj = p1
if(.not. banned(putj,puti,bant)) then
hij = hij_cache(puti,2)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
@ -1068,11 +1145,9 @@ subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
enddo
endif
end if
enddo
putj = p2
do puti=1,mo_num
if(.not.(banned(putj,puti,bant)).or.(lbanned(puti,mi))) then
putj = p2
if(.not. banned(putj,puti,bant)) then
hij = hij_cache(puti,1)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
@ -1135,8 +1210,9 @@ subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
call get_mo_two_e_integrals(hfix,p2,pfix,mo_num,hij_cache(1,2),mo_integrals_map)
putj = p2
do puti=1,mo_num
if(lbanned(puti,ma)) cycle
putj = p2
if(.not. banned(puti,putj,1)) then
if(lbanned(puti,ma)) cycle
hij = hij_cache(puti,1)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
@ -1145,12 +1221,9 @@ subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
enddo
endif
end if
enddo
putj = p1
do puti=1,mo_num
putj = p1
if(.not. banned(puti,putj,1)) then
if(lbanned(puti,ma)) cycle
hij = hij_cache(puti,2)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
@ -1179,12 +1252,11 @@ subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
do i1=1,p(0,s1)
ib = 1
p1 = p(i1,s1)
if(s1 == s2) ib = i1+1
if(bannedOrb(p1, s1)) cycle
do i2=ib,p(0,s2)
p1 = p(i1,s1)
p2 = p(i2,s2)
if(bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
mat(:, p1, p2) = mat(:, p1, p2) + coefs(:) * hij
@ -1220,25 +1292,45 @@ subroutine get_d0(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
if(sp == 3) then ! AB
h1 = p(1,1)
h2 = p(1,2)
do p2=1, mo_num
if(bannedOrb(p2,2)) cycle
call get_mo_two_e_integrals(p2,h1,h2,mo_num,hij_cache1,mo_integrals_map)
do p1=1, mo_num
if(bannedOrb(p1, 1) .or. banned(p1, p2, bant)) cycle
if(p1 /= h1 .and. p2 /= h2) then
if (hij_cache1(p1) == 0.d0) cycle
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
hij = hij_cache1(p1) * phase
else
do p1=1, mo_num
if(bannedOrb(p1, 1)) cycle
call get_mo_two_e_integrals(p1,h2,h1,mo_num,hij_cache1,mo_integrals_map)
do p2=1, mo_num
if(bannedOrb(p2,2)) cycle
if(banned(p1, p2, bant)) cycle ! rentable?
if(p1 == h1 .or. p2 == h2) then
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
if (hij == 0.d0) cycle
else
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
! hij = mo_two_e_integral(p2, p1, h2, h1) * phase
hij = hij_cache1(p2) * phase
end if
if (hij == 0.d0) cycle
do k=1,N_states
mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * hij ! HOTSPOT
enddo
end do
end do
! do p2=1, mo_num
! if(bannedOrb(p2,2)) cycle
! call get_mo_two_e_integrals(p2,h1,h2,mo_num,hij_cache1,mo_integrals_map)
! do p1=1, mo_num
! if(bannedOrb(p1, 1) .or. banned(p1, p2, bant)) cycle
! if(p1 /= h1 .and. p2 /= h2) then
! if (hij_cache1(p1) == 0.d0) cycle
! phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
! hij = hij_cache1(p1) * phase
! else
! call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
! call i_h_j(gen, det, N_int, hij)
! if (hij == 0.d0) cycle
! end if
! do k=1,N_states
! mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * hij ! HOTSPOT
! enddo
! end do
! end do
else ! AA BB
p1 = p(1,sp)
@ -1248,24 +1340,36 @@ subroutine get_d0(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
call get_mo_two_e_integrals(puti,p2,p1,mo_num,hij_cache1,mo_integrals_map)
call get_mo_two_e_integrals(puti,p1,p2,mo_num,hij_cache2,mo_integrals_map)
do putj=puti+1, mo_num
if(bannedOrb(putj, sp) .or. banned(putj, sp, bant)) cycle
if(puti /= p1 .and. putj /= p2 .and. puti /= p2 .and. putj /= p1) then
hij = hij_cache1(putj) - hij_cache2(putj)
if (hij /= 0.d0) then
hij = hij * get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
endif
else
if(bannedOrb(putj, sp)) cycle
if(banned(puti, putj, bant)) cycle ! rentable?
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
if (hij /= 0.d0) then
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
endif
else
hij = (mo_two_e_integral(p1, p2, puti, putj) - mo_two_e_integral(p2, p1, puti, putj))* get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
end if
if (hij == 0.d0) cycle
do k=1,N_states
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
enddo
! if(bannedOrb(putj, sp) .or. banned(putj, sp, bant)) cycle
! if(puti /= p1 .and. putj /= p2 .and. puti /= p2 .and. putj /= p1) then
! hij = hij_cache1(putj) - hij_cache2(putj)
! if (hij /= 0.d0) then
! hij = hij * get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
! do k=1,N_states
! mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
! enddo
! endif
! else
! call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
! call i_h_j(gen, det, N_int, hij)
! if (hij /= 0.d0) then
! do k=1,N_states
! mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
! enddo
! endif
! end if
end do
end do
end if
@ -1395,3 +1499,356 @@ subroutine bitstring_to_list_in_selection( string, list, n_elements, Nint)
end
!
! OLD unoptimized routines for debugging
! ======================================
subroutine get_d0_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
integer :: i, j, s, h1, h2, p1, p2, puti, putj
double precision :: hij, phase
double precision, external :: get_phase_bi, mo_two_e_integral
logical :: ok
integer :: bant
bant = 1
if(sp == 3) then ! AB
h1 = p(1,1)
h2 = p(1,2)
do p1=1, mo_num
if(bannedOrb(p1, 1)) cycle
do p2=1, mo_num
if(bannedOrb(p2,2)) cycle
if(banned(p1, p2, bant)) cycle ! rentable?
if(p1 == h1 .or. p2 == h2) then
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
else
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
hij = mo_two_e_integral(p1, p2, h1, h2) * phase
end if
mat(:, p1, p2) += coefs(:) * hij
end do
end do
else ! AA BB
p1 = p(1,sp)
p2 = p(2,sp)
do puti=1, mo_num
if(bannedOrb(puti, sp)) cycle
do putj=puti+1, mo_num
if(bannedOrb(putj, sp)) cycle
if(banned(puti, putj, bant)) cycle ! rentable?
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
else
hij = (mo_two_e_integral(p1, p2, puti, putj) - mo_two_e_integral(p2, p1, puti, putj))* get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
end if
mat(:, puti, putj) += coefs(:) * hij
end do
end do
end if
end
subroutine get_d1_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(N_int,2)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
integer(bit_kind) :: det(N_int, 2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision :: hij, tmp_row(N_states, mo_num), tmp_row2(N_states, mo_num)
double precision, external :: get_phase_bi, mo_two_e_integral
logical :: ok
logical, allocatable :: lbanned(:,:)
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
integer :: hfix, pfix, h1, h2, p1, p2, ib
integer, parameter :: turn2(2) = (/2,1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
allocate (lbanned(mo_num, 2))
lbanned = bannedOrb
do i=1, p(0,1)
lbanned(p(i,1), 1) = .true.
end do
do i=1, p(0,2)
lbanned(p(i,2), 2) = .true.
end do
ma = 1
if(p(0,2) >= 2) ma = 2
mi = turn2(ma)
bant = 1
if(sp == 3) then
!move MA
if(ma == 2) bant = 2
puti = p(1,mi)
hfix = h(1,ma)
p1 = p(1,ma)
p2 = p(2,ma)
if(.not. bannedOrb(puti, mi)) then
tmp_row = 0d0
do putj=1, hfix-1
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
tmp_row(1:N_states,putj) += hij * coefs(1:N_states)
end do
do putj=hfix+1, mo_num
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
tmp_row(1:N_states,putj) += hij * coefs(1:N_states)
end do
if(ma == 1) then
mat(1:N_states,1:mo_num,puti) += tmp_row(1:N_states,1:mo_num)
else
mat(1:N_states,puti,1:mo_num) += tmp_row(1:N_states,1:mo_num)
end if
end if
!MOVE MI
pfix = p(1,mi)
tmp_row = 0d0
tmp_row2 = 0d0
do puti=1,mo_num
if(lbanned(puti,mi)) cycle
!p1 fixed
putj = p1
if(.not. banned(putj,puti,bant)) then
hij = mo_two_e_integral(p2,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
tmp_row(:,puti) += hij * coefs(:)
end if
putj = p2
if(.not. banned(putj,puti,bant)) then
hij = mo_two_e_integral(p1,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
tmp_row2(:,puti) += hij * coefs(:)
end if
end do
if(mi == 1) then
mat(:,:,p1) += tmp_row(:,:)
mat(:,:,p2) += tmp_row2(:,:)
else
mat(:,p1,:) += tmp_row(:,:)
mat(:,p2,:) += tmp_row2(:,:)
end if
else
if(p(0,ma) == 3) then
do i=1,3
hfix = h(1,ma)
puti = p(i, ma)
p1 = p(turn3(1,i), ma)
p2 = p(turn3(2,i), ma)
tmp_row = 0d0
do putj=1,hfix-1
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
tmp_row(:,putj) += hij * coefs(:)
end do
do putj=hfix+1,mo_num
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
tmp_row(:,putj) += hij * coefs(:)
end do
mat(:, :puti-1, puti) += tmp_row(:,:puti-1)
mat(:, puti, puti:) += tmp_row(:,puti:)
end do
else
hfix = h(1,mi)
pfix = p(1,mi)
p1 = p(1,ma)
p2 = p(2,ma)
tmp_row = 0d0
tmp_row2 = 0d0
do puti=1,mo_num
if(lbanned(puti,ma)) cycle
putj = p2
if(.not. banned(puti,putj,1)) then
hij = mo_two_e_integral(pfix, p1, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
tmp_row(:,puti) += hij * coefs(:)
end if
putj = p1
if(.not. banned(puti,putj,1)) then
hij = mo_two_e_integral(pfix, p2, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
tmp_row2(:,puti) += hij * coefs(:)
end if
end do
mat(:,:p2-1,p2) += tmp_row(:,:p2-1)
mat(:,p2,p2:) += tmp_row(:,p2:)
mat(:,:p1-1,p1) += tmp_row2(:,:p1-1)
mat(:,p1,p1:) += tmp_row2(:,p1:)
end if
end if
deallocate(lbanned)
!! MONO
if(sp == 3) then
s1 = 1
s2 = 2
else
s1 = sp
s2 = sp
end if
do i1=1,p(0,s1)
ib = 1
if(s1 == s2) ib = i1+1
do i2=ib,p(0,s2)
p1 = p(i1,s1)
p2 = p(i2,s2)
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
call i_h_j(gen, det, N_int, hij)
mat(:, p1, p2) += coefs(:) * hij
end do
end do
end
subroutine get_d2_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
use bitmasks
implicit none
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
integer(bit_kind), intent(in) :: phasemask(2,N_int)
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
double precision, intent(in) :: coefs(N_states)
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
double precision, external :: get_phase_bi, mo_two_e_integral
integer :: i, j, tip, ma, mi, puti, putj
integer :: h1, h2, p1, p2, i1, i2
double precision :: hij, phase
integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/))
integer, parameter :: turn2(2) = (/2, 1/)
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
integer :: bant
bant = 1
tip = p(0,1) * p(0,2)
ma = sp
if(p(0,1) > p(0,2)) ma = 1
if(p(0,1) < p(0,2)) ma = 2
mi = mod(ma, 2) + 1
if(sp == 3) then
if(ma == 2) bant = 2
if(tip == 3) then
puti = p(1, mi)
do i = 1, 3
putj = p(i, ma)
if(banned(putj,puti,bant)) cycle
i1 = turn3(1,i)
i2 = turn3(2,i)
p1 = p(i1, ma)
p2 = p(i2, ma)
h1 = h(1, ma)
h2 = h(2, ma)
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
if(ma == 1) then
mat(:, putj, puti) += coefs(:) * hij
else
mat(:, puti, putj) += coefs(:) * hij
end if
end do
else
h1 = h(1,1)
h2 = h(1,2)
do j = 1,2
putj = p(j, 2)
p2 = p(turn2(j), 2)
do i = 1,2
puti = p(i, 1)
if(banned(puti,putj,bant)) cycle
p1 = p(turn2(i), 1)
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2,N_int)
mat(:, puti, putj) += coefs(:) * hij
end do
end do
end if
else
if(tip == 0) then
h1 = h(1, ma)
h2 = h(2, ma)
do i=1,3
puti = p(i, ma)
do j=i+1,4
putj = p(j, ma)
if(banned(puti,putj,1)) cycle
i1 = turn2d(1, i, j)
i2 = turn2d(2, i, j)
p1 = p(i1, ma)
p2 = p(i2, ma)
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2,N_int)
mat(:, puti, putj) += coefs(:) * hij
end do
end do
else if(tip == 3) then
h1 = h(1, mi)
h2 = h(1, ma)
p1 = p(1, mi)
do i=1,3
puti = p(turn3(1,i), ma)
putj = p(turn3(2,i), ma)
if(banned(puti,putj,1)) cycle
p2 = p(i, ma)
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2,N_int)
mat(:, min(puti, putj), max(puti, putj)) += coefs(:) * hij
end do
else ! tip == 4
puti = p(1, sp)
putj = p(2, sp)
if(.not. banned(puti,putj,1)) then
p1 = p(1, mi)
p2 = p(2, mi)
h1 = h(1, mi)
h2 = h(2, mi)
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2,N_int)
mat(:, puti, putj) += coefs(:) * hij
end if
end if
end if
end

