mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-21 11:03:29 +01:00
Merge branch 'master' into biblio
This commit is contained in:
commit
c2a6c99c4c
@ -1,8 +1,12 @@
|
||||
# Quantum Package 2.0
|
||||
# Quantum Package 2.1
|
||||
|
||||
<img src="https://raw.githubusercontent.com/QuantumPackage/qp2/master/data/qp2.png" width="250">
|
||||
|
||||
|
||||
[![DOI](https://zenodo.org/badge/167513335.svg)](https://zenodo.org/badge/latestdoi/167513335)
|
||||
|
||||
|
||||
|
||||
[*Quantum package 2.0: an open-source determinant-driven suite of programs*](https://pubs.acs.org/doi/10.1021/acs.jctc.9b00176)\
|
||||
Y. Garniron, K. Gasperich, T. Applencourt, A. Benali, A. Ferté, J. Paquier, B. Pradines, R. Assaraf, P. Reinhardt, J. Toulouse, P. Barbaresco, N. Renon, G. David, J. P. Malrieu, M. Véril, M. Caffarel, P. F. Loos, E. Giner and A. Scemama\
|
||||
[J. Chem. Theory Comput. 2019, 15, 6, 3591-3609](https://doi.org/10.1021/acs.jctc.9b00176)\
|
||||
|
41
TODO
41
TODO
@ -2,16 +2,8 @@
|
||||
|
||||
* Faire que le slave de Hartree-fock est le calcul des integrales AO en parallele
|
||||
|
||||
# Web/doc
|
||||
|
||||
* Creer une page web pas trop degueu et la mettre ici : http://lcpq.github.io/quantum_package
|
||||
|
||||
* Creer une page avec la liste de tous les exectuables
|
||||
|
||||
|
||||
# Exterieur
|
||||
|
||||
* Molden format : http://cheminf.cmbi.ru.nl/molden/molden_format.html : read+write. Thomas est dessus
|
||||
* Un module pour lire les integrales Moleculaires depuis un FCIDUMP
|
||||
* Un module pour lire des integrales Atomiques (voir module de Mimi pour lire les AO Slater)
|
||||
* Format Fchk (gaussian)
|
||||
@ -24,51 +16,22 @@
|
||||
|
||||
# User doc:
|
||||
|
||||
* Videos:
|
||||
+) RHF
|
||||
* Renvoyer a la doc des modules : c'est pour les programmeurs au depart!
|
||||
* Mettre le mp2 comme exercice
|
||||
|
||||
* Interfaces : molden/fcidump
|
||||
* Natural orbitals
|
||||
* Parameters for Hartree-Fock
|
||||
* Parameters for Davidson
|
||||
* Running in parallel
|
||||
|
||||
# Programmers doc:
|
||||
|
||||
* Example : Simple Hartree-Fock program from scratch
|
||||
* Examples : subroutine example_module
|
||||
|
||||
# enleverle psi_det_size for all complicated stuffs with dimension of psi_coef
|
||||
|
||||
# Config file for Cray
|
||||
|
||||
# EZFIO sans fork
|
||||
|
||||
Refaire les benchmarks
|
||||
|
||||
# Documentation de qpsh
|
||||
|
||||
# Documentation de /etc
|
||||
|
||||
# Toto
|
||||
Re-design de qp command
|
||||
|
||||
Doc: plugins et qp_plugins
|
||||
|
||||
Ajouter les symetries dans devel
|
||||
|
||||
<<<<<<< HEAD
|
||||
Compiler ezfio avec openmp
|
||||
|
||||
# Parallelize i_H_psi
|
||||
=======
|
||||
|
||||
# Parallelize i_H_psi
|
||||
<<<<<<< HEAD
|
||||
=======
|
||||
|
||||
|
||||
>>>>>>> minor_modifs
|
||||
IMPORTANT:
|
||||
|
||||
Davidson Diagonalization
|
||||
|
73
configure
vendored
73
configure
vendored
@ -3,11 +3,32 @@
|
||||
# Quantum Package configuration script
|
||||
#
|
||||
|
||||
unset CC
|
||||
unset CXX
|
||||
|
||||
TEMP=$(getopt -o c:i:h -l config:,install:,help -n $0 -- "$@") || exit 1
|
||||
eval set -- "$TEMP"
|
||||
|
||||
export QP_ROOT="$( cd "$(dirname "$0")" ; pwd -P )"
|
||||
echo "QP_ROOT="$QP_ROOT
|
||||
unset CC
|
||||
unset CCXX
|
||||
|
||||
# When updating version, update also etc files
|
||||
|
||||
BATS_URL="https://github.com/bats-core/bats-core/archive/v1.1.0.tar.gz"
|
||||
BUBBLE_URL="https://github.com/projectatomic/bubblewrap/releases/download/v0.3.3/bubblewrap-0.3.3.tar.xz"
|
||||
DOCOPT_URL="https://github.com/docopt/docopt/archive/0.6.2.tar.gz"
|
||||
EZFIO_URL="https://gitlab.com/scemama/EZFIO/-/archive/v1.6.1/EZFIO-v1.6.1.tar.gz"
|
||||
F77ZMQ_URL="https://github.com/scemama/f77_zmq/archive/v4.2.5.tar.gz"
|
||||
GMP_URL="ftp://ftp.gnu.org/gnu/gmp/gmp-6.1.2.tar.bz2"
|
||||
IRPF90_URL="https://gitlab.com/scemama/irpf90/-/archive/v1.7.6/irpf90-v1.7.6.tar.gz"
|
||||
LIBCAP_URL="https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git/snapshot/libcap-2.25.tar.gz"
|
||||
NINJA_URL="https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip"
|
||||
OCAML_URL="https://raw.githubusercontent.com/ocaml/opam/master/shell/install.sh"
|
||||
RESULTS_URL="https://gitlab.com/scemama/resultsFile/-/archive/master/resultsFile-master.tar.gz"
|
||||
ZEROMQ_URL="https://github.com/zeromq/libzmq/releases/download/v4.2.5/zeromq-4.2.5.tar.gz"
|
||||
ZLIB_URL="https://www.zlib.net/zlib-1.2.11.tar.gz"
|
||||
|
||||
|
||||
function help()
|
||||
@ -183,9 +204,7 @@ for PACKAGE in ${PACKAGES} ; do
|
||||
|
||||
if [[ ${PACKAGE} = ninja ]] ; then
|
||||
|
||||
download \
|
||||
"https://github.com/ninja-build/ninja/releases/download/v1.8.2/ninja-linux.zip" \
|
||||
"${QP_ROOT}"/external/ninja.zip
|
||||
download ${NINJA_URL} "${QP_ROOT}"/external/ninja.zip
|
||||
execute << EOF
|
||||
rm -f "\${QP_ROOT}"/bin/ninja
|
||||
unzip "\${QP_ROOT}"/external/ninja.zip -d "\${QP_ROOT}"/bin
|
||||
@ -194,9 +213,7 @@ EOF
|
||||
|
||||
elif [[ ${PACKAGE} = gmp ]] ; then
|
||||
|
||||
download \
|
||||
"ftp://ftp.gnu.org/gnu/gmp/gmp-6.1.2.tar.bz2" \
|
||||
"${QP_ROOT}"/external/gmp.tar.bz2
|
||||
download ${GMP_URL} "${QP_ROOT}"/external/gmp.tar.bz2
|
||||
execute << EOF
|
||||
cd "\${QP_ROOT}"/external
|
||||
tar --bzip2 --extract --file gmp.tar.bz2
|
||||
@ -208,9 +225,7 @@ EOF
|
||||
|
||||
elif [[ ${PACKAGE} = libcap ]] ; then
|
||||
|
||||
download \
|
||||
"https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git/snapshot/libcap-2.25.tar.gz" \
|
||||
"${QP_ROOT}"/external/libcap.tar.gz
|
||||
download ${LIBCAP_URL} "${QP_ROOT}"/external/libcap.tar.gz
|
||||
execute << EOF
|
||||
cd "\${QP_ROOT}"/external
|
||||
tar --gunzip --extract --file libcap.tar.gz
|
||||
@ -221,9 +236,7 @@ EOF
|
||||
|
||||
elif [[ ${PACKAGE} = bwrap ]] ; then
|
||||
|
||||
download \
|
||||
"https://github.com/projectatomic/bubblewrap/releases/download/v0.3.3/bubblewrap-0.3.3.tar.xz" \
|
||||
"${QP_ROOT}"/external/bwrap.tar.xz
|
||||
download ${BUBBLE_URL} "${QP_ROOT}"/external/bwrap.tar.xz
|
||||
execute << EOF
|
||||
cd "\${QP_ROOT}"/external
|
||||
tar --xz --extract --file bwrap.tar.xz
|
||||
@ -236,9 +249,7 @@ EOF
|
||||
elif [[ ${PACKAGE} = irpf90 ]] ; then
|
||||
|
||||
# When changing version of irpf90, don't forget to update etc/irpf90.rc
|
||||
download \
|
||||
"https://gitlab.com/scemama/irpf90/-/archive/v1.7.5/irpf90-v1.7.5.tar.gz" \
|
||||
"${QP_ROOT}"/external/irpf90.tar.gz
|
||||
download ${IRPF90_URL} "${QP_ROOT}"/external/irpf90.tar.gz
|
||||
execute << EOF
|
||||
cd "\${QP_ROOT}"/external
|
||||
tar --gunzip --extract --file irpf90.tar.gz
|
||||
@ -250,9 +261,7 @@ EOF
|
||||
|
||||
elif [[ ${PACKAGE} = zeromq ]] ; then
|
||||
|
||||
download \
|
||||
"https://github.com/zeromq/libzmq/releases/download/v4.2.5/zeromq-4.2.5.tar.gz" \
|
||||
"${QP_ROOT}"/external/zeromq.tar.gz
|
||||
download ${ZEROMQ_URL} "${QP_ROOT}"/external/zeromq.tar.gz
|
||||
execute << EOF
|
||||
cd "\${QP_ROOT}"/external
|
||||
tar --gunzip --extract --file zeromq.tar.gz
|
||||
@ -266,9 +275,7 @@ EOF
|
||||
|
||||
elif [[ ${PACKAGE} = f77zmq ]] ; then
|
||||
|
||||
download \
|
||||
"https://github.com/scemama/f77_zmq/archive/v4.2.5.tar.gz" \
|
||||
"${QP_ROOT}"/external/f77_zmq.tar.gz
|
||||
download ${F77ZMQ_URL} "${QP_ROOT}"/external/f77_zmq.tar.gz
|
||||
execute << EOF
|
||||
cd "\${QP_ROOT}"/external
|
||||
tar --gunzip --extract --file f77_zmq.tar.gz
|
||||
@ -284,9 +291,7 @@ EOF
|
||||
|
||||
elif [[ ${PACKAGE} = ocaml ]] ; then
|
||||
|
||||
download \
|
||||
"https://raw.githubusercontent.com/ocaml/opam/master/shell/install.sh" \
|
||||
"${QP_ROOT}"/external/opam_installer.sh
|
||||
download ${OCAML_URL} "${QP_ROOT}"/external/opam_installer.sh
|
||||
|
||||
if [[ -n ${TRAVIS} ]] ; then
|
||||
# Special commands for Travis CI
|
||||
@ -338,9 +343,7 @@ EOF
|
||||
|
||||
elif [[ ${PACKAGE} = ezfio ]] ; then
|
||||
|
||||
download \
|
||||
"https://gitlab.com/scemama/EZFIO/-/archive/v1.4.0/EZFIO-v1.4.0.tar.gz" \
|
||||
"${QP_ROOT}"/external/ezfio.tar.gz
|
||||
download ${EZFIO_URL} "${QP_ROOT}"/external/ezfio.tar.gz
|
||||
execute << EOF
|
||||
cd "\${QP_ROOT}"/external
|
||||
tar --gunzip --extract --file ezfio.tar.gz
|
||||
@ -351,9 +354,7 @@ EOF
|
||||
|
||||
elif [[ ${PACKAGE} = zlib ]] ; then
|
||||
|
||||
download \
|
||||
"https://www.zlib.net/zlib-1.2.11.tar.gz" \
|
||||
"${QP_ROOT}"/external/zlib.tar.gz
|
||||
download ${ZLIB_URL} "${QP_ROOT}"/external/zlib.tar.gz
|
||||
execute << EOF
|
||||
cd "\${QP_ROOT}"/external
|
||||
tar --gunzip --extract --file zlib.tar.gz
|
||||
@ -366,9 +367,7 @@ EOF
|
||||
|
||||
elif [[ ${PACKAGE} = docopt ]] ; then
|
||||
|
||||
download \
|
||||
"https://github.com/docopt/docopt/archive/0.6.2.tar.gz" \
|
||||
"${QP_ROOT}"/external/docopt.tar.gz
|
||||
download ${DOCOPT_URL} "${QP_ROOT}"/external/docopt.tar.gz
|
||||
execute << EOF
|
||||
cd "\${QP_ROOT}"/external
|
||||
tar --gunzip --extract --file docopt.tar.gz
|
||||
@ -379,9 +378,7 @@ EOF
|
||||
|
||||
elif [[ ${PACKAGE} = resultsFile ]] ; then
|
||||
|
||||
download \
|
||||
"https://gitlab.com/scemama/resultsFile/-/archive/master/resultsFile-master.tar.gz" \
|
||||
"${QP_ROOT}"/external/resultsFile.tar.gz
|
||||
download ${RESULTS_URL} "${QP_ROOT}"/external/resultsFile.tar.gz
|
||||
execute << EOF
|
||||
cd "\${QP_ROOT}"/external
|
||||
tar --gunzip --extract --file resultsFile.tar.gz
|
||||
@ -391,9 +388,7 @@ EOF
|
||||
|
||||
elif [[ ${PACKAGE} = bats ]] ; then
|
||||
|
||||
download \
|
||||
"https://github.com/bats-core/bats-core/archive/v1.1.0.tar.gz" \
|
||||
"${QP_ROOT}"/external/bats.tar.gz
|
||||
download ${BATS_URL} "${QP_ROOT}"/external/bats.tar.gz
|
||||
execute << EOF
|
||||
cd "\${QP_ROOT}"/external
|
||||
tar -zxf bats.tar.gz
|
||||
|
@ -92,52 +92,58 @@ F 1
|
||||
1 0.0816000 1.0000000
|
||||
|
||||
BERYLLIUM
|
||||
S 9
|
||||
1 6863.0000000 0.0002360
|
||||
2 1030.0000000 0.0018260
|
||||
3 234.7000000 0.0094520
|
||||
4 66.5600000 0.0379570
|
||||
5 21.6900000 0.1199650
|
||||
6 7.7340000 0.2821620
|
||||
7 2.9160000 0.4274040
|
||||
8 1.1300000 0.2662780
|
||||
9 0.1101000 -0.0072750
|
||||
S 9
|
||||
1 6863.0000000 -0.0000430
|
||||
2 1030.0000000 -0.0003330
|
||||
3 234.7000000 -0.0017360
|
||||
4 66.5600000 -0.0070120
|
||||
5 21.6900000 -0.0231260
|
||||
6 7.7340000 -0.0581380
|
||||
7 2.9160000 -0.1145560
|
||||
8 1.1300000 -0.1359080
|
||||
9 0.1101000 0.5774410
|
||||
S 11
|
||||
1 6.863000E+03 2.360000E-04
|
||||
2 1.030000E+03 1.826000E-03
|
||||
3 2.347000E+02 9.452000E-03
|
||||
4 6.656000E+01 3.795700E-02
|
||||
5 2.169000E+01 1.199650E-01
|
||||
6 7.734000E+00 2.821620E-01
|
||||
7 2.916000E+00 4.274040E-01
|
||||
8 1.130000E+00 2.662780E-01
|
||||
9 2.577000E-01 1.819300E-02
|
||||
10 1.101000E-01 -7.275000E-03
|
||||
11 4.409000E-02 1.903000E-03
|
||||
S 11
|
||||
1 6.863000E+03 -4.300000E-05
|
||||
2 1.030000E+03 -3.330000E-04
|
||||
3 2.347000E+02 -1.736000E-03
|
||||
4 6.656000E+01 -7.012000E-03
|
||||
5 2.169000E+01 -2.312600E-02
|
||||
6 7.734000E+00 -5.813800E-02
|
||||
7 2.916000E+00 -1.145560E-01
|
||||
8 1.130000E+00 -1.359080E-01
|
||||
9 2.577000E-01 2.280260E-01
|
||||
10 1.101000E-01 5.774410E-01
|
||||
11 4.409000E-02 3.178730E-01
|
||||
S 1
|
||||
1 0.2577000 1.0000000
|
||||
1 2.577000E-01 1.000000E+00
|
||||
S 1
|
||||
1 0.0440900 1.0000000
|
||||
1 4.409000E-02 1.000000E+00
|
||||
S 1
|
||||
1 0.0150300 1.0000000
|
||||
P 3
|
||||
1 7.4360000 0.0107360
|
||||
2 1.5770000 0.0628540
|
||||
3 0.4352000 0.2481800
|
||||
1 1.470000E-02 1.000000E+00
|
||||
P 5
|
||||
1 7.436000E+00 1.073600E-02
|
||||
2 1.577000E+00 6.285400E-02
|
||||
3 4.352000E-01 2.481800E-01
|
||||
4 1.438000E-01 5.236990E-01
|
||||
5 4.994000E-02 3.534250E-01
|
||||
P 1
|
||||
1 0.1438000 1.0000000
|
||||
1 1.438000E-01 1.000000E+00
|
||||
P 1
|
||||
1 0.0499400 1.0000000
|
||||
1 4.994000E-02 1.000000E+00
|
||||
P 1
|
||||
1 0.0070600 1.0000000
|
||||
1 9.300000E-03 1.000000E+00
|
||||
D 1
|
||||
1 0.3480000 1.0000000
|
||||
1 3.493000E-01 1.000000E+00
|
||||
D 1
|
||||
1 0.1803000 1.0000000
|
||||
1 1.724000E-01 1.000000E+00
|
||||
D 1
|
||||
1 0.0654000 1.0000000
|
||||
1 5.880000E-02 1.000000E+00
|
||||
F 1
|
||||
1 0.3250000 1.0000000
|
||||
1 3.423000E-01 1.0000000
|
||||
F 1
|
||||
1 0.1533000 1.0000000
|
||||
1 1.188000E-01 1.000000E+00
|
||||
|
||||
BORON
|
||||
S 8
|
||||
|
@ -1,4 +1,14 @@
|
||||
%%% ARXIV TO BE UPDATED %%%
|
||||
@article{Loos2019Oct,
|
||||
author = {Loos, Pierre-François and Pradines, Barthélémy and Scemama, Anthony and Giner, Emmanuel and Toulouse, Julien},
|
||||
title = {{A Density-Based Basis-Set Incompleteness Correction for GW Methods}},
|
||||
journal = {arXiv},
|
||||
year = {2019},
|
||||
month = {Oct},
|
||||
eprint = {1910.12238},
|
||||
url = {https://arxiv.org/abs/1910.12238}
|
||||
}
|
||||
|
||||
@article{Hollett2019Aug,
|
||||
author = {Hollett, Joshua W. and Loos, Pierre-Fran{\c{c}}ois},
|
||||
title = {{Capturing static and dynamic correlation with $\Delta \text{NO}$-MP2 and $\Delta \text{NO}$-CCSD}},
|
||||
|
@ -1,7 +1,7 @@
|
||||
# Configuration of IRPF90 package
|
||||
|
||||
# Set the path of IRPF90 here:
|
||||
export IRPF90_PATH=${QP_ROOT}/external/irpf90-v1.7.5
|
||||
export IRPF90_PATH=${QP_ROOT}/external/irpf90-v1.7.6
|
||||
export PATH=${PATH}:${IRPF90_PATH}/bin
|
||||
|
||||
export IRPF90=${IRPF90_PATH}/bin/irpf90
|
||||
|
@ -6,10 +6,6 @@ module Bitmasks : sig
|
||||
type t =
|
||||
{ n_int : N_int_number.t;
|
||||
bit_kind : Bit_kind.t;
|
||||
n_mask_gen : Bitmask_number.t;
|
||||
generators : int64 array;
|
||||
n_mask_cas : Bitmask_number.t;
|
||||
cas : int64 array;
|
||||
} [@@deriving sexp]
|
||||
;;
|
||||
val read : unit -> t option
|
||||
@ -18,12 +14,7 @@ end = struct
|
||||
type t =
|
||||
{ n_int : N_int_number.t;
|
||||
bit_kind : Bit_kind.t;
|
||||
n_mask_gen : Bitmask_number.t;
|
||||
generators : int64 array;
|
||||
n_mask_cas : Bitmask_number.t;
|
||||
cas : int64 array;
|
||||
} [@@deriving sexp]
|
||||
;;
|
||||
|
||||
let get_default = Qpackage.get_ezfio_default "bitmasks";;
|
||||
|
||||
@ -36,7 +27,6 @@ end = struct
|
||||
;
|
||||
Ezfio.get_bitmasks_n_int ()
|
||||
|> N_int_number.of_int
|
||||
;;
|
||||
|
||||
let read_bit_kind () =
|
||||
if not (Ezfio.has_bitmasks_bit_kind ()) then
|
||||
@ -46,89 +36,12 @@ end = struct
|
||||
;
|
||||
Ezfio.get_bitmasks_bit_kind ()
|
||||
|> Bit_kind.of_int
|
||||
;;
|
||||
|
||||
let read_n_mask_gen () =
|
||||
if not (Ezfio.has_bitmasks_n_mask_gen ()) then
|
||||
Ezfio.set_bitmasks_n_mask_gen 1
|
||||
;
|
||||
Ezfio.get_bitmasks_n_mask_gen ()
|
||||
|> Bitmask_number.of_int
|
||||
;;
|
||||
|
||||
|
||||
let full_mask n_int =
|
||||
let range = "[1-"^
|
||||
(string_of_int (Ezfio.get_mo_basis_mo_num ()))^"]"
|
||||
in
|
||||
MO_class.create_active range
|
||||
|> MO_class.to_bitlist n_int
|
||||
;;
|
||||
|
||||
let read_generators () =
|
||||
if not (Ezfio.has_bitmasks_generators ()) then
|
||||
begin
|
||||
let n_int =
|
||||
read_n_int ()
|
||||
in
|
||||
let act =
|
||||
full_mask n_int
|
||||
in
|
||||
let result = [ act ; act ; act ; act ; act ; act ]
|
||||
|> List.map (fun x ->
|
||||
let y = Bitlist.to_int64_list x in y@y )
|
||||
|> List.concat
|
||||
in
|
||||
let generators = Ezfio.ezfio_array_of_list ~rank:4
|
||||
~dim:([| (N_int_number.to_int n_int) ; 2; 6; 1|]) ~data:result
|
||||
in
|
||||
Ezfio.set_bitmasks_generators generators
|
||||
end;
|
||||
Ezfio.get_bitmasks_generators ()
|
||||
|> Ezfio.flattened_ezfio
|
||||
;;
|
||||
|
||||
let read_n_mask_cas () =
|
||||
if not (Ezfio.has_bitmasks_n_mask_cas ()) then
|
||||
Ezfio.set_bitmasks_n_mask_cas 1
|
||||
;
|
||||
Ezfio.get_bitmasks_n_mask_cas ()
|
||||
|> Bitmask_number.of_int
|
||||
;;
|
||||
|
||||
|
||||
let read_cas () =
|
||||
if not (Ezfio.has_bitmasks_cas ()) then
|
||||
begin
|
||||
let n_int =
|
||||
read_n_int ()
|
||||
in
|
||||
let act =
|
||||
full_mask n_int
|
||||
in
|
||||
let result = [ act ; act ]
|
||||
|> List.map (fun x ->
|
||||
let y = Bitlist.to_int64_list x in y@y )
|
||||
|> List.concat
|
||||
in
|
||||
let cas = Ezfio.ezfio_array_of_list ~rank:3
|
||||
~dim:([| (N_int_number.to_int n_int) ; 2; 1|]) ~data:result
|
||||
in
|
||||
Ezfio.set_bitmasks_cas cas
|
||||
end;
|
||||
Ezfio.get_bitmasks_cas ()
|
||||
|> Ezfio.flattened_ezfio
|
||||
;;
|
||||
|
||||
let read () =
|
||||
if (Ezfio.has_mo_basis_mo_num ()) then
|
||||
Some
|
||||
{ n_int = read_n_int ();
|
||||
bit_kind = read_bit_kind ();
|
||||
n_mask_gen = read_n_mask_gen ();
|
||||
generators = read_generators ();
|
||||
n_mask_cas = read_n_mask_cas ();
|
||||
cas = read_cas ();
|
||||
}
|
||||
else
|
||||
None
|
||||
@ -138,21 +51,9 @@ end = struct
|
||||
Printf.sprintf "
|
||||
n_int = %s
|
||||
bit_kind = %s
|
||||
n_mask_gen = %s
|
||||
generators = %s
|
||||
n_mask_cas = %s
|
||||
cas = %s
|
||||
"
|
||||
(N_int_number.to_string b.n_int)
|
||||
(Bit_kind.to_string b.bit_kind)
|
||||
(Bitmask_number.to_string b.n_mask_gen)
|
||||
(Array.to_list b.generators
|
||||
|> List.map (fun x-> Int64.to_string x)
|
||||
|> String.concat ", ")
|
||||
(Bitmask_number.to_string b.n_mask_cas)
|
||||
(Array.to_list b.cas
|
||||
|> List.map (fun x-> Int64.to_string x)
|
||||
|> String.concat ", ")
|
||||
end
|
||||
|
||||
|
||||
|
@ -15,7 +15,7 @@ module Determinants_by_hand : sig
|
||||
state_average_weight : Positive_float.t array;
|
||||
} [@@deriving sexp]
|
||||
val read : ?full:bool -> unit -> t option
|
||||
val write : t -> unit
|
||||
val write : ?force:bool -> t -> unit
|
||||
val to_string : t -> string
|
||||
val to_rst : t -> Rst_string.t
|
||||
val of_rst : Rst_string.t -> t option
|
||||
@ -318,22 +318,23 @@ end = struct
|
||||
None
|
||||
;;
|
||||
|
||||
let write { n_int ;
|
||||
bit_kind ;
|
||||
n_det ;
|
||||
n_det_qp_edit ;
|
||||
expected_s2 ;
|
||||
psi_coef ;
|
||||
psi_det ;
|
||||
n_states ;
|
||||
state_average_weight ;
|
||||
} =
|
||||
let write ?(force=false)
|
||||
{ n_int ;
|
||||
bit_kind ;
|
||||
n_det ;
|
||||
n_det_qp_edit ;
|
||||
expected_s2 ;
|
||||
psi_coef ;
|
||||
psi_det ;
|
||||
n_states ;
|
||||
state_average_weight ;
|
||||
} =
|
||||
write_n_int n_int ;
|
||||
write_bit_kind bit_kind;
|
||||
write_n_det n_det;
|
||||
write_n_states n_states;
|
||||
write_expected_s2 expected_s2;
|
||||
if n_det <= n_det_qp_edit then
|
||||
if force || (n_det <= n_det_qp_edit) then
|
||||
begin
|
||||
write_n_det_qp_edit n_det;
|
||||
write_psi_coef ~n_det:n_det ~n_states:n_states psi_coef ;
|
||||
@ -596,7 +597,7 @@ psi_det = %s
|
||||
let new_det =
|
||||
{ det with n_det = (Det_number.of_int n_det_new) }
|
||||
in
|
||||
write new_det
|
||||
write ~force:true new_det
|
||||
;;
|
||||
|
||||
let extract_state istate =
|
||||
@ -628,7 +629,7 @@ psi_det = %s
|
||||
let new_det =
|
||||
{ det with n_states = (States_number.of_int 1) }
|
||||
in
|
||||
write new_det
|
||||
write ~force:true new_det
|
||||
;;
|
||||
|
||||
let extract_states range =
|
||||
@ -665,6 +666,7 @@ psi_det = %s
|
||||
det.psi_coef.(!state_shift+i) <-
|
||||
det.psi_coef.(i+ishift)
|
||||
done
|
||||
; Printf.printf "OK\n%!" ;
|
||||
end;
|
||||
state_shift := !state_shift + n_det
|
||||
) sorted_list
|
||||
@ -672,7 +674,7 @@ psi_det = %s
|
||||
let new_det =
|
||||
{ det with n_states = (States_number.of_int @@ List.length sorted_list) }
|
||||
in
|
||||
write new_det
|
||||
write ~force:true new_det
|
||||
;;
|
||||
|
||||
end
|
||||
|
@ -175,7 +175,7 @@ nucl_coord = %s
|
||||
nucl_num
|
||||
) :: (
|
||||
List.init nucl_num (fun i->
|
||||
Printf.sprintf " %-3s %d %s"
|
||||
Printf.sprintf " %-3s %3d %s"
|
||||
(b.nucl_label.(i) |> Element.to_string)
|
||||
(b.nucl_charge.(i) |> Charge.to_int )
|
||||
(b.nucl_coord.(i) |> Point3d.to_string ~units:Units.Angstrom) )
|
||||
|
@ -80,7 +80,7 @@ git:
|
||||
./create_git_sha1.sh
|
||||
|
||||
${QP_EZFIO}/Ocaml/ezfio.ml:
|
||||
$(NINJA) -C ${QP_EZFIO}
|
||||
$(NINJA) -C ${QP_ROOT}/config ${QP_ROOT}/lib/libezfio_irp.a
|
||||
|
||||
qp_edit.ml: ../scripts/ezfio_interface/qp_edit_template
|
||||
|
||||
|
@ -106,96 +106,6 @@ let set ~core ~inact ~act ~virt ~del =
|
||||
MO_class.to_string virt |> print_endline ;
|
||||
MO_class.to_string del |> print_endline ;
|
||||
|
||||
(* Create masks *)
|
||||
let ia = Excitation.create_single inact act
|
||||
and aa = Excitation.create_single act act
|
||||
and av = Excitation.create_single act virt
|
||||
in
|
||||
let single_excitations = [ ia ; aa ; av ]
|
||||
|> List.map (fun z ->
|
||||
let open Excitation in
|
||||
match z with
|
||||
| Single (x,y) ->
|
||||
( MO_class.to_bitlist n_int (Hole.to_mo_class x),
|
||||
MO_class.to_bitlist n_int (Particle.to_mo_class y) )
|
||||
| Double _ -> assert false
|
||||
)
|
||||
|
||||
and double_excitations = [
|
||||
Excitation.double_of_singles ia ia ;
|
||||
Excitation.double_of_singles ia aa ;
|
||||
Excitation.double_of_singles ia av ;
|
||||
Excitation.double_of_singles aa aa ;
|
||||
Excitation.double_of_singles aa av ;
|
||||
Excitation.double_of_singles av av ]
|
||||
|> List.map (fun x ->
|
||||
let open Excitation in
|
||||
match x with
|
||||
| Single _ -> assert false
|
||||
| Double (x,y,z,t) ->
|
||||
( MO_class.to_bitlist n_int (Hole.to_mo_class x),
|
||||
MO_class.to_bitlist n_int (Particle.to_mo_class y) ,
|
||||
MO_class.to_bitlist n_int (Hole.to_mo_class z),
|
||||
MO_class.to_bitlist n_int (Particle.to_mo_class t) )
|
||||
)
|
||||
in
|
||||
|
||||
let extract_hole (h,_) = h
|
||||
and extract_particle (_,p) = p
|
||||
and extract_hole1 (h,_,_,_) = h
|
||||
and extract_particle1 (_,p,_,_) = p
|
||||
and extract_hole2 (_,_,h,_) = h
|
||||
and extract_particle2 (_,_,_,p) = p
|
||||
in
|
||||
let init = Bitlist.zero n_int in
|
||||
let result = [
|
||||
List.map extract_hole single_excitations
|
||||
|> List.fold_left Bitlist.or_operator init;
|
||||
List.map extract_particle single_excitations
|
||||
|> List.fold_left Bitlist.or_operator init;
|
||||
List.map extract_hole1 double_excitations
|
||||
|> List.fold_left Bitlist.or_operator init;
|
||||
List.map extract_particle1 double_excitations
|
||||
|> List.fold_left Bitlist.or_operator init;
|
||||
List.map extract_hole2 double_excitations
|
||||
|> List.fold_left Bitlist.or_operator init;
|
||||
List.map extract_particle2 double_excitations
|
||||
|> List.fold_left Bitlist.or_operator init;
|
||||
]
|
||||
in
|
||||
|
||||
(* Debug masks in output
|
||||
List.iter ~f:(fun x-> print_endline (Bitlist.to_string x)) result;
|
||||
*)
|
||||
|
||||
(* Write masks *)
|
||||
let result =
|
||||
List.map (fun x ->
|
||||
let y = Bitlist.to_int64_list x in y@y )
|
||||
result
|
||||
|> List.concat
|
||||
in
|
||||
|
||||
Ezfio.set_bitmasks_n_int (N_int_number.to_int n_int);
|
||||
Ezfio.set_bitmasks_bit_kind 8;
|
||||
Ezfio.set_bitmasks_n_mask_gen 1;
|
||||
Ezfio.ezfio_array_of_list ~rank:4 ~dim:([| (N_int_number.to_int n_int) ; 2; 6; 1|]) ~data:result
|
||||
|> Ezfio.set_bitmasks_generators ;
|
||||
|
||||
let result =
|
||||
let open Excitation in
|
||||
match aa with
|
||||
| Double _ -> assert false
|
||||
| Single (x,y) ->
|
||||
Bitlist.to_int64_list
|
||||
( MO_class.to_bitlist n_int ( Hole.to_mo_class x) ) @
|
||||
Bitlist.to_int64_list
|
||||
( MO_class.to_bitlist n_int (Particle.to_mo_class y) )
|
||||
in
|
||||
Ezfio.set_bitmasks_n_mask_cas 1;
|
||||
Ezfio.ezfio_array_of_list ~rank:3 ~dim:([| (N_int_number.to_int n_int) ; 2; 1|]) ~data:result
|
||||
|> Ezfio.set_bitmasks_cas;
|
||||
|
||||
let data =
|
||||
Array.to_list mo_class
|
||||
|> List.map (fun x -> match x with
|
||||
|
@ -10,7 +10,6 @@ let localport = 42379
|
||||
let in_time_sum = ref 1.e-9
|
||||
and in_size_sum = ref 0.
|
||||
|
||||
|
||||
let () =
|
||||
let open Command_line in
|
||||
begin
|
||||
|
@ -78,9 +78,6 @@ let input_data = "
|
||||
| _ -> raise (Invalid_argument \"Bit_kind should be (1|2|4|8).\")
|
||||
end;
|
||||
|
||||
* Bitmask_number : int
|
||||
assert (x > 0) ;
|
||||
|
||||
* MO_coef : float
|
||||
|
||||
* MO_occ : float
|
||||
|
@ -839,21 +839,6 @@ if __name__ == "__main__":
|
||||
l_module = d_binaries.keys()
|
||||
|
||||
|
||||
# ~#~#~#~#~#~#~#~#~#~#~#~#~#~#~ #
|
||||
# C h e c k _ c o h e r e n c y #
|
||||
# ~#~#~#~#~#~#~#~#~#~#~#~#~#~#~ #
|
||||
|
||||
for module in dict_root_path.values():
|
||||
|
||||
if module not in d_binaries:
|
||||
l_msg = ["{0} is a root module but does not contain a main file.",
|
||||
"- Create it in {0}",
|
||||
"- Or delete {0} `qp_module uninstall {0}`",
|
||||
"- Or install a module that needs {0} with a main "]
|
||||
|
||||
print "\n".join(l_msg).format(module.rel)
|
||||
sys.exit(1)
|
||||
|
||||
# ~#~#~#~#~#~#~#~#~#~#~#~ #
|
||||
# G l o b a l _ b u i l d #
|
||||
# ~#~#~#~#~#~#~#~#~#~#~#~ #
|
||||
|
@ -120,7 +120,7 @@ let set str s =
|
||||
match s with
|
||||
{write}
|
||||
| Electrons -> write Electrons.(of_rst, write) s
|
||||
| Determinants_by_hand -> write Determinants_by_hand.(of_rst, write) s
|
||||
| Determinants_by_hand -> write Determinants_by_hand.(of_rst, write ~force:false) s
|
||||
| Nuclei_by_hand -> write Nuclei_by_hand.(of_rst, write) s
|
||||
| Ao_basis -> () (* TODO *)
|
||||
| Mo_basis -> () (* TODO *)
|
||||
|
@ -64,7 +64,7 @@
|
||||
enddo
|
||||
|
||||
! Ga-Kr
|
||||
do i = 31, 36
|
||||
do i = 31, 100
|
||||
alpha_knowles(i) = 7.d0
|
||||
enddo
|
||||
|
||||
|
@ -3,28 +3,28 @@ integer function number_of_holes(key_in)
|
||||
BEGIN_DOC
|
||||
! Function that returns the number of holes in the inact space
|
||||
!
|
||||
! popcnt(
|
||||
! xor(
|
||||
! iand(
|
||||
! reunion_of_core_inact_bitmask(1,1),
|
||||
! xor(
|
||||
! key_in(1,1),
|
||||
! iand(
|
||||
! key_in(1,1),
|
||||
! cas_bitmask(1,1,1))
|
||||
! )
|
||||
! ),
|
||||
! reunion_of_core_inact_bitmask(1,1)) )
|
||||
!
|
||||
! (key_in && cas_bitmask)
|
||||
! +---------------------+
|
||||
! electrons in cas xor key_in
|
||||
! +---------------------------------+
|
||||
! electrons outside of cas && reunion_of_core_inact_bitmask
|
||||
! +------------------------------------------------------------------+
|
||||
! electrons in the core/inact space xor reunion_of_core_inact_bitmask
|
||||
! +---------------------------------------------------------------------------------+
|
||||
! holes
|
||||
! popcnt(
|
||||
! xor(
|
||||
! iand(
|
||||
! reunion_of_core_inact_bitmask(1,1),
|
||||
! xor(
|
||||
! key_in(1,1),
|
||||
! iand(
|
||||
! key_in(1,1),
|
||||
! act_bitmask(1,1))
|
||||
! )
|
||||
! ),
|
||||
! reunion_of_core_inact_bitmask(1,1)) )
|
||||
!
|
||||
! (key_in && act_bitmask)
|
||||
! +---------------------+
|
||||
! electrons in cas xor key_in
|
||||
! +---------------------------------+
|
||||
! electrons outside of cas && reunion_of_core_inact_bitmask
|
||||
! +------------------------------------------------------------------+
|
||||
! electrons in the core/inact space xor reunion_of_core_inact_bitmask
|
||||
! +---------------------------------------------------------------------------------+
|
||||
! holes
|
||||
END_DOC
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: key_in(N_int,2)
|
||||
@ -33,74 +33,32 @@ integer function number_of_holes(key_in)
|
||||
|
||||
if(N_int == 1)then
|
||||
number_of_holes = number_of_holes &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) )
|
||||
else if(N_int == 2)then
|
||||
number_of_holes = number_of_holes &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) )
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1)))), reunion_of_core_inact_bitmask(2,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2)))), reunion_of_core_inact_bitmask(2,2)) )
|
||||
else if(N_int == 3)then
|
||||
number_of_holes = number_of_holes &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) )
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1)))), reunion_of_core_inact_bitmask(2,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2)))), reunion_of_core_inact_bitmask(2,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1)))), reunion_of_core_inact_bitmask(3,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),act_bitmask(3,2)))), reunion_of_core_inact_bitmask(3,2)) )
|
||||
else if(N_int == 4)then
|
||||
number_of_holes = number_of_holes &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) )
|
||||
else if(N_int == 5)then
|
||||
number_of_holes = number_of_holes &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,1), xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1)))), reunion_of_core_inact_bitmask(5,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,2), xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1)))), reunion_of_core_inact_bitmask(5,2)) )
|
||||
else if(N_int == 6)then
|
||||
number_of_holes = number_of_holes &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,1), xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1)))), reunion_of_core_inact_bitmask(5,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,2), xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1)))), reunion_of_core_inact_bitmask(5,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,1), xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1)))), reunion_of_core_inact_bitmask(6,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,2), xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1)))), reunion_of_core_inact_bitmask(6,2)) )
|
||||
else if(N_int == 7)then
|
||||
number_of_holes = number_of_holes &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,1), xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1)))), reunion_of_core_inact_bitmask(5,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,2), xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1)))), reunion_of_core_inact_bitmask(5,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,1), xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1)))), reunion_of_core_inact_bitmask(6,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,2), xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1)))), reunion_of_core_inact_bitmask(6,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(7,1), xor(key_in(7,1),iand(key_in(7,1),cas_bitmask(7,1,1)))), reunion_of_core_inact_bitmask(7,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(7,2), xor(key_in(7,2),iand(key_in(7,2),cas_bitmask(7,2,1)))), reunion_of_core_inact_bitmask(7,2)) )
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1)))), reunion_of_core_inact_bitmask(2,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2)))), reunion_of_core_inact_bitmask(2,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1)))), reunion_of_core_inact_bitmask(3,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),act_bitmask(3,2)))), reunion_of_core_inact_bitmask(3,2)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),act_bitmask(4,1)))), reunion_of_core_inact_bitmask(4,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),act_bitmask(4,2)))), reunion_of_core_inact_bitmask(4,2)) )
|
||||
else
|
||||
do i = 1, N_int
|
||||
number_of_holes = number_of_holes &
|
||||
@ -111,11 +69,11 @@ integer function number_of_holes(key_in)
|
||||
xor( &
|
||||
key_in(i,1), & ! MOs of key_in not in the CAS
|
||||
iand( & ! MOs of key_in in the CAS
|
||||
key_in(i,1), cas_bitmask(i,1,1) &
|
||||
key_in(i,1), act_bitmask(i,1) &
|
||||
) &
|
||||
) &
|
||||
), reunion_of_core_inact_bitmask(i,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(i,2), xor(key_in(i,2),iand(key_in(i,2),cas_bitmask(i,2,1)))), reunion_of_core_inact_bitmask(i,2)) )
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(i,2), xor(key_in(i,2),iand(key_in(i,2),act_bitmask(i,2)))), reunion_of_core_inact_bitmask(i,2)) )
|
||||
enddo
|
||||
endif
|
||||
end
|
||||
@ -131,97 +89,37 @@ integer function number_of_particles(key_in)
|
||||
number_of_particles= 0
|
||||
if(N_int == 1)then
|
||||
number_of_particles= number_of_particles &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) )
|
||||
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) )) &
|
||||
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ))
|
||||
else if(N_int == 2)then
|
||||
number_of_particles= number_of_particles &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) )
|
||||
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) ) ) &
|
||||
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ) ) &
|
||||
+ popcnt( iand( xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1))), virt_bitmask(2,1) ) ) &
|
||||
+ popcnt( iand( xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2))), virt_bitmask(2,2) ) )
|
||||
else if(N_int == 3)then
|
||||
number_of_particles= number_of_particles &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) )
|
||||
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) )) &
|
||||
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) )) &
|
||||
+ popcnt( iand( xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1))), virt_bitmask(2,1) )) &
|
||||
+ popcnt( iand( xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2))), virt_bitmask(2,2) )) &
|
||||
+ popcnt( iand( xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1))), virt_bitmask(3,1) )) &
|
||||
+ popcnt( iand( xor(key_in(3,2),iand(key_in(3,2),act_bitmask(3,2))), virt_bitmask(3,2) ))
|
||||
else if(N_int == 4)then
|
||||
number_of_particles= number_of_particles &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) )
|
||||
else if(N_int == 5)then
|
||||
number_of_particles= number_of_particles &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) )
|
||||
else if(N_int == 6)then
|
||||
number_of_particles= number_of_particles &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1))), virt_bitmask(6,1) ), virt_bitmask(6,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1))), virt_bitmask(6,2) ), virt_bitmask(6,2)) )
|
||||
else if(N_int == 7)then
|
||||
number_of_particles= number_of_particles &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1))), virt_bitmask(6,1) ), virt_bitmask(6,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1))), virt_bitmask(6,2) ), virt_bitmask(6,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(7,1),iand(key_in(7,1),cas_bitmask(7,1,1))), virt_bitmask(7,1) ), virt_bitmask(7,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(7,2),iand(key_in(7,2),cas_bitmask(7,2,1))), virt_bitmask(7,2) ), virt_bitmask(7,2)) )
|
||||
else if(N_int == 8)then
|
||||
number_of_particles= number_of_particles &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1))), virt_bitmask(6,1) ), virt_bitmask(6,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1))), virt_bitmask(6,2) ), virt_bitmask(6,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(7,1),iand(key_in(7,1),cas_bitmask(7,1,1))), virt_bitmask(7,1) ), virt_bitmask(7,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(7,2),iand(key_in(7,2),cas_bitmask(7,2,1))), virt_bitmask(7,2) ), virt_bitmask(7,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(8,1),iand(key_in(8,1),cas_bitmask(8,1,1))), virt_bitmask(8,1) ), virt_bitmask(8,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(8,2),iand(key_in(8,2),cas_bitmask(8,2,1))), virt_bitmask(8,2) ), virt_bitmask(8,2)) )
|
||||
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) ) ) &
|
||||
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ) ) &
|
||||
+ popcnt( iand( xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1))), virt_bitmask(2,1) ) ) &
|
||||
+ popcnt( iand( xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2))), virt_bitmask(2,2) ) ) &
|
||||
+ popcnt( iand( xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1))), virt_bitmask(3,1) ) ) &
|
||||
+ popcnt( iand( xor(key_in(3,2),iand(key_in(3,2),act_bitmask(3,2))), virt_bitmask(3,2) ) ) &
|
||||
+ popcnt( iand( xor(key_in(4,1),iand(key_in(4,1),act_bitmask(4,1))), virt_bitmask(4,1) ) ) &
|
||||
+ popcnt( iand( xor(key_in(4,2),iand(key_in(4,2),act_bitmask(4,2))), virt_bitmask(4,2) ) )
|
||||
else
|
||||
do i = 1, N_int
|
||||
number_of_particles= number_of_particles &
|
||||
+ popcnt( iand( iand( xor(key_in(i,1),iand(key_in(i,1),cas_bitmask(i,1,1))), virt_bitmask(i,1) ), virt_bitmask(i,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(i,2),iand(key_in(i,2),cas_bitmask(i,2,1))), virt_bitmask(i,2) ), virt_bitmask(i,2)) )
|
||||
number_of_particles= number_of_particles &
|
||||
+ popcnt( iand( xor(key_in(i,1),iand(key_in(i,1),act_bitmask(i,1))), virt_bitmask(i,1) )) &
|
||||
+ popcnt( iand( xor(key_in(i,2),iand(key_in(i,2),act_bitmask(i,2))), virt_bitmask(i,2) ))
|
||||
enddo
|
||||
endif
|
||||
end
|
||||
@ -230,7 +128,7 @@ logical function is_a_two_holes_two_particles(key_in)
|
||||
BEGIN_DOC
|
||||
! logical function that returns True if the determinant 'key_in'
|
||||
! belongs to the 2h-2p excitation class of the DDCI space
|
||||
! this is calculated using the CAS_bitmask that defines the active
|
||||
! this is calculated using the act_bitmask that defines the active
|
||||
! orbital space, the inact_bitmasl that defines the inactive oribital space
|
||||
! and the virt_bitmask that defines the virtual orbital space
|
||||
END_DOC
|
||||
@ -246,174 +144,62 @@ logical function is_a_two_holes_two_particles(key_in)
|
||||
i_diff = 0
|
||||
if(N_int == 1)then
|
||||
i_diff = i_diff &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) )
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) ) ) &
|
||||
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ) )
|
||||
else if(N_int == 2)then
|
||||
i_diff = i_diff &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) )
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) ) ) &
|
||||
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2)))), reunion_of_core_inact_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1))), virt_bitmask(2,1) )) &
|
||||
+ popcnt( iand( xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2))), virt_bitmask(2,2) ))
|
||||
|
||||
else if(N_int == 3)then
|
||||
i_diff = i_diff &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) )
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) ) ) &
|
||||
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2)))), reunion_of_core_inact_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1))), virt_bitmask(2,1) ) ) &
|
||||
+ popcnt( iand( xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2))), virt_bitmask(2,2) ) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),act_bitmask(3,2)))), reunion_of_core_inact_bitmask(3,2)) ) &
|
||||
+ popcnt( iand( xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1))), virt_bitmask(3,1) ) ) &
|
||||
+ popcnt( iand( xor(key_in(3,2),iand(key_in(3,2),act_bitmask(3,2))), virt_bitmask(3,2) ) )
|
||||
else if(N_int == 4)then
|
||||
i_diff = i_diff &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) )
|
||||
else if(N_int == 5)then
|
||||
i_diff = i_diff &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,1), xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1)))), reunion_of_core_inact_bitmask(5,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,2), xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1)))), reunion_of_core_inact_bitmask(5,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) )
|
||||
else if(N_int == 6)then
|
||||
i_diff = i_diff &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,1), xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1)))), reunion_of_core_inact_bitmask(5,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,2), xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1)))), reunion_of_core_inact_bitmask(5,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,1), xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1)))), reunion_of_core_inact_bitmask(6,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,2), xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1)))), reunion_of_core_inact_bitmask(6,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1))), virt_bitmask(6,1) ), virt_bitmask(6,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1))), virt_bitmask(6,2) ), virt_bitmask(6,2)) )
|
||||
else if(N_int == 7)then
|
||||
i_diff = i_diff &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,1), xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1)))), reunion_of_core_inact_bitmask(5,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,2), xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1)))), reunion_of_core_inact_bitmask(5,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,1), xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1)))), reunion_of_core_inact_bitmask(6,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,2), xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1)))), reunion_of_core_inact_bitmask(6,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1))), virt_bitmask(6,1) ), virt_bitmask(6,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1))), virt_bitmask(6,2) ), virt_bitmask(6,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(7,1), xor(key_in(7,1),iand(key_in(7,1),cas_bitmask(7,1,1)))), reunion_of_core_inact_bitmask(7,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(7,2), xor(key_in(7,2),iand(key_in(7,2),cas_bitmask(7,2,1)))), reunion_of_core_inact_bitmask(7,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(7,1),iand(key_in(7,1),cas_bitmask(7,1,1))), virt_bitmask(7,1) ), virt_bitmask(7,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(7,2),iand(key_in(7,2),cas_bitmask(7,2,1))), virt_bitmask(7,2) ), virt_bitmask(7,2)) )
|
||||
else if(N_int == 8)then
|
||||
i_diff = i_diff &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1)))), reunion_of_core_inact_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,1),iand(key_in(2,1),cas_bitmask(2,1,1))), virt_bitmask(2,1) ), virt_bitmask(2,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(2,2),iand(key_in(2,2),cas_bitmask(2,2,1))), virt_bitmask(2,2) ), virt_bitmask(2,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1)))), reunion_of_core_inact_bitmask(3,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,1),iand(key_in(3,1),cas_bitmask(3,1,1))), virt_bitmask(3,1) ), virt_bitmask(3,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(3,2),iand(key_in(3,2),cas_bitmask(3,2,1))), virt_bitmask(3,2) ), virt_bitmask(3,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1)))), reunion_of_core_inact_bitmask(4,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1)))), reunion_of_core_inact_bitmask(4,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,1),iand(key_in(4,1),cas_bitmask(4,1,1))), virt_bitmask(4,1) ), virt_bitmask(4,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(4,2),iand(key_in(4,2),cas_bitmask(4,2,1))), virt_bitmask(4,2) ), virt_bitmask(4,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,1), xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1)))), reunion_of_core_inact_bitmask(5,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(5,2), xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1)))), reunion_of_core_inact_bitmask(5,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,1),iand(key_in(5,1),cas_bitmask(5,1,1))), virt_bitmask(5,1) ), virt_bitmask(5,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(5,2),iand(key_in(5,2),cas_bitmask(5,2,1))), virt_bitmask(5,2) ), virt_bitmask(5,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,1), xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1)))), reunion_of_core_inact_bitmask(6,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(6,2), xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1)))), reunion_of_core_inact_bitmask(6,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(6,1),iand(key_in(6,1),cas_bitmask(6,1,1))), virt_bitmask(6,1) ), virt_bitmask(6,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(6,2),iand(key_in(6,2),cas_bitmask(6,2,1))), virt_bitmask(6,2) ), virt_bitmask(6,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(7,1), xor(key_in(7,1),iand(key_in(7,1),cas_bitmask(7,1,1)))), reunion_of_core_inact_bitmask(7,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(7,2), xor(key_in(7,2),iand(key_in(7,2),cas_bitmask(7,2,1)))), reunion_of_core_inact_bitmask(7,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(7,1),iand(key_in(7,1),cas_bitmask(7,1,1))), virt_bitmask(7,1) ), virt_bitmask(7,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(7,2),iand(key_in(7,2),cas_bitmask(7,2,1))), virt_bitmask(7,2) ), virt_bitmask(7,2)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(8,1), xor(key_in(8,1),iand(key_in(8,1),cas_bitmask(8,1,1)))), reunion_of_core_inact_bitmask(8,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(8,2), xor(key_in(8,2),iand(key_in(8,2),cas_bitmask(8,2,1)))), reunion_of_core_inact_bitmask(8,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(8,1),iand(key_in(8,1),cas_bitmask(8,1,1))), virt_bitmask(8,1) ), virt_bitmask(8,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(8,2),iand(key_in(8,2),cas_bitmask(8,2,1))), virt_bitmask(8,2) ), virt_bitmask(8,2)) )
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) ) &
|
||||
+ popcnt( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) ) ) &
|
||||
+ popcnt( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,1), xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1)))), reunion_of_core_inact_bitmask(2,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(2,2), xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2)))), reunion_of_core_inact_bitmask(2,2)) ) &
|
||||
+ popcnt( iand( xor(key_in(2,1),iand(key_in(2,1),act_bitmask(2,1))), virt_bitmask(2,1) ) ) &
|
||||
+ popcnt( iand( xor(key_in(2,2),iand(key_in(2,2),act_bitmask(2,2))), virt_bitmask(2,2) ) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,1), xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1)))), reunion_of_core_inact_bitmask(3,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(3,2), xor(key_in(3,2),iand(key_in(3,2),act_bitmask(3,2)))), reunion_of_core_inact_bitmask(3,2)) ) &
|
||||
+ popcnt( iand( xor(key_in(3,1),iand(key_in(3,1),act_bitmask(3,1))), virt_bitmask(3,1) ) ) &
|
||||
+ popcnt( iand( xor(key_in(4,2),iand(key_in(3,2),act_bitmask(3,2))), virt_bitmask(3,2) ) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,1), xor(key_in(4,1),iand(key_in(4,1),act_bitmask(4,1)))), reunion_of_core_inact_bitmask(4,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(4,2), xor(key_in(4,2),iand(key_in(4,2),act_bitmask(4,2)))), reunion_of_core_inact_bitmask(4,2)) ) &
|
||||
+ popcnt( iand( xor(key_in(4,1),iand(key_in(4,1),act_bitmask(4,1))), virt_bitmask(4,1) ) ) &
|
||||
+ popcnt( iand( xor(key_in(4,2),iand(key_in(4,2),act_bitmask(4,2))), virt_bitmask(4,2) ) )
|
||||
|
||||
else
|
||||
|
||||
do i = 1, N_int
|
||||
i_diff = i_diff &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(i,1), xor(key_in(i,1),iand(key_in(i,1),cas_bitmask(i,1,1)))), reunion_of_core_inact_bitmask(i,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(i,2), xor(key_in(i,2),iand(key_in(i,2),cas_bitmask(i,2,1)))), reunion_of_core_inact_bitmask(i,2)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(i,1),iand(key_in(i,1),cas_bitmask(i,1,1))), virt_bitmask(i,1) ), virt_bitmask(i,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(i,2),iand(key_in(i,2),cas_bitmask(i,2,1))), virt_bitmask(i,2) ), virt_bitmask(i,2)) )
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(i,1), xor(key_in(i,1),iand(key_in(i,1),act_bitmask(i,1)))), reunion_of_core_inact_bitmask(i,1)) ) &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(i,2), xor(key_in(i,2),iand(key_in(i,2),act_bitmask(i,2)))), reunion_of_core_inact_bitmask(i,2)) ) &
|
||||
+ popcnt( iand( xor(key_in(i,1),iand(key_in(i,1),act_bitmask(i,1))), virt_bitmask(i,1) )) &
|
||||
+ popcnt( iand( xor(key_in(i,2),iand(key_in(i,2),act_bitmask(i,2))), virt_bitmask(i,2) ))
|
||||
enddo
|
||||
endif
|
||||
is_a_two_holes_two_particles = (i_diff >3)
|
||||
@ -434,8 +220,8 @@ integer function number_of_holes_verbose(key_in)
|
||||
print*,'jey_in = '
|
||||
call debug_det(key_in,N_int)
|
||||
number_of_holes_verbose = 0
|
||||
key_tmp(1,1) = xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))
|
||||
key_tmp(1,2) = xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,1,1)))
|
||||
key_tmp(1,1) = xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))
|
||||
key_tmp(1,2) = xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,1)))
|
||||
call debug_det(key_tmp,N_int)
|
||||
key_tmp(1,1) = iand(key_tmp(1,1),reunion_of_core_inact_bitmask(1,1))
|
||||
key_tmp(1,2) = iand(key_tmp(1,2),reunion_of_core_inact_bitmask(1,2))
|
||||
@ -446,8 +232,8 @@ integer function number_of_holes_verbose(key_in)
|
||||
! number_of_holes_verbose = number_of_holes_verbose + popcnt(key_tmp(1,1)) &
|
||||
! + popcnt(key_tmp(1,2))
|
||||
number_of_holes_verbose = number_of_holes_verbose &
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1)))), reunion_of_core_inact_bitmask(1,2)) )
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,1), xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1)))), reunion_of_core_inact_bitmask(1,1)) )&
|
||||
+ popcnt( xor( iand(reunion_of_core_inact_bitmask(1,2), xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2)))), reunion_of_core_inact_bitmask(1,2)) )
|
||||
print*,'----------------------'
|
||||
end
|
||||
|
||||
@ -464,8 +250,8 @@ integer function number_of_particles_verbose(key_in)
|
||||
print*,'jey_in = '
|
||||
call debug_det(key_in,N_int)
|
||||
number_of_particles_verbose = 0
|
||||
key_tmp(1,1) = xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,1,1)))
|
||||
key_tmp(1,2) = xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,1,1)))
|
||||
key_tmp(1,1) = xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,1)))
|
||||
key_tmp(1,2) = xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,1)))
|
||||
call debug_det(key_tmp,N_int)
|
||||
key_tmp(1,1) = iand(key_tmp(1,2),virt_bitmask(1,2))
|
||||
key_tmp(1,2) = iand(key_tmp(1,2),virt_bitmask(1,2))
|
||||
@ -476,18 +262,16 @@ integer function number_of_particles_verbose(key_in)
|
||||
! number_of_particles_verbose = number_of_particles_verbose + popcnt(key_tmp(1,1)) &
|
||||
! + popcnt(key_tmp(1,2))
|
||||
number_of_particles_verbose = number_of_particles_verbose &
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),cas_bitmask(1,1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),cas_bitmask(1,2,1))), virt_bitmask(1,2) ), virt_bitmask(1,2)) )
|
||||
+ popcnt( iand( iand( xor(key_in(1,1),iand(key_in(1,1),act_bitmask(1,1))), virt_bitmask(1,1) ), virt_bitmask(1,1)) ) &
|
||||
+ popcnt( iand( iand( xor(key_in(1,2),iand(key_in(1,2),act_bitmask(1,2))), virt_bitmask(1,2) ), virt_bitmask(1,2)) )
|
||||
end
|
||||
|
||||
logical function is_a_1h1p(key_in)
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: key_in(N_int,2)
|
||||
integer :: number_of_particles, number_of_holes
|
||||
is_a_1h1p = .False.
|
||||
if(number_of_holes(key_in).eq.1 .and. number_of_particles(key_in).eq.1)then
|
||||
is_a_1h1p = .True.
|
||||
endif
|
||||
|
||||
is_a_1h1p = (number_of_holes(key_in) == 1) .and. (number_of_particles(key_in) == 1)
|
||||
|
||||
end
|
||||
|
||||
@ -495,10 +279,8 @@ logical function is_a_1h2p(key_in)
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: key_in(N_int,2)
|
||||
integer :: number_of_particles, number_of_holes
|
||||
is_a_1h2p = .False.
|
||||
if(number_of_holes(key_in).eq.1 .and. number_of_particles(key_in).eq.2)then
|
||||
is_a_1h2p = .True.
|
||||
endif
|
||||
|
||||
is_a_1h2p = (number_of_holes(key_in) == 1) .and. (number_of_particles(key_in) == 2)
|
||||
|
||||
end
|
||||
|
||||
@ -506,10 +288,8 @@ logical function is_a_2h1p(key_in)
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: key_in(N_int,2)
|
||||
integer :: number_of_particles, number_of_holes
|
||||
is_a_2h1p = .False.
|
||||
if(number_of_holes(key_in).eq.2 .and. number_of_particles(key_in).eq.1)then
|
||||
is_a_2h1p = .True.
|
||||
endif
|
||||
|
||||
is_a_2h1p = (number_of_holes(key_in) == 2) .and. (number_of_particles(key_in) == 1)
|
||||
|
||||
end
|
||||
|
||||
@ -517,10 +297,8 @@ logical function is_a_1h(key_in)
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: key_in(N_int,2)
|
||||
integer :: number_of_particles, number_of_holes
|
||||
is_a_1h = .False.
|
||||
if(number_of_holes(key_in).eq.1 .and. number_of_particles(key_in).eq.0)then
|
||||
is_a_1h = .True.
|
||||
endif
|
||||
|
||||
is_a_1h = (number_of_holes(key_in) == 1) .and. (number_of_particles(key_in) == 0)
|
||||
|
||||
end
|
||||
|
||||
@ -528,10 +306,8 @@ logical function is_a_1p(key_in)
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: key_in(N_int,2)
|
||||
integer :: number_of_particles, number_of_holes
|
||||
is_a_1p = .False.
|
||||
if(number_of_holes(key_in).eq.0 .and. number_of_particles(key_in).eq.1)then
|
||||
is_a_1p = .True.
|
||||
endif
|
||||
|
||||
is_a_1p = (number_of_holes(key_in) == 0) .and. (number_of_particles(key_in) == 1)
|
||||
|
||||
end
|
||||
|
||||
@ -539,10 +315,8 @@ logical function is_a_2p(key_in)
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: key_in(N_int,2)
|
||||
integer :: number_of_particles, number_of_holes
|
||||
is_a_2p = .False.
|
||||
if(number_of_holes(key_in).eq.0 .and. number_of_particles(key_in).eq.2)then
|
||||
is_a_2p = .True.
|
||||
endif
|
||||
|
||||
is_a_2p = (number_of_holes(key_in) == 0) .and. (number_of_particles(key_in) == 2)
|
||||
|
||||
end
|
||||
|
||||
@ -550,10 +324,8 @@ logical function is_a_2h(key_in)
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: key_in(N_int,2)
|
||||
integer :: number_of_particles, number_of_holes
|
||||
is_a_2h = .False.
|
||||
if(number_of_holes(key_in).eq.2 .and. number_of_particles(key_in).eq.0)then
|
||||
is_a_2h = .True.
|
||||
endif
|
||||
|
||||
is_a_2h = (number_of_holes(key_in) == 2) .and. (number_of_particles(key_in) == 0)
|
||||
|
||||
end
|
||||
|
||||
|
@ -1,8 +1,4 @@
|
||||
bitmasks
|
||||
N_int integer
|
||||
bit_kind integer
|
||||
N_mask_gen integer
|
||||
generators integer*8 (bitmasks_N_int*bitmasks_bit_kind/8,2,6,bitmasks_N_mask_gen)
|
||||
N_mask_cas integer
|
||||
cas integer*8 (bitmasks_N_int*bitmasks_bit_kind/8,2,bitmasks_N_mask_cas)
|
||||
|
||||
|
@ -11,7 +11,7 @@ BEGIN_PROVIDER [ integer, N_int ]
|
||||
if (N_int > N_int_max) then
|
||||
stop 'N_int > N_int_max'
|
||||
endif
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
@ -20,7 +20,7 @@ BEGIN_PROVIDER [ integer(bit_kind), full_ijkl_bitmask, (N_int) ]
|
||||
BEGIN_DOC
|
||||
! Bitmask to include all possible MOs
|
||||
END_DOC
|
||||
|
||||
|
||||
integer :: i,j,k
|
||||
k=0
|
||||
do j=1,N_int
|
||||
@ -37,34 +37,34 @@ END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), full_ijkl_bitmask_4, (N_int,4) ]
|
||||
implicit none
|
||||
integer :: i
|
||||
integer :: i
|
||||
do i=1,N_int
|
||||
full_ijkl_bitmask_4(i,1) = full_ijkl_bitmask(i)
|
||||
full_ijkl_bitmask_4(i,2) = full_ijkl_bitmask(i)
|
||||
full_ijkl_bitmask_4(i,3) = full_ijkl_bitmask(i)
|
||||
full_ijkl_bitmask_4(i,4) = full_ijkl_bitmask(i)
|
||||
full_ijkl_bitmask_4(i,1) = full_ijkl_bitmask(i)
|
||||
full_ijkl_bitmask_4(i,2) = full_ijkl_bitmask(i)
|
||||
full_ijkl_bitmask_4(i,3) = full_ijkl_bitmask(i)
|
||||
full_ijkl_bitmask_4(i,4) = full_ijkl_bitmask(i)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), core_inact_act_bitmask_4, (N_int,4) ]
|
||||
implicit none
|
||||
integer :: i
|
||||
integer :: i
|
||||
do i=1,N_int
|
||||
core_inact_act_bitmask_4(i,1) = reunion_of_core_inact_act_bitmask(i,1)
|
||||
core_inact_act_bitmask_4(i,2) = reunion_of_core_inact_act_bitmask(i,1)
|
||||
core_inact_act_bitmask_4(i,3) = reunion_of_core_inact_act_bitmask(i,1)
|
||||
core_inact_act_bitmask_4(i,4) = reunion_of_core_inact_act_bitmask(i,1)
|
||||
core_inact_act_bitmask_4(i,1) = reunion_of_core_inact_act_bitmask(i,1)
|
||||
core_inact_act_bitmask_4(i,2) = reunion_of_core_inact_act_bitmask(i,1)
|
||||
core_inact_act_bitmask_4(i,3) = reunion_of_core_inact_act_bitmask(i,1)
|
||||
core_inact_act_bitmask_4(i,4) = reunion_of_core_inact_act_bitmask(i,1)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), virt_bitmask_4, (N_int,4) ]
|
||||
implicit none
|
||||
integer :: i
|
||||
integer :: i
|
||||
do i=1,N_int
|
||||
virt_bitmask_4(i,1) = virt_bitmask(i,1)
|
||||
virt_bitmask_4(i,2) = virt_bitmask(i,1)
|
||||
virt_bitmask_4(i,3) = virt_bitmask(i,1)
|
||||
virt_bitmask_4(i,4) = virt_bitmask(i,1)
|
||||
virt_bitmask_4(i,1) = virt_bitmask(i,1)
|
||||
virt_bitmask_4(i,2) = virt_bitmask(i,1)
|
||||
virt_bitmask_4(i,3) = virt_bitmask(i,1)
|
||||
virt_bitmask_4(i,4) = virt_bitmask(i,1)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
@ -78,491 +78,165 @@ BEGIN_PROVIDER [ integer(bit_kind), HF_bitmask, (N_int,2)]
|
||||
END_DOC
|
||||
integer :: i,j,n
|
||||
integer :: occ(elec_alpha_num)
|
||||
|
||||
|
||||
HF_bitmask = 0_bit_kind
|
||||
do i=1,elec_alpha_num
|
||||
occ(i) = i
|
||||
occ(i) = i
|
||||
enddo
|
||||
call list_to_bitstring( HF_bitmask(1,1), occ, elec_alpha_num, N_int)
|
||||
! elec_alpha_num <= elec_beta_num, so occ is already OK.
|
||||
call list_to_bitstring( HF_bitmask(1,2), occ, elec_beta_num, N_int)
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), ref_bitmask, (N_int,2)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Reference bit mask, used in Slater rules, chosen as Hartree-Fock bitmask
|
||||
END_DOC
|
||||
ref_bitmask = HF_bitmask
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, N_generators_bitmask ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of bitmasks for generators
|
||||
END_DOC
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename N_int
|
||||
|
||||
if (mpi_master) then
|
||||
call ezfio_has_bitmasks_N_mask_gen(exists)
|
||||
if (exists) then
|
||||
call ezfio_get_bitmasks_N_mask_gen(N_generators_bitmask)
|
||||
integer :: N_int_check
|
||||
integer :: bit_kind_check
|
||||
call ezfio_get_bitmasks_bit_kind(bit_kind_check)
|
||||
if (bit_kind_check /= bit_kind) then
|
||||
print *, bit_kind_check, bit_kind
|
||||
print *, 'Error: bit_kind is not correct in EZFIO file'
|
||||
endif
|
||||
call ezfio_get_bitmasks_N_int(N_int_check)
|
||||
if (N_int_check /= N_int) then
|
||||
print *, N_int_check, N_int
|
||||
print *, 'Error: N_int is not correct in EZFIO file'
|
||||
endif
|
||||
else
|
||||
N_generators_bitmask = 1
|
||||
endif
|
||||
ASSERT (N_generators_bitmask > 0)
|
||||
call write_int(6,N_generators_bitmask,'N_generators_bitmask')
|
||||
endif
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST( N_generators_bitmask, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read N_generators_bitmask with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, N_generators_bitmask_restart ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of bitmasks for generators
|
||||
END_DOC
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename N_int
|
||||
|
||||
if (mpi_master) then
|
||||
call ezfio_has_bitmasks_N_mask_gen(exists)
|
||||
if (exists) then
|
||||
call ezfio_get_bitmasks_N_mask_gen(N_generators_bitmask_restart)
|
||||
integer :: N_int_check
|
||||
integer :: bit_kind_check
|
||||
call ezfio_get_bitmasks_bit_kind(bit_kind_check)
|
||||
if (bit_kind_check /= bit_kind) then
|
||||
print *, bit_kind_check, bit_kind
|
||||
print *, 'Error: bit_kind is not correct in EZFIO file'
|
||||
endif
|
||||
call ezfio_get_bitmasks_N_int(N_int_check)
|
||||
if (N_int_check /= N_int) then
|
||||
print *, N_int_check, N_int
|
||||
print *, 'Error: N_int is not correct in EZFIO file'
|
||||
endif
|
||||
else
|
||||
N_generators_bitmask_restart = 1
|
||||
endif
|
||||
ASSERT (N_generators_bitmask_restart > 0)
|
||||
call write_int(6,N_generators_bitmask_restart,'N_generators_bitmask_restart')
|
||||
endif
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST( N_generators_bitmask_restart, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read N_generators_bitmask_restart with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Reference bit mask, used in Slater rules, chosen as Hartree-Fock bitmask
|
||||
END_DOC
|
||||
ref_bitmask = HF_bitmask
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), generators_bitmask_restart, (N_int,2,6,N_generators_bitmask_restart) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Bitmasks for generator determinants.
|
||||
! (N_int, alpha/beta, hole/particle, generator).
|
||||
!
|
||||
! 3rd index is :
|
||||
!
|
||||
! * 1 : hole for single exc
|
||||
!
|
||||
! * 2 : particle for single exc
|
||||
!
|
||||
! * 3 : hole for 1st exc of double
|
||||
!
|
||||
! * 4 : particle for 1st exc of double
|
||||
!
|
||||
! * 5 : hole for 2nd exc of double
|
||||
!
|
||||
! * 6 : particle for 2nd exc of double
|
||||
!
|
||||
END_DOC
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename full_ijkl_bitmask N_generators_bitmask N_int
|
||||
PROVIDE generators_bitmask_restart
|
||||
|
||||
if (mpi_master) then
|
||||
call ezfio_has_bitmasks_generators(exists)
|
||||
if (exists) then
|
||||
call ezfio_get_bitmasks_generators(generators_bitmask_restart)
|
||||
else
|
||||
integer :: k, ispin
|
||||
do k=1,N_generators_bitmask
|
||||
do ispin=1,2
|
||||
do i=1,N_int
|
||||
generators_bitmask_restart(i,ispin,s_hole ,k) = full_ijkl_bitmask(i)
|
||||
generators_bitmask_restart(i,ispin,s_part ,k) = full_ijkl_bitmask(i)
|
||||
generators_bitmask_restart(i,ispin,d_hole1,k) = full_ijkl_bitmask(i)
|
||||
generators_bitmask_restart(i,ispin,d_part1,k) = full_ijkl_bitmask(i)
|
||||
generators_bitmask_restart(i,ispin,d_hole2,k) = full_ijkl_bitmask(i)
|
||||
generators_bitmask_restart(i,ispin,d_part2,k) = full_ijkl_bitmask(i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
integer :: i
|
||||
do k=1,N_generators_bitmask
|
||||
do ispin=1,2
|
||||
BEGIN_PROVIDER [ integer(bit_kind), generators_bitmask, (N_int,2,6) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Bitmasks for generator determinants.
|
||||
! (N_int, alpha/beta, hole/particle, generator).
|
||||
!
|
||||
! 3rd index is :
|
||||
!
|
||||
! * 1 : hole for single exc
|
||||
!
|
||||
! * 2 : particle for single exc
|
||||
!
|
||||
! * 3 : hole for 1st exc of double
|
||||
!
|
||||
! * 4 : particle for 1st exc of double
|
||||
!
|
||||
! * 5 : hole for 2nd exc of double
|
||||
!
|
||||
! * 6 : particle for 2nd exc of double
|
||||
!