View File

@ -198,6 +198,7 @@ subroutine make_selection_buffer_s2(b)
deallocate(b%det)
print*,'n_d = ',n_d
call i8sort(bit_tmp,iorder,n_d)
do i=1,n_d

View File

@ -10,8 +10,9 @@ subroutine run_stochastic_cipsi
double precision :: rss
double precision, external :: memory_of_double
PROVIDE H_apply_buffer_allocated N_generators_bitmask
PROVIDE H_apply_buffer_allocated
N_iter = 1
threshold_generators = 1.d0
SOFT_TOUCH threshold_generators
@ -101,7 +102,7 @@ subroutine run_stochastic_cipsi
! Add selected determinants
call copy_H_apply_buffer_to_wf()
call save_wavefunction
! call save_wavefunction
PROVIDE psi_coef
PROVIDE psi_det

223
src/cipsi/update_2rdm.irp.f Normal file
View File

@ -0,0 +1,223 @@
use bitmasks
subroutine give_2rdm_pert_contrib(det,coef,psi_det_connection,psi_coef_connection_reverse,n_det_connection,nkeys,keys,values,sze_buff)
implicit none
integer, intent(in) :: n_det_connection,sze_buff
double precision, intent(in) :: coef(N_states)
integer(bit_kind), intent(in) :: det(N_int,2)
integer(bit_kind), intent(in) :: psi_det_connection(N_int,2,n_det_connection)
double precision, intent(in) :: psi_coef_connection_reverse(N_states,n_det_connection)
integer, intent(inout) :: keys(4,sze_buff),nkeys
double precision, intent(inout) :: values(sze_buff)
integer :: i,j
integer :: exc(0:2,2,2)
integer :: degree
double precision :: phase, contrib
do i = 1, n_det_connection
call get_excitation(det,psi_det_connection(1,1,i),exc,degree,phase,N_int)
if(degree.gt.2)cycle
contrib = 0.d0
do j = 1, N_states
contrib += state_average_weight(j) * psi_coef_connection_reverse(j,i) * phase * coef(j)
enddo
! case of single excitations
if(degree == 1)then
if (nkeys + 6 * elec_alpha_num .ge. sze_buff)then
call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
nkeys = 0
endif
call update_buffer_single_exc_rdm(det,psi_det_connection(1,1,i),exc,phase,contrib,nkeys,keys,values,sze_buff)
else
!! case of double excitations
! if (nkeys + 4 .ge. sze_buff)then
! call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
! nkeys = 0
! endif
! call update_buffer_double_exc_rdm(exc,phase,contrib,nkeys,keys,values,sze_buff)
endif
enddo
!call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
!nkeys = 0
end
subroutine update_buffer_single_exc_rdm(det1,det2,exc,phase,contrib,nkeys,keys,values,sze_buff)
implicit none
integer, intent(in) :: sze_buff
integer(bit_kind), intent(in) :: det1(N_int,2)
integer(bit_kind), intent(in) :: det2(N_int,2)
integer,intent(in) :: exc(0:2,2,2)
double precision,intent(in) :: phase, contrib
integer, intent(inout) :: nkeys, keys(4,sze_buff)
double precision, intent(inout):: values(sze_buff)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2),ispin,other_spin
integer :: h1,h2,p1,p2,i
call bitstring_to_list_ab(det1, occ, n_occ_ab, N_int)
if (exc(0,1,1) == 1) then
! Mono alpha
h1 = exc(1,1,1)
p1 = exc(1,2,1)
ispin = 1
other_spin = 2
else
! Mono beta
h1 = exc(1,1,2)
p1 = exc(1,2,2)
ispin = 2
other_spin = 1
endif
if(list_orb_reverse_pert_rdm(h1).lt.0)return
h1 = list_orb_reverse_pert_rdm(h1)
if(list_orb_reverse_pert_rdm(p1).lt.0)return
p1 = list_orb_reverse_pert_rdm(p1)
!update the alpha/beta part
do i = 1, n_occ_ab(other_spin)
h2 = occ(i,other_spin)
if(list_orb_reverse_pert_rdm(h2).lt.0)return
h2 = list_orb_reverse_pert_rdm(h2)
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p1
keys(4,nkeys) = h2
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = h2
keys(2,nkeys) = h1
keys(3,nkeys) = h2
keys(4,nkeys) = p1
enddo
!update the same spin part
!do i = 1, n_occ_ab(ispin)
! h2 = occ(i,ispin)
! if(list_orb_reverse_pert_rdm(h2).lt.0)return
! h2 = list_orb_reverse_pert_rdm(h2)
! nkeys += 1
! values(nkeys) = 0.5d0 * contrib * phase
! keys(1,nkeys) = h1
! keys(2,nkeys) = h2
! keys(3,nkeys) = p1
! keys(4,nkeys) = h2
! nkeys += 1
! values(nkeys) = - 0.5d0 * contrib * phase
! keys(1,nkeys) = h1
! keys(2,nkeys) = h2
! keys(3,nkeys) = h2
! keys(4,nkeys) = p1
!
! nkeys += 1
! values(nkeys) = 0.5d0 * contrib * phase
! keys(1,nkeys) = h2
! keys(2,nkeys) = h1
! keys(3,nkeys) = h2
! keys(4,nkeys) = p1
! nkeys += 1
! values(nkeys) = - 0.5d0 * contrib * phase
! keys(1,nkeys) = h2
! keys(2,nkeys) = h1
! keys(3,nkeys) = p1
! keys(4,nkeys) = h2
!enddo
end
subroutine update_buffer_double_exc_rdm(exc,phase,contrib,nkeys,keys,values,sze_buff)
implicit none
integer, intent(in) :: sze_buff
integer,intent(in) :: exc(0:2,2,2)
double precision,intent(in) :: phase, contrib
integer, intent(inout) :: nkeys, keys(4,sze_buff)
double precision, intent(inout):: values(sze_buff)
integer :: h1,h2,p1,p2
if (exc(0,1,1) == 1) then
! Double alpha/beta
h1 = exc(1,1,1)
h2 = exc(1,1,2)
p1 = exc(1,2,1)
p2 = exc(1,2,2)
! check if the orbitals involved are within the orbital range
if(list_orb_reverse_pert_rdm(h1).lt.0)return
h1 = list_orb_reverse_pert_rdm(h1)
if(list_orb_reverse_pert_rdm(h2).lt.0)return
h2 = list_orb_reverse_pert_rdm(h2)
if(list_orb_reverse_pert_rdm(p1).lt.0)return
p1 = list_orb_reverse_pert_rdm(p1)
if(list_orb_reverse_pert_rdm(p2).lt.0)return
p2 = list_orb_reverse_pert_rdm(p2)
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p1
keys(4,nkeys) = p2
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = p1
keys(2,nkeys) = p2
keys(3,nkeys) = h1
keys(4,nkeys) = h2
else
if (exc(0,1,1) == 2) then
! Double alpha/alpha
h1 = exc(1,1,1)
h2 = exc(2,1,1)
p1 = exc(1,2,1)
p2 = exc(2,2,1)
else if (exc(0,1,2) == 2) then
! Double beta
h1 = exc(1,1,2)
h2 = exc(2,1,2)
p1 = exc(1,2,2)
p2 = exc(2,2,2)
endif
! check if the orbitals involved are within the orbital range
if(list_orb_reverse_pert_rdm(h1).lt.0)return
h1 = list_orb_reverse_pert_rdm(h1)
if(list_orb_reverse_pert_rdm(h2).lt.0)return
h2 = list_orb_reverse_pert_rdm(h2)
if(list_orb_reverse_pert_rdm(p1).lt.0)return
p1 = list_orb_reverse_pert_rdm(p1)
if(list_orb_reverse_pert_rdm(p2).lt.0)return
p2 = list_orb_reverse_pert_rdm(p2)
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p1
keys(4,nkeys) = p2
nkeys += 1
values(nkeys) = - 0.5d0 * contrib * phase
keys(1,nkeys) = h1
keys(2,nkeys) = h2
keys(3,nkeys) = p2
keys(4,nkeys) = p1
nkeys += 1
values(nkeys) = 0.5d0 * contrib * phase
keys(1,nkeys) = h2
keys(2,nkeys) = h1
keys(3,nkeys) = p2
keys(4,nkeys) = p1
nkeys += 1
values(nkeys) = - 0.5d0 * contrib * phase
keys(1,nkeys) = h2
keys(2,nkeys) = h1
keys(3,nkeys) = p1
keys(4,nkeys) = p2
endif
end

View File

@ -21,6 +21,11 @@ function run() {
eq $energy3 $4 $thresh
}
@test "B-B" { # 2.0s
run b2_stretched.ezfio -48.995058575280950 -48.974653655601145 -48.974653655601031
}
@test "SiH2_3B1" { # 1.23281s 1.24958s
run sih2_3b1.ezfio -289.969297318489 -289.766898643192 -289.737521023380
}

View File

@ -18,6 +18,11 @@ function run() {
}
@test "B-B" { #
qp set_file b2_stretched.ezfio
run -49.120607088648597 -49.055152453388231
}
@test "SiH2_3B1" { # 1.53842s 3.53856s
qp set_file sih2_3b1.ezfio
run -290.015949171697 -289.805036176618

View File

@ -44,6 +44,7 @@ program cisd
! * "del" orbitals which will be never occupied
!
END_DOC
PROVIDE N_states
read_wf = .False.
SOFT_TOUCH read_wf
call run
@ -51,29 +52,52 @@ end
subroutine run
implicit none
integer :: i
integer :: i,k
double precision :: cisdq(N_states), delta_e
double precision,external :: diag_h_mat_elem
if(pseudo_sym)then
call H_apply_cisd_sym
else
call H_apply_cisd
endif
print *, 'N_det = ', N_det
print*,'******************************'
print *, 'Energies of the states:'
do i = 1,N_states
print *, i, CI_energy(i)
enddo
if (N_states > 1) then
print*,'******************************'
print*,'Excitation energies '
do i = 2, N_states
print*, i ,CI_energy(i) - CI_energy(1)
enddo
endif
psi_coef = ci_eigenvectors
SOFT_TOUCH psi_coef
call save_wavefunction
call ezfio_set_cisd_energy(CI_energy)
do i = 1,N_states
k = maxloc(dabs(psi_coef_sorted(1:N_det,i)),dim=1)
delta_E = CI_electronic_energy(i) - diag_h_mat_elem(psi_det_sorted(1,1,k),N_int)
cisdq(i) = CI_energy(i) + delta_E * (1.d0 - psi_coef_sorted(k,i)**2)
enddo
print *, 'N_det = ', N_det
print*,''
print*,'******************************'
print *, 'CISD Energies'
do i = 1,N_states
print *, i, CI_energy(i)
enddo
print*,''
print*,'******************************'
print *, 'CISD+Q Energies'
do i = 1,N_states
print *, i, cisdq(i)
enddo
if (N_states > 1) then
print*,''
print*,'******************************'
print*,'Excitation energies (au) (CISD+Q)'
do i = 2, N_states
print*, i ,CI_energy(i) - CI_energy(1), cisdq(i) - cisdq(1)
enddo
print*,''
print*,'******************************'
print*,'Excitation energies (eV) (CISD+Q)'
do i = 2, N_states
print*, i ,(CI_energy(i) - CI_energy(1))/0.0367502d0, &
(cisdq(i) - cisdq(1)) / 0.0367502d0
enddo
endif
end

View File

@ -0,0 +1,28 @@
subroutine run_cisd
implicit none
integer :: i
if(pseudo_sym)then
call H_apply_cisd_sym
else
call H_apply_cisd
endif
print *, 'N_det = ', N_det
print*,'******************************'
print *, 'Energies of the states:'
do i = 1,N_states
print *, i, CI_energy(i)
enddo
if (N_states > 1) then
print*,'******************************'
print*,'Excitation energies '
do i = 2, N_states
print*, i ,CI_energy(i) - CI_energy(1)
enddo
endif
psi_coef = ci_eigenvectors
SOFT_TOUCH psi_coef
call save_wavefunction
call ezfio_set_cisd_energy(CI_energy)
end