|
||||
END_DOC
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename full_ijkl_bitmask
|
||||
|
||||
integer :: ispin, i
|
||||
do ispin=1,2
|
||||
do i=1,N_int
|
||||
generators_bitmask_restart(i,ispin,s_hole ,k) = iand(full_ijkl_bitmask(i),generators_bitmask_restart(i,ispin,s_hole,k) )
|
||||
generators_bitmask_restart(i,ispin,s_part ,k) = iand(full_ijkl_bitmask(i),generators_bitmask_restart(i,ispin,s_part,k) )
|
||||
generators_bitmask_restart(i,ispin,d_hole1,k) = iand(full_ijkl_bitmask(i),generators_bitmask_restart(i,ispin,d_hole1,k) )
|
||||
generators_bitmask_restart(i,ispin,d_part1,k) = iand(full_ijkl_bitmask(i),generators_bitmask_restart(i,ispin,d_part1,k) )
|
||||
generators_bitmask_restart(i,ispin,d_hole2,k) = iand(full_ijkl_bitmask(i),generators_bitmask_restart(i,ispin,d_hole2,k) )
|
||||
generators_bitmask_restart(i,ispin,d_part2,k) = iand(full_ijkl_bitmask(i),generators_bitmask_restart(i,ispin,d_part2,k) )
|
||||
generators_bitmask(i,ispin,s_hole ) = reunion_of_inact_act_bitmask(i,ispin)
|
||||
generators_bitmask(i,ispin,s_part ) = reunion_of_act_virt_bitmask(i,ispin)
|
||||
generators_bitmask(i,ispin,d_hole1) = reunion_of_inact_act_bitmask(i,ispin)
|
||||
generators_bitmask(i,ispin,d_part1) = reunion_of_act_virt_bitmask(i,ispin)
|
||||
generators_bitmask(i,ispin,d_hole2) = reunion_of_inact_act_bitmask(i,ispin)
|
||||
generators_bitmask(i,ispin,d_part2) = reunion_of_act_virt_bitmask(i,ispin)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST( generators_bitmask_restart, N_int*2*6*N_generators_bitmask_restart, MPI_BIT_KIND, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read generators_bitmask_restart with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), generators_bitmask, (N_int,2,6,N_generators_bitmask) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Bitmasks for generator determinants.
|
||||
! (N_int, alpha/beta, hole/particle, generator).
|
||||
!
|
||||
! 3rd index is :
|
||||
!
|
||||
! * 1 : hole for single exc
|
||||
!
|
||||
! * 2 : particle for single exc
|
||||
!
|
||||
! * 3 : hole for 1st exc of double
|
||||
!
|
||||
! * 4 : particle for 1st exc of double
|
||||
!
|
||||
! * 5 : hole for 2nd exc of double
|
||||
!
|
||||
! * 6 : particle for 2nd exc of double
|
||||
!
|
||||
END_DOC
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename full_ijkl_bitmask N_generators_bitmask
|
||||
|
||||
if (mpi_master) then
|
||||
call ezfio_has_bitmasks_generators(exists)
|
||||
if (exists) then
|
||||
call ezfio_get_bitmasks_generators(generators_bitmask)
|
||||
else
|
||||
integer :: k, ispin, i
|
||||
do k=1,N_generators_bitmask
|
||||
do ispin=1,2
|
||||
do i=1,N_int
|
||||
generators_bitmask(i,ispin,s_hole ,k) = full_ijkl_bitmask(i)
|
||||
generators_bitmask(i,ispin,s_part ,k) = full_ijkl_bitmask(i)
|
||||
generators_bitmask(i,ispin,d_hole1,k) = full_ijkl_bitmask(i)
|
||||
generators_bitmask(i,ispin,d_part1,k) = full_ijkl_bitmask(i)
|
||||
generators_bitmask(i,ispin,d_hole2,k) = full_ijkl_bitmask(i)
|
||||
generators_bitmask(i,ispin,d_part2,k) = full_ijkl_bitmask(i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
do k=1,N_generators_bitmask
|
||||
do ispin=1,2
|
||||
do i=1,N_int
|
||||
generators_bitmask(i,ispin,s_hole ,k) = iand(full_ijkl_bitmask(i),generators_bitmask(i,ispin,s_hole,k) )
|
||||
generators_bitmask(i,ispin,s_part ,k) = iand(full_ijkl_bitmask(i),generators_bitmask(i,ispin,s_part,k) )
|
||||
generators_bitmask(i,ispin,d_hole1,k) = iand(full_ijkl_bitmask(i),generators_bitmask(i,ispin,d_hole1,k) )
|
||||
generators_bitmask(i,ispin,d_part1,k) = iand(full_ijkl_bitmask(i),generators_bitmask(i,ispin,d_part1,k) )
|
||||
generators_bitmask(i,ispin,d_hole2,k) = iand(full_ijkl_bitmask(i),generators_bitmask(i,ispin,d_hole2,k) )
|
||||
generators_bitmask(i,ispin,d_part2,k) = iand(full_ijkl_bitmask(i),generators_bitmask(i,ispin,d_part2,k) )
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST( generators_bitmask, N_int*2*6*N_generators_bitmask, MPI_BIT_KIND, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read generators_bitmask with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, N_cas_bitmask ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of bitmasks for CAS
|
||||
END_DOC
|
||||
logical :: exists
|
||||
PROVIDE ezfio_filename
|
||||
PROVIDE N_cas_bitmask N_int
|
||||
if (mpi_master) then
|
||||
call ezfio_has_bitmasks_N_mask_cas(exists)
|
||||
if (exists) then
|
||||
call ezfio_get_bitmasks_N_mask_cas(N_cas_bitmask)
|
||||
integer :: N_int_check
|
||||
integer :: bit_kind_check
|
||||
call ezfio_get_bitmasks_bit_kind(bit_kind_check)
|
||||
if (bit_kind_check /= bit_kind) then
|
||||
print *, bit_kind_check, bit_kind
|
||||
print *, 'Error: bit_kind is not correct in EZFIO file'
|
||||
endif
|
||||
call ezfio_get_bitmasks_N_int(N_int_check)
|
||||
if (N_int_check /= N_int) then
|
||||
print *, N_int_check, N_int
|
||||
print *, 'Error: N_int is not correct in EZFIO file'
|
||||
endif
|
||||
else
|
||||
N_cas_bitmask = 1
|
||||
endif
|
||||
call write_int(6,N_cas_bitmask,'N_cas_bitmask')
|
||||
endif
|
||||
ASSERT (N_cas_bitmask > 0)
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST( N_cas_bitmask, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read N_cas_bitmask with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), cas_bitmask, (N_int,2,N_cas_bitmask) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Bitmasks for CAS reference determinants. (N_int, alpha/beta, CAS reference)
|
||||
END_DOC
|
||||
logical :: exists
|
||||
integer :: i,i_part,i_gen,j,k
|
||||
PROVIDE ezfio_filename generators_bitmask_restart full_ijkl_bitmask
|
||||
PROVIDE n_generators_bitmask HF_bitmask
|
||||
|
||||
if (mpi_master) then
|
||||
call ezfio_has_bitmasks_cas(exists)
|
||||
if (exists) then
|
||||
call ezfio_get_bitmasks_cas(cas_bitmask)
|
||||
else
|
||||
if(N_generators_bitmask == 1)then
|
||||
do j=1, N_cas_bitmask
|
||||
do i=1, N_int
|
||||
cas_bitmask(i,1,j) = iand(not(HF_bitmask(i,1)),full_ijkl_bitmask(i))
|
||||
cas_bitmask(i,2,j) = iand(not(HF_bitmask(i,2)),full_ijkl_bitmask(i))
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
i_part = 2
|
||||
i_gen = 1
|
||||
do j=1, N_cas_bitmask
|
||||
do i=1, N_int
|
||||
cas_bitmask(i,1,j) = generators_bitmask_restart(i,1,i_part,i_gen)
|
||||
cas_bitmask(i,2,j) = generators_bitmask_restart(i,2,i_part,i_gen)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
endif
|
||||
do i=1,N_cas_bitmask
|
||||
do j = 1, N_cas_bitmask
|
||||
do k=1,N_int
|
||||
cas_bitmask(k,j,i) = iand(cas_bitmask(k,j,i),full_ijkl_bitmask(k))
|
||||
enddo
|
||||
enddo
|
||||
BEGIN_PROVIDER [ integer(bit_kind), reunion_of_core_inact_bitmask, (N_int,2)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Reunion of the core and inactive and virtual bitmasks
|
||||
END_DOC
|
||||
integer :: i
|
||||
do i = 1, N_int
|
||||
reunion_of_core_inact_bitmask(i,1) = ior(core_bitmask(i,1),inact_bitmask(i,1))
|
||||
reunion_of_core_inact_bitmask(i,2) = ior(core_bitmask(i,2),inact_bitmask(i,2))
|
||||
enddo
|
||||
write(*,*) 'Read CAS bitmask'
|
||||
endif
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST( cas_bitmask, N_int*2*N_cas_bitmask, MPI_BIT_KIND, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read cas_bitmask with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_core_inact_orb ]
|
||||
implicit none
|
||||
integer :: i
|
||||
n_core_inact_orb = 0
|
||||
do i = 1, N_int
|
||||
n_core_inact_orb += popcnt(reunion_of_core_inact_bitmask(i,1))
|
||||
enddo
|
||||
ENd_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), reunion_of_core_inact_bitmask, (N_int,2)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Reunion of the core and inactive and virtual bitmasks
|
||||
END_DOC
|
||||
integer :: i
|
||||
do i = 1, N_int
|
||||
reunion_of_core_inact_bitmask(i,1) = ior(core_bitmask(i,1),inact_bitmask(i,1))
|
||||
reunion_of_core_inact_bitmask(i,2) = ior(core_bitmask(i,2),inact_bitmask(i,2))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
BEGIN_PROVIDER [integer(bit_kind), reunion_of_inact_act_bitmask, (N_int,2)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Reunion of the inactive and active bitmasks
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
|
||||
do i = 1, N_int
|
||||
reunion_of_inact_act_bitmask(i,1) = ior(inact_bitmask(i,1),act_bitmask(i,1))
|
||||
reunion_of_inact_act_bitmask(i,2) = ior(inact_bitmask(i,2),act_bitmask(i,2))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer(bit_kind), reunion_of_act_virt_bitmask, (N_int,2)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Reunion of the inactive and active bitmasks
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
|
||||
do i = 1, N_int
|
||||
reunion_of_act_virt_bitmask(i,1) = ior(virt_bitmask(i,1),act_bitmask(i,1))
|
||||
reunion_of_act_virt_bitmask(i,2) = ior(virt_bitmask(i,2),act_bitmask(i,2))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [integer(bit_kind), reunion_of_core_inact_act_bitmask, (N_int,2)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Reunion of the core, inactive and active bitmasks
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
|
||||
do i = 1, N_int
|
||||
reunion_of_core_inact_act_bitmask(i,1) = ior(reunion_of_core_inact_bitmask(i,1),act_bitmask(i,1))
|
||||
reunion_of_core_inact_act_bitmask(i,2) = ior(reunion_of_core_inact_bitmask(i,2),act_bitmask(i,2))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
BEGIN_PROVIDER [integer(bit_kind), reunion_of_core_inact_act_bitmask, (N_int,2)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Reunion of the core, inactive and active bitmasks
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
|
||||
do i = 1, N_int
|
||||
reunion_of_core_inact_act_bitmask(i,1) = ior(reunion_of_core_inact_bitmask(i,1),act_bitmask(i,1))
|
||||
reunion_of_core_inact_act_bitmask(i,2) = ior(reunion_of_core_inact_bitmask(i,2),act_bitmask(i,2))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), reunion_of_bitmask, (N_int,2)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Reunion of the inactive, active and virtual bitmasks
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
do i = 1, N_int
|
||||
reunion_of_bitmask(i,1) = ior(ior(cas_bitmask(i,1,1),inact_bitmask(i,1)),virt_bitmask(i,1))
|
||||
reunion_of_bitmask(i,2) = ior(ior(cas_bitmask(i,2,1),inact_bitmask(i,2)),virt_bitmask(i,2))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
BEGIN_PROVIDER [ integer(bit_kind), reunion_of_bitmask, (N_int,2)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Reunion of the inactive, active and virtual bitmasks
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
do i = 1, N_int
|
||||
reunion_of_bitmask(i,1) = ior(ior(act_bitmask(i,1),inact_bitmask(i,1)),virt_bitmask(i,1))
|
||||
reunion_of_bitmask(i,2) = ior(ior(act_bitmask(i,2),inact_bitmask(i,2)),virt_bitmask(i,2))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), inact_virt_bitmask, (N_int,2)]
|
||||
&BEGIN_PROVIDER [ integer(bit_kind), core_inact_virt_bitmask, (N_int,2)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Reunion of the inactive and virtual bitmasks
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
do i = 1, N_int
|
||||
inact_virt_bitmask(i,1) = ior(inact_bitmask(i,1),virt_bitmask(i,1))
|
||||
inact_virt_bitmask(i,2) = ior(inact_bitmask(i,2),virt_bitmask(i,2))
|
||||
core_inact_virt_bitmask(i,1) = ior(core_bitmask(i,1),inact_virt_bitmask(i,1))
|
||||
core_inact_virt_bitmask(i,2) = ior(core_bitmask(i,2),inact_virt_bitmask(i,2))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, i_bitmask_gen ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Current bitmask for the generators
|
||||
END_DOC
|
||||
i_bitmask_gen = 1
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Reunion of the inactive and virtual bitmasks
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
do i = 1, N_int
|
||||
inact_virt_bitmask(i,1) = ior(inact_bitmask(i,1),virt_bitmask(i,1))
|
||||
inact_virt_bitmask(i,2) = ior(inact_bitmask(i,2),virt_bitmask(i,2))
|
||||
core_inact_virt_bitmask(i,1) = ior(core_bitmask(i,1),inact_virt_bitmask(i,1))
|
||||
core_inact_virt_bitmask(i,2) = ior(core_bitmask(i,2),inact_virt_bitmask(i,2))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), unpaired_alpha_electrons, (N_int)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Bitmask reprenting the unpaired alpha electrons in the HF_bitmask
|
||||
END_DOC
|
||||
integer :: i
|
||||
unpaired_alpha_electrons = 0_bit_kind
|
||||
do i = 1, N_int
|
||||
unpaired_alpha_electrons(i) = xor(HF_bitmask(i,1),HF_bitmask(i,2))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer(bit_kind), closed_shell_ref_bitmask, (N_int,2)]
|
||||
implicit none
|
||||
integer :: i,j
|
||||
do i = 1, N_int
|
||||
closed_shell_ref_bitmask(i,1) = ior(ref_bitmask(i,1),cas_bitmask(i,1,1))
|
||||
closed_shell_ref_bitmask(i,2) = ior(ref_bitmask(i,2),cas_bitmask(i,2,1))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), reunion_of_cas_inact_bitmask, (N_int,2)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Reunion of the inactive, active and virtual bitmasks
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
do i = 1, N_int
|
||||
reunion_of_cas_inact_bitmask(i,1) = ior(act_bitmask(i,1),inact_bitmask(i,1))
|
||||
reunion_of_cas_inact_bitmask(i,2) = ior(act_bitmask(i,2),inact_bitmask(i,2))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [integer, n_core_orb_allocate]
|
||||
implicit none
|
||||
n_core_orb_allocate = max(n_core_orb,1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, n_inact_orb_allocate]
|
||||
implicit none
|
||||
n_inact_orb_allocate = max(n_inact_orb,1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, n_virt_orb_allocate]
|
||||
implicit none
|
||||
n_virt_orb_allocate = max(n_virt_orb,1)
|
||||
END_PROVIDER
|
||||
BEGIN_PROVIDER [ integer(bit_kind), unpaired_alpha_electrons, (N_int)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Bitmask reprenting the unpaired alpha electrons in the HF_bitmask
|
||||
END_DOC
|
||||
integer :: i
|
||||
unpaired_alpha_electrons = 0_bit_kind
|
||||
do i = 1, N_int
|
||||
unpaired_alpha_electrons(i) = xor(HF_bitmask(i,1),HF_bitmask(i,2))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer(bit_kind), closed_shell_ref_bitmask, (N_int,2)]
|
||||
implicit none
|
||||
integer :: i,j
|
||||
do i = 1, N_int
|
||||
closed_shell_ref_bitmask(i,1) = ior(ref_bitmask(i,1),act_bitmask(i,1))
|
||||
closed_shell_ref_bitmask(i,2) = ior(ref_bitmask(i,2),act_bitmask(i,2))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
@ -33,7 +33,7 @@ subroutine bitstring_to_list( string, list, n_elements, Nint)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gives the inidices(+1) of the bits set to 1 in the bit string
|
||||
! Gives the indices(+1) of the bits set to 1 in the bit string
|
||||
END_DOC
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: string(Nint)
|
||||
@ -213,3 +213,34 @@ subroutine print_spindet(string,Nint)
|
||||
print *, trim(output(1))
|
||||
|
||||
end
|
||||
|
||||
logical function is_integer_in_string(bite,string,Nint)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer, intent(in) :: bite,Nint
|
||||
integer(bit_kind), intent(in) :: string(Nint)
|
||||
integer(bit_kind) :: string_bite(Nint)
|
||||
integer :: i,itot,itot_and
|
||||
character*(2048) :: output(1)
|
||||
string_bite = 0_bit_kind
|
||||
call set_bit_to_integer(bite,string_bite,Nint)
|
||||
itot = 0
|
||||
itot_and = 0
|
||||
is_integer_in_string = .False.
|
||||
!print*,''
|
||||
!print*,''
|
||||
!print*,'bite = ',bite
|
||||
!call bitstring_to_str( output(1), string_bite, Nint )
|
||||
! print *, trim(output(1))
|
||||
!call bitstring_to_str( output(1), string, Nint )
|
||||
! print *, trim(output(1))
|
||||
do i = 1, Nint
|
||||
itot += popcnt(string(i))
|
||||
itot_and += popcnt(ior(string(i),string_bite(i)))
|
||||
enddo
|
||||
!print*,'itot,itot_and',itot,itot_and
|
||||
if(itot == itot_and)then
|
||||
is_integer_in_string = .True.
|
||||
endif
|
||||
!pause
|
||||
end
|
||||
|
@ -1,246 +1,415 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_core_orb]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of core MOs
|
||||
END_DOC
|
||||
integer :: i
|
||||
|
||||
n_core_orb = 0
|
||||
do i = 1, mo_num
|
||||
if(mo_class(i) == 'Core')then
|
||||
n_core_orb += 1
|
||||
endif
|
||||
enddo
|
||||
|
||||
call write_int(6,n_core_orb, 'Number of core MOs')
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_core_orb]
|
||||
&BEGIN_PROVIDER [ integer, n_inact_orb ]
|
||||
&BEGIN_PROVIDER [ integer, n_act_orb]
|
||||
&BEGIN_PROVIDER [ integer, n_virt_orb ]
|
||||
&BEGIN_PROVIDER [ integer, n_del_orb ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! inact_bitmask : Bitmask of the inactive orbitals which are supposed to be doubly excited
|
||||
! in post CAS methods
|
||||
! n_inact_orb : Number of inactive orbitals
|
||||
! virt_bitmask : Bitmaks of vritual orbitals which are supposed to be recieve electrons
|
||||
! in post CAS methods
|
||||
! n_virt_orb : Number of virtual orbitals
|
||||
! list_inact : List of the inactive orbitals which are supposed to be doubly excited
|
||||
! in post CAS methods
|
||||
! list_virt : List of vritual orbitals which are supposed to be recieve electrons
|
||||
! in post CAS methods
|
||||
! list_inact_reverse : reverse list of inactive orbitals
|
||||
! list_inact_reverse(i) = 0 ::> not an inactive
|
||||
! list_inact_reverse(i) = k ::> IS the kth inactive
|
||||
! list_virt_reverse : reverse list of virtual orbitals
|
||||
! list_virt_reverse(i) = 0 ::> not an virtual
|
||||
! list_virt_reverse(i) = k ::> IS the kth virtual
|
||||
! list_act(i) = index of the ith active orbital
|
||||
!
|
||||
! list_act_reverse : reverse list of active orbitals
|
||||
! list_act_reverse(i) = 0 ::> not an active
|
||||
! list_act_reverse(i) = k ::> IS the kth active orbital
|
||||
END_DOC
|
||||
logical :: exists
|
||||
integer :: j,i
|
||||
BEGIN_PROVIDER [ integer, n_inact_orb ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of inactive MOs
|
||||
END_DOC
|
||||
integer :: i
|
||||
|
||||
n_inact_orb = 0
|
||||
do i = 1, mo_num
|
||||
if (mo_class(i) == 'Inactive')then
|
||||
n_inact_orb += 1
|
||||
endif
|
||||
enddo
|
||||
|
||||
call write_int(6,n_inact_orb,'Number of inactive MOs')
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
n_core_orb = 0
|
||||
n_inact_orb = 0
|
||||
n_act_orb = 0
|
||||
n_virt_orb = 0
|
||||
n_del_orb = 0
|
||||
do i = 1, mo_num
|
||||
if(mo_class(i) == 'Core')then
|
||||
n_core_orb += 1
|
||||
else if (mo_class(i) == 'Inactive')then
|
||||
n_inact_orb += 1
|
||||
else if (mo_class(i) == 'Active')then
|
||||
n_act_orb += 1
|
||||
else if (mo_class(i) == 'Virtual')then
|
||||
n_virt_orb += 1
|
||||
else if (mo_class(i) == 'Deleted')then
|
||||
n_del_orb += 1
|
||||
endif
|
||||
enddo
|
||||
BEGIN_PROVIDER [ integer, n_act_orb]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of active MOs
|
||||
END_DOC
|
||||
integer :: i
|
||||
|
||||
n_act_orb = 0
|
||||
do i = 1, mo_num
|
||||
if (mo_class(i) == 'Active')then
|
||||
n_act_orb += 1
|
||||
endif
|
||||
enddo
|
||||
|
||||
call write_int(6,n_act_orb, 'Number of active MOs')
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_virt_orb ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of virtual MOs
|
||||
END_DOC
|
||||
integer :: i
|
||||
|
||||
n_virt_orb = 0
|
||||
do i = 1, mo_num
|
||||
if (mo_class(i) == 'Virtual')then
|
||||
n_virt_orb += 1
|
||||
endif
|
||||
enddo
|
||||
|
||||
call write_int(6,n_virt_orb, 'Number of virtual MOs')
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_del_orb ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of deleted MOs
|
||||
END_DOC
|
||||
integer :: i
|
||||
|
||||
n_del_orb = 0
|
||||
do i = 1, mo_num
|
||||
if (mo_class(i) == 'Deleted')then
|
||||
n_del_orb += 1
|
||||
endif
|
||||
enddo
|
||||
|
||||
call write_int(6,n_del_orb, 'Number of deleted MOs')
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
call write_int(6,n_core_orb, 'Number of core MOs')
|
||||
call write_int(6,n_inact_orb,'Number of inactive MOs')
|
||||
call write_int(6,n_act_orb, 'Number of active MOs')
|
||||
call write_int(6,n_virt_orb, 'Number of virtual MOs')
|
||||
call write_int(6,n_del_orb, 'Number of deleted MOs')
|
||||
BEGIN_PROVIDER [ integer, n_core_inact_orb ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! n_core + n_inact
|
||||
END_DOC
|
||||
integer :: i
|
||||
n_core_inact_orb = 0
|
||||
do i = 1, N_int
|
||||
n_core_inact_orb += popcnt(reunion_of_core_inact_bitmask(i,1))
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, n_inact_act_orb ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! n_inact + n_act
|
||||
END_DOC
|
||||
n_inact_act_orb = (n_inact_orb+n_act_orb)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, dim_list_core_orb]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dimensions for the allocation of list_core.
|
||||
! it is at least 1
|
||||
END_DOC
|
||||
dim_list_core_orb = max(n_core_orb,1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, dim_list_inact_orb]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dimensions for the allocation of list_inact.
|
||||
! it is at least 1
|
||||
END_DOC
|
||||
dim_list_inact_orb = max(n_inact_orb,1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, dim_list_core_inact_orb]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dimensions for the allocation of list_core.
|
||||
! it is at least 1
|
||||
END_DOC
|
||||
dim_list_core_inact_orb = max(n_core_inact_orb,1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, dim_list_act_orb]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dimensions for the allocation of list_act.
|
||||
! it is at least 1
|
||||
END_DOC
|
||||
dim_list_act_orb = max(n_act_orb,1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, dim_list_virt_orb]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dimensions for the allocation of list_virt.
|
||||
! it is at least 1
|
||||
END_DOC
|
||||
dim_list_virt_orb = max(n_virt_orb,1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, dim_list_del_orb]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dimensions for the allocation of list_del.
|
||||
! it is at least 1
|
||||
END_DOC
|
||||
dim_list_del_orb = max(n_del_orb,1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, n_core_inact_act_orb ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Number of core inactive and active MOs
|
||||
END_DOC
|
||||
n_core_inact_act_orb = (n_core_orb + n_inact_orb + n_act_orb)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), core_bitmask , (N_int,2) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Bitmask identifying the core MOs
|
||||
END_DOC
|
||||
core_bitmask = 0_bit_kind
|
||||
if(n_core_orb > 0)then
|
||||
call list_to_bitstring( core_bitmask(1,1), list_core, n_core_orb, N_int)
|
||||
call list_to_bitstring( core_bitmask(1,2), list_core, n_core_orb, N_int)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), inact_bitmask, (N_int,2) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Bitmask identifying the inactive MOs
|
||||
END_DOC
|
||||
inact_bitmask = 0_bit_kind
|
||||
if(n_inact_orb > 0)then
|
||||
call list_to_bitstring( inact_bitmask(1,1), list_inact, n_inact_orb, N_int)
|
||||
call list_to_bitstring( inact_bitmask(1,2), list_inact, n_inact_orb, N_int)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), act_bitmask , (N_int,2) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Bitmask identifying the active MOs
|
||||
END_DOC
|
||||
act_bitmask = 0_bit_kind
|
||||
if(n_act_orb > 0)then
|
||||
call list_to_bitstring( act_bitmask(1,1), list_act, n_act_orb, N_int)
|
||||
call list_to_bitstring( act_bitmask(1,2), list_act, n_act_orb, N_int)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), virt_bitmask , (N_int,2) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Bitmask identifying the virtual MOs
|
||||
END_DOC
|
||||
virt_bitmask = 0_bit_kind
|
||||
if(n_virt_orb > 0)then
|
||||
call list_to_bitstring( virt_bitmask(1,1), list_virt, n_virt_orb, N_int)
|
||||
call list_to_bitstring( virt_bitmask(1,2), list_virt, n_virt_orb, N_int)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), del_bitmask , (N_int,2) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Bitmask identifying the deleted MOs
|
||||
END_DOC
|
||||
|
||||
del_bitmask = 0_bit_kind
|
||||
|
||||
if(n_del_orb > 0)then
|
||||
call list_to_bitstring( del_bitmask(1,1), list_del, n_del_orb, N_int)
|
||||
call list_to_bitstring( del_bitmask(1,2), list_del, n_del_orb, N_int)
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [integer, dim_list_core_orb]
|
||||
&BEGIN_PROVIDER [integer, dim_list_inact_orb]
|
||||
&BEGIN_PROVIDER [integer, dim_list_virt_orb]
|
||||
&BEGIN_PROVIDER [integer, dim_list_act_orb]
|
||||
&BEGIN_PROVIDER [integer, dim_list_del_orb]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! dimensions for the allocation of list_inact, list_virt, list_core and list_act
|
||||
! it is at least 1
|
||||
END_DOC
|
||||
dim_list_core_orb = max(n_core_orb,1)
|
||||
dim_list_inact_orb = max(n_inact_orb,1)
|
||||
dim_list_virt_orb = max(n_virt_orb,1)
|
||||
dim_list_act_orb = max(n_act_orb,1)
|
||||
dim_list_del_orb = max(n_del_orb,1)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, list_inact, (dim_list_inact_orb)]
|
||||
&BEGIN_PROVIDER [ integer, list_virt, (dim_list_virt_orb)]
|
||||
&BEGIN_PROVIDER [ integer, list_inact_reverse, (mo_num)]
|
||||
&BEGIN_PROVIDER [ integer, list_virt_reverse, (mo_num)]
|
||||
&BEGIN_PROVIDER [ integer, list_del_reverse, (mo_num)]
|
||||
&BEGIN_PROVIDER [ integer, list_del, (mo_num)]
|
||||
&BEGIN_PROVIDER [integer, list_core, (dim_list_core_orb)]
|
||||
&BEGIN_PROVIDER [integer, list_core_reverse, (mo_num)]
|
||||
&BEGIN_PROVIDER [integer, list_act, (dim_list_act_orb)]
|
||||
&BEGIN_PROVIDER [integer, list_act_reverse, (mo_num)]
|
||||
&BEGIN_PROVIDER [ integer(bit_kind), core_bitmask, (N_int,2)]
|
||||
&BEGIN_PROVIDER [ integer(bit_kind), inact_bitmask, (N_int,2) ]
|
||||
&BEGIN_PROVIDER [ integer(bit_kind), act_bitmask, (N_int,2) ]
|
||||
&BEGIN_PROVIDER [ integer(bit_kind), virt_bitmask, (N_int,2) ]
|
||||
&BEGIN_PROVIDER [ integer(bit_kind), del_bitmask, (N_int,2) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! inact_bitmask : Bitmask of the inactive orbitals which are supposed to be doubly excited
|
||||
! in post CAS methods
|
||||
! n_inact_orb : Number of inactive orbitals
|
||||
! virt_bitmask : Bitmaks of vritual orbitals which are supposed to be recieve electrons
|
||||
! in post CAS methods
|
||||
! n_virt_orb : Number of virtual orbitals
|
||||
! list_inact : List of the inactive orbitals which are supposed to be doubly excited
|
||||
! in post CAS methods
|
||||
! list_virt : List of vritual orbitals which are supposed to be recieve electrons
|
||||
! in post CAS methods
|
||||
! list_inact_reverse : reverse list of inactive orbitals
|
||||
! list_inact_reverse(i) = 0 ::> not an inactive
|
||||
! list_inact_reverse(i) = k ::> IS the kth inactive
|
||||
! list_virt_reverse : reverse list of virtual orbitals
|
||||
! list_virt_reverse(i) = 0 ::> not an virtual
|
||||
! list_virt_reverse(i) = k ::> IS the kth virtual
|
||||
! list_act(i) = index of the ith active orbital
|
||||
!
|
||||
! list_act_reverse : reverse list of active orbitals
|
||||
! list_act_reverse(i) = 0 ::> not an active
|
||||
! list_act_reverse(i) = k ::> IS the kth active orbital
|
||||
END_DOC
|
||||
logical :: exists
|
||||
integer :: j,i
|
||||
integer :: n_core_orb_tmp, n_inact_orb_tmp, n_act_orb_tmp, n_virt_orb_tmp,n_del_orb_tmp
|
||||
integer :: list_core_tmp(N_int*bit_kind_size)
|
||||
integer :: list_inact_tmp(N_int*bit_kind_size)
|
||||
integer :: list_act_tmp(N_int*bit_kind_size)
|
||||
integer :: list_virt_tmp(N_int*bit_kind_size)
|
||||
integer :: list_del_tmp(N_int*bit_kind_size)
|
||||
list_core = 0
|
||||
list_inact = 0
|
||||
list_act = 0
|
||||
list_virt = 0
|
||||
list_del = 0
|
||||
list_core_reverse = 0
|
||||
list_inact_reverse = 0
|
||||
list_act_reverse = 0
|
||||
list_virt_reverse = 0
|
||||
list_del_reverse = 0
|
||||
n_core_orb_tmp = 0
|
||||
n_inact_orb_tmp = 0
|
||||
n_act_orb_tmp = 0
|
||||
n_virt_orb_tmp = 0
|
||||
n_del_orb_tmp = 0
|
||||
do i = 1, mo_num
|
||||
if(mo_class(i) == 'Core')then
|
||||
n_core_orb_tmp += 1
|
||||
list_core(n_core_orb_tmp) = i
|
||||
list_core_tmp(n_core_orb_tmp) = i
|
||||
list_core_reverse(i) = n_core_orb_tmp
|
||||
else if (mo_class(i) == 'Inactive')then
|
||||
n_inact_orb_tmp += 1
|
||||
list_inact(n_inact_orb_tmp) = i
|
||||
list_inact_tmp(n_inact_orb_tmp) = i
|
||||
list_inact_reverse(i) = n_inact_orb_tmp
|
||||
else if (mo_class(i) == 'Active')then
|
||||
n_act_orb_tmp += 1
|
||||
list_act(n_act_orb_tmp) = i
|
||||
list_act_tmp(n_act_orb_tmp) = i
|
||||
list_act_reverse(i) = n_act_orb_tmp
|
||||
else if (mo_class(i) == 'Virtual')then
|
||||
n_virt_orb_tmp += 1
|
||||
list_virt(n_virt_orb_tmp) = i
|
||||
list_virt_tmp(n_virt_orb_tmp) = i
|
||||
list_virt_reverse(i) = n_virt_orb_tmp
|
||||
else if (mo_class(i) == 'Deleted')then
|
||||
n_del_orb_tmp += 1
|
||||
list_del(n_del_orb_tmp) = i
|
||||
list_del_tmp(n_del_orb_tmp) = i
|
||||
list_del_reverse(i) = n_del_orb_tmp
|
||||
endif
|
||||
enddo
|
||||
|
||||
if(n_core_orb.ne.0)then
|
||||
call list_to_bitstring( core_bitmask(1,1), list_core, n_core_orb, N_int)
|
||||
call list_to_bitstring( core_bitmask(1,2), list_core, n_core_orb, N_int)
|
||||
endif
|
||||
if(n_inact_orb.ne.0)then
|
||||
call list_to_bitstring( inact_bitmask(1,1), list_inact, n_inact_orb, N_int)
|
||||
call list_to_bitstring( inact_bitmask(1,2), list_inact, n_inact_orb, N_int)
|
||||
endif
|
||||
if(n_act_orb.ne.0)then
|
||||
call list_to_bitstring( act_bitmask(1,1), list_act, n_act_orb, N_int)
|
||||
call list_to_bitstring( act_bitmask(1,2), list_act, n_act_orb, N_int)
|
||||
endif
|
||||
if(n_virt_orb.ne.0)then
|
||||
call list_to_bitstring( virt_bitmask(1,1), list_virt, n_virt_orb, N_int)
|
||||
call list_to_bitstring( virt_bitmask(1,2), list_virt, n_virt_orb, N_int)
|
||||
endif
|
||||
if(n_del_orb.ne.0)then
|
||||
call list_to_bitstring( del_bitmask(1,1), list_del, n_del_orb, N_int)
|
||||
call list_to_bitstring( del_bitmask(1,2), list_del, n_del_orb, N_int)
|
||||
endif
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, list_core , (dim_list_core_orb) ]
|
||||
&BEGIN_PROVIDER [ integer, list_core_reverse, (mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! List of MO indices which are in the core.
|
||||
END_DOC
|
||||
integer :: i, n
|
||||
list_core = 0
|
||||
list_core_reverse = 0
|
||||
|
||||
BEGIN_PROVIDER [integer, n_inact_act_orb ]
|
||||
implicit none
|
||||
n_inact_act_orb = (n_inact_orb+n_act_orb)
|
||||
n=0
|
||||
do i = 1, mo_num
|
||||
if(mo_class(i) == 'Core')then
|
||||
n += 1
|
||||
list_core(n) = i
|
||||
list_core_reverse(i) = n
|
||||
endif
|
||||
enddo
|
||||
print *, 'Core MOs:'
|
||||
print *, list_core(1:n_core_orb)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, list_inact , (dim_list_inact_orb) ]
|
||||
&BEGIN_PROVIDER [ integer, list_inact_reverse, (mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! List of MO indices which are inactive.
|
||||
END_DOC
|
||||
integer :: i, n
|
||||
list_inact = 0
|
||||
list_inact_reverse = 0
|
||||
|
||||
END_PROVIDER
|
||||
n=0
|
||||
do i = 1, mo_num
|
||||
if (mo_class(i) == 'Inactive')then
|
||||
n += 1
|
||||
list_inact(n) = i
|
||||
list_inact_reverse(i) = n
|
||||
endif
|
||||
enddo
|
||||
print *, 'Inactive MOs:'
|
||||
print *, list_inact(1:n_inact_orb)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, list_virt , (dim_list_virt_orb) ]
|
||||
&BEGIN_PROVIDER [ integer, list_virt_reverse, (mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! List of MO indices which are virtual
|
||||
END_DOC
|
||||
integer :: i, n
|
||||
list_virt = 0
|
||||
list_virt_reverse = 0
|
||||
|
||||
BEGIN_PROVIDER [integer, list_inact_act, (n_inact_act_orb)]
|
||||
integer :: i,itmp
|
||||
itmp = 0
|
||||
do i = 1, n_inact_orb
|
||||
itmp += 1
|
||||
list_inact_act(itmp) = list_inact(i)
|
||||
enddo
|
||||
do i = 1, n_act_orb
|
||||
itmp += 1
|
||||
list_inact_act(itmp) = list_act(i)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
n=0
|
||||
do i = 1, mo_num
|
||||
if (mo_class(i) == 'Virtual')then
|
||||
n += 1
|
||||
list_virt(n) = i
|
||||
list_virt_reverse(i) = n
|
||||
endif
|
||||
enddo
|
||||
print *, 'Virtual MOs:'
|
||||
print *, list_virt(1:n_virt_orb)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, list_del , (dim_list_del_orb) ]
|
||||
&BEGIN_PROVIDER [ integer, list_del_reverse, (mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! List of MO indices which are deleted.
|
||||
END_DOC
|
||||
integer :: i, n
|
||||
list_del = 0
|
||||
list_del_reverse = 0
|
||||
|
||||
BEGIN_PROVIDER [integer, n_core_inact_act_orb ]
|
||||
implicit none
|
||||
n_core_inact_act_orb = (n_core_orb + n_inact_orb + n_act_orb)
|
||||
n=0
|
||||
do i = 1, mo_num
|
||||
if (mo_class(i) == 'Deleted')then
|
||||
n += 1
|
||||
list_del(n) = i
|
||||
list_del_reverse(i) = n
|
||||
endif
|
||||
enddo
|
||||
print *, 'Deleted MOs:'
|
||||
print *, list_del(1:n_del_orb)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, list_act , (dim_list_act_orb) ]
|
||||
&BEGIN_PROVIDER [ integer, list_act_reverse, (mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! List of MO indices which are in the active.
|
||||
END_DOC
|
||||
integer :: i, n
|
||||
list_act = 0
|
||||
list_act_reverse = 0
|
||||
|
||||
END_PROVIDER
|
||||
n=0
|
||||
do i = 1, mo_num
|
||||
if (mo_class(i) == 'Active')then
|
||||
n += 1
|
||||
list_act(n) = i
|
||||
list_act_reverse(i) = n
|
||||
endif
|
||||
enddo
|
||||
print *, 'Active MOs:'
|
||||
print *, list_act(1:n_act_orb)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [integer, list_core_inact_act, (n_core_inact_act_orb)]
|
||||
&BEGIN_PROVIDER [ integer, list_core_inact_act_reverse, (n_core_inact_act_orb)]
|
||||
integer :: i,itmp
|
||||
itmp = 0
|
||||
do i = 1, n_core_orb
|
||||
itmp += 1
|
||||
list_core_inact_act(itmp) = list_core(i)
|
||||
enddo
|
||||
do i = 1, n_inact_orb
|
||||
itmp += 1
|
||||
list_core_inact_act(itmp) = list_inact(i)
|
||||
enddo
|
||||
do i = 1, n_act_orb
|
||||
itmp += 1
|
||||
list_core_inact_act(itmp) = list_act(i)
|
||||
enddo
|
||||
|
||||
integer :: occ_inact(N_int*bit_kind_size)
|
||||
occ_inact = 0
|
||||
call bitstring_to_list(reunion_of_core_inact_act_bitmask(1,1), occ_inact(1), itest, N_int)
|
||||
list_inact_reverse = 0
|
||||
do i = 1, n_core_inact_act_orb
|
||||
list_core_inact_act_reverse(occ_inact(i)) = i
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, list_core_inact , (dim_list_core_inact_orb) ]
|
||||
&BEGIN_PROVIDER [ integer, list_core_inact_reverse, (mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! List of indices of the core and inactive MOs
|
||||
END_DOC
|
||||
integer :: i,itmp
|
||||
call bitstring_to_list(reunion_of_core_inact_bitmask(1,1), list_core_inact, itmp, N_int)
|
||||
list_core_inact_reverse = 0
|
||||
ASSERT (itmp == n_core_inact_orb)
|
||||
do i = 1, n_core_inact_orb
|
||||
list_core_inact_reverse(list_core_inact(i)) = i
|
||||
enddo
|
||||
print *, 'Core and Inactive MOs:'
|
||||
print *, list_core_inact(1:n_core_inact_orb)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, list_core_inact_act , (n_core_inact_act_orb) ]
|
||||
&BEGIN_PROVIDER [ integer, list_core_inact_act_reverse, (mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! List of indices of the core inactive and active MOs
|
||||
END_DOC
|
||||
integer :: i,itmp
|
||||
call bitstring_to_list(reunion_of_core_inact_act_bitmask(1,1), list_core_inact_act, itmp, N_int)
|
||||
list_core_inact_act_reverse = 0
|
||||
ASSERT (itmp == n_core_inact_act_orb)
|
||||
do i = 1, n_core_inact_act_orb
|
||||
list_core_inact_act_reverse(list_core_inact_act(i)) = i
|
||||
enddo
|
||||
print *, 'Core, Inactive and Active MOs:'
|
||||
print *, list_core_inact_act(1:n_core_inact_act_orb)
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, list_inact_act , (n_inact_act_orb) ]
|
||||
&BEGIN_PROVIDER [ integer, list_inact_act_reverse, (mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! List of indices of the inactive and active MOs
|
||||
END_DOC
|
||||
integer :: i,itmp
|
||||
call bitstring_to_list(reunion_of_inact_act_bitmask(1,1), list_inact_act, itmp, N_int)
|
||||
list_inact_act_reverse = 0
|
||||
ASSERT (itmp == n_inact_act_orb)
|
||||
do i = 1, n_inact_act_orb
|
||||
list_inact_act_reverse(list_inact_act(i)) = i
|
||||
enddo
|
||||
print *, 'Inactive and Active MOs:'
|
||||
print *, list_inact_act(1:n_inact_act_orb)
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -1,26 +1,5 @@
|
||||
|
||||
use bitmasks
|
||||
subroutine initialize_bitmask_to_restart_ones
|
||||
implicit none
|
||||
integer :: i,j,k,l,m
|
||||
integer :: ispin
|
||||
BEGIN_DOC
|
||||
! Initialization of the generators_bitmask to the restart bitmask
|
||||
END_DOC
|
||||
do i = 1, N_int
|
||||
do k=1,N_generators_bitmask
|
||||
do ispin=1,2
|
||||
generators_bitmask(i,ispin,s_hole ,k) = generators_bitmask_restart(i,ispin,s_hole ,k)
|
||||
generators_bitmask(i,ispin,s_part ,k) = generators_bitmask_restart(i,ispin,s_part ,k)
|
||||
generators_bitmask(i,ispin,d_hole1,k) = generators_bitmask_restart(i,ispin,d_hole1,k)
|
||||
generators_bitmask(i,ispin,d_part1,k) = generators_bitmask_restart(i,ispin,d_part1,k)
|
||||
generators_bitmask(i,ispin,d_hole2,k) = generators_bitmask_restart(i,ispin,d_hole2,k)
|
||||
generators_bitmask(i,ispin,d_part2,k) = generators_bitmask_restart(i,ispin,d_part2,k)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
subroutine modify_bitmasks_for_hole(i_hole)
|
||||
implicit none
|
||||
@ -33,26 +12,22 @@ subroutine modify_bitmasks_for_hole(i_hole)
|
||||
END_DOC
|
||||
|
||||
! Set to Zero the holes
|
||||
do k=1,N_generators_bitmask
|
||||
do l = 1, 3
|
||||
do l = 1, 3
|
||||
i = index_holes_bitmask(l)
|
||||
do ispin=1,2
|
||||
do j = 1, N_int
|
||||
generators_bitmask(j,ispin,i,k) = 0_bit_kind
|
||||
generators_bitmask(j,ispin,i) = 0_bit_kind
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
k = shiftr(i_hole-1,bit_kind_shift)+1
|
||||
j = i_hole-shiftl(k-1,bit_kind_shift)-1
|
||||
do m = 1, N_generators_bitmask
|
||||
do l = 1, 3
|
||||
do l = 1, 3
|
||||
i = index_holes_bitmask(l)
|
||||
do ispin=1,2
|
||||
generators_bitmask(k,ispin,i,m) = ibset(generators_bitmask(k,ispin,i,m),j)
|
||||
generators_bitmask(k,ispin,i) = ibset(generators_bitmask(k,ispin,i),j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
@ -69,13 +44,11 @@ subroutine modify_bitmasks_for_hole_in_out(i_hole)
|
||||
|
||||
k = shiftr(i_hole-1,bit_kind_shift)+1
|
||||
j = i_hole-shiftl(k-1,bit_kind_shift)-1
|
||||
do m = 1, N_generators_bitmask
|
||||
do l = 1, 3
|
||||
do l = 1, 3
|
||||
i = index_holes_bitmask(l)
|
||||
do ispin=1,2
|
||||
generators_bitmask(k,ispin,i,m) = ibset(generators_bitmask(k,ispin,i,m),j)
|
||||
generators_bitmask(k,ispin,i) = ibset(generators_bitmask(k,ispin,i),j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
@ -91,75 +64,67 @@ subroutine modify_bitmasks_for_particl(i_part)
|
||||
END_DOC
|
||||
|
||||
! Set to Zero the particles
|
||||
do k=1,N_generators_bitmask
|
||||
do l = 1, 3
|
||||
do l = 1, 3
|
||||
i = index_particl_bitmask(l)
|
||||
do ispin=1,2
|
||||
do ispin=1,2
|
||||
do j = 1, N_int
|
||||
generators_bitmask(j,ispin,i,k) = 0_bit_kind
|
||||
generators_bitmask(j,ispin,i) = 0_bit_kind
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
k = shiftr(i_part-1,bit_kind_shift)+1
|
||||
j = i_part-shiftl(k-1,bit_kind_shift)-1
|
||||
do m = 1, N_generators_bitmask
|
||||
do l = 1, 3
|
||||
do l = 1, 3
|
||||
i = index_particl_bitmask(l)
|
||||
do ispin=1,2
|
||||
generators_bitmask(k,ispin,i,m) = ibset(generators_bitmask(k,ispin,i,m),j)
|
||||
generators_bitmask(k,ispin,i) = ibset(generators_bitmask(k,ispin,i),j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine set_bitmask_particl_as_input(input_bimask)
|
||||
subroutine set_bitmask_particl_as_input(input_bitmask)
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: input_bimask(N_int,2)
|
||||
integer(bit_kind), intent(in) :: input_bitmask(N_int,2)
|
||||
integer :: i,j,k,l,m
|
||||
integer :: ispin
|
||||
BEGIN_DOC
|
||||
! set the generators_bitmask for the particles
|
||||
! as the input_bimask
|
||||
! as the input_bitmask
|
||||
END_DOC
|
||||
|
||||
do k=1,N_generators_bitmask
|
||||
do l = 1, 3
|
||||
do l = 1, 3
|
||||
i = index_particl_bitmask(l)
|
||||
do ispin=1,2
|
||||
do ispin=1,2
|
||||
do j = 1, N_int
|
||||
generators_bitmask(j,ispin,i,k) = input_bimask(j,ispin)
|
||||
generators_bitmask(j,ispin,i) = input_bitmask(j,ispin)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
touch generators_bitmask
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine set_bitmask_hole_as_input(input_bimask)
|
||||
subroutine set_bitmask_hole_as_input(input_bitmask)
|
||||
implicit none
|
||||
integer(bit_kind), intent(in) :: input_bimask(N_int,2)
|
||||
integer(bit_kind), intent(in) :: input_bitmask(N_int,2)
|
||||
integer :: i,j,k,l,m
|
||||
integer :: ispin
|
||||
BEGIN_DOC
|
||||
! set the generators_bitmask for the holes
|
||||
! as the input_bimask
|
||||
! as the input_bitmask
|
||||
END_DOC
|
||||
|
||||
do k=1,N_generators_bitmask
|
||||
do l = 1, 3
|
||||
do l = 1, 3
|
||||
i = index_holes_bitmask(l)
|
||||
do ispin=1,2
|
||||
do j = 1, N_int
|
||||
generators_bitmask(j,ispin,i,k) = input_bimask(j,ispin)
|
||||
generators_bitmask(j,ispin,i) = input_bitmask(j,ispin)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
touch generators_bitmask
|
||||
|
||||
@ -173,11 +138,10 @@ subroutine print_generators_bitmasks_holes
|
||||
|
||||
allocate(key_tmp(N_int,2))
|
||||
do l = 1, 3
|
||||
k = 1
|
||||
i = index_holes_bitmask(l)
|
||||
i = index_holes_bitmask(l)
|
||||
do j = 1, N_int
|
||||
key_tmp(j,1) = generators_bitmask(j,1,i,k)
|
||||
key_tmp(j,2) = generators_bitmask(j,2,i,k)
|
||||
key_tmp(j,1) = generators_bitmask(j,1,i)
|
||||
key_tmp(j,2) = generators_bitmask(j,2,i)
|
||||
enddo
|
||||
print*,''
|
||||
print*,'index hole = ',i
|
||||
@ -195,57 +159,10 @@ subroutine print_generators_bitmasks_particles
|
||||
|
||||
allocate(key_tmp(N_int,2))
|
||||
do l = 1, 3
|
||||
k = 1
|
||||
i = index_particl_bitmask(l)
|
||||
i = index_particl_bitmask(l)
|
||||
do j = 1, N_int
|
||||
key_tmp(j,1) = generators_bitmask(j,1,i,k)
|
||||
key_tmp(j,2) = generators_bitmask(j,2,i,k)
|
||||
enddo
|
||||
print*,''
|
||||
print*,'index particl ',i
|
||||
call print_det(key_tmp,N_int)
|
||||
print*,''
|
||||
enddo
|
||||
deallocate(key_tmp)
|
||||
|
||||
end
|
||||
|
||||
subroutine print_generators_bitmasks_holes_for_one_generator(i_gen)
|
||||
implicit none
|
||||
integer, intent(in) :: i_gen
|
||||
integer :: i,j,k,l
|
||||
integer(bit_kind),allocatable :: key_tmp(:,:)
|
||||
|
||||
allocate(key_tmp(N_int,2))
|
||||
do l = 1, 3
|
||||
k = i_gen
|
||||
i = index_holes_bitmask(l)
|
||||
do j = 1, N_int
|
||||
key_tmp(j,1) = generators_bitmask(j,1,i,k)
|
||||
key_tmp(j,2) = generators_bitmask(j,2,i,k)
|
||||
enddo
|
||||
print*,''
|
||||
print*,'index hole = ',i
|
||||
call print_det(key_tmp,N_int)
|
||||
print*,''
|
||||
enddo
|
||||
deallocate(key_tmp)
|
||||
|
||||
end
|
||||
|
||||
subroutine print_generators_bitmasks_particles_for_one_generator(i_gen)
|
||||
implicit none
|
||||
integer, intent(in) :: i_gen
|
||||
integer :: i,j,k,l
|
||||
integer(bit_kind),allocatable :: key_tmp(:,:)
|
||||
|
||||
allocate(key_tmp(N_int,2))
|
||||
do l = 1, 3
|
||||
k = i_gen
|
||||
i = index_particl_bitmask(l)
|
||||
do j = 1, N_int
|
||||
key_tmp(j,1) = generators_bitmask(j,1,i,k)
|
||||
key_tmp(j,2) = generators_bitmask(j,2,i,k)
|
||||
key_tmp(j,1) = generators_bitmask(j,1,i)
|
||||
key_tmp(j,2) = generators_bitmask(j,2,i)
|
||||
enddo
|
||||
print*,''
|
||||
print*,'index particl ',i
|
||||
@ -257,7 +174,7 @@ subroutine print_generators_bitmasks_particles_for_one_generator(i_gen)
|
||||
end
|
||||
|
||||
|
||||
BEGIN_PROVIDER [integer, index_holes_bitmask, (3)]
|
||||
BEGIN_PROVIDER [integer, index_holes_bitmask, (3)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Index of the holes in the generators_bitmasks
|
||||
|
49
src/casscf/50.casscf.bats
Normal file
49
src/casscf/50.casscf.bats
Normal file
@ -0,0 +1,49 @@
|
||||
#!/usr/bin/env bats
|
||||
|
||||
source $QP_ROOT/tests/bats/common.bats.sh
|
||||
source $QP_ROOT/quantum_package.rc
|
||||
|
||||
|
||||
function run_stoch() {
|
||||
thresh=$2
|
||||
test_exe casscf || skip
|
||||
qp set perturbation do_pt2 True
|
||||
qp set determinants n_det_max $3
|
||||
qp set davidson threshold_davidson 1.e-10
|
||||
qp set davidson n_states_diag 4
|
||||
qp run casscf | tee casscf.out
|
||||
energy1="$(ezfio get casscf energy_pt2 | tr '[]' ' ' | cut -d ',' -f 1)"
|
||||
eq $energy1 $1 $thresh
|
||||
}
|
||||
|
||||
@test "F2" { # 18.0198s
|
||||
rm -rf f2_casscf
|
||||
qp_create_ezfio -b aug-cc-pvdz ../input/f2.zmt -o f2_casscf
|
||||
qp set_file f2_casscf
|
||||
qp run scf
|
||||
qp set_mo_class --core="[1-6,8-9]" --act="[7,10]" --virt="[11-46]"
|
||||
run_stoch -198.773366970 1.e-4 100000
|
||||
}
|
||||
|
||||
@test "N2" { # 18.0198s
|
||||
rm -rf n2_casscf
|
||||
qp_create_ezfio -b aug-cc-pvdz ../input/n2.xyz -o n2_casscf
|
||||
qp set_file n2_casscf
|
||||
qp run scf
|
||||
qp set_mo_class --core="[1-4]" --act="[5-10]" --virt="[11-46]"
|
||||
run_stoch -109.0961643162 1.e-4 100000
|
||||
}
|
||||
|
||||
@test "N2_stretched" {
|
||||
rm -rf n2_stretched_casscf
|
||||
qp_create_ezfio -b aug-cc-pvdz -m 7 ../input/n2_stretched.xyz -o n2_stretched_casscf
|
||||
qp set_file n2_stretched_casscf
|
||||
qp run scf | tee scf.out
|
||||
qp set_mo_class --core="[1-4]" --act="[5-10]" --virt="[11-46]"
|
||||
qp set electrons elec_alpha_num 7
|
||||
qp set electrons elec_beta_num 7
|
||||
run_stoch -108.7860471300 1.e-4 100000
|
||||
#
|
||||
|
||||
}
|
||||
|
31
src/casscf/EZFIO.cfg
Normal file
31
src/casscf/EZFIO.cfg
Normal file
@ -0,0 +1,31 @@
|
||||
[energy]
|
||||
type: double precision
|
||||
doc: Calculated Selected |FCI| energy
|
||||
interface: ezfio
|
||||
size: (determinants.n_states)
|
||||
|
||||
[energy_pt2]
|
||||
type: double precision
|
||||
doc: Calculated |FCI| energy + |PT2|
|
||||
interface: ezfio
|
||||
size: (determinants.n_states)
|
||||
|
||||
[cisd_guess]
|
||||
type: logical
|
||||
doc: If true, the CASSCF starts with a CISD wave function
|
||||
interface: ezfio,provider,ocaml
|
||||
default: True
|
||||
|
||||
[state_following_casscf]
|
||||
type: logical
|
||||
doc: If |true|, the CASSCF will try to follow the guess CI vector and orbitals
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
|
||||
[level_shift_casscf]
|
||||
type: Positive_float
|
||||
doc: Energy shift on the virtual MOs to improve SCF convergence
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.005
|
||||
|
1
src/casscf/MORALITY
Normal file
1
src/casscf/MORALITY
Normal file
@ -0,0 +1 @@
|
||||
the CASCF can be obtained if a proper guess is given to the WF part
|
4
src/casscf/NEED
Normal file
4
src/casscf/NEED
Normal file
@ -0,0 +1,4 @@
|
||||
cipsi
|
||||
selectors_full
|
||||
generators_cas
|
||||
two_body_rdm
|
5
src/casscf/README.rst
Normal file
5
src/casscf/README.rst
Normal file
@ -0,0 +1,5 @@
|
||||
======
|
||||
casscf
|
||||
======
|
||||
|
||||
|CASSCF| program with the CIPSI algorithm.
|
6
src/casscf/bavard.irp.f
Normal file
6
src/casscf/bavard.irp.f
Normal file
@ -0,0 +1,6 @@
|
||||
! -*- F90 -*-
|
||||
BEGIN_PROVIDER [logical, bavard]
|
||||
! bavard=.true.
|
||||
bavard=.false.
|
||||
END_PROVIDER
|
||||
|
155
src/casscf/bielec.irp.f
Normal file
155
src/casscf/bielec.irp.f
Normal file
@ -0,0 +1,155 @@
|
||||
BEGIN_PROVIDER [real*8, bielec_PQxx, (mo_num, mo_num,n_core_inact_act_orb,n_core_inact_act_orb)]
|
||||
BEGIN_DOC
|
||||
! bielec_PQxx : integral (pq|xx) with p,q arbitrary, x core or active
|
||||
! indices are unshifted orbital numbers
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
|
||||
real*8 :: mo_two_e_integral
|
||||
|
||||
bielec_PQxx(:,:,:,:) = 0.d0
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,ii,j,jj,i3,j3) &
|
||||
!$OMP SHARED(n_core_inact_orb,list_core_inact,mo_num,bielec_PQxx, &
|
||||
!$OMP n_act_orb,mo_integrals_map,list_act)
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
do j=i,n_core_inact_orb
|
||||
jj=list_core_inact(j)
|
||||
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i,j),mo_integrals_map)
|
||||
bielec_PQxx(:,:,j,i)=bielec_PQxx(:,:,i,j)
|
||||
end do
|
||||
do j=1,n_act_orb
|
||||
jj=list_act(j)
|
||||
j3=j+n_core_inact_orb
|
||||
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i,j3),mo_integrals_map)
|
||||
bielec_PQxx(:,:,j3,i)=bielec_PQxx(:,:,i,j3)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_act_orb
|
||||
ii=list_act(i)
|
||||
i3=i+n_core_inact_orb
|
||||
do j=i,n_act_orb
|
||||
jj=list_act(j)
|
||||
j3=j+n_core_inact_orb
|
||||
call get_mo_two_e_integrals_i1j1(ii,jj,mo_num,bielec_PQxx(1,1,i3,j3),mo_integrals_map)
|
||||
bielec_PQxx(:,:,j3,i3)=bielec_PQxx(:,:,i3,j3)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, bielec_PxxQ, (mo_num,n_core_inact_act_orb,n_core_inact_act_orb, mo_num)]
|
||||
BEGIN_DOC
|
||||
! bielec_PxxQ : integral (px|xq) with p,q arbitrary, x core or active
|
||||
! indices are unshifted orbital numbers
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,ii,jj,p,q,i3,j3,t3,v3
|
||||
double precision, allocatable :: integrals_array(:,:)
|
||||
real*8 :: mo_two_e_integral
|
||||
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
bielec_PxxQ = 0.d0
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,ii,j,jj,i3,j3,integrals_array) &
|
||||
!$OMP SHARED(n_core_inact_orb,list_core_inact,mo_num,bielec_PxxQ, &
|
||||
!$OMP n_act_orb,mo_integrals_map,list_act)
|
||||
|
||||
allocate(integrals_array(mo_num,mo_num))
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
do j=i,n_core_inact_orb
|
||||
jj=list_core_inact(j)
|
||||
call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map)
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
bielec_PxxQ(p,i,j,q)=integrals_array(p,q)
|
||||
bielec_PxxQ(p,j,i,q)=integrals_array(q,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
do j=1,n_act_orb
|
||||
jj=list_act(j)
|
||||
j3=j+n_core_inact_orb
|
||||
call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map)
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
bielec_PxxQ(p,i,j3,q)=integrals_array(p,q)
|
||||
bielec_PxxQ(p,j3,i,q)=integrals_array(q,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
|
||||
! (ip|qj)
|
||||
!$OMP DO
|
||||
do i=1,n_act_orb
|
||||
ii=list_act(i)
|
||||
i3=i+n_core_inact_orb
|
||||
do j=i,n_act_orb
|
||||
jj=list_act(j)
|
||||
j3=j+n_core_inact_orb
|
||||
call get_mo_two_e_integrals_ij(ii,jj,mo_num,integrals_array,mo_integrals_map)
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
bielec_PxxQ(p,i3,j3,q)=integrals_array(p,q)
|
||||
bielec_PxxQ(p,j3,i3,q)=integrals_array(q,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
deallocate(integrals_array)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, bielecCI, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
|
||||
BEGIN_DOC
|
||||
! bielecCI : integrals (tu|vp) with p arbitrary, tuv active
|
||||
! index p runs over the whole basis, t,u,v only over the active orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,p,t,u,v
|
||||
double precision, external :: mo_two_e_integral
|
||||
PROVIDE mo_two_e_integrals_in_map
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(i,j,k,p,t,u,v) &
|
||||
!$OMP SHARED(mo_num,n_act_orb,list_act,bielecCI)
|
||||
do p=1,mo_num
|
||||
do j=1,n_act_orb
|
||||
u=list_act(j)
|
||||
do k=1,n_act_orb
|
||||
v=list_act(k)
|
||||
do i=1,n_act_orb
|
||||
t=list_act(i)
|
||||
bielecCI(i,k,j,p) = mo_two_e_integral(t,u,v,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
369
src/casscf/bielec_natorb.irp.f
Normal file
369
src/casscf/bielec_natorb.irp.f
Normal file
@ -0,0 +1,369 @@
|
||||
BEGIN_PROVIDER [real*8, bielec_PQxx_no, (mo_num, mo_num,n_core_inact_act_orb,n_core_inact_act_orb)]
|
||||
BEGIN_DOC
|
||||
! integral (pq|xx) in the basis of natural MOs
|
||||
! indices are unshifted orbital numbers
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,l,t,u,p,q
|
||||
double precision, allocatable :: f(:,:,:), d(:,:,:)
|
||||
|
||||
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(j,k,l,p,d,f) &
|
||||
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
|
||||
!$OMP bielec_PQxx_no,bielec_PQxx,list_act,natorbsCI)
|
||||
|
||||
allocate (f(n_act_orb,mo_num,n_core_inact_act_orb), &
|
||||
d(n_act_orb,mo_num,n_core_inact_act_orb))
|
||||
|
||||
!$OMP DO
|
||||
do l=1,n_core_inact_act_orb
|
||||
bielec_PQxx_no(:,:,:,l) = bielec_PQxx(:,:,:,l)
|
||||
|
||||
do k=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
f(p,j,k)=bielec_PQxx_no(list_act(p),j,k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do k=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
bielec_PQxx_no(list_act(p),j,k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
f(p,j,k)=bielec_PQxx_no(j,list_act(p),k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, &
|
||||
natorbsCI, n_act_orb, &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do k=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
do j=1,mo_num
|
||||
bielec_PQxx_no(j,list_act(p),k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
deallocate (f,d)
|
||||
|
||||
allocate (f(mo_num,mo_num,n_act_orb),d(mo_num,mo_num,n_act_orb))
|
||||
|
||||
!$OMP DO
|
||||
do l=1,n_core_inact_act_orb
|
||||
|
||||
do p=1,n_act_orb
|
||||
do k=1,mo_num
|
||||
do j=1,mo_num
|
||||
f(j,k,p) = bielec_PQxx_no(j,k,n_core_inact_orb+p,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',mo_num*mo_num,n_act_orb,n_act_orb,1.d0, &
|
||||
f, mo_num*mo_num, &
|
||||
natorbsCI, n_act_orb, &
|
||||
0.d0, &
|
||||
d, mo_num*mo_num)
|
||||
do p=1,n_act_orb
|
||||
do k=1,mo_num
|
||||
do j=1,mo_num
|
||||
bielec_PQxx_no(j,k,n_core_inact_orb+p,l)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP BARRIER
|
||||
|
||||
!$OMP DO
|
||||
do l=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
do k=1,mo_num
|
||||
do j=1,mo_num
|
||||
f(j,k,p) = bielec_PQxx_no(j,k,l,n_core_inact_orb+p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',mo_num*mo_num,n_act_orb,n_act_orb,1.d0, &
|
||||
f, mo_num*mo_num, &
|
||||
natorbsCI, n_act_orb, &
|
||||
0.d0, &
|
||||
d, mo_num*mo_num)
|
||||
do p=1,n_act_orb
|
||||
do k=1,mo_num
|
||||
do j=1,mo_num
|
||||
bielec_PQxx_no(j,k,l,n_core_inact_orb+p)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
deallocate (f,d)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, bielec_PxxQ_no, (mo_num,n_core_inact_act_orb,n_core_inact_act_orb, mo_num)]
|
||||
BEGIN_DOC
|
||||
! integral (px|xq) in the basis of natural MOs
|
||||
! indices are unshifted orbital numbers
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,l,t,u,p,q
|
||||
double precision, allocatable :: f(:,:,:), d(:,:,:)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(j,k,l,p,d,f) &
|
||||
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
|
||||
!$OMP bielec_PxxQ_no,bielec_PxxQ,list_act,natorbsCI)
|
||||
|
||||
|
||||
allocate (f(n_act_orb,n_core_inact_act_orb,n_core_inact_act_orb), &
|
||||
d(n_act_orb,n_core_inact_act_orb,n_core_inact_act_orb))
|
||||
|
||||
!$OMP DO
|
||||
do j=1,mo_num
|
||||
bielec_PxxQ_no(:,:,:,j) = bielec_PxxQ(:,:,:,j)
|
||||
do l=1,n_core_inact_act_orb
|
||||
do k=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
f(p,k,l) = bielec_PxxQ_no(list_act(p),k,l,j)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,n_core_inact_act_orb**2,n_act_orb,1.d0, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do l=1,n_core_inact_act_orb
|
||||
do k=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
bielec_PxxQ_no(list_act(p),k,l,j)=d(p,k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
deallocate (f,d)
|
||||
|
||||
allocate (f(n_act_orb,mo_num,n_core_inact_act_orb), &
|
||||
d(n_act_orb,mo_num,n_core_inact_act_orb))
|
||||
|
||||
!$OMP DO
|
||||
do k=1,mo_num
|
||||
do l=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
f(p,j,l) = bielec_PxxQ_no(j,n_core_inact_orb+p,l,k)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,mo_num*n_core_inact_act_orb,n_act_orb,1.d0, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do l=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
bielec_PxxQ_no(j,n_core_inact_orb+p,l,k)=d(p,j,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
deallocate(f,d)
|
||||
|
||||
allocate(f(mo_num,n_core_inact_act_orb,n_act_orb), &
|
||||
d(mo_num,n_core_inact_act_orb,n_act_orb) )
|
||||
|
||||
!$OMP DO
|
||||
do k=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
do l=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
f(j,l,p) = bielec_PxxQ_no(j,l,n_core_inact_orb+p,k)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',mo_num*n_core_inact_act_orb,n_act_orb,n_act_orb,1.d0, &
|
||||
f, mo_num*n_core_inact_act_orb, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
0.d0, &
|
||||
d, mo_num*n_core_inact_act_orb)
|
||||
do p=1,n_act_orb
|
||||
do l=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
bielec_PxxQ_no(j,l,n_core_inact_orb+p,k)=d(j,l,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
!$OMP BARRIER
|
||||
|
||||
!$OMP DO
|
||||
do l=1,n_core_inact_act_orb
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
f(j,k,p) = bielec_PxxQ_no(j,k,l,n_core_inact_orb+p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',mo_num*n_core_inact_act_orb,n_act_orb,n_act_orb,1.d0, &
|
||||
f, mo_num*n_core_inact_act_orb, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
0.d0, &
|
||||
d, mo_num*n_core_inact_act_orb)
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_core_inact_act_orb
|
||||
do j=1,mo_num
|
||||
bielec_PxxQ_no(j,k,l,n_core_inact_orb+p)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
deallocate(f,d)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, bielecCI_no, (n_act_orb,n_act_orb,n_act_orb, mo_num)]
|
||||
BEGIN_DOC
|
||||
! integrals (tu|vp) in the basis of natural MOs
|
||||
! index p runs over the whole basis, t,u,v only over the active orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,k,l,t,u,p,q
|
||||
double precision, allocatable :: f(:,:,:), d(:,:,:)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP PRIVATE(j,k,l,p,d,f) &
|
||||
!$OMP SHARED(n_core_inact_act_orb,mo_num,n_act_orb,n_core_inact_orb, &
|
||||
!$OMP bielecCI_no,bielecCI,list_act,natorbsCI)
|
||||
|
||||
allocate (f(n_act_orb,n_act_orb,mo_num), &
|
||||
d(n_act_orb,n_act_orb,mo_num))
|
||||
|
||||
!$OMP DO
|
||||
do l=1,mo_num
|
||||
bielecCI_no(:,:,:,l) = bielecCI(:,:,:,l)
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
f(p,j,k)=bielecCI_no(p,j,k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,n_act_orb*n_act_orb,n_act_orb,1.d0, &
|
||||
natorbsCI, size(natorbsCI,1), &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
bielecCI_no(p,j,k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
|
||||
do j=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
f(p,j,k)=bielecCI_no(j,p,k,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('T','N',n_act_orb,n_act_orb*n_act_orb,n_act_orb,1.d0, &
|
||||
natorbsCI, n_act_orb, &
|
||||
f, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb)
|
||||
do k=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
bielecCI_no(j,p,k,l)=d(p,j,k)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
f(j,k,p)=bielecCI_no(j,k,p,l)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',n_act_orb*n_act_orb,n_act_orb,n_act_orb,1.d0, &
|
||||
f, n_act_orb*n_act_orb, &
|
||||
natorbsCI, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb*n_act_orb)
|
||||
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
bielecCI_no(j,k,p,l)=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP DO
|
||||
do l=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
f(j,k,p)=bielecCI_no(j,k,l,list_act(p))
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
call dgemm('N','N',n_act_orb*n_act_orb,n_act_orb,n_act_orb,1.d0, &
|
||||
f, n_act_orb*n_act_orb, &
|
||||
natorbsCI, n_act_orb, &
|
||||
0.d0, &
|
||||
d, n_act_orb*n_act_orb)
|
||||
|
||||
do p=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do j=1,n_act_orb
|
||||
bielecCI_no(j,k,l,list_act(p))=d(j,k,p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
deallocate(d,f)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
57
src/casscf/casscf.irp.f
Normal file
57
src/casscf/casscf.irp.f
Normal file
@ -0,0 +1,57 @@
|
||||
program casscf
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! TODO : Put the documentation of the program here
|
||||
END_DOC
|
||||
call reorder_orbitals_for_casscf
|
||||
no_vvvv_integrals = .True.
|
||||
pt2_max = 0.02
|
||||
SOFT_TOUCH no_vvvv_integrals pt2_max
|
||||
call run_stochastic_cipsi
|
||||
call run
|
||||
end
|
||||
|
||||
subroutine run
|
||||
implicit none
|
||||
double precision :: energy_old, energy
|
||||
logical :: converged,state_following_casscf_save
|
||||
integer :: iteration
|
||||
converged = .False.
|
||||
|
||||
energy = 0.d0
|
||||
mo_label = "MCSCF"
|
||||
iteration = 1
|
||||
state_following_casscf_save = state_following_casscf
|
||||
state_following_casscf = .True.
|
||||
touch state_following_casscf
|
||||
do while (.not.converged)
|
||||
call run_stochastic_cipsi
|
||||
energy_old = energy
|
||||
energy = eone+etwo+ecore
|
||||
|
||||
call write_time(6)
|
||||
call write_int(6,iteration,'CAS-SCF iteration')
|
||||
call write_double(6,energy,'CAS-SCF energy')
|
||||
call write_double(6,energy_improvement, 'Predicted energy improvement')
|
||||
|
||||
converged = dabs(energy_improvement) < thresh_scf
|
||||
pt2_max = dabs(energy_improvement / pt2_relative_error)
|
||||
|
||||
mo_coef = NewOrbs
|
||||
mo_occ = occnum
|
||||
call save_mos
|
||||
iteration += 1
|
||||
N_det = max(N_det/2 ,N_states)
|
||||
psi_det = psi_det_sorted
|
||||
psi_coef = psi_coef_sorted
|
||||
read_wf = .True.
|
||||
call clear_mo_map
|
||||
SOFT_TOUCH mo_coef N_det pt2_max psi_det psi_coef
|
||||
if(iteration .gt. 3)then
|
||||
state_following_casscf = state_following_casscf_save
|
||||
touch state_following_casscf
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
end
|
12
src/casscf/class.irp.f
Normal file
12
src/casscf/class.irp.f
Normal file
@ -0,0 +1,12 @@
|
||||
BEGIN_PROVIDER [ logical, do_only_1h1p ]
|
||||
&BEGIN_PROVIDER [ logical, do_only_cas ]
|
||||
&BEGIN_PROVIDER [ logical, do_ddci ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! In the CAS case, all those are always false except do_only_cas
|
||||
END_DOC
|
||||
do_only_cas = .True.
|
||||
do_only_1h1p = .False.
|
||||
do_ddci = .False.
|
||||
END_PROVIDER
|
||||
|
67
src/casscf/densities.irp.f
Normal file
67
src/casscf/densities.irp.f
Normal file
@ -0,0 +1,67 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [real*8, D0tu, (n_act_orb,n_act_orb) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! the first-order density matrix in the basis of the starting MOs.
|
||||
! matrix is state averaged.
|
||||
END_DOC
|
||||
integer :: t,u
|
||||
|
||||
do u=1,n_act_orb
|
||||
do t=1,n_act_orb
|
||||
D0tu(t,u) = one_e_dm_mo_alpha_average( list_act(t), list_act(u) ) + &
|
||||
one_e_dm_mo_beta_average ( list_act(t), list_act(u) )
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
|
||||
BEGIN_DOC
|
||||
! The second-order density matrix in the basis of the starting MOs ONLY IN THE RANGE OF ACTIVE MOS
|
||||
! The values are state averaged
|
||||
!
|
||||
! We use the spin-free generators of mono-excitations
|
||||
! E_pq destroys q and creates p
|
||||
! D_pq = <0|E_pq|0> = D_qp
|
||||
! P_pqrs = 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
|
||||
!
|
||||
! P0tuvx(p,q,r,s) = chemist notation : 1/2 <0|E_pq E_rs - delta_qr E_ps|0>
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: t,u,v,x
|
||||
integer :: tt,uu,vv,xx
|
||||
integer :: mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
|
||||
integer :: ierr
|
||||
real*8 :: phase1,phase11,phase12,phase2,phase21,phase22
|
||||
integer :: nu1,nu2,nu11,nu12,nu21,nu22
|
||||
integer :: ierr1,ierr2,ierr11,ierr12,ierr21,ierr22
|
||||
real*8 :: cI_mu(N_states),term
|
||||
integer(bit_kind), dimension(N_int,2) :: det_mu, det_mu_ex
|
||||
integer(bit_kind), dimension(N_int,2) :: det_mu_ex1, det_mu_ex11, det_mu_ex12
|
||||
integer(bit_kind), dimension(N_int,2) :: det_mu_ex2, det_mu_ex21, det_mu_ex22
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' providing the 2 body RDM on the active part'
|
||||
endif
|
||||
|
||||
P0tuvx= 0.d0
|
||||
do istate=1,N_states
|
||||
do x = 1, n_act_orb
|
||||
xx = list_act(x)
|
||||
do v = 1, n_act_orb
|
||||
vv = list_act(v)
|
||||
do u = 1, n_act_orb
|
||||
uu = list_act(u)
|
||||
do t = 1, n_act_orb
|
||||
tt = list_act(t)
|
||||
P0tuvx(t,u,v,x) = state_av_act_two_rdm_spin_trace_mo(t,v,u,x)
|
||||
! P0tuvx(t,u,v,x) = act_two_rdm_spin_trace_mo(t,v,u,x)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
125
src/casscf/det_manip.irp.f
Normal file
125
src/casscf/det_manip.irp.f
Normal file
@ -0,0 +1,125 @@
|
||||
use bitmasks
|
||||
|
||||
subroutine do_signed_mono_excitation(key1,key2,nu,ihole,ipart, &
|
||||
ispin,phase,ierr)
|
||||
BEGIN_DOC
|
||||
! we create the mono-excitation, and determine, if possible,
|
||||
! the phase and the number in the list of determinants
|
||||
END_DOC
|
||||
implicit none
|
||||
integer(bit_kind) :: key1(N_int,2),key2(N_int,2)
|
||||
integer(bit_kind), allocatable :: keytmp(:,:)
|
||||
integer :: exc(0:2,2,2),ihole,ipart,ierr,nu,ispin
|
||||
real*8 :: phase
|
||||
logical :: found
|
||||
allocate(keytmp(N_int,2))
|
||||
|
||||
nu=-1
|
||||
phase=1.D0
|
||||
ierr=0
|
||||
call det_copy(key1,key2,N_int)
|
||||
! write(6,*) ' key2 before excitation ',ihole,' -> ',ipart,' spin = ',ispin
|
||||
! call print_det(key2,N_int)
|
||||
call do_single_excitation(key2,ihole,ipart,ispin,ierr)
|
||||
! write(6,*) ' key2 after ',ihole,' -> ',ipart,' spin = ',ispin
|
||||
! call print_det(key2,N_int)
|
||||
! write(6,*) ' excitation ',ihole,' -> ',ipart,' gives ierr = ',ierr
|
||||
if (ierr.eq.1) then
|
||||
! excitation is possible
|
||||
! get the phase
|
||||
call get_single_excitation(key1,key2,exc,phase,N_int)
|
||||
! get the number in the list
|
||||
found=.false.
|
||||
nu=0
|
||||
|
||||
!TODO BOTTLENECK
|
||||
do while (.not.found)
|
||||
nu+=1
|
||||
if (nu.gt.N_det) then
|
||||
! the determinant is possible, but not in the list
|
||||
found=.true.
|
||||
nu=-1
|
||||
else
|
||||
call det_extract(keytmp,nu,N_int)
|
||||
integer :: i,ii
|
||||
found=.true.
|
||||
do ii=1,2
|
||||
do i=1,N_int
|
||||
if (keytmp(i,ii).ne.key2(i,ii)) then
|
||||
found=.false.