View File

@ -6,7 +6,7 @@ BEGIN_PROVIDER [ double precision, psi_energy_two_e, (N_states) ]
integer :: i,j
call u_0_H_u_0_two_e(psi_energy_two_e,psi_coef,N_det,psi_det,N_int,N_states,psi_det_size)
do i=N_det+1,N_states
psi_energy(i) = 0.d0
psi_energy_two_e(i) = 0.d0
enddo
END_PROVIDER

View File

@ -106,12 +106,31 @@ END_PROVIDER
BEGIN_PROVIDER [double precision, one_e_dm_average_mo_for_dft, (mo_num,mo_num)]
implicit none
integer :: i
one_e_dm_average_mo_for_dft = 0.d0
one_e_dm_average_mo_for_dft = one_e_dm_average_alpha_mo_for_dft + one_e_dm_average_beta_mo_for_dft
END_PROVIDER
BEGIN_PROVIDER [double precision, one_e_dm_average_alpha_mo_for_dft, (mo_num,mo_num)]
implicit none
integer :: i
one_e_dm_average_alpha_mo_for_dft = 0.d0
do i = 1, N_states
one_e_dm_average_mo_for_dft(:,:) += one_e_dm_mo_for_dft(:,:,i) * state_average_weight(i)
one_e_dm_average_alpha_mo_for_dft(:,:) += one_e_dm_mo_alpha_for_dft(:,:,i) * state_average_weight(i)
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, one_e_dm_average_beta_mo_for_dft, (mo_num,mo_num)]
implicit none
integer :: i
one_e_dm_average_beta_mo_for_dft = 0.d0
do i = 1, N_states
one_e_dm_average_beta_mo_for_dft(:,:) += one_e_dm_mo_beta_for_dft(:,:,i) * state_average_weight(i)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, one_e_dm_alpha_ao_for_dft, (ao_num,ao_num,N_states) ]
&BEGIN_PROVIDER [ double precision, one_e_dm_beta_ao_for_dft, (ao_num,ao_num,N_states) ]
BEGIN_DOC

View File

@ -22,6 +22,12 @@ doc: If |true|, read the wave function from the |EZFIO| file
interface: ezfio,provider,ocaml
default: False
[pruning]
type: float
doc: If p>0., remove p*Ndet determinants at every iteration
interface: ezfio,provider,ocaml
default: 0.
[s2_eig]
type: logical
doc: Force the wave function to be an eigenfunction of |S^2|
@ -32,11 +38,11 @@ default: True
type: integer
doc: Weight used in the calculation of the one-electron density matrix. 0: 1./(c_0^2), 1: 1/N_states, 2: input state-average weight, 3: 1/(Norm_L3(Psi))
interface: ezfio,provider,ocaml
default: 1
default: 2
[weight_selection]
type: integer
doc: Weight used in the selection. 0: input state-average weight, 1: 1./(c_0^2), 2: rPT2 matching, 3: variance matching, 4: variance and rPT2 matching, 5: variance minimization and matching
doc: Weight used in the selection. 0: input state-average weight, 1: 1./(c_0^2), 2: rPT2 matching, 3: variance matching, 4: variance and rPT2 matching, 5: variance minimization and matching, 6: CI coefficients
interface: ezfio,provider,ocaml
default: 2

View File

@ -257,6 +257,18 @@ subroutine set_natural_mos
double precision, allocatable :: tmp(:,:)
label = "Natural"
integer :: i,j,iorb,jorb
do i = 1, n_virt_orb
iorb = list_virt(i)
do j = 1, n_core_inact_act_orb
jorb = list_core_inact_act(j)
if(one_e_dm_mo(iorb,jorb).ne. 0.d0)then
print*,'AHAHAH'
print*,iorb,jorb,one_e_dm_mo(iorb,jorb)
stop
endif
enddo
enddo
call mo_as_svd_vectors_of_mo_matrix_eig(one_e_dm_mo,size(one_e_dm_mo,1),mo_num,mo_num,mo_occ,label)
soft_touch mo_occ

View File

@ -151,7 +151,7 @@ subroutine routine_example_psi_det
print*,'Determinant connected'
call debug_det(psi_det(1,1,idx(i)),N_int)
print*,'excitation degree = ',degree_list(i)
call i_H_j(psi_det(1,1,1) , psi_det(1,1,idx(i)),hij,N_int)
call i_H_j(psi_det(1,1,1) , psi_det(1,1,idx(i)),N_int,hij)
do j = 1, N_states
i_H_psi(j) += hij * psi_coef(idx(i),j)
enddo

View File

@ -124,39 +124,49 @@ subroutine copy_H_apply_buffer_to_wf
PROVIDE H_apply_buffer_allocated
ASSERT (N_int > 0)
ASSERT (N_det > 0)
allocate ( buffer_det(N_int,2,N_det), buffer_coef(N_det,N_states) )
! Backup determinants
j=0
do i=1,N_det
do k=1,N_int
ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num)
ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num)
buffer_det(k,1,i) = psi_det(k,1,i)
buffer_det(k,2,i) = psi_det(k,2,i)
enddo
if (pruned(i)) cycle ! Pruned determinants
j+=1
ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num)
ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num)
buffer_det(:,:,j) = psi_det(:,:,i)
enddo
N_det_old = j
! Backup coefficients
do k=1,N_states
j=0
do i=1,N_det
buffer_coef(i,k) = psi_coef(i,k)
if (pruned(i)) cycle ! Pruned determinants
j += 1
buffer_coef(j,k) = psi_coef(i,k)
enddo
ASSERT ( j == N_det_old )
enddo
N_det_old = N_det
! Update N_det
N_det = N_det_old
do j=0,nproc-1
N_det = N_det + H_apply_buffer(j)%N_det
enddo
! Update array sizes
if (psi_det_size < N_det) then
psi_det_size = N_det
TOUCH psi_det_size
endif
! Restore backup in resized array
do i=1,N_det_old
do k=1,N_int
psi_det(k,1,i) = buffer_det(k,1,i)
psi_det(k,2,i) = buffer_det(k,2,i)
enddo
psi_det(:,:,i) = buffer_det(:,:,i)
ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num)
ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num )
enddo
@ -165,6 +175,9 @@ subroutine copy_H_apply_buffer_to_wf
psi_coef(i,k) = buffer_coef(i,k)
enddo
enddo
! Copy new buffers
!$OMP PARALLEL DEFAULT(SHARED) &
!$OMP PRIVATE(j,k,i) FIRSTPRIVATE(N_det_old) &
!$OMP SHARED(N_int,H_apply_buffer,psi_det,psi_coef,N_states,psi_det_size)

View File

@ -33,22 +33,22 @@ subroutine $subroutine($params_main)
do ispin=1,2
do k=1,N_int
mask(k,ispin,s_hole) = &
iand(generators_bitmask(k,ispin,s_hole,i_bitmask_gen), &
iand(generators_bitmask(k,ispin,s_hole), &
psi_det_generators(k,ispin,i_generator) )
mask(k,ispin,s_part) = &
iand(generators_bitmask(k,ispin,s_part,i_bitmask_gen), &
iand(generators_bitmask(k,ispin,s_part), &
not(psi_det_generators(k,ispin,i_generator)) )
mask(k,ispin,d_hole1) = &
iand(generators_bitmask(k,ispin,d_hole1,i_bitmask_gen), &
iand(generators_bitmask(k,ispin,d_hole1), &
psi_det_generators(k,ispin,i_generator) )
mask(k,ispin,d_part1) = &
iand(generators_bitmask(k,ispin,d_part1,i_bitmask_gen), &
iand(generators_bitmask(k,ispin,d_part1), &
not(psi_det_generators(k,ispin,i_generator)) )
mask(k,ispin,d_hole2) = &
iand(generators_bitmask(k,ispin,d_hole2,i_bitmask_gen), &
iand(generators_bitmask(k,ispin,d_hole2), &
psi_det_generators(k,ispin,i_generator) )
mask(k,ispin,d_part2) = &
iand(generators_bitmask(k,ispin,d_part2,i_bitmask_gen), &
iand(generators_bitmask(k,ispin,d_part2), &
not(psi_det_generators(k,ispin,i_generator)) )
enddo
enddo

View File

@ -409,6 +409,51 @@ BEGIN_PROVIDER [ double precision, weight_occ_pattern, (N_occ_pattern,N_states)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, weight_occ_pattern_average, (N_occ_pattern) ]
implicit none
BEGIN_DOC
! State-average weight of the occupation patterns in the wave function
END_DOC
integer :: i,j,k
weight_occ_pattern_average(:) = 0.d0
do i=1,N_det
j = det_to_occ_pattern(i)
do k=1,N_states
weight_occ_pattern_average(j) += psi_coef(i,k) * psi_coef(i,k) * state_average_weight(k)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, psi_occ_pattern_sorted, (N_int,2,N_occ_pattern) ]
&BEGIN_PROVIDER [ double precision, weight_occ_pattern_average_sorted, (N_occ_pattern) ]
&BEGIN_PROVIDER [ integer, psi_occ_pattern_sorted_order, (N_occ_pattern) ]
&BEGIN_PROVIDER [ integer, psi_occ_pattern_sorted_order_reverse, (N_occ_pattern) ]
implicit none
BEGIN_DOC
! Occupation patterns sorted by weight
END_DOC
integer :: i,j,k
integer, allocatable :: iorder(:)
allocate ( iorder(N_occ_pattern) )
do i=1,N_occ_pattern
weight_occ_pattern_average_sorted(i) = -weight_occ_pattern_average(i)
iorder(i) = i
enddo
call dsort(weight_occ_pattern_average_sorted,iorder,N_occ_pattern)
do i=1,N_occ_pattern
do j=1,N_int
psi_occ_pattern_sorted(j,1,i) = psi_occ_pattern(j,1,iorder(i))
psi_occ_pattern_sorted(j,2,i) = psi_occ_pattern(j,2,iorder(i))
enddo
psi_occ_pattern_sorted_order(iorder(i)) = i
psi_occ_pattern_sorted_order_reverse(i) = iorder(i)
weight_occ_pattern_average_sorted(i) = -weight_occ_pattern_average_sorted(i)
enddo
deallocate(iorder)
END_PROVIDER
subroutine make_s2_eigenfunction
implicit none

View File

@ -0,0 +1,35 @@
BEGIN_PROVIDER [ logical, pruned, (N_det) ]
implicit none
BEGIN_DOC
! True if determinant is removed by pruning
END_DOC
pruned(:) = .False.
if (pruning == 0.d0) then
return
endif
integer :: i,j,k,ndet_new,nsop_max
double precision :: thr
if (s2_eig) then
nsop_max = max(1,int ( dble(N_occ_pattern) * (1.d0 - pruning) + 0.5d0 ))
do i=1,N_det
k = det_to_occ_pattern(i)
pruned(i) = psi_occ_pattern_sorted_order_reverse(k) > nsop_max
enddo
else
ndet_new = max(1,int( dble(N_det) * (1.d0 - pruning) + 0.5d0 ))
thr = psi_average_norm_contrib_sorted(ndet_new)
do i=1, N_det
pruned(i) = psi_average_norm_contrib(i) < thr
enddo
endif
END_PROVIDER

View File

@ -16,19 +16,17 @@ use bitmasks
do l = 1, N_states
psi_cas_coef(i,l) = 0.d0
enddo
do l=1,n_cas_bitmask
good = .True.
do k=1,N_int
good = good .and. ( &
iand(not(cas_bitmask(k,1,l)), psi_det(k,1,i)) == &
iand(not(cas_bitmask(k,1,l)), hf_bitmask(k,1)) ) .and. ( &
iand(not(cas_bitmask(k,2,l)), psi_det(k,2,i)) == &
iand(not(cas_bitmask(k,2,l)), hf_bitmask(k,2)) )
enddo
if (good) then
exit
endif
good = .True.
do k=1,N_int
good = good .and. ( &
iand(not(act_bitmask(k,1)), psi_det(k,1,i)) == &
iand(not(act_bitmask(k,1)), hf_bitmask(k,1)) ) .and. ( &
iand(not(act_bitmask(k,2)), psi_det(k,2,i)) == &
iand(not(act_bitmask(k,2)), hf_bitmask(k,2)) )
enddo
if (good) then
exit
endif
if (good) then
N_det_cas = N_det_cas+1
do k=1,N_int