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end if
|
||||
!
|
||||
! we found the new string, the phase, and possibly the number in the list
|
||||
!
|
||||
end subroutine do_signed_mono_excitation
|
||||
|
||||
subroutine det_extract(key,nu,Nint)
|
||||
BEGIN_DOC
|
||||
! extract a determinant from the list of determinants
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ispin,i,nu,Nint
|
||||
integer(bit_kind) :: key(Nint,2)
|
||||
do ispin=1,2
|
||||
do i=1,Nint
|
||||
key(i,ispin)=psi_det(i,ispin,nu)
|
||||
end do
|
||||
end do
|
||||
end subroutine det_extract
|
||||
|
||||
subroutine det_copy(key1,key2,Nint)
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
BEGIN_DOC
|
||||
! copy a determinant from key1 to key2
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ispin,i,Nint
|
||||
integer(bit_kind) :: key1(Nint,2),key2(Nint,2)
|
||||
do ispin=1,2
|
||||
do i=1,Nint
|
||||
key2(i,ispin)=key1(i,ispin)
|
||||
end do
|
||||
end do
|
||||
end subroutine det_copy
|
||||
|
||||
subroutine do_spinfree_mono_excitation(key_in,key_out1,key_out2 &
|
||||
,nu1,nu2,ihole,ipart,phase1,phase2,ierr,jerr)
|
||||
BEGIN_DOC
|
||||
! we create the spin-free mono-excitation E_pq=(a^+_p a_q + a^+_P a_Q)
|
||||
! we may create two determinants as result
|
||||
!
|
||||
END_DOC
|
||||
implicit none
|
||||
integer(bit_kind) :: key_in(N_int,2),key_out1(N_int,2)
|
||||
integer(bit_kind) :: key_out2(N_int,2)
|
||||
integer :: ihole,ipart,ierr,jerr,nu1,nu2
|
||||
integer :: ispin
|
||||
real*8 :: phase1,phase2
|
||||
|
||||
! write(6,*) ' applying E_',ipart,ihole,' on determinant '
|
||||
! call print_det(key_in,N_int)
|
||||
|
||||
! spin alpha
|
||||
ispin=1
|
||||
call do_signed_mono_excitation(key_in,key_out1,nu1,ihole &
|
||||
,ipart,ispin,phase1,ierr)
|
||||
! if (ierr.eq.1) then
|
||||
! write(6,*) ' 1 result is ',nu1,phase1
|
||||
! call print_det(key_out1,N_int)
|
||||
! end if
|
||||
! spin beta
|
||||
ispin=2
|
||||
call do_signed_mono_excitation(key_in,key_out2,nu2,ihole &
|
||||
,ipart,ispin,phase2,jerr)
|
||||
! if (jerr.eq.1) then
|
||||
! write(6,*) ' 2 result is ',nu2,phase2
|
||||
! call print_det(key_out2,N_int)
|
||||
! end if
|
||||
|
||||
end subroutine do_spinfree_mono_excitation
|
||||
|
3
src/casscf/driver_optorb.irp.f
Normal file
3
src/casscf/driver_optorb.irp.f
Normal file
@ -0,0 +1,3 @@
|
||||
subroutine driver_optorb
|
||||
implicit none
|
||||
end
|
104
src/casscf/get_energy.irp.f
Normal file
104
src/casscf/get_energy.irp.f
Normal file
@ -0,0 +1,104 @@
|
||||
program print_2rdm
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! get the active part of the bielectronic energy on a given wave function.
|
||||
!
|
||||
! useful to test the active part of the spin trace 2 rdms
|
||||
END_DOC
|
||||
!no_vvvv_integrals = .True.
|
||||
read_wf = .True.
|
||||
!touch read_wf no_vvvv_integrals
|
||||
!call routine
|
||||
!call routine_bis
|
||||
call print_grad
|
||||
end
|
||||
|
||||
subroutine print_grad
|
||||
implicit none
|
||||
integer :: i
|
||||
do i = 1, nMonoEx
|
||||
if(dabs(gradvec2(i)).gt.1.d-5)then
|
||||
print*,''
|
||||
print*,i,gradvec2(i),excit(:,i)
|
||||
endif
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine routine_bis
|
||||
implicit none
|
||||
integer :: i,j
|
||||
double precision :: accu_d,accu_od
|
||||
!accu_d = 0.d0
|
||||
!accu_od = 0.d0
|
||||
!print*,''
|
||||
!print*,''
|
||||
!print*,''
|
||||
!do i = 1, mo_num
|
||||
! write(*,'(100(F8.5,X))')super_ci_dm(i,:)
|
||||
! accu_d += super_ci_dm(i,i)
|
||||
! do j = i+1, mo_num
|
||||
! accu_od += dabs(super_ci_dm(i,j) - super_ci_dm(j,i))
|
||||
! enddo
|
||||
!enddo
|
||||
!print*,''
|
||||
!print*,''
|
||||
!print*,'accu_d = ',accu_d
|
||||
!print*,'n_elec = ',elec_num
|
||||
!print*,'accu_od= ',accu_od
|
||||
!print*,''
|
||||
!accu_d = 0.d0
|
||||
!do i = 1, N_det
|
||||
! accu_d += psi_coef(i,1)**2
|
||||
!enddo
|
||||
!print*,'accu_d = ',accu_d
|
||||
!provide superci_natorb
|
||||
|
||||
provide switch_mo_coef
|
||||
mo_coef = switch_mo_coef
|
||||
call save_mos
|
||||
end
|
||||
|
||||
subroutine routine
|
||||
integer :: i,j,k,l
|
||||
integer :: ii,jj,kk,ll
|
||||
double precision :: accu(4),twodm,thr,act_twodm2,integral,get_two_e_integral
|
||||
thr = 1.d-10
|
||||
|
||||
|
||||
accu = 0.d0
|
||||
do ll = 1, n_act_orb
|
||||
l = list_act(ll)
|
||||
do kk = 1, n_act_orb
|
||||
k = list_act(kk)
|
||||
do jj = 1, n_act_orb
|
||||
j = list_act(jj)
|
||||
do ii = 1, n_act_orb
|
||||
i = list_act(ii)
|
||||
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
|
||||
accu(1) += state_av_act_two_rdm_spin_trace_mo(ii,jj,kk,ll) * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu = ',accu(1)
|
||||
|
||||
accu = 0.d0
|
||||
do ll = 1, n_act_orb
|
||||
l = list_act(ll)
|
||||
do kk = 1, n_act_orb
|
||||
k = list_act(kk)
|
||||
do jj = 1, n_act_orb
|
||||
j = list_act(jj)
|
||||
do ii = 1, n_act_orb
|
||||
i = list_act(ii)
|
||||
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
|
||||
accu(1) += state_av_act_two_rdm_openmp_spin_trace_mo(ii,jj,kk,ll) * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu = ',accu(1)
|
||||
print*,'psi_energy_two_e = ',psi_energy_two_e
|
||||
|
||||
print *, psi_energy_with_nucl_rep
|
||||
end
|
74
src/casscf/grad_old.irp.f
Normal file
74
src/casscf/grad_old.irp.f
Normal file
@ -0,0 +1,74 @@
|
||||
|
||||
BEGIN_PROVIDER [real*8, gradvec_old, (nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! calculate the orbital gradient <Psi| H E_pq |Psi> by hand, i.e. for
|
||||
! each determinant I we determine the string E_pq |I> (alpha and beta
|
||||
! separately) and generate <Psi|H E_pq |I>
|
||||
! sum_I c_I <Psi|H E_pq |I> is then the pq component of the orbital
|
||||
! gradient
|
||||
! E_pq = a^+_pa_q + a^+_Pa_Q
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ii,tt,aa,indx,ihole,ipart,istate
|
||||
real*8 :: res
|
||||
|
||||
do indx=1,nMonoEx
|
||||
ihole=excit(1,indx)
|
||||
ipart=excit(2,indx)
|
||||
call calc_grad_elem(ihole,ipart,res)
|
||||
gradvec_old(indx)=res
|
||||
end do
|
||||
|
||||
real*8 :: norm_grad
|
||||
norm_grad=0.d0
|
||||
do indx=1,nMonoEx
|
||||
norm_grad+=gradvec_old(indx)*gradvec_old(indx)
|
||||
end do
|
||||
norm_grad=sqrt(norm_grad)
|
||||
if (bavard) then
|
||||
write(6,*)
|
||||
write(6,*) ' Norm of the orbital gradient (via <0|EH|0>) : ', norm_grad
|
||||
write(6,*)
|
||||
endif
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine calc_grad_elem(ihole,ipart,res)
|
||||
BEGIN_DOC
|
||||
! eq 18 of Siegbahn et al, Physica Scripta 1980
|
||||
! we calculate 2 <Psi| H E_pq | Psi>, q=hole, p=particle
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ihole,ipart,mu,iii,ispin,ierr,nu,istate
|
||||
real*8 :: res
|
||||
integer(bit_kind), allocatable :: det_mu(:,:),det_mu_ex(:,:)
|
||||
real*8 :: i_H_psi_array(N_states),phase
|
||||
allocate(det_mu(N_int,2))
|
||||
allocate(det_mu_ex(N_int,2))
|
||||
|
||||
res=0.D0
|
||||
|
||||
do mu=1,n_det
|
||||
! get the string of the determinant
|
||||
call det_extract(det_mu,mu,N_int)
|
||||
do ispin=1,2
|
||||
! do the monoexcitation on it
|
||||
call det_copy(det_mu,det_mu_ex,N_int)
|
||||
call do_signed_mono_excitation(det_mu,det_mu_ex,nu &
|
||||
,ihole,ipart,ispin,phase,ierr)
|
||||
if (ierr.eq.1) then
|
||||
call i_H_psi(det_mu_ex,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
|
||||
! state-averaged gradient
|
||||
res*=2.D0/dble(N_states)
|
||||
|
||||
end subroutine calc_grad_elem
|
||||
|
171
src/casscf/gradient.irp.f
Normal file
171
src/casscf/gradient.irp.f
Normal file
@ -0,0 +1,171 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ integer, nMonoEx ]
|
||||
BEGIN_DOC
|
||||
! Number of single excitations
|
||||
END_DOC
|
||||
implicit none
|
||||
nMonoEx=n_core_inact_orb*n_act_orb+n_core_inact_orb*n_virt_orb+n_act_orb*n_virt_orb
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
|
||||
&BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! a list of the orbitals involved in the excitation
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i,t,a,ii,tt,aa,indx
|
||||
indx=0
|
||||
do ii=1,n_core_inact_orb
|
||||
i=list_core_inact(ii)
|
||||
do tt=1,n_act_orb
|
||||
t=list_act(tt)
|
||||
indx+=1
|
||||
excit(1,indx)=i
|
||||
excit(2,indx)=t
|
||||
excit_class(indx)='c-a'
|
||||
end do
|
||||
end do
|
||||
|
||||
do ii=1,n_core_inact_orb
|
||||
i=list_core_inact(ii)
|
||||
do aa=1,n_virt_orb
|
||||
a=list_virt(aa)
|
||||
indx+=1
|
||||
excit(1,indx)=i
|
||||
excit(2,indx)=a
|
||||
excit_class(indx)='c-v'
|
||||
end do
|
||||
end do
|
||||
|
||||
do tt=1,n_act_orb
|
||||
t=list_act(tt)
|
||||
do aa=1,n_virt_orb
|
||||
a=list_virt(aa)
|
||||
indx+=1
|
||||
excit(1,indx)=t
|
||||
excit(2,indx)=a
|
||||
excit_class(indx)='a-v'
|
||||
end do
|
||||
end do
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' Filled the table of the Monoexcitations '
|
||||
do indx=1,nMonoEx
|
||||
write(6,*) ' ex ',indx,' : ',excit(1,indx),' -> ' &
|
||||
,excit(2,indx),' ',excit_class(indx)
|
||||
end do
|
||||
end if
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, gradvec2, (nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! calculate the orbital gradient <Psi| H E_pq |Psi> from density
|
||||
! matrices and integrals; Siegbahn et al, Phys Scr 1980
|
||||
! eqs 14 a,b,c
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,a,indx
|
||||
real*8 :: gradvec_it,gradvec_ia,gradvec_ta
|
||||
real*8 :: norm_grad
|
||||
|
||||
indx=0
|
||||
do i=1,n_core_inact_orb
|
||||
do t=1,n_act_orb
|
||||
indx+=1
|
||||
gradvec2(indx)=gradvec_it(i,t)
|
||||
end do
|
||||
end do
|
||||
|
||||
do i=1,n_core_inact_orb
|
||||
do a=1,n_virt_orb
|
||||
indx+=1
|
||||
gradvec2(indx)=gradvec_ia(i,a)
|
||||
end do
|
||||
end do
|
||||
|
||||
do t=1,n_act_orb
|
||||
do a=1,n_virt_orb
|
||||
indx+=1
|
||||
gradvec2(indx)=gradvec_ta(t,a)
|
||||
end do
|
||||
end do
|
||||
|
||||
norm_grad=0.d0
|
||||
do indx=1,nMonoEx
|
||||
norm_grad+=gradvec2(indx)*gradvec2(indx)
|
||||
end do
|
||||
norm_grad=sqrt(norm_grad)
|
||||
write(6,*)
|
||||
write(6,*) ' Norm of the orbital gradient (via D, P and integrals): ', norm_grad
|
||||
write(6,*)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
real*8 function gradvec_it(i,t)
|
||||
BEGIN_DOC
|
||||
! the orbital gradient core/inactive -> active
|
||||
! we assume natural orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t
|
||||
|
||||
integer :: ii,tt,v,vv,x,y
|
||||
integer :: x3,y3
|
||||
|
||||
ii=list_core_inact(i)
|
||||
tt=list_act(t)
|
||||
gradvec_it=2.D0*(Fipq(tt,ii)+Fapq(tt,ii))
|
||||
gradvec_it-=occnum(tt)*Fipq(ii,tt)
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
do x=1,n_act_orb
|
||||
x3=x+n_core_inact_orb
|
||||
do y=1,n_act_orb
|
||||
y3=y+n_core_inact_orb
|
||||
gradvec_it-=2.D0*P0tuvx_no(t,v,x,y)*bielec_PQxx_no(ii,vv,x3,y3)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
gradvec_it*=2.D0
|
||||
end function gradvec_it
|
||||
|
||||
real*8 function gradvec_ia(i,a)
|
||||
BEGIN_DOC
|
||||
! the orbital gradient core/inactive -> virtual
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,a,ii,aa
|
||||
|
||||
ii=list_core_inact(i)
|
||||
aa=list_virt(a)
|
||||
gradvec_ia=2.D0*(Fipq(aa,ii)+Fapq(aa,ii))
|
||||
gradvec_ia*=2.D0
|
||||
|
||||
end function gradvec_ia
|
||||
|
||||
real*8 function gradvec_ta(t,a)
|
||||
BEGIN_DOC
|
||||
! the orbital gradient active -> virtual
|
||||
! we assume natural orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: t,a,tt,aa,v,vv,x,y
|
||||
|
||||
tt=list_act(t)
|
||||
aa=list_virt(a)
|
||||
gradvec_ta=0.D0
|
||||
gradvec_ta+=occnum(tt)*Fipq(aa,tt)
|
||||
do v=1,n_act_orb
|
||||
do x=1,n_act_orb
|
||||
do y=1,n_act_orb
|
||||
gradvec_ta+=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
gradvec_ta*=2.D0
|
||||
|
||||
end function gradvec_ta
|
||||
|
656
src/casscf/hessian.irp.f
Normal file
656
src/casscf/hessian.irp.f
Normal file
@ -0,0 +1,656 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [real*8, hessmat, (nMonoEx,nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! calculate the orbital hessian 2 <Psi| E_pq H E_rs |Psi>
|
||||
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi> by hand,
|
||||
! determinant per determinant, as for the gradient
|
||||
!
|
||||
! we assume that we have natural active orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: indx,ihole,ipart
|
||||
integer :: jndx,jhole,jpart
|
||||
character*3 :: iexc,jexc
|
||||
real*8 :: res
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' providing Hessian matrix hessmat '
|
||||
write(6,*) ' nMonoEx = ',nMonoEx
|
||||
endif
|
||||
|
||||
do indx=1,nMonoEx
|
||||
do jndx=1,nMonoEx
|
||||
hessmat(indx,jndx)=0.D0
|
||||
end do
|
||||
end do
|
||||
|
||||
do indx=1,nMonoEx
|
||||
ihole=excit(1,indx)
|
||||
ipart=excit(2,indx)
|
||||
iexc=excit_class(indx)
|
||||
do jndx=indx,nMonoEx
|
||||
jhole=excit(1,jndx)
|
||||
jpart=excit(2,jndx)
|
||||
jexc=excit_class(jndx)
|
||||
call calc_hess_elem(ihole,ipart,jhole,jpart,res)
|
||||
hessmat(indx,jndx)=res
|
||||
hessmat(jndx,indx)=res
|
||||
end do
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine calc_hess_elem(ihole,ipart,jhole,jpart,res)
|
||||
BEGIN_DOC
|
||||
! eq 19 of Siegbahn et al, Physica Scripta 1980
|
||||
! we calculate 2 <Psi| E_pq H E_rs |Psi>
|
||||
! + <Psi| E_pq E_rs H |Psi> + <Psi| E_rs E_pq H |Psi>
|
||||
! average over all states is performed.
|
||||
! no transition between states.
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: ihole,ipart,ispin,mu,istate
|
||||
integer :: jhole,jpart,jspin
|
||||
integer :: mu_pq, mu_pqrs, mu_rs, mu_rspq, nu_rs,nu
|
||||
real*8 :: res
|
||||
integer(bit_kind), allocatable :: det_mu(:,:)
|
||||
integer(bit_kind), allocatable :: det_nu(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_pq(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_rs(:,:)
|
||||
integer(bit_kind), allocatable :: det_nu_rs(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_pqrs(:,:)
|
||||
integer(bit_kind), allocatable :: det_mu_rspq(:,:)
|
||||
real*8 :: i_H_psi_array(N_states),phase,phase2,phase3
|
||||
real*8 :: i_H_j_element
|
||||
allocate(det_mu(N_int,2))
|
||||
allocate(det_nu(N_int,2))
|
||||
allocate(det_mu_pq(N_int,2))
|
||||
allocate(det_mu_rs(N_int,2))
|
||||
allocate(det_nu_rs(N_int,2))
|
||||
allocate(det_mu_pqrs(N_int,2))
|
||||
allocate(det_mu_rspq(N_int,2))
|
||||
integer :: mu_pq_possible
|
||||
integer :: mu_rs_possible
|
||||
integer :: nu_rs_possible
|
||||
integer :: mu_pqrs_possible
|
||||
integer :: mu_rspq_possible
|
||||
|
||||
res=0.D0
|
||||
|
||||
! the terms <0|E E H |0>
|
||||
do mu=1,n_det
|
||||
! get the string of the determinant
|
||||
call det_extract(det_mu,mu,N_int)
|
||||
do ispin=1,2
|
||||
! do the monoexcitation pq on it
|
||||
call det_copy(det_mu,det_mu_pq,N_int)
|
||||
call do_signed_mono_excitation(det_mu,det_mu_pq,mu_pq &
|
||||
,ihole,ipart,ispin,phase,mu_pq_possible)
|
||||
if (mu_pq_possible.eq.1) then
|
||||
! possible, but not necessarily in the list
|
||||
! do the second excitation
|
||||
do jspin=1,2
|
||||
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
|
||||
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
|
||||
,jhole,jpart,jspin,phase2,mu_pqrs_possible)
|
||||
! excitation possible
|
||||
if (mu_pqrs_possible.eq.1) then
|
||||
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
|
||||
end do
|
||||
end if
|
||||
! try the de-excitation with opposite sign
|
||||
call det_copy(det_mu_pq,det_mu_pqrs,N_int)
|
||||
call do_signed_mono_excitation(det_mu_pq,det_mu_pqrs,mu_pqrs&
|
||||
,jpart,jhole,jspin,phase2,mu_pqrs_possible)
|
||||
phase2=-phase2
|
||||
! excitation possible
|
||||
if (mu_pqrs_possible.eq.1) then
|
||||
call i_H_psi(det_mu_pqrs,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase*phase2
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end if
|
||||
! exchange the notion of pq and rs
|
||||
! do the monoexcitation rs on the initial determinant
|
||||
call det_copy(det_mu,det_mu_rs,N_int)
|
||||
call do_signed_mono_excitation(det_mu,det_mu_rs,mu_rs &
|
||||
,jhole,jpart,ispin,phase2,mu_rs_possible)
|
||||
if (mu_rs_possible.eq.1) then
|
||||
! do the second excitation
|
||||
do jspin=1,2
|
||||
call det_copy(det_mu_rs,det_mu_rspq,N_int)
|
||||
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
|
||||
,ihole,ipart,jspin,phase3,mu_rspq_possible)
|
||||
! excitation possible (of course, the result is outside the CAS)
|
||||
if (mu_rspq_possible.eq.1) then
|
||||
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
|
||||
end do
|
||||
end if
|
||||
! we may try the de-excitation, with opposite sign
|
||||
call det_copy(det_mu_rs,det_mu_rspq,N_int)
|
||||
call do_signed_mono_excitation(det_mu_rs,det_mu_rspq,mu_rspq&
|
||||
,ipart,ihole,jspin,phase3,mu_rspq_possible)
|
||||
phase3=-phase3
|
||||
! excitation possible (of course, the result is outside the CAS)
|
||||
if (mu_rspq_possible.eq.1) then
|
||||
call i_H_psi(det_mu_rspq,psi_det,psi_coef,N_int &
|
||||
,N_det,N_det,N_states,i_H_psi_array)
|
||||
do istate=1,N_states
|
||||
res+=i_H_psi_array(istate)*psi_coef(mu,istate)*phase2*phase3
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end if
|
||||
!
|
||||
! the operator E H E, we have to do a double loop over the determinants
|
||||
! we still have the determinant mu_pq and the phase in memory
|
||||
if (mu_pq_possible.eq.1) then
|
||||
do nu=1,N_det
|
||||
call det_extract(det_nu,nu,N_int)
|
||||
do jspin=1,2
|
||||
call det_copy(det_nu,det_nu_rs,N_int)
|
||||
call do_signed_mono_excitation(det_nu,det_nu_rs,nu_rs &
|
||||
,jhole,jpart,jspin,phase2,nu_rs_possible)
|
||||
! excitation possible ?
|
||||
if (nu_rs_possible.eq.1) then
|
||||
call i_H_j(det_mu_pq,det_nu_rs,N_int,i_H_j_element)
|
||||
do istate=1,N_states
|
||||
res+=2.D0*i_H_j_element*psi_coef(mu,istate) &
|
||||
*psi_coef(nu,istate)*phase*phase2
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
|
||||
! state-averaged Hessian
|
||||
res*=1.D0/dble(N_states)
|
||||
|
||||
end subroutine calc_hess_elem
|
||||
|
||||
BEGIN_PROVIDER [real*8, hessmat2, (nMonoEx,nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! explicit hessian matrix from density matrices and integrals
|
||||
! of course, this will be used for a direct Davidson procedure later
|
||||
! we will not store the matrix in real life
|
||||
! formulas are broken down as functions for the 6 classes of matrix elements
|
||||
!
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,j,t,u,a,b,indx,jndx,bstart,ustart,indx_shift
|
||||
|
||||
real*8 :: hessmat_itju
|
||||
real*8 :: hessmat_itja
|
||||
real*8 :: hessmat_itua
|
||||
real*8 :: hessmat_iajb
|
||||
real*8 :: hessmat_iatb
|
||||
real*8 :: hessmat_taub
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' providing Hessian matrix hessmat2 '
|
||||
write(6,*) ' nMonoEx = ',nMonoEx
|
||||
endif
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessmat2,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) &
|
||||
!$OMP PRIVATE(i,indx,jndx,j,ustart,t,u,a,bstart,indx_shift)
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_core_inact_orb
|
||||
do t=1,n_act_orb
|
||||
indx = t + (i-1)*n_act_orb
|
||||
jndx=indx
|
||||
do j=i,n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
ustart=t
|
||||
else
|
||||
ustart=1
|
||||
end if
|
||||
do u=ustart,n_act_orb
|
||||
hessmat2(jndx,indx)=hessmat_itju(i,t,j,u)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
do j=1,n_core_inact_orb
|
||||
do a=1,n_virt_orb
|
||||
hessmat2(jndx,indx)=hessmat_itja(i,t,j,a)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
do u=1,n_act_orb
|
||||
do a=1,n_virt_orb
|
||||
hessmat2(jndx,indx)=hessmat_itua(i,t,u,a)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift = n_core_inact_orb*n_act_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do i=1,n_core_inact_orb
|
||||
indx = a + (i-1)*n_virt_orb + indx_shift
|
||||
jndx=indx
|
||||
do j=i,n_core_inact_orb
|
||||
if (i.eq.j) then
|
||||
bstart=a
|
||||
else
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
hessmat2(jndx,indx)=hessmat_iajb(i,a,j,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
do b=1,n_virt_orb
|
||||
hessmat2(jndx,indx)=hessmat_iatb(i,a,t,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift += n_core_inact_orb*n_virt_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do t=1,n_act_orb
|
||||
indx = a + (t-1)*n_virt_orb + indx_shift
|
||||
jndx=indx
|
||||
do u=t,n_act_orb
|
||||
if (t.eq.u) then
|
||||
bstart=a
|
||||
else
|
||||
bstart=1
|
||||
end if
|
||||
do b=bstart,n_virt_orb
|
||||
hessmat2(jndx,indx)=hessmat_taub(t,a,u,b)
|
||||
jndx+=1
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
do jndx=1,nMonoEx
|
||||
do indx=1,jndx-1
|
||||
hessmat2(indx,jndx) = hessmat2(jndx,indx)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
real*8 function hessmat_itju(i,t,j,u)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> active, core/inactive -> active
|
||||
! i, t, j, u are list indices, the corresponding orbitals are ii,tt,jj,uu
|
||||
!
|
||||
! we assume natural orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,j,u,ii,tt,uu,v,vv,x,xx,y,jj
|
||||
real*8 :: term,t2
|
||||
|
||||
ii=list_core_inact(i)
|
||||
tt=list_act(t)
|
||||
if (i.eq.j) then
|
||||
if (t.eq.u) then
|
||||
! diagonal element
|
||||
term=occnum(tt)*Fipq(ii,ii)+2.D0*(Fipq(tt,tt)+Fapq(tt,tt)) &
|
||||
-2.D0*(Fipq(ii,ii)+Fapq(ii,ii))
|
||||
term+=2.D0*(3.D0*bielec_pxxq_no(tt,i,i,tt)-bielec_pqxx_no(tt,tt,i,i))
|
||||
term-=2.D0*occnum(tt)*(3.D0*bielec_pxxq_no(tt,i,i,tt) &
|
||||
-bielec_pqxx_no(tt,tt,i,i))
|
||||
term-=occnum(tt)*Fipq(tt,tt)
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
|
||||
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
|
||||
bielec_pxxq_no(vv,i,i,xx))
|
||||
do y=1,n_act_orb
|
||||
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
else
|
||||
! it/iu, t != u
|
||||
uu=list_act(u)
|
||||
term=2.D0*(Fipq(tt,uu)+Fapq(tt,uu))
|
||||
term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
|
||||
-bielec_PQxx_no(tt,uu,i,j))
|
||||
term-=occnum(tt)*Fipq(uu,tt)
|
||||
term-=(occnum(tt)+occnum(uu)) &
|
||||
*(3.D0*bielec_PxxQ_no(tt,i,i,uu)-bielec_PQxx_no(uu,tt,i,i))
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
! term-=D0tu(u,v)*Fipq(tt,vv) ! published, but inverting t and u seems more correct
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,i) &
|
||||
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
|
||||
*bielec_pxxq_no(vv,i,i,xx))
|
||||
do y=1,n_act_orb
|
||||
term-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(u,v,y,xx)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
else
|
||||
! it/ju
|
||||
jj=list_core_inact(j)
|
||||
uu=list_act(u)
|
||||
if (t.eq.u) then
|
||||
term=occnum(tt)*Fipq(ii,jj)
|
||||
term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj))
|
||||
else
|
||||
term=0.D0
|
||||
end if
|
||||
term+=2.D0*(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
|
||||
-bielec_PQxx_no(tt,uu,i,j))
|
||||
term-=(occnum(tt)+occnum(uu))* &
|
||||
(4.D0*bielec_PxxQ_no(tt,i,j,uu)-bielec_PxxQ_no(uu,i,j,tt) &
|
||||
-bielec_PQxx_no(uu,tt,i,j))
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
term+=2.D0*(P0tuvx_no(u,t,v,x)*bielec_pqxx_no(vv,xx,i,j) &
|
||||
+(P0tuvx_no(u,x,v,t)+P0tuvx_no(u,x,t,v)) &
|
||||
*bielec_pxxq_no(vv,i,j,xx))
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
|
||||
term*=2.D0
|
||||
hessmat_itju=term
|
||||
|
||||
end function hessmat_itju
|
||||
|
||||
real*8 function hessmat_itja(i,t,j,a)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> active, core/inactive -> virtual
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,j,a,ii,tt,jj,aa,v,vv,x,y
|
||||
real*8 :: term
|
||||
|
||||
! it/ja
|
||||
ii=list_core_inact(i)
|
||||
tt=list_act(t)
|
||||
jj=list_core_inact(j)
|
||||
aa=list_virt(a)
|
||||
term=2.D0*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
|
||||
-bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
|
||||
term-=occnum(tt)*(4.D0*bielec_pxxq_no(aa,j,i,tt) &
|
||||
-bielec_pqxx_no(aa,tt,i,j) -bielec_pxxq_no(aa,i,j,tt))
|
||||
if (i.eq.j) then
|
||||
term+=2.D0*(Fipq(aa,tt)+Fapq(aa,tt))
|
||||
term-=0.5D0*occnum(tt)*Fipq(aa,tt)
|
||||
do v=1,n_act_orb
|
||||
do x=1,n_act_orb
|
||||
do y=1,n_act_orb
|
||||
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,aa)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
term*=2.D0
|
||||
hessmat_itja=term
|
||||
|
||||
end function hessmat_itja
|
||||
|
||||
real*8 function hessmat_itua(i,t,u,a)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> active, active -> virtual
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,u,a,ii,tt,uu,aa,v,vv,x,xx,u3,t3,v3
|
||||
real*8 :: term
|
||||
|
||||
ii=list_core_inact(i)
|
||||
tt=list_act(t)
|
||||
t3=t+n_core_inact_orb
|
||||
uu=list_act(u)
|
||||
u3=u+n_core_inact_orb
|
||||
aa=list_virt(a)
|
||||
if (t.eq.u) then
|
||||
term=-occnum(tt)*Fipq(aa,ii)
|
||||
else
|
||||
term=0.D0
|
||||
end if
|
||||
term-=occnum(uu)*(bielec_pqxx_no(aa,ii,t3,u3)-4.D0*bielec_pqxx_no(aa,uu,t3,i)&
|
||||
+bielec_pxxq_no(aa,t3,u3,ii))
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
integer :: x3
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
term-=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,ii,v3,x3) &
|
||||
+(P0tuvx_no(t,v,u,x)+P0tuvx_no(t,v,x,u)) &
|
||||
*bielec_pqxx_no(aa,xx,v3,i))
|
||||
end do
|
||||
end do
|
||||
if (t.eq.u) then
|
||||
term+=Fipq(aa,ii)+Fapq(aa,ii)
|
||||
end if
|
||||
term*=2.D0
|
||||
hessmat_itua=term
|
||||
|
||||
end function hessmat_itua
|
||||
|
||||
real*8 function hessmat_iajb(i,a,j,b)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> virtual, core/inactive -> virtual
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,a,j,b,ii,aa,jj,bb
|
||||
real*8 :: term
|
||||
|
||||
ii=list_core_inact(i)
|
||||
aa=list_virt(a)
|
||||
if (i.eq.j) then
|
||||
if (a.eq.b) then
|
||||
! ia/ia
|
||||
term=2.D0*(Fipq(aa,aa)+Fapq(aa,aa)-Fipq(ii,ii)-Fapq(ii,ii))
|
||||
term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,aa)-bielec_pqxx_no(aa,aa,i,i))
|
||||
else
|
||||
bb=list_virt(b)
|
||||
! ia/ib
|
||||
term=2.D0*(Fipq(aa,bb)+Fapq(aa,bb))
|
||||
term+=2.D0*(3.D0*bielec_pxxq_no(aa,i,i,bb)-bielec_pqxx_no(aa,bb,i,i))
|
||||
end if
|
||||
else
|
||||
! ia/jb
|
||||
jj=list_core_inact(j)
|
||||
bb=list_virt(b)
|
||||
term=2.D0*(4.D0*bielec_pxxq_no(aa,i,j,bb)-bielec_pqxx_no(aa,bb,i,j) &
|
||||
-bielec_pxxq_no(aa,j,i,bb))
|
||||
if (a.eq.b) then
|
||||
term-=2.D0*(Fipq(ii,jj)+Fapq(ii,jj))
|
||||
end if
|
||||
end if
|
||||
term*=2.D0
|
||||
hessmat_iajb=term
|
||||
|
||||
end function hessmat_iajb
|
||||
|
||||
real*8 function hessmat_iatb(i,a,t,b)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for core/inactive -> virtual, active -> virtual
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,a,t,b,ii,aa,tt,bb,v,vv,x,y,v3,t3
|
||||
real*8 :: term
|
||||
|
||||
ii=list_core_inact(i)
|
||||
aa=list_virt(a)
|
||||
tt=list_act(t)
|
||||
bb=list_virt(b)
|
||||
t3=t+n_core_inact_orb
|
||||
term=occnum(tt)*(4.D0*bielec_pxxq_no(aa,i,t3,bb)-bielec_pxxq_no(aa,t3,i,bb)&
|
||||
-bielec_pqxx_no(aa,bb,i,t3))
|
||||
if (a.eq.b) then
|
||||
term-=Fipq(tt,ii)+Fapq(tt,ii)
|
||||
term-=0.5D0*occnum(tt)*Fipq(tt,ii)
|
||||
do v=1,n_act_orb
|
||||
do x=1,n_act_orb
|
||||
do y=1,n_act_orb
|
||||
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,ii)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
term*=2.D0
|
||||
hessmat_iatb=term
|
||||
|
||||
end function hessmat_iatb
|
||||
|
||||
real*8 function hessmat_taub(t,a,u,b)
|
||||
BEGIN_DOC
|
||||
! the orbital hessian for act->virt,act->virt
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: t,a,u,b,tt,aa,uu,bb,v,vv,x,xx,y
|
||||
integer :: v3,x3
|
||||
real*8 :: term,t1,t2,t3
|
||||
|
||||
tt=list_act(t)
|
||||
aa=list_virt(a)
|
||||
if (t == u) then
|
||||
if (a == b) then
|
||||
! ta/ta
|
||||
t1=occnum(tt)*Fipq(aa,aa)
|
||||
t2=0.D0
|
||||
t3=0.D0
|
||||
t1-=occnum(tt)*Fipq(tt,tt)
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
t2+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,aa,v3,x3) &
|
||||
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v))* &
|
||||
bielec_pxxq_no(aa,x3,v3,aa))
|
||||
do y=1,n_act_orb
|
||||
t3-=2.D0*P0tuvx_no(t,v,x,y)*bielecCI_no(t,v,y,xx)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
term=t1+t2+t3
|
||||
else
|
||||
bb=list_virt(b)
|
||||
! ta/tb b/=a
|
||||
term=occnum(tt)*Fipq(aa,bb)
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
term+=2.D0*(P0tuvx_no(t,t,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
|
||||
+(P0tuvx_no(t,x,v,t)+P0tuvx_no(t,x,t,v)) &
|
||||
*bielec_pxxq_no(aa,x3,v3,bb))
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
else
|
||||
! ta/ub t/=u
|
||||
uu=list_act(u)
|
||||
bb=list_virt(b)
|
||||
term=0.D0
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
term+=2.D0*(P0tuvx_no(t,u,v,x)*bielec_pqxx_no(aa,bb,v3,x3) &
|
||||
+(P0tuvx_no(t,x,v,u)+P0tuvx_no(t,x,u,v)) &
|
||||
*bielec_pxxq_no(aa,x3,v3,bb))
|
||||
end do
|
||||
end do
|
||||
if (a.eq.b) then
|
||||
term-=0.5D0*(occnum(tt)*Fipq(uu,tt)+occnum(uu)*Fipq(tt,uu))
|
||||
do v=1,n_act_orb
|
||||
do y=1,n_act_orb
|
||||
do x=1,n_act_orb
|
||||
term-=P0tuvx_no(t,v,x,y)*bielecCI_no(x,y,v,uu)
|
||||
term-=P0tuvx_no(u,v,x,y)*bielecCI_no(x,y,v,tt)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
|
||||
end if
|
||||
|
||||
term*=2.D0
|
||||
hessmat_taub=term
|
||||
|
||||
end function hessmat_taub
|
||||
|
||||
BEGIN_PROVIDER [real*8, hessdiag, (nMonoEx)]
|
||||
BEGIN_DOC
|
||||
! the diagonal of the Hessian, needed for the Davidson procedure
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: i,t,a,indx,indx_shift
|
||||
real*8 :: hessmat_itju,hessmat_iajb,hessmat_taub
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(hessdiag,n_core_inact_orb,n_act_orb,n_virt_orb,nMonoEx) &
|
||||
!$OMP PRIVATE(i,indx,t,a,indx_shift)
|
||||
|
||||
!$OMP DO
|
||||
do i=1,n_core_inact_orb
|
||||
do t=1,n_act_orb
|
||||
indx = t + (i-1)*n_act_orb
|
||||
hessdiag(indx)=hessmat_itju(i,t,i,t)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift = n_core_inact_orb*n_act_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do i=1,n_core_inact_orb
|
||||
indx = a + (i-1)*n_virt_orb + indx_shift
|
||||
hessdiag(indx)=hessmat_iajb(i,a,i,a)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO NOWAIT
|
||||
|
||||
indx_shift += n_core_inact_orb*n_virt_orb
|
||||
!$OMP DO
|
||||
do a=1,n_virt_orb
|
||||
do t=1,n_act_orb
|
||||
indx = a + (t-1)*n_virt_orb + indx_shift
|
||||
hessdiag(indx)=hessmat_taub(t,a,t,a)
|
||||
end do
|
||||
end do
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
80
src/casscf/mcscf_fock.irp.f
Normal file
80
src/casscf/mcscf_fock.irp.f
Normal file
@ -0,0 +1,80 @@
|
||||
BEGIN_PROVIDER [real*8, Fipq, (mo_num,mo_num) ]
|
||||
BEGIN_DOC
|
||||
! the inactive Fock matrix, in molecular orbitals
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: p,q,k,kk,t,tt,u,uu
|
||||
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
Fipq(p,q)=one_ints_no(p,q)
|
||||
end do
|
||||
end do
|
||||
|
||||
! the inactive Fock matrix
|
||||
do k=1,n_core_inact_orb
|
||||
kk=list_core_inact(k)
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
Fipq(p,q)+=2.D0*bielec_pqxx_no(p,q,k,k) -bielec_pxxq_no(p,k,k,q)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
if (bavard) then
|
||||
integer :: i
|
||||
write(6,*)
|
||||
write(6,*) ' the diagonal of the inactive effective Fock matrix '
|
||||
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
|
||||
write(6,*)
|
||||
end if
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, Fapq, (mo_num,mo_num) ]
|
||||
BEGIN_DOC
|
||||
! the active active Fock matrix, in molecular orbitals
|
||||
! we create them in MOs, quite expensive
|
||||
!
|
||||
! for an implementation in AOs we need first the natural orbitals
|
||||
! for forming an active density matrix in AOs
|
||||
!
|
||||
END_DOC
|
||||
implicit none
|
||||
integer :: p,q,k,kk,t,tt,u,uu
|
||||
|
||||
Fapq = 0.d0
|
||||
|
||||
! the active Fock matrix, D0tu is diagonal
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
do q=1,mo_num
|
||||
do p=1,mo_num
|
||||
Fapq(p,q)+=occnum(tt) &
|
||||
*(bielec_pqxx_no(p,q,tt,tt)-0.5D0*bielec_pxxq_no(p,tt,tt,q))
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
if (bavard) then
|
||||
integer :: i
|
||||
write(6,*)
|
||||
write(6,*) ' the effective Fock matrix over MOs'
|
||||
write(6,*)
|
||||
|
||||
write(6,*)
|
||||
write(6,*) ' the diagonal of the inactive effective Fock matrix '
|
||||
write(6,'(5(i3,F12.5))') (i,Fipq(i,i),i=1,mo_num)
|
||||
write(6,*)
|
||||
write(6,*)
|
||||
write(6,*) ' the diagonal of the active Fock matrix '
|
||||
write(6,'(5(i3,F12.5))') (i,Fapq(i,i),i=1,mo_num)
|
||||
write(6,*)
|
||||
end if
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
231
src/casscf/natorb.irp.f
Normal file
231
src/casscf/natorb.irp.f
Normal file
@ -0,0 +1,231 @@
|
||||
BEGIN_PROVIDER [real*8, occnum, (mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! MO occupation numbers
|
||||
END_DOC
|
||||
|
||||
integer :: i
|
||||
occnum=0.D0
|
||||
do i=1,n_core_inact_orb
|
||||
occnum(list_core_inact(i))=2.D0
|
||||
end do
|
||||
|
||||
do i=1,n_act_orb
|
||||
occnum(list_act(i))=occ_act(i)
|
||||
end do
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' occupation numbers '
|
||||
do i=1,mo_num
|
||||
write(6,*) i,occnum(i)
|
||||
end do
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ real*8, natorbsCI, (n_act_orb,n_act_orb) ]
|
||||
&BEGIN_PROVIDER [ real*8, occ_act, (n_act_orb) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Natural orbitals of CI
|
||||
END_DOC
|
||||
integer :: i, j
|
||||
double precision :: Vt(n_act_orb,n_act_orb)
|
||||
|
||||
! call lapack_diag(occ_act,natorbsCI,D0tu,n_act_orb,n_act_orb)
|
||||
call svd(D0tu, size(D0tu,1), natorbsCI,size(natorbsCI,1), occ_act, Vt, size(Vt,1),n_act_orb,n_act_orb)
|
||||
|
||||
if (bavard) then
|
||||
write(6,*) ' found occupation numbers as '
|
||||
do i=1,n_act_orb
|
||||
write(6,*) i,occ_act(i)
|
||||
end do
|
||||
|
||||
integer :: nmx
|
||||
real*8 :: xmx
|
||||
do i=1,n_act_orb
|
||||
! largest element of the eigenvector should be positive
|
||||
xmx=0.D0
|
||||
nmx=0
|
||||
do j=1,n_act_orb
|
||||
if (abs(natOrbsCI(j,i)).gt.xmx) then
|
||||
nmx=j
|
||||
xmx=abs(natOrbsCI(j,i))
|
||||
end if
|
||||
end do
|
||||
xmx=sign(1.D0,natOrbsCI(nmx,i))
|
||||
do j=1,n_act_orb
|
||||
natOrbsCI(j,i)*=xmx
|
||||
end do
|
||||
|
||||
write(6,*) ' Eigenvector No ',i
|
||||
write(6,'(5(I3,F12.5))') (j,natOrbsCI(j,i),j=1,n_act_orb)
|
||||
end do
|
||||
end if
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, P0tuvx_no, (n_act_orb,n_act_orb,n_act_orb,n_act_orb)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! 4-index transformation of 2part matrices
|
||||
END_DOC
|
||||
integer :: i,j,k,l,p,q
|
||||
real*8 :: d(n_act_orb)
|
||||
|
||||
! index per index
|
||||
! first quarter
|
||||
P0tuvx_no(:,:,:,:) = P0tuvx(:,:,:,:)
|
||||
|
||||
do j=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do l=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=P0tuvx_no(q,j,k,l)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
P0tuvx_no(p,j,k,l)=d(p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
! 2nd quarter
|
||||
do j=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do l=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=P0tuvx_no(j,q,k,l)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
P0tuvx_no(j,p,k,l)=d(p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
! 3rd quarter
|
||||
do j=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do l=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=P0tuvx_no(j,k,q,l)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
P0tuvx_no(j,k,p,l)=d(p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
! 4th quarter
|
||||
do j=1,n_act_orb
|
||||
do k=1,n_act_orb
|
||||
do l=1,n_act_orb
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=P0tuvx_no(j,k,l,q)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
P0tuvx_no(j,k,l,p)=d(p)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, one_ints_no, (mo_num,mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Transformed one-e integrals
|
||||
END_DOC
|
||||
integer :: i,j, p, q
|
||||
real*8 :: d(n_act_orb)
|
||||
one_ints_no(:,:)=mo_one_e_integrals(:,:)
|
||||
|
||||
! 1st half-trf
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=one_ints_no(list_act(q),j)*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
one_ints_no(list_act(p),j)=d(p)
|
||||
end do
|
||||
end do
|
||||
|
||||
! 2nd half-trf
|
||||
do j=1,mo_num
|
||||
do p=1,n_act_orb
|
||||
d(p)=0.D0
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
do q=1,n_act_orb
|
||||
d(p)+=one_ints_no(j,list_act(q))*natorbsCI(q,p)
|
||||
end do
|
||||
end do
|
||||
do p=1,n_act_orb
|
||||
one_ints_no(j,list_act(p))=d(p)
|
||||
end do
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, NatOrbsCI_mos, (mo_num, mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Rotation matrix from current MOs to the CI natural MOs
|
||||
END_DOC
|
||||
integer :: p,q
|
||||
|
||||
NatOrbsCI_mos(:,:) = 0.d0
|
||||
|
||||
do q = 1,mo_num
|
||||
NatOrbsCI_mos(q,q) = 1.d0
|
||||
enddo
|
||||
|
||||
do q = 1,n_act_orb
|
||||
do p = 1,n_act_orb
|
||||
NatOrbsCI_mos(list_act(p),list_act(q)) = natorbsCI(p,q)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [real*8, NatOrbsFCI, (ao_num,mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! FCI natural orbitals
|
||||
END_DOC
|
||||
|
||||
call dgemm('N','N', ao_num,mo_num,mo_num,1.d0, &
|
||||
mo_coef, size(mo_coef,1), &
|
||||
NatOrbsCI_mos, size(NatOrbsCI_mos,1), 0.d0, &
|
||||
NatOrbsFCI, size(NatOrbsFCI,1))
|
||||
END_PROVIDER
|
||||
|
221
src/casscf/neworbs.irp.f
Normal file
221
src/casscf/neworbs.irp.f
Normal file
@ -0,0 +1,221 @@
|
||||
BEGIN_PROVIDER [real*8, SXmatrix, (nMonoEx+1,nMonoEx+1)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Single-excitation matrix
|
||||
END_DOC
|
||||
|
||||
integer :: i,j
|
||||
|
||||
do i=1,nMonoEx+1
|
||||
do j=1,nMonoEx+1
|
||||
SXmatrix(i,j)=0.D0
|
||||
end do
|
||||
end do
|
||||
|
||||
do i=1,nMonoEx
|
||||
SXmatrix(1,i+1)=gradvec2(i)
|
||||
SXmatrix(1+i,1)=gradvec2(i)
|
||||
end do
|
||||
|
||||
do i=1,nMonoEx
|
||||
do j=1,nMonoEx
|
||||
SXmatrix(i+1,j+1)=hessmat2(i,j)
|
||||
SXmatrix(j+1,i+1)=hessmat2(i,j)
|
||||
end do
|
||||
end do
|
||||
|
||||
do i = 1, nMonoEx
|
||||
SXmatrix(i+1,i+1) += level_shift_casscf
|
||||
enddo
|
||||
if (bavard) then
|
||||
do i=2,nMonoEx
|
||||
write(6,*) ' diagonal of the Hessian : ',i,hessmat2(i,i)
|
||||
end do
|
||||
end if
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, SXeigenvec, (nMonoEx+1,nMonoEx+1)]
|
||||
&BEGIN_PROVIDER [real*8, SXeigenval, (nMonoEx+1)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/eigenvalues of the single-excitation matrix
|
||||
END_DOC
|
||||
call lapack_diag(SXeigenval,SXeigenvec,SXmatrix,nMonoEx+1,nMonoEx+1)
|
||||
if (bavard) then
|
||||
write(6,*) ' SXdiag : lowest 5 eigenvalues '
|
||||
write(6,*) ' 1 - ',SXeigenval(1),SXeigenvec(1,1)
|
||||
if(nmonoex.gt.0)then
|
||||
write(6,*) ' 2 - ',SXeigenval(2),SXeigenvec(1,2)
|
||||
write(6,*) ' 3 - ',SXeigenval(3),SXeigenvec(1,3)
|
||||
write(6,*) ' 4 - ',SXeigenval(4),SXeigenvec(1,4)
|
||||
write(6,*) ' 5 - ',SXeigenval(5),SXeigenvec(1,5)
|
||||
endif
|
||||
write(6,*)
|
||||
write(6,*) ' SXdiag : lowest eigenvalue = ',SXeigenval(1)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, energy_improvement]
|
||||
implicit none
|
||||
if(state_following_casscf)then
|
||||
energy_improvement = SXeigenval(best_vector_ovrlp_casscf)
|
||||
else
|
||||
energy_improvement = SXeigenval(1)
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, best_vector_ovrlp_casscf ]
|
||||
&BEGIN_PROVIDER [ double precision, best_overlap_casscf ]
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision :: c0
|
||||
best_overlap_casscf = 0.D0
|
||||
best_vector_ovrlp_casscf = -1000
|
||||
do i=1,nMonoEx+1
|
||||
if (SXeigenval(i).lt.0.D0) then
|
||||
if (abs(SXeigenvec(1,i)).gt.best_overlap_casscf) then
|
||||
best_overlap_casscf=abs(SXeigenvec(1,i))
|
||||
best_vector_ovrlp_casscf = i
|
||||
end if
|
||||
end if
|
||||
end do
|
||||
if(best_vector_ovrlp_casscf.lt.0)then
|
||||
best_vector_ovrlp_casscf = minloc(SXeigenval,nMonoEx+1)
|
||||
endif
|
||||
c0=SXeigenvec(1,best_vector_ovrlp_casscf)
|
||||
if (bavard) then
|
||||
write(6,*) ' SXdiag : eigenvalue for best overlap with '
|
||||
write(6,*) ' previous orbitals = ',SXeigenval(best_vector_ovrlp_casscf)
|
||||
write(6,*) ' weight of the 1st element ',c0
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, SXvector, (nMonoEx+1)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Best eigenvector of the single-excitation matrix
|
||||
END_DOC
|
||||
integer :: i
|
||||
double precision :: c0
|
||||
c0=SXeigenvec(1,best_vector_ovrlp_casscf)
|
||||
do i=1,nMonoEx+1
|
||||
SXvector(i)=SXeigenvec(i,best_vector_ovrlp_casscf)/c0
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, NewOrbs, (ao_num,mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Updated orbitals
|
||||
END_DOC
|
||||
integer :: i,j,ialph
|
||||
|
||||
if(state_following_casscf)then
|
||||
print*,'Using the state following casscf '
|
||||
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
|
||||
NatOrbsFCI, size(NatOrbsFCI,1), &
|
||||
Umat, size(Umat,1), 0.d0, &
|
||||
NewOrbs, size(NewOrbs,1))
|
||||
|
||||
level_shift_casscf *= 0.5D0
|
||||
level_shift_casscf = max(level_shift_casscf,0.002d0)
|
||||
!touch level_shift_casscf
|
||||
else
|
||||
if(best_vector_ovrlp_casscf.ne.1.and.n_orb_swap.ne.0)then
|
||||
print*,'Taking the lowest root for the CASSCF'
|
||||
print*,'!!! SWAPPING MOS !!!!!!'
|
||||
level_shift_casscf *= 2.D0
|
||||
level_shift_casscf = min(level_shift_casscf,0.5d0)
|
||||
print*,'level_shift_casscf = ',level_shift_casscf
|
||||
NewOrbs = switch_mo_coef
|
||||
!mo_coef = switch_mo_coef
|
||||
!soft_touch mo_coef
|
||||
!call save_mos_no_occ
|
||||
!stop
|
||||
else
|
||||
level_shift_casscf *= 0.5D0
|
||||
level_shift_casscf = max(level_shift_casscf,0.002d0)
|
||||
!touch level_shift_casscf
|
||||
call dgemm('N','T', ao_num,mo_num,mo_num,1.d0, &
|
||||
NatOrbsFCI, size(NatOrbsFCI,1), &
|
||||
Umat, size(Umat,1), 0.d0, &
|
||||
NewOrbs, size(NewOrbs,1))
|
||||
endif
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Orbital rotation matrix
|
||||
END_DOC
|
||||
integer :: i,j,indx,k,iter,t,a,ii,tt,aa
|
||||
logical :: converged
|
||||
|
||||
real*8 :: Tpotmat (mo_num,mo_num), Tpotmat2 (mo_num,mo_num)
|
||||
real*8 :: Tmat(mo_num,mo_num)
|
||||
real*8 :: f
|
||||
|
||||
! the orbital rotation matrix T
|
||||
Tmat(:,:)=0.D0
|
||||
indx=1
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
indx+=1
|
||||
Tmat(ii,tt)= SXvector(indx)
|
||||
Tmat(tt,ii)=-SXvector(indx)
|
||||
end do
|
||||
end do
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
do a=1,n_virt_orb
|
||||
aa=list_virt(a)
|
||||
indx+=1
|
||||
Tmat(ii,aa)= SXvector(indx)
|
||||
Tmat(aa,ii)=-SXvector(indx)
|
||||
end do
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
do a=1,n_virt_orb
|
||||
aa=list_virt(a)
|
||||
indx+=1
|
||||
Tmat(tt,aa)= SXvector(indx)
|
||||
Tmat(aa,tt)=-SXvector(indx)
|
||||
end do
|
||||
end do
|
||||
|
||||
! Form the exponential
|
||||
|
||||
Tpotmat(:,:)=0.D0
|
||||
Umat(:,:) =0.D0
|
||||
do i=1,mo_num
|
||||
Tpotmat(i,i)=1.D0
|
||||
Umat(i,i) =1.d0
|
||||
end do
|
||||
iter=0
|
||||
converged=.false.
|
||||
do while (.not.converged)
|
||||
iter+=1
|
||||
f = 1.d0 / dble(iter)
|
||||
Tpotmat2(:,:) = Tpotmat(:,:) * f
|
||||
call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, &
|
||||
Tpotmat2, size(Tpotmat2,1), &
|
||||
Tmat, size(Tmat,1), 0.d0, &
|
||||
Tpotmat, size(Tpotmat,1))
|
||||
Umat(:,:) = Umat(:,:) + Tpotmat(:,:)
|
||||
|
||||
converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
|
||||
end do
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
70
src/casscf/reorder_orb.irp.f
Normal file
70
src/casscf/reorder_orb.irp.f
Normal file
@ -0,0 +1,70 @@
|
||||
subroutine reorder_orbitals_for_casscf
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! routine that reorders the orbitals of the CASSCF in terms block of core, active and virtual
|
||||
END_DOC
|
||||
integer :: i,j,iorb
|
||||
integer, allocatable :: iorder(:),array(:)
|
||||
allocate(iorder(mo_num),array(mo_num))
|
||||
do i = 1, n_core_orb
|
||||
iorb = list_core(i)
|
||||
array(iorb) = i
|
||||
enddo
|
||||
|
||||
do i = 1, n_inact_orb
|
||||
iorb = list_inact(i)
|
||||
array(iorb) = mo_num + i
|
||||
enddo
|
||||
|
||||
do i = 1, n_act_orb
|
||||
iorb = list_act(i)
|
||||
array(iorb) = 2 * mo_num + i
|
||||
enddo
|
||||
|
||||
do i = 1, n_virt_orb
|
||||
iorb = list_virt(i)
|
||||
array(iorb) = 3 * mo_num + i
|
||||
enddo
|
||||
|
||||
do i = 1, mo_num
|
||||
iorder(i) = i
|
||||
enddo
|
||||
call isort(array,iorder,mo_num)
|
||||
double precision, allocatable :: mo_coef_new(:,:)
|
||||
allocate(mo_coef_new(ao_num,mo_num))
|
||||
do i = 1, mo_num
|
||||
mo_coef_new(:,i) = mo_coef(:,iorder(i))
|
||||
enddo
|
||||
mo_coef = mo_coef_new
|
||||
touch mo_coef
|
||||
|
||||
list_core_reverse = 0
|
||||
do i = 1, n_core_orb
|
||||
list_core(i) = i
|
||||
list_core_reverse(i) = i
|
||||
mo_class(i) = "Core"
|
||||
enddo
|
||||
|
||||
list_inact_reverse = 0
|
||||
do i = 1, n_inact_orb
|
||||
list_inact(i) = i + n_core_orb
|
||||
list_inact_reverse(i+n_core_orb) = i
|
||||
mo_class(i+n_core_orb) = "Inactive"
|
||||
enddo
|
||||
|
||||
list_act_reverse = 0
|
||||
do i = 1, n_act_orb
|
||||
list_act(i) = n_core_inact_orb + i
|
||||
list_act_reverse(n_core_inact_orb + i) = i
|
||||
mo_class(n_core_inact_orb + i) = "Active"
|
||||
enddo
|
||||
|
||||
list_virt_reverse = 0
|
||||
do i = 1, n_virt_orb
|
||||
list_virt(i) = n_core_inact_orb + n_act_orb + i
|
||||
list_virt_reverse(n_core_inact_orb + n_act_orb + i) = i
|
||||
mo_class(n_core_inact_orb + n_act_orb + i) = "Virtual"
|
||||
enddo
|
||||
touch list_core_reverse list_core list_inact list_inact_reverse list_act list_act_reverse list_virt list_virt_reverse
|
||||
|
||||
end
|
9
src/casscf/save_energy.irp.f
Normal file
9
src/casscf/save_energy.irp.f
Normal file
@ -0,0 +1,9 @@
|
||||
subroutine save_energy(E,pt2)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Saves the energy in |EZFIO|.
|
||||
END_DOC
|
||||
double precision, intent(in) :: E(N_states), pt2(N_states)
|
||||
call ezfio_set_casscf_energy(E(1:N_states))
|
||||
call ezfio_set_casscf_energy_pt2(E(1:N_states)+pt2(1:N_states))
|
||||
end
|
207
src/casscf/superci_dm.irp.f
Normal file
207
src/casscf/superci_dm.irp.f
Normal file
@ -0,0 +1,207 @@
|
||||
BEGIN_PROVIDER [double precision, super_ci_dm, (mo_num,mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! density matrix of the super CI matrix, in the basis of NATURAL ORBITALS OF THE CASCI WF
|
||||
!
|
||||
! This is obtained from annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
!
|
||||
! WARNING ::: in the equation B3.d there is a TYPO with a forgotten MINUS SIGN (see variable mat_tmp_dm_super_ci )
|
||||
END_DOC
|
||||
super_ci_dm = 0.d0
|
||||
integer :: i,j,iorb,jorb
|
||||
integer :: a,aorb,b,borb
|
||||
integer :: t,torb,v,vorb,u,uorb,x,xorb
|
||||
double precision :: c0,ci
|
||||
c0 = SXeigenvec(1,1)
|
||||
! equation B3.a of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
! loop over the core/inact
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
super_ci_dm(iorb,iorb) = 2.d0 ! first term of B3.a
|
||||
! loop over the core/inact
|
||||
do j = 1, n_core_inact_orb
|
||||
jorb = list_core_inact(j)
|
||||
! loop over the virtual
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
super_ci_dm(jorb,iorb) += -2.d0 * lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,jorb) ! second term in B3.a
|
||||
enddo
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
! thrid term of the B3.a
|
||||
super_ci_dm(jorb,iorb) += - lowest_super_ci_coef_mo(iorb,torb) * lowest_super_ci_coef_mo(jorb,torb) * (2.d0 - occ_act(t))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! equation B3.b of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
super_ci_dm(iorb,torb) = c0 * lowest_super_ci_coef_mo(torb,iorb) * (2.d0 - occ_act(t))
|
||||
super_ci_dm(torb,iorb) = c0 * lowest_super_ci_coef_mo(torb,iorb) * (2.d0 - occ_act(t))
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
super_ci_dm(iorb,torb) += - lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
||||
super_ci_dm(torb,iorb) += - lowest_super_ci_coef_mo(aorb,iorb) * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! equation B3.c of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
super_ci_dm(aorb,iorb) = 2.d0 * c0 * lowest_super_ci_coef_mo(aorb,iorb)
|
||||
super_ci_dm(iorb,aorb) = 2.d0 * c0 * lowest_super_ci_coef_mo(aorb,iorb)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! equation B3.d of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
super_ci_dm(torb,torb) = occ_act(t) ! first term of equation B3.d
|
||||
do x = 1, n_act_orb
|
||||
xorb = list_act(x)
|
||||
super_ci_dm(torb,torb) += - occ_act(x) * occ_act(t)* mat_tmp_dm_super_ci(x,x) ! second term involving the ONE-rdm
|
||||
enddo
|
||||
do u = 1, n_act_orb
|
||||
uorb = list_act(u)
|
||||
|
||||
! second term of equation B3.d
|
||||
do x = 1, n_act_orb
|
||||
xorb = list_act(x)
|
||||
do v = 1, n_act_orb
|
||||
vorb = list_act(v)
|
||||
super_ci_dm(torb,uorb) += 2.d0 * P0tuvx_no(v,x,t,u) * mat_tmp_dm_super_ci(v,x) ! second term involving the TWO-rdm
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! third term of equation B3.d
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
super_ci_dm(torb,uorb) += lowest_super_ci_coef_mo(iorb,torb) * lowest_super_ci_coef_mo(iorb,uorb) * (2.d0 - occ_act(t) - occ_act(u))
|
||||
enddo
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! equation B3.e of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
super_ci_dm(aorb,torb) += c0 * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
||||
super_ci_dm(torb,aorb) += c0 * lowest_super_ci_coef_mo(aorb,torb) * occ_act(t)
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
super_ci_dm(aorb,torb) += lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,torb) * (2.d0 - occ_act(t))
|
||||
super_ci_dm(torb,aorb) += lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,torb) * (2.d0 - occ_act(t))
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! equation B3.f of the annex B of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
do b = 1, n_virt_orb
|
||||
borb= list_virt(b)
|
||||
|
||||
! First term of equation B3.f
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
super_ci_dm(borb,aorb) += 2.d0 * lowest_super_ci_coef_mo(iorb,aorb) * lowest_super_ci_coef_mo(iorb,borb)
|
||||
enddo
|
||||
|
||||
! Second term of equation B3.f
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
super_ci_dm(borb,aorb) += lowest_super_ci_coef_mo(torb,aorb) * lowest_super_ci_coef_mo(torb,borb) * occ_act(t)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, superci_natorb, (ao_num,mo_num)
|
||||
&BEGIN_PROVIDER [double precision, superci_nat_occ, (mo_num)
|
||||
implicit none
|
||||
call general_mo_coef_new_as_svd_vectors_of_mo_matrix_eig(super_ci_dm,mo_num,mo_num,mo_num,NatOrbsFCI,superci_nat_occ,superci_natorb)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, mat_tmp_dm_super_ci, (n_act_orb,n_act_orb)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! computation of the term in [ ] in the equation B3.d of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
!
|
||||
! !!!!! WARNING !!!!!! there is a TYPO: a MINUS SIGN SHOULD APPEAR in that term
|
||||
END_DOC
|
||||
integer :: a,aorb,i,iorb
|
||||
integer :: x,xorb,v,vorb
|
||||
mat_tmp_dm_super_ci = 0.d0
|
||||
do v = 1, n_act_orb
|
||||
vorb = list_act(v)
|
||||
do x = 1, n_act_orb
|
||||
xorb = list_act(x)
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
mat_tmp_dm_super_ci(x,v) += lowest_super_ci_coef_mo(aorb,vorb) * lowest_super_ci_coef_mo(aorb,xorb)
|
||||
enddo
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
! MARK THE MINUS SIGN HERE !!!!!!!!!!! BECAUSE OF TYPO IN THE ORIGINAL PAPER
|
||||
mat_tmp_dm_super_ci(x,v) -= lowest_super_ci_coef_mo(iorb,vorb) * lowest_super_ci_coef_mo(iorb,xorb)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, lowest_super_ci_coef_mo, (mo_num,mo_num)]
|
||||
implicit none
|
||||
integer :: i,j,iorb,jorb
|
||||
integer :: a, aorb,t, torb
|
||||
double precision :: sqrt2
|
||||
|
||||
sqrt2 = 1.d0/dsqrt(2.d0)
|
||||
do i = 1, nMonoEx
|
||||
iorb = excit(1,i)
|
||||
jorb = excit(2,i)
|
||||
lowest_super_ci_coef_mo(iorb,jorb) = SXeigenvec(i+1,1)
|
||||
lowest_super_ci_coef_mo(jorb,iorb) = SXeigenvec(i+1,1)
|
||||
enddo
|
||||
|
||||
! a_{it} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
lowest_super_ci_coef_mo(torb,iorb) *= (2.d0 - occ_act(t))**(-0.5d0)
|
||||
lowest_super_ci_coef_mo(iorb,torb) *= (2.d0 - occ_act(t))**(-0.5d0)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! a_{ia} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do i = 1, n_core_inact_orb
|
||||
iorb = list_core_inact(i)
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
lowest_super_ci_coef_mo(aorb,iorb) *= sqrt2
|
||||
lowest_super_ci_coef_mo(iorb,aorb) *= sqrt2
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! a_{ta} of the equation B.2 of Roos et. al. Chemical Physics 48 (1980) 157-173
|
||||
do a = 1, n_virt_orb
|
||||
aorb = list_virt(a)
|
||||
do t = 1, n_act_orb
|
||||
torb = list_act(t)
|
||||
lowest_super_ci_coef_mo(torb,aorb) *= occ_act(t)**(-0.5d0)
|
||||
lowest_super_ci_coef_mo(aorb,torb) *= occ_act(t)**(-0.5d0)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
132
src/casscf/swap_orb.irp.f
Normal file
132
src/casscf/swap_orb.irp.f
Normal file
@ -0,0 +1,132 @@
|
||||
BEGIN_PROVIDER [double precision, SXvector_lowest, (nMonoEx)]
|
||||
implicit none
|
||||
integer :: i
|
||||
do i=2,nMonoEx+1
|
||||
SXvector_lowest(i-1)=SXeigenvec(i,1)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, thresh_overlap_switch]
|
||||
implicit none
|
||||
thresh_overlap_switch = 0.5d0
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, max_overlap, (nMonoEx)]
|
||||
&BEGIN_PROVIDER [integer, n_max_overlap]
|
||||
&BEGIN_PROVIDER [integer, dim_n_max_overlap]
|
||||
implicit none
|
||||
double precision, allocatable :: vec_tmp(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
allocate(vec_tmp(nMonoEx),iorder(nMonoEx))
|
||||
integer :: i
|
||||
do i = 1, nMonoEx
|
||||
iorder(i) = i
|
||||
vec_tmp(i) = -dabs(SXvector_lowest(i))
|
||||
enddo
|
||||
call dsort(vec_tmp,iorder,nMonoEx)
|
||||
n_max_overlap = 0
|
||||
do i = 1, nMonoEx
|
||||
if(dabs(vec_tmp(i)).gt.thresh_overlap_switch)then
|
||||
n_max_overlap += 1
|
||||
max_overlap(n_max_overlap) = iorder(i)
|
||||
endif
|
||||
enddo
|
||||
dim_n_max_overlap = max(1,n_max_overlap)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, orb_swap, (2,dim_n_max_overlap)]
|
||||
&BEGIN_PROVIDER [integer, index_orb_swap, (dim_n_max_overlap)]
|
||||
&BEGIN_PROVIDER [integer, n_orb_swap ]
|
||||
implicit none
|
||||
use bitmasks ! you need to include the bitmasks_module.f90 features
|
||||
integer :: i,imono,iorb,jorb,j
|
||||
n_orb_swap = 0
|
||||
do i = 1, n_max_overlap
|
||||
imono = max_overlap(i)
|
||||
iorb = excit(1,imono)
|
||||
jorb = excit(2,imono)
|
||||
if (excit_class(imono) == "c-a" .and.hessmat2(imono,imono).gt.0.d0)then ! core --> active rotation
|
||||
n_orb_swap += 1
|
||||
orb_swap(1,n_orb_swap) = iorb ! core
|
||||
orb_swap(2,n_orb_swap) = jorb ! active
|
||||
index_orb_swap(n_orb_swap) = imono
|
||||
else if (excit_class(imono) == "a-v" .and.hessmat2(imono,imono).gt.0.d0)then ! active --> virtual rotation
|
||||
n_orb_swap += 1
|
||||
orb_swap(1,n_orb_swap) = jorb ! virtual
|
||||
orb_swap(2,n_orb_swap) = iorb ! active
|
||||
index_orb_swap(n_orb_swap) = imono
|
||||
endif
|
||||
enddo
|
||||
|
||||
integer,allocatable :: orb_swap_tmp(:,:)
|
||||
allocate(orb_swap_tmp(2,dim_n_max_overlap))
|
||||
do i = 1, n_orb_swap
|
||||
orb_swap_tmp(1,i) = orb_swap(1,i)
|
||||
orb_swap_tmp(2,i) = orb_swap(2,i)
|
||||
enddo
|
||||
|
||||
integer(bit_kind), allocatable :: det_i(:),det_j(:)
|
||||
allocate(det_i(N_int),det_j(N_int))
|
||||
logical, allocatable :: good_orb_rot(:)
|
||||
allocate(good_orb_rot(n_orb_swap))
|
||||
integer, allocatable :: index_orb_swap_tmp(:)
|
||||
allocate(index_orb_swap_tmp(dim_n_max_overlap))
|
||||
index_orb_swap_tmp = index_orb_swap
|
||||
good_orb_rot = .True.
|
||||
integer :: icount,k
|
||||
do i = 1, n_orb_swap
|
||||
if(.not.good_orb_rot(i))cycle
|
||||
det_i = 0_bit_kind
|
||||
call set_bit_to_integer(orb_swap(1,i),det_i,N_int)
|
||||
call set_bit_to_integer(orb_swap(2,i),det_i,N_int)
|
||||
do j = i+1, n_orb_swap
|
||||
det_j = 0_bit_kind
|
||||
call set_bit_to_integer(orb_swap(1,j),det_j,N_int)
|
||||
call set_bit_to_integer(orb_swap(2,j),det_j,N_int)
|
||||
icount = 0
|
||||
do k = 1, N_int
|
||||
icount += popcnt(ior(det_i(k),det_j(k)))
|
||||
enddo
|
||||
if (icount.ne.4)then
|
||||
good_orb_rot(i) = .False.
|
||||
good_orb_rot(j) = .False.