View File

@ -0,0 +1,609 @@
BEGIN_PROVIDER [double precision, two_bod_alpha_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none
BEGIN_DOC
! two_bod_alpha_beta(i,j,k,l) = <Psi| a^{dagger}_{j,alpha} a^{dagger}_{l,beta} a_{k,beta} a_{i,alpha} | Psi>
! 1 1 2 2 = chemist notations
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
!
END_DOC
integer :: dim1,dim2,dim3,dim4
double precision :: cpu_0,cpu_1
dim1 = mo_num
dim2 = mo_num
dim3 = mo_num
dim4 = mo_num
two_bod_alpha_beta_mo = 0.d0
print*,'providing two_bod_alpha_beta ...'
call wall_time(cpu_0)
call two_body_dm_nstates_openmp(two_bod_alpha_beta_mo,dim1,dim2,dim3,dim4,psi_coef,size(psi_coef,2),size(psi_coef,1))
call wall_time(cpu_1)
print*,'two_bod_alpha_beta provided in',dabs(cpu_1-cpu_0)
integer :: ii,jj,i,j,k,l
if(no_core_density .EQ. "no_core_dm")then
print*,'USING THE VALENCE ONLY TWO BODY DENSITY'
do ii = 1, n_core_orb ! 1
i = list_core(ii)
do j = 1, mo_num ! 2
do k = 1, mo_num ! 1
do l = 1, mo_num ! 2
! 2 2 1 1
two_bod_alpha_beta_mo(l,j,k,i,:) = 0.d0
two_bod_alpha_beta_mo(j,l,k,i,:) = 0.d0
two_bod_alpha_beta_mo(l,j,i,k,:) = 0.d0
two_bod_alpha_beta_mo(j,l,i,k,:) = 0.d0
two_bod_alpha_beta_mo(k,i,l,j,:) = 0.d0
two_bod_alpha_beta_mo(k,i,j,l,:) = 0.d0
two_bod_alpha_beta_mo(i,k,l,j,:) = 0.d0
two_bod_alpha_beta_mo(i,k,j,l,:) = 0.d0
enddo
enddo
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [double precision, two_bod_alpha_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none
BEGIN_DOC
! two_bod_alpha_beta_mo_physicist,(i,j,k,l) = <Psi| a^{dagger}_{k,alpha} a^{dagger}_{l,beta} a_{j,beta} a_{i,alpha} | Psi>
! 1 2 1 2 = physicist notations
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
!
END_DOC
integer :: i,j,k,l,istate
double precision :: cpu_0,cpu_1
two_bod_alpha_beta_mo_physicist = 0.d0
print*,'providing two_bod_alpha_beta_mo_physicist ...'
call wall_time(cpu_0)
do istate = 1, N_states
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
! 1 2 1 2 1 1 2 2
two_bod_alpha_beta_mo_physicist(l,k,i,j,istate) = two_bod_alpha_beta_mo(i,l,j,k,istate)
enddo
enddo
enddo
enddo
enddo
call wall_time(cpu_1)
print*,'two_bod_alpha_beta_mo_physicist provided in',dabs(cpu_1-cpu_0)
END_PROVIDER
subroutine two_body_dm_nstates_openmp(big_array,dim1,dim2,dim3,dim4,u_0,N_st,sze)
use bitmasks
implicit none
BEGIN_DOC
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
integer, intent(in) :: N_st,sze
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: u_0(sze,N_st)
integer :: k
double precision, allocatable :: u_t(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
allocate(u_t(N_st,N_det))
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
enddo
call dtranspose( &
u_0, &
size(u_0, 1), &
u_t, &
size(u_t, 1), &
N_det, N_st)
call two_body_dm_nstates_openmp_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1)
deallocate(u_t)
do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
enddo
end
subroutine two_body_dm_nstates_openmp_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
BEGIN_DOC
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
!
! Default should be 1,N_det,0,1
END_DOC
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
double precision, intent(in) :: u_t(N_st,N_det)
PROVIDE N_int
select case (N_int)
case (1)
call two_body_dm_nstates_openmp_work_1(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case (2)
call two_body_dm_nstates_openmp_work_2(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case (3)
call two_body_dm_nstates_openmp_work_3(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case (4)
call two_body_dm_nstates_openmp_work_4(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
case default
call two_body_dm_nstates_openmp_work_N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
end select
end
BEGIN_TEMPLATE
subroutine two_body_dm_nstates_openmp_work_$N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
use bitmasks
implicit none
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
double precision, intent(in) :: u_t(N_st,N_det)
double precision :: hij, sij
integer :: i,j,k,l
integer :: k_a, k_b, l_a, l_b, m_a, m_b
integer :: istate
integer :: krow, kcol, krow_b, kcol_b
integer :: lrow, lcol
integer :: mrow, mcol
integer(bit_kind) :: spindet($N_int)
integer(bit_kind) :: tmp_det($N_int,2)
integer(bit_kind) :: tmp_det2($N_int,2)
integer(bit_kind) :: tmp_det3($N_int,2)
integer(bit_kind), allocatable :: buffer(:,:)
integer :: n_doubles
integer, allocatable :: doubles(:)
integer, allocatable :: singles_a(:)
integer, allocatable :: singles_b(:)
integer, allocatable :: idx(:), idx0(:)
integer :: maxab, n_singles_a, n_singles_b, kcol_prev, nmax
integer*8 :: k8
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
allocate(idx0(maxab))
do i=1,maxab
idx0(i) = i
enddo
! Prepare the array of all alpha single excitations
! -------------------------------------------------
PROVIDE N_int nthreads_davidson
! Alpha/Beta double excitations
! =============================
allocate( buffer($N_int,maxab), &
singles_a(maxab), &
singles_b(maxab), &
doubles(maxab), &
idx(maxab))
kcol_prev=-1
ASSERT (iend <= N_det)
ASSERT (istart > 0)
ASSERT (istep > 0)
do k_a=istart+ishift,iend,istep
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
if (kcol /= kcol_prev) then
call get_all_spin_singles_$N_int( &
psi_det_beta_unique, idx0, &
tmp_det(1,2), N_det_beta_unique, &
singles_b, n_singles_b)
endif
kcol_prev = kcol
! Loop over singly excited beta columns
! -------------------------------------
do i=1,n_singles_b
lcol = singles_b(i)
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
l_a = psi_bilinear_matrix_columns_loc(lcol)
ASSERT (l_a <= N_det)
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
ASSERT (l_a <= N_det)
idx(j) = l_a
l_a = l_a+1
enddo
j = j-1
call get_all_spin_singles_$N_int( &
buffer, idx, tmp_det(1,1), j, &
singles_a, n_singles_a )
! Loop over alpha singles
! -----------------------
do k = 1,n_singles_a
l_a = singles_a(k)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
!!!!!!!!!!!!!!!!!! ALPHA BETA
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_double_to_two_body_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
enddo
enddo
enddo
do k_a=istart+ishift,iend,istep
! Single and double alpha excitations
! ===================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
! Initial determinant is at k_b in beta-major representation
! ----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
spindet(1:$N_int) = tmp_det(1:$N_int,1)
! Loop inside the beta column to gather all the connected alphas
lcol = psi_bilinear_matrix_columns(k_a)
l_a = psi_bilinear_matrix_columns_loc(lcol)
do i=1,N_det_alpha_unique
if (l_a > N_det) exit
lcol = psi_bilinear_matrix_columns(l_a)
if (lcol /= kcol) exit
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
idx(i) = l_a
l_a = l_a+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_a, doubles, n_singles_a, n_doubles )
! Compute Hij for all alpha singles
! ----------------------------------
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
do i=1,n_singles_a
l_a = singles_a(i)
ASSERT (l_a <= N_det)
lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
!!!! MONO SPIN
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_single_to_two_body_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
enddo
!! Compute Hij for all alpha doubles
!! ----------------------------------
!
!do i=1,n_doubles
! l_a = doubles(i)
! ASSERT (l_a <= N_det)
! lrow = psi_bilinear_matrix_rows(l_a)
! ASSERT (lrow <= N_det_alpha_unique)
! call i_H_j_double_spin_erf( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
! do l=1,N_st
! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! ! same spin => sij = 0
! enddo
!enddo
! Single and double beta excitations
! ==================================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
kcol = psi_bilinear_matrix_columns(k_a)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
spindet(1:$N_int) = tmp_det(1:$N_int,2)
! Initial determinant is at k_b in beta-major representation
! -----------------------------------------------------------------------
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
! Loop inside the alpha row to gather all the connected betas
lrow = psi_bilinear_matrix_transp_rows(k_b)
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
do i=1,N_det_beta_unique
if (l_b > N_det) exit
lrow = psi_bilinear_matrix_transp_rows(l_b)
if (lrow /= krow) exit
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
idx(i) = l_b
l_b = l_b+1
enddo
i = i-1
call get_all_spin_singles_and_doubles_$N_int( &
buffer, idx, spindet, i, &
singles_b, doubles, n_singles_b, n_doubles )
! Compute Hij for all beta singles
! ----------------------------------
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
do i=1,n_singles_b
l_b = singles_b(i)
ASSERT (l_b <= N_det)
lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique)
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
l_a = psi_bilinear_matrix_transp_order(l_b)
do l= 1, N_states
c_1(l) = u_t(l,l_a)
c_2(l) = u_t(l,k_a)
enddo
call off_diagonal_single_to_two_body_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
ASSERT (l_a <= N_det)
enddo
!
!! Compute Hij for all beta doubles
!! ----------------------------------
!
!do i=1,n_doubles
! l_b = doubles(i)
! ASSERT (l_b <= N_det)
! lcol = psi_bilinear_matrix_transp_columns(l_b)
! ASSERT (lcol <= N_det_beta_unique)
! call i_H_j_double_spin_erf( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
! l_a = psi_bilinear_matrix_transp_order(l_b)
! ASSERT (l_a <= N_det)
! do l=1,N_st
! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
! ! same spin => sij = 0
! enddo
!enddo
! Diagonal contribution
! =====================
! Initial determinant is at k_a in alpha-major representation
! -----------------------------------------------------------------------
krow = psi_bilinear_matrix_rows(k_a)
ASSERT (krow <= N_det_alpha_unique)
kcol = psi_bilinear_matrix_columns(k_a)
ASSERT (kcol <= N_det_beta_unique)
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
double precision, external :: diag_H_mat_elem_erf, diag_S_mat_elem
double precision :: c_1(N_states),c_2(N_states)
do l = 1, N_states
c_1(l) = u_t(l,k_a)
enddo
call diagonal_contrib_to_two_body_ab_dm(tmp_det,c_1,big_array,dim1,dim2,dim3,dim4)
end do
deallocate(buffer, singles_a, singles_b, doubles, idx)
end
SUBST [ N_int ]
1;;
2;;
3;;
4;;
N_int;;
END_TEMPLATE
subroutine diagonal_contrib_to_two_body_ab_dm(det_1,c_1,big_array,dim1,dim2,dim3,dim4)
use bitmasks
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2)
double precision, intent(in) :: c_1(N_states)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate
double precision :: c_1_bis
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
do istate = 1, N_states
c_1_bis = c_1(istate) * c_1(istate)
do i = 1, n_occ_ab(1)
h1 = occ(i,1)
do j = 1, n_occ_ab(2)
h2 = occ(j,2)
big_array(h1,h1,h2,h2,istate) += c_1_bis
enddo
enddo
enddo
end
subroutine diagonal_contrib_to_all_two_body_dm(det_1,c_1,big_array_ab,big_array_aa,big_array_bb,dim1,dim2,dim3,dim4)
use bitmasks
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2)
double precision, intent(in) :: c_1(N_states)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate
double precision :: c_1_bis
BEGIN_DOC
! no factor 1/2 have to be taken into account as the permutations are already taken into account
END_DOC
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
do istate = 1, N_states
c_1_bis = c_1(istate) * c_1(istate)
do i = 1, n_occ_ab(1)
h1 = occ(i,1)
do j = 1, n_occ_ab(2)
h2 = occ(j,2)
big_array_ab(h1,h1,h2,h2,istate) += c_1_bis
enddo
do j = 1, n_occ_ab(1)
h2 = occ(j,1)
big_array_aa(h1,h2,h1,h2,istate) -= c_1_bis
big_array_aa(h1,h1,h2,h2,istate) += c_1_bis
enddo
enddo
do i = 1, n_occ_ab(2)
h1 = occ(i,2)
do j = 1, n_occ_ab(2)
h2 = occ(j,2)
big_array_bb(h1,h1,h2,h2,istate) += c_1_bis
big_array_bb(h1,h2,h1,h2,istate) -= c_1_bis
enddo
enddo
enddo
end
subroutine off_diagonal_double_to_two_body_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
use bitmasks
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
double precision, intent(in) :: c_1(N_states),c_2(N_states)
integer :: i,j,h1,h2,p1,p2,istate
integer :: exc(0:2,2,2)
double precision :: phase
call get_double_excitation(det_1,det_2,exc,phase,N_int)
h1 = exc(1,1,1)
h2 = exc(1,1,2)
p1 = exc(1,2,1)
p2 = exc(1,2,2)
do istate = 1, N_states
big_array(h1,p1,h2,p2,istate) += c_1(istate) * phase * c_2(istate)
! big_array(p1,h1,p2,h2,istate) += c_1(istate) * phase * c_2(istate)
enddo
end
subroutine off_diagonal_single_to_two_body_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
use bitmasks
implicit none
integer, intent(in) :: dim1,dim2,dim3,dim4
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
double precision, intent(in) :: c_1(N_states),c_2(N_states)
integer :: occ(N_int*bit_kind_size,2)
integer :: n_occ_ab(2)
integer :: i,j,h1,h2,istate,p1
integer :: exc(0:2,2,2)
double precision :: phase
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
call get_single_excitation(det_1,det_2,exc,phase,N_int)
if (exc(0,1,1) == 1) then
! Mono alpha
h1 = exc(1,1,1)
p1 = exc(1,2,1)
do istate = 1, N_states
do i = 1, n_occ_ab(2)
h2 = occ(i,2)
big_array(h1,p1,h2,h2,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase
enddo
enddo
else
! Mono beta
h1 = exc(1,1,2)
p1 = exc(1,2,2)
do istate = 1, N_states
do i = 1, n_occ_ab(1)
h2 = occ(i,1)
big_array(h2,h2,h1,p1,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase
enddo
enddo
endif
end