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
icount = n_orb_swap
|
||||
n_orb_swap = 0
|
||||
do i = 1, icount
|
||||
if(good_orb_rot(i))then
|
||||
n_orb_swap += 1
|
||||
index_orb_swap(n_orb_swap) = index_orb_swap_tmp(i)
|
||||
orb_swap(1,n_orb_swap) = orb_swap_tmp(1,i)
|
||||
orb_swap(2,n_orb_swap) = orb_swap_tmp(2,i)
|
||||
endif
|
||||
enddo
|
||||
|
||||
if(n_orb_swap.gt.0)then
|
||||
print*,'n_orb_swap = ',n_orb_swap
|
||||
endif
|
||||
do i = 1, n_orb_swap
|
||||
print*,'imono = ',index_orb_swap(i)
|
||||
print*,orb_swap(1,i),'-->',orb_swap(2,i)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, switch_mo_coef, (ao_num,mo_num)]
|
||||
implicit none
|
||||
integer :: i,j,iorb,jorb
|
||||
switch_mo_coef = NatOrbsFCI
|
||||
do i = 1, n_orb_swap
|
||||
iorb = orb_swap(1,i)
|
||||
jorb = orb_swap(2,i)
|
||||
do j = 1, ao_num
|
||||
switch_mo_coef(j,jorb) = NatOrbsFCI(j,iorb)
|
||||
enddo
|
||||
do j = 1, ao_num
|
||||
switch_mo_coef(j,iorb) = NatOrbsFCI(j,jorb)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
29
src/casscf/test_pert_2rdm.irp.f
Normal file
29
src/casscf/test_pert_2rdm.irp.f
Normal file
@ -0,0 +1,29 @@
|
||||
program test_pert_2rdm
|
||||
implicit none
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
!call get_pert_2rdm
|
||||
integer :: i,j,k,l,ii,jj,kk,ll
|
||||
double precision :: accu , get_two_e_integral, integral
|
||||
accu = 0.d0
|
||||
print*,'n_orb_pert_rdm = ',n_orb_pert_rdm
|
||||
do ii = 1, n_orb_pert_rdm
|
||||
i = list_orb_pert_rdm(ii)
|
||||
do jj = 1, n_orb_pert_rdm
|
||||
j = list_orb_pert_rdm(jj)
|
||||
do kk = 1, n_orb_pert_rdm
|
||||
k= list_orb_pert_rdm(kk)
|
||||
do ll = 1, n_orb_pert_rdm
|
||||
l = list_orb_pert_rdm(ll)
|
||||
integral = get_two_e_integral(i,j,k,l,mo_integrals_map)
|
||||
! if(dabs(pert_2rdm_provider(ii,jj,kk,ll) * integral).gt.1.d-12)then
|
||||
! print*,i,j,k,l
|
||||
! print*,pert_2rdm_provider(ii,jj,kk,ll) * integral,pert_2rdm_provider(ii,jj,kk,ll), pert_2rdm_provider(ii,jj,kk,ll), integral
|
||||
! endif
|
||||
accu += pert_2rdm_provider(ii,jj,kk,ll) * integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
print*,'accu = ',accu
|
||||
end
|
101
src/casscf/tot_en.irp.f
Normal file
101
src/casscf/tot_en.irp.f
Normal file
@ -0,0 +1,101 @@
|
||||
BEGIN_PROVIDER [real*8, etwo]
|
||||
&BEGIN_PROVIDER [real*8, eone]
|
||||
&BEGIN_PROVIDER [real*8, eone_bis]
|
||||
&BEGIN_PROVIDER [real*8, etwo_bis]
|
||||
&BEGIN_PROVIDER [real*8, etwo_ter]
|
||||
&BEGIN_PROVIDER [real*8, ecore]
|
||||
&BEGIN_PROVIDER [real*8, ecore_bis]
|
||||
implicit none
|
||||
integer :: t,u,v,x,i,ii,tt,uu,vv,xx,j,jj,t3,u3,v3,x3
|
||||
real*8 :: e_one_all,e_two_all
|
||||
e_one_all=0.D0
|
||||
e_two_all=0.D0
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
e_one_all+=2.D0*mo_one_e_integrals(ii,ii)
|
||||
do j=1,n_core_inact_orb
|
||||
jj=list_core_inact(j)
|
||||
e_two_all+=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
t3=t+n_core_inact_orb
|
||||
do u=1,n_act_orb
|
||||
uu=list_act(u)
|
||||
u3=u+n_core_inact_orb
|
||||
e_two_all+=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
|
||||
-bielec_PQxx(tt,ii,i,u3))
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
do u=1,n_act_orb
|
||||
uu=list_act(u)
|
||||
e_one_all+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
|
||||
do v=1,n_act_orb
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
x3=x+n_core_inact_orb
|
||||
e_two_all +=P0tuvx(t,u,v,x)*bielec_PQxx(tt,uu,v3,x3)
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
ecore =nuclear_repulsion
|
||||
ecore_bis=nuclear_repulsion
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
ecore +=2.D0*mo_one_e_integrals(ii,ii)
|
||||
ecore_bis+=2.D0*mo_one_e_integrals(ii,ii)
|
||||
do j=1,n_core_inact_orb
|
||||
jj=list_core_inact(j)
|
||||
ecore +=2.D0*bielec_PQxx(ii,ii,j,j)-bielec_PQxx(ii,jj,j,i)
|
||||
ecore_bis+=2.D0*bielec_PxxQ(ii,i,j,jj)-bielec_PxxQ(ii,j,j,ii)
|
||||
end do
|
||||
end do
|
||||
eone =0.D0
|
||||
eone_bis=0.D0
|
||||
etwo =0.D0
|
||||
etwo_bis=0.D0
|
||||
etwo_ter=0.D0
|
||||
do t=1,n_act_orb
|
||||
tt=list_act(t)
|
||||
t3=t+n_core_inact_orb
|
||||
do u=1,n_act_orb
|
||||
uu=list_act(u)
|
||||
u3=u+n_core_inact_orb
|
||||
eone +=D0tu(t,u)*mo_one_e_integrals(tt,uu)
|
||||
eone_bis+=D0tu(t,u)*mo_one_e_integrals(tt,uu)
|
||||
do i=1,n_core_inact_orb
|
||||
ii=list_core_inact(i)
|
||||
eone +=D0tu(t,u)*(2.D0*bielec_PQxx(tt,uu,i,i) &
|
||||
-bielec_PQxx(tt,ii,i,u3))
|
||||
eone_bis+=D0tu(t,u)*(2.D0*bielec_PxxQ(tt,u3,i,ii) &
|
||||
-bielec_PxxQ(tt,i,i,uu))
|
||||
end do
|
||||
do v=1,n_act_orb
|
||||
vv=list_act(v)
|
||||
v3=v+n_core_inact_orb
|
||||
do x=1,n_act_orb
|
||||
xx=list_act(x)
|
||||
x3=x+n_core_inact_orb
|
||||
real*8 :: h1,h2,h3
|
||||
h1=bielec_PQxx(tt,uu,v3,x3)
|
||||
h2=bielec_PxxQ(tt,u3,v3,xx)
|
||||
h3=bielecCI(t,u,v,xx)
|
||||
etwo +=P0tuvx(t,u,v,x)*h1
|
||||
etwo_bis+=P0tuvx(t,u,v,x)*h2
|
||||
etwo_ter+=P0tuvx(t,u,v,x)*h3
|
||||
if ((h1.ne.h2).or.(h1.ne.h3)) then
|
||||
write(6,9901) t,u,v,x,h1,h2,h3
|
||||
9901 format('aie: ',4I4,3E20.12)
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
end do
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
5
src/cipsi/EZFIO.cfg
Normal file
5
src/cipsi/EZFIO.cfg
Normal file
@ -0,0 +1,5 @@
|
||||
[pert_2rdm]
|
||||
type: logical
|
||||
doc: If true, computes the one- and two-body rdms with perturbation theory
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
@ -3,3 +3,4 @@ zmq
|
||||
mpi
|
||||
davidson_undressed
|
||||
iterations
|
||||
two_body_rdm
|
||||
|
@ -13,6 +13,7 @@ subroutine run_cipsi
|
||||
rss = memory_of_double(N_states)*4.d0
|
||||
call check_mem(rss,irp_here)
|
||||
|
||||
N_iter = 1
|
||||
allocate (pt2(N_states), zeros(N_states), rpt2(N_states), norm(N_states), variance(N_states))
|
||||
|
||||
double precision :: hf_energy_ref
|
||||
|
0
src/cipsi/lock_2rdm.irp.f
Normal file
0
src/cipsi/lock_2rdm.irp.f
Normal file
178
src/cipsi/pert_rdm_providers.irp.f
Normal file
178
src/cipsi/pert_rdm_providers.irp.f
Normal file
@ -0,0 +1,178 @@
|
||||
|
||||
use bitmasks
|
||||
use omp_lib
|
||||
|
||||
BEGIN_PROVIDER [ integer(omp_lock_kind), pert_2rdm_lock]
|
||||
use f77_zmq
|
||||
implicit none
|
||||
call omp_init_lock(pert_2rdm_lock)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, n_orb_pert_rdm]
|
||||
implicit none
|
||||
n_orb_pert_rdm = n_act_orb
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, list_orb_reverse_pert_rdm, (mo_num)]
|
||||
implicit none
|
||||
list_orb_reverse_pert_rdm = list_act_reverse
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, list_orb_pert_rdm, (n_orb_pert_rdm)]
|
||||
implicit none
|
||||
list_orb_pert_rdm = list_act
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, pert_2rdm_provider, (n_orb_pert_rdm,n_orb_pert_rdm,n_orb_pert_rdm,n_orb_pert_rdm)]
|
||||
implicit none
|
||||
pert_2rdm_provider = 0.d0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf, psi_det_connection, psi_coef_connection_reverse, n_det_connection)
|
||||
use bitmasks
|
||||
use selection_types
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n_det_connection
|
||||
double precision, intent(in) :: psi_coef_connection_reverse(N_states,n_det_connection)
|
||||
integer(bit_kind), intent(in) :: psi_det_connection(N_int,2,n_det_connection)
|
||||
integer, intent(in) :: i_generator, sp, h1, h2
|
||||
double precision, intent(in) :: mat(N_states, mo_num, mo_num)
|
||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num)
|
||||
double precision, intent(in) :: fock_diag_tmp(mo_num)
|
||||
double precision, intent(in) :: E0(N_states)
|
||||
double precision, intent(inout) :: pt2(N_states)
|
||||
double precision, intent(inout) :: variance(N_states)
|
||||
double precision, intent(inout) :: norm(N_states)
|
||||
type(selection_buffer), intent(inout) :: buf
|
||||
logical :: ok
|
||||
integer :: s1, s2, p1, p2, ib, j, istate
|
||||
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
|
||||
double precision :: e_pert, delta_E, val, Hii, sum_e_pert, tmp, alpha_h_psi, coef(N_states)
|
||||
double precision, external :: diag_H_mat_elem_fock
|
||||
double precision :: E_shift
|
||||
|
||||
logical, external :: detEq
|
||||
double precision, allocatable :: values(:)
|
||||
integer, allocatable :: keys(:,:)
|
||||
integer :: nkeys
|
||||
integer :: sze_buff
|
||||
sze_buff = 5 * mo_num ** 2
|
||||
allocate(keys(4,sze_buff),values(sze_buff))
|
||||
nkeys = 0
|
||||
if(sp == 3) then
|
||||
s1 = 1
|
||||
s2 = 2
|
||||
else
|
||||
s1 = sp
|
||||
s2 = sp
|
||||
end if
|
||||
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
|
||||
E_shift = 0.d0
|
||||
|
||||
if (h0_type == 'SOP') then
|
||||
j = det_to_occ_pattern(i_generator)
|
||||
E_shift = psi_det_Hii(i_generator) - psi_occ_pattern_Hii(j)
|
||||
endif
|
||||
|
||||
do p1=1,mo_num
|
||||
if(bannedOrb(p1, s1)) cycle
|
||||
ib = 1
|
||||
if(sp /= 3) ib = p1+1
|
||||
|
||||
do p2=ib,mo_num
|
||||
|
||||
! -----
|
||||
! /!\ Generating only single excited determinants doesn't work because a
|
||||
! determinant generated by a single excitation may be doubly excited wrt
|
||||
! to a determinant of the future. In that case, the determinant will be
|
||||
! detected as already generated when generating in the future with a
|
||||
! double excitation.
|
||||
!
|
||||
! if (.not.do_singles) then
|
||||
! if ((h1 == p1) .or. (h2 == p2)) then
|
||||
! cycle
|
||||
! endif
|
||||
! endif
|
||||
!
|
||||
! if (.not.do_doubles) then
|
||||
! if ((h1 /= p1).and.(h2 /= p2)) then
|
||||
! cycle
|
||||
! endif
|
||||
! endif
|
||||
! -----
|
||||
|
||||
if(bannedOrb(p2, s2)) cycle
|
||||
if(banned(p1,p2)) cycle
|
||||
|
||||
|
||||
if( sum(abs(mat(1:N_states, p1, p2))) == 0d0) cycle
|
||||
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
|
||||
|
||||
if (do_only_cas) then
|
||||
integer, external :: number_of_holes, number_of_particles
|
||||
if (number_of_particles(det)>0) then
|
||||
cycle
|
||||
endif
|
||||
if (number_of_holes(det)>0) then
|
||||
cycle
|
||||
endif
|
||||
endif
|
||||
|
||||
if (do_ddci) then
|
||||
logical, external :: is_a_two_holes_two_particles
|
||||
if (is_a_two_holes_two_particles(det)) then
|
||||
cycle
|
||||
endif
|
||||
endif
|
||||
|
||||
if (do_only_1h1p) then
|
||||
logical, external :: is_a_1h1p
|
||||
if (.not.is_a_1h1p(det)) cycle
|
||||
endif
|
||||
|
||||
|
||||
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
|
||||
|
||||
sum_e_pert = 0d0
|
||||
integer :: degree
|
||||
call get_excitation_degree(det,HF_bitmask,degree,N_int)
|
||||
if(degree == 2)cycle
|
||||
do istate=1,N_states
|
||||
delta_E = E0(istate) - Hii + E_shift
|
||||
alpha_h_psi = mat(istate, p1, p2)
|
||||
val = alpha_h_psi + alpha_h_psi
|
||||
tmp = dsqrt(delta_E * delta_E + val * val)
|
||||
if (delta_E < 0.d0) then
|
||||
tmp = -tmp
|
||||
endif
|
||||
e_pert = 0.5d0 * (tmp - delta_E)
|
||||
coef(istate) = e_pert / alpha_h_psi
|
||||
print*,e_pert,coef,alpha_h_psi
|
||||
pt2(istate) = pt2(istate) + e_pert
|
||||
variance(istate) = variance(istate) + alpha_h_psi * alpha_h_psi
|
||||
norm(istate) = norm(istate) + coef(istate) * coef(istate)
|
||||
|
||||
if (weight_selection /= 5) then
|
||||
! Energy selection
|
||||
sum_e_pert = sum_e_pert + e_pert * selection_weight(istate)
|
||||
|
||||
else
|
||||
! Variance selection
|
||||
sum_e_pert = sum_e_pert - alpha_h_psi * alpha_h_psi * selection_weight(istate)
|
||||
endif
|
||||
end do
|
||||
call give_2rdm_pert_contrib(det,coef,psi_det_connection,psi_coef_connection_reverse,n_det_connection,nkeys,keys,values,sze_buff)
|
||||
|
||||
if(sum_e_pert <= buf%mini) then
|
||||
call add_to_selection_buffer(buf, det, sum_e_pert)
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
|
||||
end
|
||||
|
||||
|
@ -77,6 +77,7 @@ logical function testTeethBuilding(minF, N)
|
||||
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
|
||||
enddo
|
||||
tilde_cW(:) = tilde_cW(:) + 1.d0
|
||||
deallocate(tilde_w)
|
||||
|
||||
n0 = 0
|
||||
testTeethBuilding = .false.
|
||||
@ -89,19 +90,19 @@ logical function testTeethBuilding(minF, N)
|
||||
r = tilde_cW(n0 + minF)
|
||||
Wt = (1d0 - u0) * f
|
||||
if (dabs(Wt) <= 1.d-3) then
|
||||
return
|
||||
exit
|
||||
endif
|
||||
if(Wt >= r - u0) then
|
||||
testTeethBuilding = .true.
|
||||
return
|
||||
exit
|
||||
end if
|
||||
n0 += 1
|
||||
! if(N_det_generators - n0 < minF * N) then
|
||||
if(n0 > minFN) then
|
||||
return
|
||||
exit
|
||||
end if
|
||||
end do
|
||||
stop "exited testTeethBuilding"
|
||||
deallocate(tilde_cW)
|
||||
|
||||
end function
|
||||
|
||||
|
||||
@ -129,13 +130,13 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
|
||||
PROVIDE psi_bilinear_matrix_rows psi_det_sorted_order psi_bilinear_matrix_order
|
||||
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
|
||||
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp psi_det_sorted
|
||||
PROVIDE psi_det_hii N_generators_bitmask selection_weight pseudo_sym
|
||||
PROVIDE psi_det_hii selection_weight pseudo_sym
|
||||
|
||||
if (h0_type == 'SOP') then
|
||||
PROVIDE psi_occ_pattern_hii det_to_occ_pattern
|
||||
endif
|
||||
|
||||
if (N_det < max(4,N_states)) then
|
||||
if (N_det <= max(4,N_states)) then
|
||||
pt2=0.d0
|
||||
variance=0.d0
|
||||
norm=0.d0
|
||||
@ -156,7 +157,7 @@ subroutine ZMQ_pt2(E, pt2,relative_error, error, variance, norm, N_in)
|
||||
do pt2_stoch_istate=1,N_states
|
||||
state_average_weight(:) = 0.d0
|
||||
state_average_weight(pt2_stoch_istate) = 1.d0
|
||||
TOUCH state_average_weight pt2_stoch_istate
|
||||
TOUCH state_average_weight pt2_stoch_istate selection_weight
|
||||
|
||||
PROVIDE nproc pt2_F mo_two_e_integrals_in_map mo_one_e_integrals pt2_w
|
||||
PROVIDE psi_selectors pt2_u pt2_J pt2_R
|
||||
@ -523,10 +524,24 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2, error, varianc
|
||||
exit
|
||||
else
|
||||
call pull_pt2_results(zmq_socket_pull, index, eI_task, vI_task, nI_task, task_id, n_tasks, b2)
|
||||
if(n_tasks > pt2_n_tasks_max)then
|
||||
print*,'PB !!!'
|
||||
print*,'If you see this, send an email to Anthony scemama with the following content'
|
||||
print*,irp_here
|
||||
print*,'n_tasks,pt2_n_tasks_max = ',n_tasks,pt2_n_tasks_max
|
||||
stop -1
|
||||
endif
|
||||
if (zmq_delete_tasks_async_send(zmq_to_qp_run_socket,task_id,n_tasks,sending) == -1) then
|
||||
stop 'PT2: Unable to delete tasks (send)'
|
||||
endif
|
||||
do i=1,n_tasks
|
||||
if(index(i).gt.size(eI,2).or.index(i).lt.1)then
|
||||
print*,'PB !!!'
|
||||
print*,'If you see this, send an email to Anthony scemama with the following content'
|
||||
print*,irp_here
|
||||
print*,'i,index(i),size(ei,2) = ',i,index(i),size(ei,2)
|
||||
stop -1
|
||||
endif
|
||||
eI(1:N_states, index(i)) += eI_task(1:N_states,i)
|
||||
vI(1:N_states, index(i)) += vI_task(1:N_states,i)
|
||||
nI(1:N_states, index(i)) += nI_task(1:N_states,i)
|
||||
@ -706,83 +721,95 @@ END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, pt2_w, (N_det_generators) ]
|
||||
&BEGIN_PROVIDER [ double precision, pt2_cW, (0:N_det_generators) ]
|
||||
&BEGIN_PROVIDER [ double precision, pt2_W_T ]
|
||||
&BEGIN_PROVIDER [ double precision, pt2_u_0 ]
|
||||
&BEGIN_PROVIDER [ integer, pt2_n_0, (pt2_N_teeth+1) ]
|
||||
implicit none
|
||||
integer :: i, t
|
||||
double precision, allocatable :: tilde_w(:), tilde_cW(:)
|
||||
double precision :: r, tooth_width
|
||||
integer, external :: pt2_find_sample
|
||||
BEGIN_PROVIDER [ double precision, pt2_w, (N_det_generators) ]
|
||||
&BEGIN_PROVIDER [ double precision, pt2_cW, (0:N_det_generators) ]
|
||||
&BEGIN_PROVIDER [ double precision, pt2_W_T ]
|
||||
&BEGIN_PROVIDER [ double precision, pt2_u_0 ]
|
||||
&BEGIN_PROVIDER [ integer, pt2_n_0, (pt2_N_teeth+1) ]
|
||||
implicit none
|
||||
integer :: i, t
|
||||
double precision, allocatable :: tilde_w(:), tilde_cW(:)
|
||||
double precision :: r, tooth_width
|
||||
integer, external :: pt2_find_sample
|
||||
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double, memory_of_int
|
||||
rss = memory_of_double(2*N_det_generators+1)
|
||||
call check_mem(rss,irp_here)
|
||||
|
||||
if (N_det_generators == 1) then
|
||||
|
||||
pt2_w(1) = 1.d0
|
||||
pt2_cw(1) = 1.d0
|
||||
pt2_u_0 = 1.d0
|
||||
pt2_W_T = 0.d0
|
||||
pt2_n_0(1) = 0
|
||||
pt2_n_0(2) = 1
|
||||
|
||||
else
|
||||
|
||||
allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators))
|
||||
|
||||
tilde_cW(0) = 0d0
|
||||
|
||||
do i=1,N_det_generators
|
||||
tilde_w(i) = psi_coef_sorted_gen(i,pt2_stoch_istate)**2 !+ 1.d-20
|
||||
enddo
|
||||
|
||||
double precision :: norm
|
||||
norm = 0.d0
|
||||
do i=N_det_generators,1,-1
|
||||
norm += tilde_w(i)
|
||||
enddo
|
||||
|
||||
tilde_w(:) = tilde_w(:) / norm
|
||||
|
||||
tilde_cW(0) = -1.d0
|
||||
do i=1,N_det_generators
|
||||
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
|
||||
enddo
|
||||
tilde_cW(:) = tilde_cW(:) + 1.d0
|
||||
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double, memory_of_int
|
||||
rss = memory_of_double(2*N_det_generators+1)
|
||||
call check_mem(rss,irp_here)
|
||||
pt2_n_0(1) = 0
|
||||
do
|
||||
pt2_u_0 = tilde_cW(pt2_n_0(1))
|
||||
r = tilde_cW(pt2_n_0(1) + pt2_minDetInFirstTeeth)
|
||||
pt2_W_T = (1d0 - pt2_u_0) / dble(pt2_N_teeth)
|
||||
if(pt2_W_T >= r - pt2_u_0) then
|
||||
exit
|
||||
end if
|
||||
pt2_n_0(1) += 1
|
||||
if(N_det_generators - pt2_n_0(1) < pt2_minDetInFirstTeeth * pt2_N_teeth) then
|
||||
print *, "teeth building failed"
|
||||
stop -1
|
||||
end if
|
||||
end do
|
||||
|
||||
do t=2, pt2_N_teeth
|
||||
r = pt2_u_0 + pt2_W_T * dble(t-1)
|
||||
pt2_n_0(t) = pt2_find_sample(r, tilde_cW)
|
||||
end do
|
||||
pt2_n_0(pt2_N_teeth+1) = N_det_generators
|
||||
|
||||
pt2_w(:pt2_n_0(1)) = tilde_w(:pt2_n_0(1))
|
||||
do t=1, pt2_N_teeth
|
||||
tooth_width = tilde_cW(pt2_n_0(t+1)) - tilde_cW(pt2_n_0(t))
|
||||
if (tooth_width == 0.d0) then
|
||||
tooth_width = sum(tilde_w(pt2_n_0(t):pt2_n_0(t+1)))
|
||||
endif
|
||||
ASSERT(tooth_width > 0.d0)
|
||||
do i=pt2_n_0(t)+1, pt2_n_0(t+1)
|
||||
pt2_w(i) = tilde_w(i) * pt2_W_T / tooth_width
|
||||
end do
|
||||
end do
|
||||
|
||||
pt2_cW(0) = 0d0
|
||||
do i=1,N_det_generators
|
||||
pt2_cW(i) = pt2_cW(i-1) + pt2_w(i)
|
||||
end do
|
||||
pt2_n_0(pt2_N_teeth+1) = N_det_generators
|
||||
|
||||
allocate(tilde_w(N_det_generators), tilde_cW(0:N_det_generators))
|
||||
|
||||
tilde_cW(0) = 0d0
|
||||
|
||||
do i=1,N_det_generators
|
||||
tilde_w(i) = psi_coef_sorted_gen(i,pt2_stoch_istate)**2 !+ 1.d-20
|
||||
enddo
|
||||
|
||||
double precision :: norm
|
||||
norm = 0.d0
|
||||
do i=N_det_generators,1,-1
|
||||
norm += tilde_w(i)
|
||||
enddo
|
||||
|
||||
tilde_w(:) = tilde_w(:) / norm
|
||||
|
||||
tilde_cW(0) = -1.d0
|
||||
do i=1,N_det_generators
|
||||
tilde_cW(i) = tilde_cW(i-1) + tilde_w(i)
|
||||
enddo
|
||||
tilde_cW(:) = tilde_cW(:) + 1.d0
|
||||
|
||||
pt2_n_0(1) = 0
|
||||
do
|
||||
pt2_u_0 = tilde_cW(pt2_n_0(1))
|
||||
r = tilde_cW(pt2_n_0(1) + pt2_minDetInFirstTeeth)
|
||||
pt2_W_T = (1d0 - pt2_u_0) / dble(pt2_N_teeth)
|
||||
if(pt2_W_T >= r - pt2_u_0) then
|
||||
exit
|
||||
end if
|
||||
pt2_n_0(1) += 1
|
||||
if(N_det_generators - pt2_n_0(1) < pt2_minDetInFirstTeeth * pt2_N_teeth) then
|
||||
stop "teeth building failed"
|
||||
end if
|
||||
end do
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
|
||||
do t=2, pt2_N_teeth
|
||||
r = pt2_u_0 + pt2_W_T * dble(t-1)
|
||||
pt2_n_0(t) = pt2_find_sample(r, tilde_cW)
|
||||
end do
|
||||
pt2_n_0(pt2_N_teeth+1) = N_det_generators
|
||||
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
||||
pt2_w(:pt2_n_0(1)) = tilde_w(:pt2_n_0(1))
|
||||
do t=1, pt2_N_teeth
|
||||
tooth_width = tilde_cW(pt2_n_0(t+1)) - tilde_cW(pt2_n_0(t))
|
||||
if (tooth_width == 0.d0) then
|
||||
tooth_width = sum(tilde_w(pt2_n_0(t):pt2_n_0(t+1)))
|
||||
endif
|
||||
ASSERT(tooth_width > 0.d0)
|
||||
do i=pt2_n_0(t)+1, pt2_n_0(t+1)
|
||||
pt2_w(i) = tilde_w(i) * pt2_W_T / tooth_width
|
||||
end do
|
||||
end do
|
||||
|
||||
pt2_cW(0) = 0d0
|
||||
do i=1,N_det_generators
|
||||
pt2_cW(i) = pt2_cW(i-1) + pt2_w(i)
|
||||
end do
|
||||
pt2_n_0(pt2_N_teeth+1) = N_det_generators
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
@ -61,7 +61,6 @@ subroutine run_selection_slave(thread,iproc,energy)
|
||||
! Only first time
|
||||
bsize = min(N, (elec_alpha_num * (mo_num-elec_alpha_num))**2)
|
||||
call create_selection_buffer(bsize, bsize*2, buf)
|
||||
! call create_selection_buffer(N, N*2, buf2)
|
||||
buffer_ready = .True.
|
||||
else
|
||||
ASSERT (N == buf%N)
|
||||
|
@ -1,3 +1,4 @@
|
||||
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ double precision, pt2_match_weight, (N_states) ]
|
||||
@ -69,8 +70,6 @@ subroutine update_pt2_and_variance_weights(pt2, variance, norm, N_st)
|
||||
variance_match_weight(k) = product(memo_variance(k,:))
|
||||
enddo
|
||||
|
||||
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
|
||||
print *, '# var weight ', real(variance_match_weight(:),4)
|
||||
SOFT_TOUCH pt2_match_weight variance_match_weight
|
||||
end
|
||||
|
||||
@ -84,7 +83,7 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
|
||||
|
||||
case (0)
|
||||
print *, 'Using input weights in selection'
|
||||
selection_weight(1:N_states) = state_average_weight(1:N_states)
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * state_average_weight(1:N_states)
|
||||
|
||||
case (1)
|
||||
print *, 'Using 1/c_max^2 weight in selection'
|
||||
@ -93,20 +92,30 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
|
||||
case (2)
|
||||
print *, 'Using pt2-matching weight in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states)
|
||||
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
|
||||
|
||||
case (3)
|
||||
print *, 'Using variance-matching weight in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
|
||||
print *, '# var weight ', real(variance_match_weight(:),4)
|
||||
|
||||
case (4)
|
||||
print *, 'Using variance- and pt2-matching weights in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states) * pt2_match_weight(1:N_states)
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states))
|
||||
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
|
||||
print *, '# var weight ', real(variance_match_weight(:),4)
|
||||
|
||||
case (5)
|
||||
print *, 'Using variance-matching weight in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * variance_match_weight(1:N_states)
|
||||
print *, '# var weight ', real(variance_match_weight(:),4)
|
||||
|
||||
case (6)
|
||||
print *, 'Using CI coefficient weight in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states)
|
||||
|
||||
end select
|
||||
print *, '# Total weight ', real(selection_weight(:),4)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
@ -164,15 +173,13 @@ subroutine select_connected(i_generator,E0,pt2,variance,norm,b,subset,csubset)
|
||||
|
||||
call build_fock_tmp(fock_diag_tmp,psi_det_generators(1,1,i_generator),N_int)
|
||||
|
||||
do l=1,N_generators_bitmask
|
||||
do k=1,N_int
|
||||
hole_mask(k,1) = iand(generators_bitmask(k,1,s_hole,l), psi_det_generators(k,1,i_generator))
|
||||
hole_mask(k,2) = iand(generators_bitmask(k,2,s_hole,l), psi_det_generators(k,2,i_generator))
|
||||
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part,l), not(psi_det_generators(k,1,i_generator)) )
|
||||
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part,l), not(psi_det_generators(k,2,i_generator)) )
|
||||
enddo
|
||||
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,variance,norm,b,subset,csubset)
|
||||
do k=1,N_int
|
||||
hole_mask(k,1) = iand(generators_bitmask(k,1,s_hole), psi_det_generators(k,1,i_generator))
|
||||
hole_mask(k,2) = iand(generators_bitmask(k,2,s_hole), psi_det_generators(k,2,i_generator))
|
||||
particle_mask(k,1) = iand(generators_bitmask(k,1,s_part), not(psi_det_generators(k,1,i_generator)) )
|
||||
particle_mask(k,2) = iand(generators_bitmask(k,2,s_part), not(psi_det_generators(k,2,i_generator)) )
|
||||
enddo
|
||||
call select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_diag_tmp,E0,pt2,variance,norm,b,subset,csubset)
|
||||
deallocate(fock_diag_tmp)
|
||||
end subroutine
|
||||
|
||||
@ -248,6 +255,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
integer,allocatable :: tmp_array(:)
|
||||
integer(bit_kind), allocatable :: minilist(:, :, :), fullminilist(:, :, :)
|
||||
logical, allocatable :: banned(:,:,:), bannedOrb(:,:)
|
||||
double precision, allocatable :: coef_fullminilist_rev(:,:)
|
||||
|
||||
|
||||
double precision, allocatable :: mat(:,:,:)
|
||||
@ -338,6 +346,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
call isort(indices,iorder,nmax)
|
||||
deallocate(iorder)
|
||||
|
||||
! Start with 32 elements. Size will double along with the filtering.
|
||||
allocate(preinteresting(0:32), prefullinteresting(0:32), &
|
||||
interesting(0:32), fullinteresting(0:32))
|
||||
preinteresting(:) = 0
|
||||
@ -469,7 +478,7 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
if (nt > 4) exit
|
||||
endif
|
||||
end do
|
||||
case default
|
||||
case default
|
||||
mobMask(1:N_int,1) = iand(negMask(1:N_int,1), psi_det_sorted(1:N_int,1,preinteresting(ii)))
|
||||
mobMask(1:N_int,2) = iand(negMask(1:N_int,2), psi_det_sorted(1:N_int,2,preinteresting(ii)))
|
||||
nt = 0
|
||||
@ -546,6 +555,14 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
|
||||
allocate (fullminilist (N_int, 2, fullinteresting(0)), &
|
||||
minilist (N_int, 2, interesting(0)) )
|
||||
if(pert_2rdm)then
|
||||
allocate(coef_fullminilist_rev(N_states,fullinteresting(0)))
|
||||
do i=1,fullinteresting(0)
|
||||
do j = 1, N_states
|
||||
coef_fullminilist_rev(j,i) = psi_coef_sorted(fullinteresting(i),j)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
do i=1,fullinteresting(0)
|
||||
fullminilist(1:N_int,1:2,i) = psi_det_sorted(1:N_int,1:2,fullinteresting(i))
|
||||
enddo
|
||||
@ -597,12 +614,19 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
|
||||
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting)
|
||||
|
||||
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf)
|
||||
if(.not.pert_2rdm)then
|
||||
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf)
|
||||
else
|
||||
call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2, variance, norm, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0))
|
||||
endif
|
||||
end if
|
||||
enddo
|
||||
if(s1 /= s2) monoBdo = .false.