View File

@ -15,7 +15,7 @@ prefix = ""
for f in functionals:
print """
%sif (trim(exchange_functional) == '%s') then
energy_x = energy_x_%s"""%(prefix, f, f)
energy_x = (1.d0 - HF_exchange ) * energy_x_%s"""%(prefix, f, f)
prefix = "else "
print """
else

View File

@ -17,8 +17,8 @@ prefix = ""
for f in functionals:
print """
%sif (trim(exchange_functional) == '%s') then
potential_x_alpha_ao = potential_x_alpha_ao_%s
potential_x_beta_ao = potential_x_beta_ao_%s"""%(prefix, f, f, f)
potential_x_alpha_ao = ( 1.d0 - HF_exchange ) * potential_x_alpha_ao_%s
potential_x_beta_ao = ( 1.d0 - HF_exchange ) * potential_x_beta_ao_%s"""%(prefix, f, f, f)
prefix = "else "
print """
else

View File

@ -32,6 +32,7 @@
! k = 1 : x, k= 2, y, k 3, z
END_DOC
integer :: m
print*,'mo_num,n_points_final_grid',mo_num,n_points_final_grid
mos_grad_in_r_array = 0.d0
do m=1,3
call dgemm('N','N',mo_num,n_points_final_grid,ao_num,1.d0,mo_coef_transp,mo_num,aos_grad_in_r_array(1,1,m),ao_num,0.d0,mos_grad_in_r_array(1,1,m),mo_num)

View File

@ -0,0 +1,28 @@
double precision function ec_lyp2(RhoA,RhoB,GA,GB,GAB)
include 'constants.include.F'
implicit none
double precision, intent(in) :: RhoA,RhoB,GA,GB,GAB
double precision :: Tol,caa,cab,cac,cad,cae,RA,RB,comega,cdelta,cLaa,cLbb,cLab,E
ec_lyp2 = 0.d0
Tol=1D-14
E=2.718281828459045D0
caa=0.04918D0
cab=0.132D0
cac=0.2533D0
cad=0.349D0
cae=(2D0**(11D0/3D0))*((3D0/10D0)*((3D0*(Pi**2D0))**(2D0/3D0)))
RA = MAX(RhoA,0D0)
RB = MAX(RhoB,0D0)
IF ((RA.gt.Tol).OR.(RB.gt.Tol)) THEN
IF ((RA.gt.Tol).AND.(RB.gt.Tol)) THEN
comega = 1D0/(E**(cac/(RA+RB)**(1D0/3D0))*(RA+RB)**(10D0/3D0)*(cad+(RA+RB)**(1D0/3D0)))
cdelta = (cac+cad+(cac*cad)/(RA+RB)**(1D0/3D0))/(cad+(RA+RB)**(1D0/3D0))
cLaa = (cab*comega*RB*(RA-3D0*cdelta*RA-9D0*RB-((-11D0+cdelta)*RA**2D0)/(RA+RB)))/9D0
cLbb = (cab*comega*RA*(-9D0*RA+(RB*(RA-3D0*cdelta*RA-4D0*(-3D0+cdelta)*RB))/(RA+RB)))/9D0
cLab = cab*comega*(((47D0-7D0*cdelta)*RA*RB)/9D0-(4D0*(RA+RB)**2D0)/3D0)
ec_lyp2 = -(caa*(cLaa*GA+cLab*GAB+cLbb*GB+cab*cae*comega*RA*RB*(RA**(8D0/3D0)+RB**(8D0/3D0))+(4D0*RA*RB)/(RA+RB+cad*(RA+RB)**(2D0/3D0))))
endif
endif
end

View File

@ -37,7 +37,9 @@ double precision function ec_scan(rho_a,rho_b,tau,grad_rho_2)
gama = 0.031091d0
! correlation energy lsda1
call ec_only_lda_sr(0.d0,nup,ndo,e_c_lsda1)
! correlation energy per particle
e_c_lsda1 = e_c_lsda1/rho
xi = spin_d/rho
rs = (cst_43 * pi * rho)**(-cst_13)
s = drho/( 2.d0 * cst_3pi2**(cst_13) * rho**cst_43 )
@ -61,7 +63,12 @@ double precision function ec_scan(rho_a,rho_b,tau,grad_rho_2)
g_at2 = 1.d0/(1.d0 + 4.d0 * a*t*t)**0.25d0
h1 = gama * phi_3 * dlog(1.d0 + w_1 * (1.d0 - g_at2))
! interpolation function
fc_alpha = dexp(-c_1c * alpha * inv_1alph) * step_f(cst_1alph) - d_c * dexp(c_2c * inv_1alph) * step_f(-cst_1alph)
if(cst_1alph.gt.0.d0)then
fc_alpha = dexp(-c_1c * alpha * inv_1alph)
else
fc_alpha = - d_c * dexp(c_2c * inv_1alph)
endif
! first part of the correlation energy
e_c_1 = e_c_lsda1 + h1
@ -82,15 +89,6 @@ double precision function ec_scan(rho_a,rho_b,tau,grad_rho_2)
ec_scan = e_c_1 + fc_alpha * (e_c_0 - e_c_1)
end
double precision function step_f(x)
implicit none
double precision, intent(in) :: x
if(x.lt.0.d0)then
step_f = 0.d0
else
step_f = 1.d0
endif
end
double precision function beta_rs(rs)
implicit none
@ -98,3 +96,4 @@ double precision function beta_rs(rs)
beta_rs = 0.066725d0 * (1.d0 + 0.1d0 * rs)/(1.d0 + 0.1778d0 * rs)
end

View File

@ -0,0 +1,100 @@
double precision function ec_scan(rho_a,rho_b,tau,grad_rho_2)
include 'constants.include.F'
implicit none
double precision, intent(in) :: rho_a,rho_b,tau,grad_rho_2
double precision :: cst_13,cst_23,cst_43,cst_53,rho_inv,cst_18,cst_3pi2
double precision :: thr,nup,ndo,xi,s,spin_d,drho,drho2,rho,inv_1alph,e_c_lsda1,h0
double precision :: rs,t_w,t_unif,ds_xi,alpha,fc_alpha,step_f,cst_1alph,beta_inf
double precision :: c_1c,c_2c,d_c,e_c_ldsa1,h1,phi,t,beta_rs,gama,a,w_1,g_at2,phi_3,e_c_1
double precision :: b_1c,b_2c,b_3c,dx_xi,gc_xi,e_c_lsda0,w_0,g_inf,cx_xi,x_inf,f0,e_c_0
thr = 1.d-12
nup = max(rho_a,thr)
ndo = max(rho_b,thr)
rho = nup + ndo
ec_scan = 0.d0
if((rho).lt.thr)return
! constants ...
rho_inv = 1.d0/rho
cst_13 = 1.d0/3.d0
cst_23 = 2.d0 * cst_13
cst_43 = 4.d0 * cst_13
cst_53 = 5.d0 * cst_13
cst_18 = 1.d0/8.d0
cst_3pi2 = 3.d0 * pi*pi
drho2 = max(grad_rho_2,thr)
drho = dsqrt(drho2)
if((nup-ndo).gt.0.d0)then
spin_d = max(nup-ndo,thr)
else
spin_d = min(nup-ndo,-thr)
endif
c_1c = 0.64d0
c_2c = 1.5d0
d_c = 0.7d0
b_1c = 0.0285764d0
b_2c = 0.0889d0
b_3c = 0.125541d0
gama = 0.031091d0
! correlation energy lsda1
call ec_only_lda_sr(0.d0,nup,ndo,e_c_lsda1)
xi = spin_d/rho
rs = (cst_43 * pi * rho)**(-cst_13)
s = drho/( 2.d0 * cst_3pi2**(cst_13) * rho**cst_43 )
t_w = drho2 * cst_18 * rho_inv
ds_xi = 0.5d0 * ( (1.d0+xi)**cst_53 + (1.d0 - xi)**cst_53)
t_unif = 0.3d0 * (cst_3pi2)**cst_23 * rho**cst_53*ds_xi
t_unif = max(t_unif,thr)
alpha = (tau - t_w)/t_unif
cst_1alph= 1.d0 - alpha
if(cst_1alph.gt.0.d0)then
cst_1alph= max(cst_1alph,thr)
else
cst_1alph= min(cst_1alph,-thr)
endif
inv_1alph= 1.d0/cst_1alph
phi = 0.5d0 * ( (1.d0+xi)**cst_23 + (1.d0 - xi)**cst_23)
phi_3 = phi*phi*phi
t = (cst_3pi2/16.d0)**cst_13 * s / (phi * rs**0.5d0)
w_1 = dexp(-e_c_lsda1/(gama * phi_3)) - 1.d0
a = beta_rs(rs) /(gama * w_1)
g_at2 = 1.d0/(1.d0 + 4.d0 * a*t*t)**0.25d0
h1 = gama * phi_3 * dlog(1.d0 + w_1 * (1.d0 - g_at2))
! interpolation function
fc_alpha = dexp(-c_1c * alpha * inv_1alph) * step_f(cst_1alph) - d_c * dexp(c_2c * inv_1alph) * step_f(-cst_1alph)
! first part of the correlation energy
e_c_1 = e_c_lsda1 + h1
dx_xi = 0.5d0 * ( (1.d0+xi)**cst_43 + (1.d0 - xi)**cst_43)
gc_xi = (1.d0 - 2.3631d0 * (dx_xi - 1.d0) ) * (1.d0 - xi**12.d0)
e_c_lsda0= - b_1c / (1.d0 + b_2c * rs**0.5d0 + b_3c * rs)
w_0 = dexp(-e_c_lsda0/b_1c) - 1.d0
beta_inf = 0.066725d0 * 0.1d0 / 0.1778d0
cx_xi = -3.d0/(4.d0*pi) * (9.d0 * pi/4.d0)**cst_13 * dx_xi
x_inf = 0.128026d0
f0 = -0.9d0
g_inf = 1.d0/(1.d0 + 4.d0 * x_inf * s*s)**0.25d0
h0 = b_1c * dlog(1.d0 + w_0 * (1.d0 - g_inf))
e_c_0 = (e_c_lsda0 + h0) * gc_xi
ec_scan = e_c_1 + fc_alpha * (e_c_0 - e_c_1)
end
double precision function step_f(x)
implicit none
double precision, intent(in) :: x
if(x.lt.0.d0)then
step_f = 0.d0
else
step_f = 1.d0
endif
end
double precision function beta_rs(rs)
implicit none
double precision, intent(in) ::rs
beta_rs = 0.066725d0 * (1.d0 + 0.1d0 * rs)/(1.d0 + 0.1778d0 * rs)
end

View File

@ -24,6 +24,11 @@ function run {
}
@test "B-B" {
qp set_file b2_stretched.ezfio
run b2_stretched.zmt 1 0 6-31g
}
@test "C2H2" {
run c2h2.xyz 1 0 cc-pvdz_ecp_bfd bfd
}

View File

@ -22,7 +22,7 @@ function run_stoch() {
thresh=$2
test_exe fci || skip
qp set perturbation do_pt2 True
qp set determinants n_det_max 100000
qp set determinants n_det_max $3
qp set determinants n_states 1
qp set davidson threshold_davidson 1.e-10
qp set davidson n_states_diag 1
@ -31,137 +31,143 @@ function run_stoch() {
eq $energy1 $1 $thresh
}
@test "B-B" {
qp set_file b2_stretched.ezfio
qp set determinants n_det_max 10000
qp set_frozen_core
run_stoch -49.14103054419 3.e-4 10000
}
@test "F2" { # 4.07m
[[ -n $TRAVIS ]] && skip
qp set_file f2.ezfio
qp set_frozen_core
run_stoch -199.30486 1.e-4
run_stoch -199.304922384814 3.e-4 100000
}
@test "NH3" { # 10.6657s
qp set_file nh3.ezfio
qp set_mo_class --core="[1-4]" --act="[5-72]"
run -56.244753429144986 1.e-4
run -56.244753429144986 3.e-4 100000
}
@test "DHNO" { # 11.4721s
qp set_file dhno.ezfio
qp set_mo_class --core="[1-7]" --act="[8-64]"
run -130.459020029816 1.e-4
run -130.459020029816 3.e-4 100000
}
@test "HCO" { # 12.2868s
qp set_file hco.ezfio
run -113.297494345682 1.e-4
run -113.297931671897 3.e-4 100000
}
@test "H2O2" { # 12.9214s
qp set_file h2o2.ezfio
qp set_mo_class --core="[1-2]" --act="[3-24]" --del="[25-38]"
run -151.00477 1.e-4
run -151.00467 1.e-4 100000
}
@test "HBO" { # 13.3144s
[[ -n $TRAVIS ]] && skip
qp set_file hbo.ezfio
run -100.212829869715 1.e-4
run -100.212721540746 1.e-3 100000
}
@test "H2O" { # 11.3727s
[[ -n $TRAVIS ]] && skip
qp set_file h2o.ezfio
run -76.2359268957699 1.e-4
run -76.2361605151999 3.e-4 100000
}
@test "ClO" { # 13.3755s
[[ -n $TRAVIS ]] && skip
qp set_file clo.ezfio
run -534.545881614967 1.e-4
run -534.545616787223 3.e-4 100000
}
@test "SO" { # 13.4952s
[[ -n $TRAVIS ]] && skip
qp set_file so.ezfio
run -26.0158153138924 1.e-4
run -26.0060656855457 1.e-3 100000
}
@test "H2S" { # 13.6745s
[[ -n $TRAVIS ]] && skip
qp set_file h2s.ezfio
run -398.859168655255 1.e-4
run -398.859168655255 3.e-4 100000
}
@test "OH" { # 13.865s
[[ -n $TRAVIS ]] && skip
qp set_file oh.ezfio
run -75.6120779012574 1.e-4
run -75.6121856748294 3.e-4 100000
}
@test "SiH2_3B1" { # 13.938ss
[[ -n $TRAVIS ]] && skip
qp set_file sih2_3b1.ezfio
run -290.017539006762 1.e-4
run -290.017539006762 3.e-4 100000
}
@test "H3COH" { # 14.7299s
[[ -n $TRAVIS ]] && skip
qp set_file h3coh.ezfio
run -115.205941463667 1.e-4
run -115.205191406072 3.e-4 100000
}
@test "SiH3" { # 15.99s
[[ -n $TRAVIS ]] && skip
qp set_file sih3.ezfio
run -5.57241217753818 1.e-4
run -5.57241217753818 3.e-4 100000
}
@test "CH4" { # 16.1612s
[[ -n $TRAVIS ]] && skip
qp set_file ch4.ezfio
qp set_mo_class --core="[1]" --act="[2-30]" --del="[31-59]"
run -40.2409678239136 1.e-4
run -40.2409678239136 3.e-4 100000
}
@test "ClF" { # 16.8864s
[[ -n $TRAVIS ]] && skip
qp set_file clf.ezfio
run -559.170272077166 1.e-4
run -559.1702772994 3.e-4 100000
}
@test "SO2" { # 17.5645s
[[ -n $TRAVIS ]] && skip
qp set_file so2.ezfio
qp set_mo_class --core="[1-8]" --act="[9-87]"
run -41.5746738713298 1.e-4
run -41.5746738713298 3.e-4 100000
}
@test "C2H2" { # 17.6827s
[[ -n $TRAVIS ]] && skip
qp set_file c2h2.ezfio
qp set_mo_class --act="[1-30]" --del="[31-36]"
run -12.3656179738175 1.e-4
run -12.3671816782954 3.e-4 100000
}
@test "N2" { # 18.0198s
[[ -n $TRAVIS ]] && skip
qp set_file n2.ezfio
qp set_mo_class --core="[1,2]" --act="[3-40]" --del="[41-60]"
run -109.291600196629 1.e-4
run -109.291711886659 3.e-4 100000
}
@test "N2H4" { # 18.5006s
[[ -n $TRAVIS ]] && skip
qp set_file n2h4.ezfio
qp set_mo_class --core="[1-2]" --act="[3-24]" --del="[25-48]"
run -111.367332681559 1.e-4
run -111.367332681559 3.e-4 100000
}
@test "CO2" { # 21.1748s
[[ -n $TRAVIS ]] && skip
qp set_file co2.ezfio
qp set_mo_class --core="[1,2]" --act="[3-30]" --del="[31-42]"
run -187.968599504402 1.e-4
run -187.96924172901 3.e-4 100000
}
@ -169,13 +175,13 @@ function run_stoch() {
[[ -n $TRAVIS ]] && skip
qp set_file cu_nh3_4_2plus.ezfio
qp set_mo_class --core="[1-24]" --act="[25-45]" --del="[46-87]"
run -1862.98614665139 1.e-04
run -1862.98614665139 3.e-04 100000
}
@test "HCN" { # 20.3273s
[[ -n $TRAVIS ]] && skip
qp set_file hcn.ezfio
qp set_mo_class --core="[1,2]" --act="[3-40]" --del="[41-55]"
run -93.0728641601823 1.e-4
run -93.0803416322765 3.e-4 100000
}

View File

@ -1,10 +1,12 @@
BEGIN_PROVIDER [ logical, do_only_1h1p ]
&BEGIN_PROVIDER [ logical, do_only_cas ]
&BEGIN_PROVIDER [ logical, do_ddci ]
implicit none
BEGIN_DOC
! In the FCI case, all those are always false
END_DOC
do_only_1h1p = .False.
do_only_cas = .False.
do_ddci = .False.
END_PROVIDER

View File

@ -55,6 +55,7 @@ END_PROVIDER
nongen(inongen) = i
endif
enddo
ASSERT (m == N_det_generators)
psi_det_sorted_gen(:,:,:N_det_generators) = psi_det_generators(:,:,:N_det_generators)
psi_coef_sorted_gen(:N_det_generators, :) = psi_coef_generators(:N_det_generators, :)

View File

@ -17,6 +17,10 @@ function run() {
}
@test "B-B" { # 3s
run b2_stretched.ezfio -48.9950585752809
}
@test "SiH2_3B1" { # 0.539000 1.51094s
run sih2_3b1.ezfio -289.9654718650881
}

View File

@ -21,7 +21,6 @@ function run() {
eq $energy $3 $thresh
}
@test "H3COH" {
run h3coh.ezfio sr_pbe -115.50238225208
}

View File

@ -23,7 +23,7 @@ size: (mo_basis.mo_num)
[mo_class]
type: MO_class
doc: [ Core | Inactive | Active | Virtual | Deleted ], as defined by :ref:`qp_set_mo_class`
interface: ezfio, provider
interface: ezfio
size: (mo_basis.mo_num)
[ao_md5]

View File

@ -0,0 +1,40 @@
! DO NOT MODIFY BY HAND
! Created by $QP_ROOT/scripts/ezfio_interface/ei_handler.py
! from file /home/eginer/programs/qp2/src/mo_basis/EZFIO.cfg
BEGIN_PROVIDER [ character*(32), mo_class , (mo_num) ]
implicit none
BEGIN_DOC
! [ Core | Inactive | Active | Virtual | Deleted ], as defined by :ref:`qp_set_mo_class`
END_DOC
logical :: has
PROVIDE ezfio_filename
if (mpi_master) then
if (size(mo_class) == 0) return
call ezfio_has_mo_basis_mo_class(has)
if (has) then
write(6,'(A)') '.. >>>>> [ IO READ: mo_class ] <<<<< ..'
call ezfio_get_mo_basis_mo_class(mo_class)
else
mo_class(:) = 'Active'
endif
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( mo_class, (mo_num)*32, MPI_CHARACTER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_class with MPI'
endif
IRP_ENDIF
call write_time(6)
END_PROVIDER

View File

@ -91,7 +91,6 @@ BEGIN_PROVIDER [ double precision, mo_coef, (ao_num,mo_num) ]
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_coef_in_ao_ortho_basis, (ao_num, mo_num) ]

View File

@ -4,7 +4,6 @@ subroutine save_mos
integer :: i,j
call system('$QP_ROOT/scripts/save_current_mos.sh '//trim(ezfio_filename))
call ezfio_set_mo_basis_mo_num(mo_num)
call ezfio_set_mo_basis_mo_label(mo_label)
call ezfio_set_mo_basis_ao_md5(ao_md5)
@ -17,6 +16,29 @@ subroutine save_mos
enddo
call ezfio_set_mo_basis_mo_coef(buffer)
call ezfio_set_mo_basis_mo_occ(mo_occ)
call ezfio_set_mo_basis_mo_class(mo_class)
deallocate (buffer)
end
subroutine save_mos_no_occ
implicit none
double precision, allocatable :: buffer(:,:)
integer :: i,j
call system('$QP_ROOT/scripts/save_current_mos.sh '//trim(ezfio_filename))
!call ezfio_set_mo_basis_mo_num(mo_num)
!call ezfio_set_mo_basis_mo_label(mo_label)
!call ezfio_set_mo_basis_ao_md5(ao_md5)
allocate ( buffer(ao_num,mo_num) )
buffer = 0.d0
do j = 1, mo_num
do i = 1, ao_num
buffer(i,j) = mo_coef(i,j)
enddo
enddo
call ezfio_set_mo_basis_mo_coef(buffer)
deallocate (buffer)
end
@ -40,6 +62,7 @@ subroutine save_mos_truncated(n)
enddo
call ezfio_set_mo_basis_mo_coef(buffer)
call ezfio_set_mo_basis_mo_occ(mo_occ)
call ezfio_set_mo_basis_mo_class(mo_class)
deallocate (buffer)
end
@ -217,3 +240,64 @@ subroutine mo_as_svd_vectors_of_mo_matrix_eig(matrix,lda,m,n,eig,label)
end
subroutine mo_coef_new_as_svd_vectors_of_mo_matrix_eig(matrix,lda,m,n,mo_coef_before,eig,mo_coef_new)
implicit none
BEGIN_DOC
! You enter with matrix in the MO basis defined with the mo_coef_before.
!
! You SVD the matrix and set the eigenvectors as mo_coef_new ordered by increasing singular values
END_DOC
integer,intent(in) :: lda,m,n
double precision, intent(in) :: matrix(lda,n),mo_coef_before(ao_num,m)
double precision, intent(out) :: eig(m),mo_coef_new(ao_num,m)
integer :: i,j
double precision :: accu
double precision, allocatable :: mo_coef_tmp(:,:), U(:,:),D(:), A(:,:), Vt(:,:), work(:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, Vt, A
call write_time(6)
if (m /= mo_num) then
print *, irp_here, ': Error : m/= mo_num'
stop 1
endif
allocate(A(lda,n),U(lda,n),D(m),Vt(lda,n),mo_coef_tmp(ao_num,mo_num))
do j=1,n
do i=1,m
A(i,j) = matrix(i,j)
enddo
enddo
mo_coef_tmp = mo_coef_before
call svd(A,lda,U,lda,D,Vt,lda,m,n)
write (6,'(A)') ''
write (6,'(A)') 'Eigenvalues'
write (6,'(A)') '-----------'
write (6,'(A)') ''
write (6,'(A)') '======== ================ ================'
write (6,'(A)') ' MO Eigenvalue Cumulative '
write (6,'(A)') '======== ================ ================'
accu = 0.d0
do i=1,m
accu = accu + D(i)
write (6,'(I8,1X,F16.10,1X,F16.10)') i,D(i), accu
enddo
write (6,'(A)') '======== ================ ================'
write (6,'(A)') ''
call dgemm('N','N',ao_num,m,m,1.d0,mo_coef_tmp,size(mo_coef_new,1),U,size(U,1),0.d0,mo_coef_new,size(mo_coef_new,1))
do i=1,m
eig(i) = D(i)
enddo
deallocate(A,U,Vt,D,mo_coef_tmp)
call write_time(6)
end

View File

@ -11,24 +11,3 @@ interface: ezfio,provider,ocaml
default: 1.e-15
ezfio_name: threshold_mo
[no_vvvv_integrals]
type: logical
doc: If `True`, computes all integrals except for the integrals having 4 virtual indices
interface: ezfio,provider,ocaml
default: False
ezfio_name: no_vvvv_integrals
[no_ivvv_integrals]
type: logical
doc: Can be switched on only if `no_vvvv_integrals` is `True`, then does not compute the integrals with 3 virtual indices and 1 belonging to the core inactive active orbitals
interface: ezfio,provider,ocaml
default: False
ezfio_name: no_ivvv_integrals
[no_vvv_integrals]
type: logical
doc: Can be switched on only if `no_vvvv_integrals` is `True`, then does not compute the integrals with 3 virtual orbitals
interface: ezfio,provider,ocaml
default: False
ezfio_name: no_vvv_integrals

View File

@ -0,0 +1,180 @@
BEGIN_PROVIDER [ logical, no_vvvv_integrals ]
implicit none
BEGIN_DOC
! If `True`, computes all integrals except for the integrals having 3 or 4 virtual indices
END_DOC
no_vvvv_integrals = .False.
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_coef_novirt, (ao_num,n_core_inact_act_orb) ]
implicit none
BEGIN_DOC
! MO coefficients without virtual MOs
END_DOC
integer :: j,jj
do j=1,n_core_inact_act_orb
jj = list_core_inact_act(j)
mo_coef_novirt(:,j) = mo_coef(:,jj)
enddo
END_PROVIDER
subroutine ao_to_mo_novirt(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
BEGIN_DOC
! Transform A from the |AO| basis to the |MO| basis excluding virtuals
!
! $C^\dagger.A_{ao}.C$
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
double precision, intent(in) :: A_ao(LDA_ao,ao_num)
double precision, intent(out) :: A_mo(LDA_mo,n_core_inact_act_orb)
double precision, allocatable :: T(:,:)
allocate ( T(ao_num,n_core_inact_act_orb) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call dgemm('N','N', ao_num, n_core_inact_act_orb, ao_num, &
1.d0, A_ao,LDA_ao, &
mo_coef_novirt, size(mo_coef_novirt,1), &
0.d0, T, size(T,1))
call dgemm('T','N', n_core_inact_act_orb, n_core_inact_act_orb, ao_num,&
1.d0, mo_coef_novirt,size(mo_coef_novirt,1), &
T, ao_num, &
0.d0, A_mo, size(A_mo,1))
deallocate(T)
end
subroutine four_idx_novvvv
use map_module
implicit none
BEGIN_DOC
! Retransform MO integrals for next CAS-SCF step
END_DOC
integer :: i,j,k,l,n_integrals
double precision, allocatable :: f(:,:,:), f2(:,:,:), d(:,:), T(:,:,:,:), T2(:,:,:,:)
double precision, external :: get_ao_two_e_integral
integer(key_kind), allocatable :: idx(:)
real(integral_kind), allocatable :: values(:)
integer :: p,q,r,s
double precision :: c
allocate( T(n_core_inact_act_orb,n_core_inact_act_orb,ao_num,ao_num) , &
T2(n_core_inact_act_orb,n_core_inact_act_orb,ao_num,ao_num) )
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(mo_num,ao_num,T,n_core_inact_act_orb, mo_coef_transp, &
!$OMP mo_integrals_threshold,mo_coef,mo_integrals_map, &
!$OMP list_core_inact_act,T2,ao_integrals_map) &
!$OMP PRIVATE(i,j,k,l,p,q,r,s,idx,values,n_integrals, &
!$OMP f,f2,d,c)
allocate(f(ao_num,ao_num,ao_num), f2(ao_num,ao_num,ao_num), d(mo_num,mo_num), &
idx(mo_num*mo_num), values(mo_num*mo_num) )
! <aa|vv>
!$OMP DO
do s=1,ao_num
do r=1,ao_num
do q=1,ao_num
do p=1,r
f (p,q,r) = get_ao_two_e_integral(p,q,r,s,ao_integrals_map)
f (r,q,p) = f(p,q,r)
enddo
enddo
enddo
do r=1,ao_num
do q=1,ao_num
do p=1,ao_num
f2(p,q,r) = f(p,r,q)
enddo
enddo
enddo
! f (p,q,r) = <pq|rs>
! f2(p,q,r) = <pr|qs>
do r=1,ao_num
call ao_to_mo_novirt(f (1,1,r),size(f ,1),T (1,1,r,s),size(T,1))
call ao_to_mo_novirt(f2(1,1,r),size(f2,1),T2(1,1,r,s),size(T,1))
enddo
! T (i,j,p,q) = <ij|rs>
! T2(i,j,p,q) = <ir|js>
enddo
!$OMP END DO
!$OMP DO
do j=1,n_core_inact_act_orb
do i=1,n_core_inact_act_orb
do s=1,ao_num
do r=1,ao_num
f (r,s,1) = T (i,j,r,s)
f2(r,s,1) = T2(i,j,r,s)
enddo
enddo
call ao_to_mo(f ,size(f ,1),d,size(d,1))
n_integrals = 0
do l=1,mo_num
do k=1,mo_num
n_integrals+=1
call two_e_integrals_index(list_core_inact_act(i),list_core_inact_act(j),k,l,idx(n_integrals))
values(n_integrals) = d(k,l)
enddo
enddo
call map_append(mo_integrals_map, idx, values, n_integrals)
call ao_to_mo(f2,size(f2,1),d,size(d,1))
n_integrals = 0
do l=1,mo_num
do k=1,mo_num
n_integrals+=1
call two_e_integrals_index(list_core_inact_act(i),k,list_core_inact_act(j),l,idx(n_integrals))
values(n_integrals) = d(k,l)
enddo
enddo
call map_append(mo_integrals_map, idx, values, n_integrals)
enddo
enddo
!$OMP END DO
deallocate(f,f2,d,idx,values)
!$OMP END PARALLEL
deallocate(T,T2)
call map_sort(mo_integrals_map)
call map_unique(mo_integrals_map)
call map_shrink(mo_integrals_map,real(mo_integrals_threshold,integral_kind))
end
subroutine four_idx_novvvv2
use bitmasks
implicit none
integer :: i
integer(bit_kind) :: mask_ijkl(N_int,4)
print*, '<ix|ix>'
do i = 1,N_int
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,2) = full_ijkl_bitmask_4(i,1)
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,4) = full_ijkl_bitmask_4(i,1)
enddo
call add_integrals_to_map(mask_ijkl)
print*, '<ii|vv>'
do i = 1,N_int
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,3) = virt_bitmask(i,1)
mask_ijkl(i,4) = virt_bitmask(i,1)
enddo
call add_integrals_to_map(mask_ijkl)
end

View File

@ -145,7 +145,6 @@ subroutine get_mo_two_e_integrals(j,k,l,sze,out_val,map)
type(map_type), intent(inout) :: map
integer :: i
double precision, external :: get_two_e_integral
PROVIDE mo_two_e_integrals_in_map mo_integrals_cache
integer :: ii, ii0
integer*8 :: ii_8, ii0_8
@ -154,6 +153,13 @@ subroutine get_mo_two_e_integrals(j,k,l,sze,out_val,map)
integer(key_kind) :: p,q,r,s,i2
PROVIDE mo_two_e_integrals_in_map mo_integrals_cache
!DEBUG
! do i=1,sze
! out_val(i) = get_two_e_integral(i,j,k,l,map)
! enddo
! return
!DEBUG
ii0 = l-mo_integrals_cache_min
ii0 = ior(ii0, k-mo_integrals_cache_min)
ii0 = ior(ii0, j-mo_integrals_cache_min)

View File

@ -22,16 +22,13 @@ end
BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
use map_module
implicit none
integer(bit_kind) :: mask_ijkl(N_int,4)
integer(bit_kind) :: mask_ijk(N_int,3)
BEGIN_DOC
! If True, the map of MO two-electron integrals is provided
END_DOC
integer(bit_kind) :: mask_ijkl(N_int,4)
integer(bit_kind) :: mask_ijk(N_int,3)
double precision :: cpu_1, cpu_2, wall_1, wall_2
! The following line avoids a subsequent crash when the memory used is more
! than half of the virtual memory, due to a fork in zcat when reading arrays
! with EZFIO
PROVIDE mo_class
mo_two_e_integrals_in_map = .True.
@ -49,106 +46,28 @@ BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
print *, '---------------------------------'
print *, ''
call wall_time(wall_1)
call cpu_time(cpu_1)
if(no_vvvv_integrals)then
integer :: i,j,k,l
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I I I !!!!!!!!!!!!!!!!!!!!
! (core+inact+act) ^ 4
! <ii|ii>
print*, ''
print*, '<ii|ii>'
do i = 1,N_int
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,4) = core_inact_act_bitmask_4(i,1)
enddo
call add_integrals_to_map(mask_ijkl)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I V V !!!!!!!!!!!!!!!!!!!!
! (core+inact+act) ^ 2 (virt) ^2
! <iv|iv> = J_iv
print*, ''
print*, '<iv|iv>'
do i = 1,N_int
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,2) = virt_bitmask(i,1)
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,4) = virt_bitmask(i,1)
enddo
call add_integrals_to_map(mask_ijkl)
! (core+inact+act) ^ 2 (virt) ^2
! <ii|vv> = (iv|iv)
print*, ''
print*, '<ii|vv>'
do i = 1,N_int
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,3) = virt_bitmask(i,1)
mask_ijkl(i,4) = virt_bitmask(i,1)
enddo
call add_integrals_to_map(mask_ijkl)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! V V V !!!!!!!!!!!!!!!!!!!!!!!
if(.not.no_vvv_integrals)then
print*, ''
print*, '<rv|sv> and <rv|vs>'
do i = 1,N_int
mask_ijk(i,1) = virt_bitmask(i,1)
mask_ijk(i,2) = virt_bitmask(i,1)
mask_ijk(i,3) = virt_bitmask(i,1)
enddo
call add_integrals_to_map_three_indices(mask_ijk)
endif
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I I V !!!!!!!!!!!!!!!!!!!!
! (core+inact+act) ^ 3 (virt) ^1
! <iv|ii>
print*, ''
print*, '<iv|ii>'
do i = 1,N_int
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,4) = virt_bitmask(i,1)
enddo
call add_integrals_to_map(mask_ijkl)
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I V V V !!!!!!!!!!!!!!!!!!!!
! (core+inact+act) ^ 1 (virt) ^3
! <iv|vv>
if(.not.no_ivvv_integrals)then
print*, ''
print*, '<iv|vv>'
do i = 1,N_int
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
mask_ijkl(i,2) = virt_bitmask(i,1)
mask_ijkl(i,3) = virt_bitmask(i,1)
mask_ijkl(i,4) = virt_bitmask(i,1)
enddo
call add_integrals_to_map_no_exit_34(mask_ijkl)
endif
call four_idx_novvvv
else
call add_integrals_to_map(full_ijkl_bitmask_4)
! call four_index_transform_zmq(ao_integrals_map,mo_integrals_map, &
! mo_coef, size(mo_coef,1), &
! 1, 1, 1, 1, ao_num, ao_num, ao_num, ao_num, &
! 1, 1, 1, 1, mo_num, mo_num, mo_num, mo_num)
!
! call four_index_transform_block(ao_integrals_map,mo_integrals_map, &
! mo_coef, size(mo_coef,1), &
! 1, 1, 1, 1, ao_num, ao_num, ao_num, ao_num, &
! 1, 1, 1, 1, mo_num, mo_num, mo_num, mo_num)
!
! call four_index_transform(ao_integrals_map,mo_integrals_map, &
! mo_coef, size(mo_coef,1), &
! 1, 1, 1, 1, ao_num, ao_num, ao_num, ao_num, &
! 1, 1, 1, 1, mo_num, mo_num, mo_num, mo_num)
integer*8 :: get_mo_map_size, mo_map_size
mo_map_size = get_mo_map_size()
print*,'Molecular integrals provided'
endif
call wall_time(wall_2)
call cpu_time(cpu_2)
integer*8 :: get_mo_map_size, mo_map_size
mo_map_size = get_mo_map_size()
double precision, external :: map_mb
print*,'Molecular integrals provided:'
print*,' Size of MO map ', map_mb(mo_integrals_map) ,'MB'
print*,' Number of MO integrals: ', mo_map_size
print*,' cpu time :',cpu_2 - cpu_1, 's'
print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')'
if (write_mo_two_e_integrals.and.mpi_master) then
call ezfio_set_work_empty(.False.)
call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints',mo_integrals_map)
@ -185,7 +104,7 @@ subroutine add_integrals_to_map(mask_ijkl)
integer :: size_buffer
integer(key_kind),allocatable :: buffer_i(:)
real(integral_kind),allocatable :: buffer_value(:)
double precision :: map_mb
double precision, external :: map_mb
integer :: i1,j1,k1,l1, ii1, kmax, thread_num
integer :: i2,i3,i4
@ -201,10 +120,6 @@ subroutine add_integrals_to_map(mask_ijkl)
call bitstring_to_list( mask_ijkl(1,2), list_ijkl(1,2), n_j, N_int )
call bitstring_to_list( mask_ijkl(1,3), list_ijkl(1,3), n_k, N_int )
call bitstring_to_list( mask_ijkl(1,4), list_ijkl(1,4), n_l, N_int )
character*(2048) :: output(1)
print *, 'i'
call bitstring_to_str( output(1), mask_ijkl(1,1), N_int )
print *, trim(output(1))
j = 0
do i = 1, N_int
j += popcnt(mask_ijkl(i,1))
@ -213,9 +128,6 @@ subroutine add_integrals_to_map(mask_ijkl)
return
endif
print*, 'j'
call bitstring_to_str( output(1), mask_ijkl(1,2), N_int )
print *, trim(output(1))
j = 0
do i = 1, N_int
j += popcnt(mask_ijkl(i,2))
@ -224,9 +136,6 @@ subroutine add_integrals_to_map(mask_ijkl)
return
endif
print*, 'k'
call bitstring_to_str( output(1), mask_ijkl(1,3), N_int )
print *, trim(output(1))
j = 0
do i = 1, N_int
j += popcnt(mask_ijkl(i,3))
@ -235,9 +144,6 @@ subroutine add_integrals_to_map(mask_ijkl)
return
endif
print*, 'l'
call bitstring_to_str( output(1), mask_ijkl(1,4), N_int )
print *, trim(output(1))
j = 0
do i = 1, N_int
j += popcnt(mask_ijkl(i,4))
@ -247,14 +153,12 @@ subroutine add_integrals_to_map(mask_ijkl)
endif
size_buffer = min(ao_num*ao_num*ao_num,16000000)
print*, 'Providing the molecular integrals '
print*, 'Buffers : ', 8.*(mo_num*(n_j)*(n_k+1) + mo_num+&
ao_num+ao_num*ao_num+ size_buffer*3)/(1024*1024), 'MB / core'
call wall_time(wall_1)
call cpu_time(cpu_1)
double precision :: accu_bis
accu_bis = 0.d0
call wall_time(wall_1)
!$OMP PARALLEL PRIVATE(l1,k1,j1,i1,i2,i3,i4,i,j,k,l,c, ii1,kmax, &
!$OMP two_e_tmp_0_idx, two_e_tmp_0, two_e_tmp_1,two_e_tmp_2,two_e_tmp_3,&
@ -452,12 +356,6 @@ subroutine add_integrals_to_map(mask_ijkl)
deallocate(list_ijkl)
print*,'Molecular integrals provided:'
print*,' Size of MO map ', map_mb(mo_integrals_map) ,'MB'
print*,' Number of MO integrals: ', mo_map_size
print*,' cpu time :',cpu_2 - cpu_1, 's'
print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')'
end
@ -504,10 +402,6 @@ subroutine add_integrals_to_map_three_indices(mask_ijk)
call bitstring_to_list( mask_ijk(1,1), list_ijkl(1,1), n_i, N_int )
call bitstring_to_list( mask_ijk(1,2), list_ijkl(1,2), n_j, N_int )
call bitstring_to_list( mask_ijk(1,3), list_ijkl(1,3), n_k, N_int )
character*(2048) :: output(1)
print*, 'i'
call bitstring_to_str( output(1), mask_ijk(1,1), N_int )
print *, trim(output(1))
j = 0
do i = 1, N_int
j += popcnt(mask_ijk(i,1))
@ -516,9 +410,6 @@ subroutine add_integrals_to_map_three_indices(mask_ijk)
return
endif
print*, 'j'
call bitstring_to_str( output(1), mask_ijk(1,2), N_int )
print *, trim(output(1))
j = 0
do i = 1, N_int
j += popcnt(mask_ijk(i,2))
@ -527,9 +418,6 @@ subroutine add_integrals_to_map_three_indices(mask_ijk)
return
endif
print*, 'k'
call bitstring_to_str( output(1), mask_ijk(1,3), N_int )
print *, trim(output(1))
j = 0
do i = 1, N_int
j += popcnt(mask_ijk(i,3))

View File

@ -50,7 +50,58 @@ BEGIN_PROVIDER [ double precision, slater_bragg_radii, (0:100)]
slater_bragg_radii(33) = 1.15d0
slater_bragg_radii(34) = 1.15d0
slater_bragg_radii(35) = 1.15d0
slater_bragg_radii(36) = 1.15d0
slater_bragg_radii(36) = 1.10d0
slater_bragg_radii(37) = 2.35d0
slater_bragg_radii(38) = 2.00d0
slater_bragg_radii(39) = 1.80d0
slater_bragg_radii(40) = 1.55d0
slater_bragg_radii(41) = 1.45d0
slater_bragg_radii(42) = 1.45d0
slater_bragg_radii(43) = 1.35d0
slater_bragg_radii(44) = 1.30d0
slater_bragg_radii(45) = 1.35d0
slater_bragg_radii(46) = 1.40d0
slater_bragg_radii(47) = 1.60d0
slater_bragg_radii(48) = 1.55d0
slater_bragg_radii(49) = 1.55d0
slater_bragg_radii(50) = 1.45d0
slater_bragg_radii(51) = 1.45d0
slater_bragg_radii(52) = 1.40d0
slater_bragg_radii(53) = 1.40d0
slater_bragg_radii(54) = 1.40d0
slater_bragg_radii(55) = 2.60d0
slater_bragg_radii(56) = 2.15d0
slater_bragg_radii(57) = 1.95d0
slater_bragg_radii(58) = 1.85d0
slater_bragg_radii(59) = 1.85d0
slater_bragg_radii(60) = 1.85d0
slater_bragg_radii(61) = 1.85d0
slater_bragg_radii(62) = 1.85d0
slater_bragg_radii(63) = 1.85d0
slater_bragg_radii(64) = 1.80d0
slater_bragg_radii(65) = 1.75d0
slater_bragg_radii(66) = 1.75d0
slater_bragg_radii(67) = 1.75d0
slater_bragg_radii(68) = 1.75d0
slater_bragg_radii(69) = 1.75d0
slater_bragg_radii(70) = 1.75d0
slater_bragg_radii(71) = 1.75d0
slater_bragg_radii(72) = 1.55d0
slater_bragg_radii(73) = 1.45d0
slater_bragg_radii(74) = 1.35d0
slater_bragg_radii(75) = 1.30d0
slater_bragg_radii(76) = 1.30d0
slater_bragg_radii(77) = 1.35d0
slater_bragg_radii(78) = 1.35d0
slater_bragg_radii(79) = 1.35d0
slater_bragg_radii(80) = 1.50d0
slater_bragg_radii(81) = 1.90d0
slater_bragg_radii(82) = 1.75d0
slater_bragg_radii(83) = 1.60d0
slater_bragg_radii(84) = 1.90d0
slater_bragg_radii(85) = 1.50d0
slater_bragg_radii(86) = 1.50d0
END_PROVIDER

View File

@ -38,35 +38,18 @@ END_PROVIDER
END_DOC
integer :: i,k
! if (threshold_selectors == 1.d0) then
!
! do i=1,N_det_selectors
! do k=1,N_int
! psi_selectors(k,1,i) = psi_det(k,1,i)
! psi_selectors(k,2,i) = psi_det(k,2,i)
! enddo
! enddo
! do k=1,N_states
! do i=1,N_det_selectors
! psi_selectors_coef(i,k) = psi_coef(i,k)
! enddo
! enddo
!
! else
do i=1,N_det_selectors
do k=1,N_int
psi_selectors(k,1,i) = psi_det_sorted(k,1,i)
psi_selectors(k,2,i) = psi_det_sorted(k,2,i)
enddo
enddo
do k=1,N_states
do i=1,N_det_selectors
do k=1,N_int
psi_selectors(k,1,i) = psi_det_sorted(k,1,i)
psi_selectors(k,2,i) = psi_det_sorted(k,2,i)
enddo
enddo
do k=1,N_states
do i=1,N_det_selectors
psi_selectors_coef(i,k) = psi_coef_sorted(i,k)
enddo
psi_selectors_coef(i,k) = psi_coef_sorted(i,k)
enddo
enddo
! endif
END_PROVIDER

View File

@ -6,6 +6,7 @@ program molden
character*(128) :: output
integer :: i_unit_output,getUnitAndOpen
integer :: i,j,k,l
double precision, parameter :: a0 = 0.529177249d0
PROVIDE ezfio_filename
@ -22,7 +23,7 @@ program molden
trim(element_name(int(nucl_charge(i)))), &
i, &
int(nucl_charge(i)), &
nucl_coord(i,1), nucl_coord(i,2), nucl_coord(i,3)
nucl_coord(i,1)*a0, nucl_coord(i,2)*a0, nucl_coord(i,3)*a0
enddo
write(i_unit_output,'(A)') '[GTO]'

View File

@ -14,7 +14,7 @@ program print_wf
! this has to be done in order to be sure that N_det, psi_det and
! psi_coef are the wave function stored in the |EZFIO| directory.
! psi_coef_sorted are the wave function stored in the |EZFIO| directory.
read_wf = .True.
touch read_wf
call routine
@ -45,15 +45,15 @@ subroutine routine
do i = 1, min(N_det_print_wf,N_det)
print*,''
print*,'i = ',i
call debug_det(psi_det(1,1,i),N_int)
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,1),degree,N_int)
call debug_det(psi_det_sorted(1,1,i),N_int)
call get_excitation_degree(psi_det_sorted(1,1,i),psi_det_sorted(1,1,1),degree,N_int)
print*,'degree = ',degree
if(degree == 0)then
print*,'Reference determinant '
call i_H_j(psi_det(1,1,i),psi_det(1,1,i),N_int,h00)
else
call i_H_j(psi_det(1,1,i),psi_det(1,1,i),N_int,hii)
call i_H_j(psi_det(1,1,1),psi_det(1,1,i),N_int,hij)
call i_H_j(psi_det_sorted(1,1,i),psi_det_sorted(1,1,i),N_int,h00)
else if(degree .le. 2)then
call i_H_j(psi_det_sorted(1,1,i),psi_det_sorted(1,1,i),N_int,hii)
call i_H_j(psi_det_sorted(1,1,1),psi_det_sorted(1,1,i),N_int,hij)
delta_e = hii - h00
coef_1 = hij/(h00-hii)
if(hij.ne.0.d0)then
@ -65,25 +65,25 @@ subroutine routine
else
coef_2_2 = 0.d0
endif
call get_excitation(psi_det(1,1,1),psi_det(1,1,i),exc,degree,phase,N_int)
call get_excitation(psi_det_sorted(1,1,1),psi_det_sorted(1,1,i),exc,degree,phase,N_int)
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
print*,'phase = ',phase
if(degree == 1)then
print*,'s1',s1
print*,'h1,p1 = ',h1,p1
if(s1 == 1)then
norm_mono_a += dabs(psi_coef(i,1)/psi_coef(1,1))
norm_mono_a_2 += dabs(psi_coef(i,1)/psi_coef(1,1))**2
norm_mono_a += dabs(psi_coef_sorted(i,1)/psi_coef_sorted(1,1))
norm_mono_a_2 += dabs(psi_coef_sorted(i,1)/psi_coef_sorted(1,1))**2
norm_mono_a_pert += dabs(coef_1)
norm_mono_a_pert_2 += dabs(coef_1)**2
else
norm_mono_b += dabs(psi_coef(i,1)/psi_coef(1,1))
norm_mono_b_2 += dabs(psi_coef(i,1)/psi_coef(1,1))**2
norm_mono_b += dabs(psi_coef_sorted(i,1)/psi_coef_sorted(1,1))
norm_mono_b_2 += dabs(psi_coef_sorted(i,1)/psi_coef_sorted(1,1))**2
norm_mono_b_pert += dabs(coef_1)
norm_mono_b_pert_2 += dabs(coef_1)**2
endif
double precision :: hmono,hdouble
call i_H_j_verbose(psi_det(1,1,1),psi_det(1,1,i),N_int,hij,hmono,hdouble,phase)
call i_H_j_verbose(psi_det_sorted(1,1,1),psi_det_sorted(1,1,i),N_int,hij,hmono,hdouble,phase)
print*,'hmono = ',hmono
print*,'hdouble = ',hdouble
print*,'hmono+hdouble = ',hmono+hdouble
@ -99,9 +99,9 @@ subroutine routine
print*,'Delta E = ',h00-hii
print*,'coef pert (1) = ',coef_1
print*,'coef 2x2 = ',coef_2_2
print*,'Delta E_corr = ',psi_coef(i,1)/psi_coef(1,1) * hij
print*,'Delta E_corr = ',psi_coef_sorted(i,1)/psi_coef_sorted(1,1) * hij
endif
print*,'amplitude = ',psi_coef(i,1)/psi_coef(1,1)
print*,'amplitude = ',psi_coef_sorted(i,1)/psi_coef_sorted(1,1)
enddo

1
src/two_body_rdm/NEED Normal file
View File

@ -0,0 +1 @@
davidson_undressed

View File

@ -0,0 +1,8 @@
============
two_body_rdm
============
Contains the two rdms $\alpha\alpha$, $\beta\beta$ and $\alpha\beta$ stored as
arrays, with pysicists notation, consistent with the two-electron integrals in the
MO basis.

Some files were not shown because too many files have changed in this diff Show More