|
||||
enddo
|
||||
deallocate(fullminilist,minilist)
|
||||
if(pert_2rdm)then
|
||||
deallocate(coef_fullminilist_rev)
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
deallocate(preinteresting, prefullinteresting, interesting, fullinteresting)
|
||||
@ -628,11 +652,15 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
logical :: ok
|
||||
integer :: s1, s2, p1, p2, ib, j, istate
|
||||
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
|
||||
double precision :: e_pert, delta_E, val, Hii, sum_e_pert, tmp, alpha_h_psi, coef
|
||||
double precision :: e_pert, delta_E, val, Hii, w, tmp, alpha_h_psi, coef
|
||||
double precision, external :: diag_H_mat_elem_fock
|
||||
double precision :: E_shift
|
||||
|
||||
logical, external :: detEq
|
||||
double precision, allocatable :: values(:)
|
||||
integer, allocatable :: keys(:,:)
|
||||
integer :: nkeys
|
||||
|
||||
|
||||
if(sp == 3) then
|
||||
s1 = 1
|
||||
@ -683,6 +711,16 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
if( sum(abs(mat(1:N_states, p1, p2))) == 0d0) cycle
|
||||
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
|
||||
|
||||
if (do_only_cas) then
|
||||
integer, external :: number_of_holes, number_of_particles
|
||||
if (number_of_particles(det)>0) then
|
||||
cycle
|
||||
endif
|
||||
if (number_of_holes(det)>0) then
|
||||
cycle
|
||||
endif
|
||||
endif
|
||||
|
||||
if (do_ddci) then
|
||||
logical, external :: is_a_two_holes_two_particles
|
||||
if (is_a_two_holes_two_particles(det)) then
|
||||
@ -695,10 +733,14 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
if (.not.is_a_1h1p(det)) cycle
|
||||
endif
|
||||
|
||||
|
||||
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
|
||||
|
||||
sum_e_pert = 0d0
|
||||
w = 0d0
|
||||
|
||||
! integer(bit_kind) :: occ(N_int,2), n
|
||||
! call occ_pattern_of_det(det,occ,N_int)
|
||||
! call occ_pattern_to_dets_size(occ,n,elec_alpha_num,N_int)
|
||||
|
||||
|
||||
do istate=1,N_states
|
||||
delta_E = E0(istate) - Hii + E_shift
|
||||
@ -709,33 +751,63 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
tmp = -tmp
|
||||
endif
|
||||
e_pert = 0.5d0 * (tmp - delta_E)
|
||||
coef = e_pert / alpha_h_psi
|
||||
if (dabs(alpha_h_psi) > 1.d-4) then
|
||||
coef = e_pert / alpha_h_psi
|
||||
else
|
||||
coef = alpha_h_psi / delta_E
|
||||
endif
|
||||
pt2(istate) = pt2(istate) + e_pert
|
||||
variance(istate) = variance(istate) + alpha_h_psi * alpha_h_psi
|
||||
norm(istate) = norm(istate) + coef * coef
|
||||
|
||||
if (weight_selection /= 5) then
|
||||
! Energy selection
|
||||
sum_e_pert = sum_e_pert + e_pert * selection_weight(istate)
|
||||
else
|
||||
! Variance selection
|
||||
sum_e_pert = sum_e_pert - alpha_h_psi * alpha_h_psi * selection_weight(istate)
|
||||
endif
|
||||
!!!DEBUG
|
||||
! integer :: k
|
||||
! double precision :: alpha_h_psi_2,hij
|
||||
! alpha_h_psi_2 = 0.d0
|
||||
! do k = 1,N_det_selectors
|
||||
! call i_H_j(det,psi_selectors(1,1,k),N_int,hij)
|
||||
! alpha_h_psi_2 = alpha_h_psi_2 + psi_selectors_coef(k,istate) * hij
|
||||
! enddo
|
||||
! if(dabs(alpha_h_psi_2 - alpha_h_psi).gt.1.d-12)then
|
||||
! call debug_det(psi_det_generators(1,1,i_generator),N_int)
|
||||
! call debug_det(det,N_int)
|
||||
! print*,'alpha_h_psi,alpha_h_psi_2 = ',alpha_h_psi,alpha_h_psi_2
|
||||
! stop
|
||||
! endif
|
||||
!!!DEBUG
|
||||
|
||||
select case (weight_selection)
|
||||
|
||||
case(0:4)
|
||||
! Energy selection
|
||||
w = w + e_pert * selection_weight(istate)
|
||||
|
||||
case(5)
|
||||
! Variance selection
|
||||
w = w - alpha_h_psi * alpha_h_psi * selection_weight(istate)
|
||||
|
||||
case(6)
|
||||
w = w - coef * coef * selection_weight(istate)
|
||||
|
||||
end select
|
||||
end do
|
||||
|
||||
|
||||
if(pseudo_sym)then
|
||||
if(dabs(mat(1, p1, p2)).lt.thresh_sym)then
|
||||
sum_e_pert = 10.d0
|
||||
endif
|
||||
if(dabs(mat(1, p1, p2)).lt.thresh_sym)then
|
||||
w = 0.d0
|
||||
endif
|
||||
endif
|
||||
|
||||
if(sum_e_pert <= buf%mini) then
|
||||
call add_to_selection_buffer(buf, det, sum_e_pert)
|
||||
! w = dble(n) * w
|
||||
|
||||
if(w <= buf%mini) then
|
||||
call add_to_selection_buffer(buf, det, w)
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
end
|
||||
|
||||
|
||||
subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, interesting)
|
||||
use bitmasks
|
||||
implicit none
|
||||
@ -814,10 +886,13 @@ subroutine splash_pq(mask, sp, det, i_gen, N_sel, bannedOrb, banned, mat, intere
|
||||
|
||||
call get_mask_phase(psi_det_sorted(1,1,interesting(i)), phasemask,N_int)
|
||||
if(nt == 4) then
|
||||
! call get_d2_reference(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
|
||||
call get_d2(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
|
||||
else if(nt == 3) then
|
||||
! call get_d1_reference(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
|
||||
call get_d1(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
|
||||
else
|
||||
! call get_d0_reference(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
|
||||
call get_d0(det(1,1,i), phasemask, bannedOrb, banned, mat, mask, h, p, sp, psi_selectors_coef_transp(1, interesting(i)))
|
||||
end if
|
||||
else if(nt == 4) then
|
||||
@ -975,7 +1050,7 @@ subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(N_int,2)
|
||||
integer(bit_kind), intent(in) :: phasemask(N_int,2)
|
||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
||||
integer(bit_kind) :: det(N_int, 2)
|
||||
double precision, intent(in) :: coefs(N_states)
|
||||
@ -1058,8 +1133,10 @@ subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
call get_mo_two_e_integrals(hfix,pfix,p2,mo_num,hij_cache(1,2),mo_integrals_map)
|
||||
putj = p1
|
||||
do puti=1,mo_num
|
||||
if(lbanned(puti,mi)) cycle
|
||||
!p1 fixed
|
||||
if(.not.(banned(putj,puti,bant).or.lbanned(puti,mi))) then
|
||||
putj = p1
|
||||
if(.not. banned(putj,puti,bant)) then
|
||||
hij = hij_cache(puti,2)
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
|
||||
@ -1068,11 +1145,9 @@ subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
enddo
|
||||
|
||||
putj = p2
|
||||
do puti=1,mo_num
|
||||
if(.not.(banned(putj,puti,bant)).or.(lbanned(puti,mi))) then
|
||||
|
||||
putj = p2
|
||||
if(.not. banned(putj,puti,bant)) then
|
||||
hij = hij_cache(puti,1)
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
|
||||
@ -1135,8 +1210,9 @@ subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
call get_mo_two_e_integrals(hfix,p2,pfix,mo_num,hij_cache(1,2),mo_integrals_map)
|
||||
putj = p2
|
||||
do puti=1,mo_num
|
||||
if(lbanned(puti,ma)) cycle
|
||||
putj = p2
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
if(lbanned(puti,ma)) cycle
|
||||
hij = hij_cache(puti,1)
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
|
||||
@ -1145,12 +1221,9 @@ subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
enddo
|
||||
endif
|
||||
end if
|
||||
enddo
|
||||
|
||||
putj = p1
|
||||
do puti=1,mo_num
|
||||
putj = p1
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
if(lbanned(puti,ma)) cycle
|
||||
hij = hij_cache(puti,2)
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
|
||||
@ -1179,12 +1252,11 @@ subroutine get_d1(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
|
||||
do i1=1,p(0,s1)
|
||||
ib = 1
|
||||
p1 = p(i1,s1)
|
||||
if(s1 == s2) ib = i1+1
|
||||
if(bannedOrb(p1, s1)) cycle
|
||||
do i2=ib,p(0,s2)
|
||||
p1 = p(i1,s1)
|
||||
p2 = p(i2,s2)
|
||||
if(bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
|
||||
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
|
||||
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
mat(:, p1, p2) = mat(:, p1, p2) + coefs(:) * hij
|
||||
@ -1220,25 +1292,45 @@ subroutine get_d0(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
if(sp == 3) then ! AB
|
||||
h1 = p(1,1)
|
||||
h2 = p(1,2)
|
||||
do p2=1, mo_num
|
||||
if(bannedOrb(p2,2)) cycle
|
||||
call get_mo_two_e_integrals(p2,h1,h2,mo_num,hij_cache1,mo_integrals_map)
|
||||
do p1=1, mo_num
|
||||
if(bannedOrb(p1, 1) .or. banned(p1, p2, bant)) cycle
|
||||
if(p1 /= h1 .and. p2 /= h2) then
|
||||
if (hij_cache1(p1) == 0.d0) cycle
|
||||
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
||||
hij = hij_cache1(p1) * phase
|
||||
else
|
||||
do p1=1, mo_num
|
||||
if(bannedOrb(p1, 1)) cycle
|
||||
call get_mo_two_e_integrals(p1,h2,h1,mo_num,hij_cache1,mo_integrals_map)
|
||||
do p2=1, mo_num
|
||||
if(bannedOrb(p2,2)) cycle
|
||||
if(banned(p1, p2, bant)) cycle ! rentable?
|
||||
if(p1 == h1 .or. p2 == h2) then
|
||||
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
if (hij == 0.d0) cycle
|
||||
else
|
||||
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
||||
! hij = mo_two_e_integral(p2, p1, h2, h1) * phase
|
||||
hij = hij_cache1(p2) * phase
|
||||
end if
|
||||
if (hij == 0.d0) cycle
|
||||
do k=1,N_states
|
||||
mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * hij ! HOTSPOT
|
||||
enddo
|
||||
end do
|
||||
end do
|
||||
! do p2=1, mo_num
|
||||
! if(bannedOrb(p2,2)) cycle
|
||||
! call get_mo_two_e_integrals(p2,h1,h2,mo_num,hij_cache1,mo_integrals_map)
|
||||
! do p1=1, mo_num
|
||||
! if(bannedOrb(p1, 1) .or. banned(p1, p2, bant)) cycle
|
||||
! if(p1 /= h1 .and. p2 /= h2) then
|
||||
! if (hij_cache1(p1) == 0.d0) cycle
|
||||
! phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
||||
! hij = hij_cache1(p1) * phase
|
||||
! else
|
||||
! call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
|
||||
! call i_h_j(gen, det, N_int, hij)
|
||||
! if (hij == 0.d0) cycle
|
||||
! end if
|
||||
! do k=1,N_states
|
||||
! mat(k, p1, p2) = mat(k, p1, p2) + coefs(k) * hij ! HOTSPOT
|
||||
! enddo
|
||||
! end do
|
||||
! end do
|
||||
|
||||
else ! AA BB
|
||||
p1 = p(1,sp)
|
||||
@ -1248,24 +1340,36 @@ subroutine get_d0(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
call get_mo_two_e_integrals(puti,p2,p1,mo_num,hij_cache1,mo_integrals_map)
|
||||
call get_mo_two_e_integrals(puti,p1,p2,mo_num,hij_cache2,mo_integrals_map)
|
||||
do putj=puti+1, mo_num
|
||||
if(bannedOrb(putj, sp) .or. banned(putj, sp, bant)) cycle
|
||||
if(puti /= p1 .and. putj /= p2 .and. puti /= p2 .and. putj /= p1) then
|
||||
hij = hij_cache1(putj) - hij_cache2(putj)
|
||||
if (hij /= 0.d0) then
|
||||
hij = hij * get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
|
||||
do k=1,N_states
|
||||
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
|
||||
enddo
|
||||
endif
|
||||
else
|
||||
if(bannedOrb(putj, sp)) cycle
|
||||
if(banned(puti, putj, bant)) cycle ! rentable?
|
||||
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
|
||||
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
if (hij /= 0.d0) then
|
||||
do k=1,N_states
|
||||
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
|
||||
enddo
|
||||
endif
|
||||
else
|
||||
hij = (mo_two_e_integral(p1, p2, puti, putj) - mo_two_e_integral(p2, p1, puti, putj))* get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
|
||||
end if
|
||||
if (hij == 0.d0) cycle
|
||||
do k=1,N_states
|
||||
mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
|
||||
enddo
|
||||
! if(bannedOrb(putj, sp) .or. banned(putj, sp, bant)) cycle
|
||||
! if(puti /= p1 .and. putj /= p2 .and. puti /= p2 .and. putj /= p1) then
|
||||
! hij = hij_cache1(putj) - hij_cache2(putj)
|
||||
! if (hij /= 0.d0) then
|
||||
! hij = hij * get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
|
||||
! do k=1,N_states
|
||||
! mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
|
||||
! enddo
|
||||
! endif
|
||||
! else
|
||||
! call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
|
||||
! call i_h_j(gen, det, N_int, hij)
|
||||
! if (hij /= 0.d0) then
|
||||
! do k=1,N_states
|
||||
! mat(k, puti, putj) = mat(k, puti, putj) + coefs(k) * hij
|
||||
! enddo
|
||||
! endif
|
||||
! end if
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
@ -1395,3 +1499,356 @@ subroutine bitstring_to_list_in_selection( string, list, n_elements, Nint)
|
||||
|
||||
end
|
||||
!
|
||||
|
||||
|
||||
|
||||
|
||||
! OLD unoptimized routines for debugging
|
||||
! ======================================
|
||||
|
||||
subroutine get_d0_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: gen(N_int, 2), mask(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(N_int,2)
|
||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
||||
integer(bit_kind) :: det(N_int, 2)
|
||||
double precision, intent(in) :: coefs(N_states)
|
||||
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
|
||||
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
|
||||
|
||||
integer :: i, j, s, h1, h2, p1, p2, puti, putj
|
||||
double precision :: hij, phase
|
||||
double precision, external :: get_phase_bi, mo_two_e_integral
|
||||
logical :: ok
|
||||
|
||||
integer :: bant
|
||||
bant = 1
|
||||
|
||||
|
||||
if(sp == 3) then ! AB
|
||||
h1 = p(1,1)
|
||||
h2 = p(1,2)
|
||||
do p1=1, mo_num
|
||||
if(bannedOrb(p1, 1)) cycle
|
||||
do p2=1, mo_num
|
||||
if(bannedOrb(p2,2)) cycle
|
||||
if(banned(p1, p2, bant)) cycle ! rentable?
|
||||
if(p1 == h1 .or. p2 == h2) then
|
||||
call apply_particles(mask, 1,p1,2,p2, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
else
|
||||
phase = get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2, N_int)
|
||||
hij = mo_two_e_integral(p1, p2, h1, h2) * phase
|
||||
end if
|
||||
mat(:, p1, p2) += coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
else ! AA BB
|
||||
p1 = p(1,sp)
|
||||
p2 = p(2,sp)
|
||||
do puti=1, mo_num
|
||||
if(bannedOrb(puti, sp)) cycle
|
||||
do putj=puti+1, mo_num
|
||||
if(bannedOrb(putj, sp)) cycle
|
||||
if(banned(puti, putj, bant)) cycle ! rentable?
|
||||
if(puti == p1 .or. putj == p2 .or. puti == p2 .or. putj == p1) then
|
||||
call apply_particles(mask, sp,puti,sp,putj, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
else
|
||||
hij = (mo_two_e_integral(p1, p2, puti, putj) - mo_two_e_integral(p2, p1, puti, putj))* get_phase_bi(phasemask, sp, sp, puti, p1 , putj, p2, N_int)
|
||||
end if
|
||||
mat(:, puti, putj) += coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
end
|
||||
|
||||
subroutine get_d1_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(N_int,2)
|
||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
||||
integer(bit_kind) :: det(N_int, 2)
|
||||
double precision, intent(in) :: coefs(N_states)
|
||||
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
|
||||
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
|
||||
double precision :: hij, tmp_row(N_states, mo_num), tmp_row2(N_states, mo_num)
|
||||
double precision, external :: get_phase_bi, mo_two_e_integral
|
||||
logical :: ok
|
||||
|
||||
logical, allocatable :: lbanned(:,:)
|
||||
integer :: puti, putj, ma, mi, s1, s2, i, i1, i2, j
|
||||
integer :: hfix, pfix, h1, h2, p1, p2, ib
|
||||
|
||||
integer, parameter :: turn2(2) = (/2,1/)
|
||||
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
|
||||
|
||||
integer :: bant
|
||||
|
||||
|
||||
allocate (lbanned(mo_num, 2))
|
||||
lbanned = bannedOrb
|
||||
|
||||
do i=1, p(0,1)
|
||||
lbanned(p(i,1), 1) = .true.
|
||||
end do
|
||||
do i=1, p(0,2)
|
||||
lbanned(p(i,2), 2) = .true.
|
||||
end do
|
||||
|
||||
ma = 1
|
||||
if(p(0,2) >= 2) ma = 2
|
||||
mi = turn2(ma)
|
||||
|
||||
bant = 1
|
||||
|
||||
if(sp == 3) then
|
||||
!move MA
|
||||
if(ma == 2) bant = 2
|
||||
puti = p(1,mi)
|
||||
hfix = h(1,ma)
|
||||
p1 = p(1,ma)
|
||||
p2 = p(2,ma)
|
||||
if(.not. bannedOrb(puti, mi)) then
|
||||
tmp_row = 0d0
|
||||
do putj=1, hfix-1
|
||||
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
tmp_row(1:N_states,putj) += hij * coefs(1:N_states)
|
||||
end do
|
||||
do putj=hfix+1, mo_num
|
||||
if(lbanned(putj, ma) .or. banned(putj, puti,bant)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
tmp_row(1:N_states,putj) += hij * coefs(1:N_states)
|
||||
end do
|
||||
|
||||
if(ma == 1) then
|
||||
mat(1:N_states,1:mo_num,puti) += tmp_row(1:N_states,1:mo_num)
|
||||
else
|
||||
mat(1:N_states,puti,1:mo_num) += tmp_row(1:N_states,1:mo_num)
|
||||
end if
|
||||
end if
|
||||
|
||||
!MOVE MI
|
||||
pfix = p(1,mi)
|
||||
tmp_row = 0d0
|
||||
tmp_row2 = 0d0
|
||||
do puti=1,mo_num
|
||||
if(lbanned(puti,mi)) cycle
|
||||
!p1 fixed
|
||||
putj = p1
|
||||
if(.not. banned(putj,puti,bant)) then
|
||||
hij = mo_two_e_integral(p2,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p2, puti, pfix, N_int)
|
||||
tmp_row(:,puti) += hij * coefs(:)
|
||||
end if
|
||||
|
||||
putj = p2
|
||||
if(.not. banned(putj,puti,bant)) then
|
||||
hij = mo_two_e_integral(p1,pfix,hfix,puti) * get_phase_bi(phasemask, ma, mi, hfix, p1, puti, pfix, N_int)
|
||||
tmp_row2(:,puti) += hij * coefs(:)
|
||||
end if
|
||||
end do
|
||||
|
||||
if(mi == 1) then
|
||||
mat(:,:,p1) += tmp_row(:,:)
|
||||
mat(:,:,p2) += tmp_row2(:,:)
|
||||
else
|
||||
mat(:,p1,:) += tmp_row(:,:)
|
||||
mat(:,p2,:) += tmp_row2(:,:)
|
||||
end if
|
||||
else
|
||||
if(p(0,ma) == 3) then
|
||||
do i=1,3
|
||||
hfix = h(1,ma)
|
||||
puti = p(i, ma)
|
||||
p1 = p(turn3(1,i), ma)
|
||||
p2 = p(turn3(2,i), ma)
|
||||
tmp_row = 0d0
|
||||
do putj=1,hfix-1
|
||||
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, putj, hfix)-mo_two_e_integral(p2,p1,putj,hfix)) * get_phase_bi(phasemask, ma, ma, putj, p1, hfix, p2, N_int)
|
||||
tmp_row(:,putj) += hij * coefs(:)
|
||||
end do
|
||||
do putj=hfix+1,mo_num
|
||||
if(lbanned(putj,ma) .or. banned(puti,putj,1)) cycle
|
||||
hij = (mo_two_e_integral(p1, p2, hfix, putj)-mo_two_e_integral(p2,p1,hfix,putj)) * get_phase_bi(phasemask, ma, ma, hfix, p1, putj, p2, N_int)
|
||||
tmp_row(:,putj) += hij * coefs(:)
|
||||
end do
|
||||
|
||||
mat(:, :puti-1, puti) += tmp_row(:,:puti-1)
|
||||
mat(:, puti, puti:) += tmp_row(:,puti:)
|
||||
end do
|
||||
else
|
||||
hfix = h(1,mi)
|
||||
pfix = p(1,mi)
|
||||
p1 = p(1,ma)
|
||||
p2 = p(2,ma)
|
||||
tmp_row = 0d0
|
||||
tmp_row2 = 0d0
|
||||
do puti=1,mo_num
|
||||
if(lbanned(puti,ma)) cycle
|
||||
putj = p2
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
hij = mo_two_e_integral(pfix, p1, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p1, N_int)
|
||||
tmp_row(:,puti) += hij * coefs(:)
|
||||
end if
|
||||
|
||||
putj = p1
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
hij = mo_two_e_integral(pfix, p2, hfix, puti) * get_phase_bi(phasemask, mi, ma, hfix, pfix, puti, p2, N_int)
|
||||
tmp_row2(:,puti) += hij * coefs(:)
|
||||
end if
|
||||
end do
|
||||
mat(:,:p2-1,p2) += tmp_row(:,:p2-1)
|
||||
mat(:,p2,p2:) += tmp_row(:,p2:)
|
||||
mat(:,:p1-1,p1) += tmp_row2(:,:p1-1)
|
||||
mat(:,p1,p1:) += tmp_row2(:,p1:)
|
||||
end if
|
||||
end if
|
||||
deallocate(lbanned)
|
||||
|
||||
!! MONO
|
||||
if(sp == 3) then
|
||||
s1 = 1
|
||||
s2 = 2
|
||||
else
|
||||
s1 = sp
|
||||
s2 = sp
|
||||
end if
|
||||
|
||||
do i1=1,p(0,s1)
|
||||
ib = 1
|
||||
if(s1 == s2) ib = i1+1
|
||||
do i2=ib,p(0,s2)
|
||||
p1 = p(i1,s1)
|
||||
p2 = p(i2,s2)
|
||||
if(bannedOrb(p1, s1) .or. bannedOrb(p2, s2) .or. banned(p1, p2, 1)) cycle
|
||||
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
|
||||
call i_h_j(gen, det, N_int, hij)
|
||||
mat(:, p1, p2) += coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
end
|
||||
|
||||
subroutine get_d2_reference(gen, phasemask, bannedOrb, banned, mat, mask, h, p, sp, coefs)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
||||
integer(bit_kind), intent(in) :: mask(N_int, 2), gen(N_int, 2)
|
||||
integer(bit_kind), intent(in) :: phasemask(2,N_int)
|
||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num,2)
|
||||
double precision, intent(in) :: coefs(N_states)
|
||||
double precision, intent(inout) :: mat(N_states, mo_num, mo_num)
|
||||
integer, intent(in) :: h(0:2,2), p(0:4,2), sp
|
||||
|
||||
double precision, external :: get_phase_bi, mo_two_e_integral
|
||||
|
||||
integer :: i, j, tip, ma, mi, puti, putj
|
||||
integer :: h1, h2, p1, p2, i1, i2
|
||||
double precision :: hij, phase
|
||||
|
||||
integer, parameter:: turn2d(2,3,4) = reshape((/0,0, 0,0, 0,0, 3,4, 0,0, 0,0, 2,4, 1,4, 0,0, 2,3, 1,3, 1,2 /), (/2,3,4/))
|
||||
integer, parameter :: turn2(2) = (/2, 1/)
|
||||
integer, parameter :: turn3(2,3) = reshape((/2,3, 1,3, 1,2/), (/2,3/))
|
||||
|
||||
integer :: bant
|
||||
bant = 1
|
||||
|
||||
tip = p(0,1) * p(0,2)
|
||||
|
||||
ma = sp
|
||||
if(p(0,1) > p(0,2)) ma = 1
|
||||
if(p(0,1) < p(0,2)) ma = 2
|
||||
mi = mod(ma, 2) + 1
|
||||
|
||||
if(sp == 3) then
|
||||
if(ma == 2) bant = 2
|
||||
|
||||
if(tip == 3) then
|
||||
puti = p(1, mi)
|
||||
do i = 1, 3
|
||||
putj = p(i, ma)
|
||||
if(banned(putj,puti,bant)) cycle
|
||||
i1 = turn3(1,i)
|
||||
i2 = turn3(2,i)
|
||||
p1 = p(i1, ma)
|
||||
p2 = p(i2, ma)
|
||||
h1 = h(1, ma)
|
||||
h2 = h(2, ma)
|
||||
|
||||
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2, N_int)
|
||||
if(ma == 1) then
|
||||
mat(:, putj, puti) += coefs(:) * hij
|
||||
else
|
||||
mat(:, puti, putj) += coefs(:) * hij
|
||||
end if
|
||||
end do
|
||||
else
|
||||
h1 = h(1,1)
|
||||
h2 = h(1,2)
|
||||
do j = 1,2
|
||||
putj = p(j, 2)
|
||||
p2 = p(turn2(j), 2)
|
||||
do i = 1,2
|
||||
puti = p(i, 1)
|
||||
|
||||
if(banned(puti,putj,bant)) cycle
|
||||
p1 = p(turn2(i), 1)
|
||||
|
||||
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, 1, 2, h1, p1, h2, p2,N_int)
|
||||
mat(:, puti, putj) += coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
end if
|
||||
|
||||
else
|
||||
if(tip == 0) then
|
||||
h1 = h(1, ma)
|
||||
h2 = h(2, ma)
|
||||
do i=1,3
|
||||
puti = p(i, ma)
|
||||
do j=i+1,4
|
||||
putj = p(j, ma)
|
||||
if(banned(puti,putj,1)) cycle
|
||||
|
||||
i1 = turn2d(1, i, j)
|
||||
i2 = turn2d(2, i, j)
|
||||
p1 = p(i1, ma)
|
||||
p2 = p(i2, ma)
|
||||
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, ma, ma, h1, p1, h2, p2,N_int)
|
||||
mat(:, puti, putj) += coefs(:) * hij
|
||||
end do
|
||||
end do
|
||||
else if(tip == 3) then
|
||||
h1 = h(1, mi)
|
||||
h2 = h(1, ma)
|
||||
p1 = p(1, mi)
|
||||
do i=1,3
|
||||
puti = p(turn3(1,i), ma)
|
||||
putj = p(turn3(2,i), ma)
|
||||
if(banned(puti,putj,1)) cycle
|
||||
p2 = p(i, ma)
|
||||
|
||||
hij = mo_two_e_integral(p1, p2, h1, h2) * get_phase_bi(phasemask, mi, ma, h1, p1, h2, p2,N_int)
|
||||
mat(:, min(puti, putj), max(puti, putj)) += coefs(:) * hij
|
||||
end do
|
||||
else ! tip == 4
|
||||
puti = p(1, sp)
|
||||
putj = p(2, sp)
|
||||
if(.not. banned(puti,putj,1)) then
|
||||
p1 = p(1, mi)
|
||||
p2 = p(2, mi)
|
||||
h1 = h(1, mi)
|
||||
h2 = h(2, mi)
|
||||
hij = (mo_two_e_integral(p1, p2, h1, h2) - mo_two_e_integral(p2,p1, h1, h2)) * get_phase_bi(phasemask, mi, mi, h1, p1, h2, p2,N_int)
|
||||
mat(:, puti, putj) += coefs(:) * hij
|
||||
end if
|
||||
end if
|
||||
end if
|
||||
end
|
||||
|
||||
|
||||
|
@ -198,6 +198,7 @@ subroutine make_selection_buffer_s2(b)
|
||||
|
||||
deallocate(b%det)
|
||||
|
||||
print*,'n_d = ',n_d
|
||||
call i8sort(bit_tmp,iorder,n_d)
|
||||
|
||||
do i=1,n_d
|
||||
|
@ -10,8 +10,9 @@ subroutine run_stochastic_cipsi
|
||||
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double
|
||||
PROVIDE H_apply_buffer_allocated N_generators_bitmask
|
||||
PROVIDE H_apply_buffer_allocated
|
||||
|
||||
N_iter = 1
|
||||
threshold_generators = 1.d0
|
||||
SOFT_TOUCH threshold_generators
|
||||
|
||||
@ -101,7 +102,7 @@ subroutine run_stochastic_cipsi
|
||||
|
||||
! Add selected determinants
|
||||
call copy_H_apply_buffer_to_wf()
|
||||
call save_wavefunction
|
||||
! call save_wavefunction
|
||||
|
||||
PROVIDE psi_coef
|
||||
PROVIDE psi_det
|
||||
|
223
src/cipsi/update_2rdm.irp.f
Normal file
223
src/cipsi/update_2rdm.irp.f
Normal file
@ -0,0 +1,223 @@
|
||||
use bitmasks
|
||||
|
||||
subroutine give_2rdm_pert_contrib(det,coef,psi_det_connection,psi_coef_connection_reverse,n_det_connection,nkeys,keys,values,sze_buff)
|
||||
implicit none
|
||||
integer, intent(in) :: n_det_connection,sze_buff
|
||||
double precision, intent(in) :: coef(N_states)
|
||||
integer(bit_kind), intent(in) :: det(N_int,2)
|
||||
integer(bit_kind), intent(in) :: psi_det_connection(N_int,2,n_det_connection)
|
||||
double precision, intent(in) :: psi_coef_connection_reverse(N_states,n_det_connection)
|
||||
integer, intent(inout) :: keys(4,sze_buff),nkeys
|
||||
double precision, intent(inout) :: values(sze_buff)
|
||||
integer :: i,j
|
||||
integer :: exc(0:2,2,2)
|
||||
integer :: degree
|
||||
double precision :: phase, contrib
|
||||
do i = 1, n_det_connection
|
||||
call get_excitation(det,psi_det_connection(1,1,i),exc,degree,phase,N_int)
|
||||
if(degree.gt.2)cycle
|
||||
contrib = 0.d0
|
||||
do j = 1, N_states
|
||||
contrib += state_average_weight(j) * psi_coef_connection_reverse(j,i) * phase * coef(j)
|
||||
enddo
|
||||
! case of single excitations
|
||||
if(degree == 1)then
|
||||
if (nkeys + 6 * elec_alpha_num .ge. sze_buff)then
|
||||
call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
|
||||
nkeys = 0
|
||||
endif
|
||||
call update_buffer_single_exc_rdm(det,psi_det_connection(1,1,i),exc,phase,contrib,nkeys,keys,values,sze_buff)
|
||||
else
|
||||
!! case of double excitations
|
||||
! if (nkeys + 4 .ge. sze_buff)then
|
||||
! call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
|
||||
! nkeys = 0
|
||||
! endif
|
||||
! call update_buffer_double_exc_rdm(exc,phase,contrib,nkeys,keys,values,sze_buff)
|
||||
endif
|
||||
enddo
|
||||
!call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
|
||||
!nkeys = 0
|
||||
|
||||
end
|
||||
|
||||
subroutine update_buffer_single_exc_rdm(det1,det2,exc,phase,contrib,nkeys,keys,values,sze_buff)
|
||||
implicit none
|
||||
integer, intent(in) :: sze_buff
|
||||
integer(bit_kind), intent(in) :: det1(N_int,2)
|
||||
integer(bit_kind), intent(in) :: det2(N_int,2)
|
||||
integer,intent(in) :: exc(0:2,2,2)
|
||||
double precision,intent(in) :: phase, contrib
|
||||
integer, intent(inout) :: nkeys, keys(4,sze_buff)
|
||||
double precision, intent(inout):: values(sze_buff)
|
||||
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2),ispin,other_spin
|
||||
integer :: h1,h2,p1,p2,i
|
||||
call bitstring_to_list_ab(det1, occ, n_occ_ab, N_int)
|
||||
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
h1 = exc(1,1,1)
|
||||
p1 = exc(1,2,1)
|
||||
ispin = 1
|
||||
other_spin = 2
|
||||
else
|
||||
! Mono beta
|
||||
h1 = exc(1,1,2)
|
||||
p1 = exc(1,2,2)
|
||||
ispin = 2
|
||||
other_spin = 1
|
||||
endif
|
||||
if(list_orb_reverse_pert_rdm(h1).lt.0)return
|
||||
h1 = list_orb_reverse_pert_rdm(h1)
|
||||
if(list_orb_reverse_pert_rdm(p1).lt.0)return
|
||||
p1 = list_orb_reverse_pert_rdm(p1)
|
||||
!update the alpha/beta part
|
||||
do i = 1, n_occ_ab(other_spin)
|
||||
h2 = occ(i,other_spin)
|
||||
if(list_orb_reverse_pert_rdm(h2).lt.0)return
|
||||
h2 = list_orb_reverse_pert_rdm(h2)
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = p1
|
||||
enddo
|
||||
!update the same spin part
|
||||
!do i = 1, n_occ_ab(ispin)
|
||||
! h2 = occ(i,ispin)
|
||||
! if(list_orb_reverse_pert_rdm(h2).lt.0)return
|
||||
! h2 = list_orb_reverse_pert_rdm(h2)
|
||||
|
||||
! nkeys += 1
|
||||
! values(nkeys) = 0.5d0 * contrib * phase
|
||||
! keys(1,nkeys) = h1
|
||||
! keys(2,nkeys) = h2
|
||||
! keys(3,nkeys) = p1
|
||||
! keys(4,nkeys) = h2
|
||||
|
||||
! nkeys += 1
|
||||
! values(nkeys) = - 0.5d0 * contrib * phase
|
||||
! keys(1,nkeys) = h1
|
||||
! keys(2,nkeys) = h2
|
||||
! keys(3,nkeys) = h2
|
||||
! keys(4,nkeys) = p1
|
||||
!
|
||||
! nkeys += 1
|
||||
! values(nkeys) = 0.5d0 * contrib * phase
|
||||
! keys(1,nkeys) = h2
|
||||
! keys(2,nkeys) = h1
|
||||
! keys(3,nkeys) = h2
|
||||
! keys(4,nkeys) = p1
|
||||
|
||||
! nkeys += 1
|
||||
! values(nkeys) = - 0.5d0 * contrib * phase
|
||||
! keys(1,nkeys) = h2
|
||||
! keys(2,nkeys) = h1
|
||||
! keys(3,nkeys) = p1
|
||||
! keys(4,nkeys) = h2
|
||||
!enddo
|
||||
|
||||
end
|
||||
|
||||
subroutine update_buffer_double_exc_rdm(exc,phase,contrib,nkeys,keys,values,sze_buff)
|
||||
implicit none
|
||||
integer, intent(in) :: sze_buff
|
||||
integer,intent(in) :: exc(0:2,2,2)
|
||||
double precision,intent(in) :: phase, contrib
|
||||
integer, intent(inout) :: nkeys, keys(4,sze_buff)
|
||||
double precision, intent(inout):: values(sze_buff)
|
||||
integer :: h1,h2,p1,p2
|
||||
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Double alpha/beta
|
||||
h1 = exc(1,1,1)
|
||||
h2 = exc(1,1,2)
|
||||
p1 = exc(1,2,1)
|
||||
p2 = exc(1,2,2)
|
||||
! check if the orbitals involved are within the orbital range
|
||||
if(list_orb_reverse_pert_rdm(h1).lt.0)return
|
||||
h1 = list_orb_reverse_pert_rdm(h1)
|
||||
if(list_orb_reverse_pert_rdm(h2).lt.0)return
|
||||
h2 = list_orb_reverse_pert_rdm(h2)
|
||||
if(list_orb_reverse_pert_rdm(p1).lt.0)return
|
||||
p1 = list_orb_reverse_pert_rdm(p1)
|
||||
if(list_orb_reverse_pert_rdm(p2).lt.0)return
|
||||
p2 = list_orb_reverse_pert_rdm(p2)
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = p1
|
||||
keys(2,nkeys) = p2
|
||||
keys(3,nkeys) = h1
|
||||
keys(4,nkeys) = h2
|
||||
|
||||
else
|
||||
if (exc(0,1,1) == 2) then
|
||||
! Double alpha/alpha
|
||||
h1 = exc(1,1,1)
|
||||
h2 = exc(2,1,1)
|
||||
p1 = exc(1,2,1)
|
||||
p2 = exc(2,2,1)
|
||||
else if (exc(0,1,2) == 2) then
|
||||
! Double beta
|
||||
h1 = exc(1,1,2)
|
||||
h2 = exc(2,1,2)
|
||||
p1 = exc(1,2,2)
|
||||
p2 = exc(2,2,2)
|
||||
endif
|
||||
! check if the orbitals involved are within the orbital range
|
||||
if(list_orb_reverse_pert_rdm(h1).lt.0)return
|
||||
h1 = list_orb_reverse_pert_rdm(h1)
|
||||
if(list_orb_reverse_pert_rdm(h2).lt.0)return
|
||||
h2 = list_orb_reverse_pert_rdm(h2)
|
||||
if(list_orb_reverse_pert_rdm(p1).lt.0)return
|
||||
p1 = list_orb_reverse_pert_rdm(p1)
|
||||
if(list_orb_reverse_pert_rdm(p2).lt.0)return
|
||||
p2 = list_orb_reverse_pert_rdm(p2)
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
|
@ -21,6 +21,11 @@ function run() {
|
||||
eq $energy3 $4 $thresh
|
||||
}
|
||||
|
||||
@test "B-B" { # 2.0s
|
||||
run b2_stretched.ezfio -48.995058575280950 -48.974653655601145 -48.974653655601031
|
||||
|
||||
}
|
||||
|
||||
@test "SiH2_3B1" { # 1.23281s 1.24958s
|
||||
run sih2_3b1.ezfio -289.969297318489 -289.766898643192 -289.737521023380
|
||||
}
|
||||
|
@ -18,6 +18,11 @@ function run() {
|
||||
}
|
||||
|
||||
|
||||
@test "B-B" { #
|
||||
qp set_file b2_stretched.ezfio
|
||||
run -49.120607088648597 -49.055152453388231
|
||||
}
|
||||
|
||||
@test "SiH2_3B1" { # 1.53842s 3.53856s
|
||||
qp set_file sih2_3b1.ezfio
|
||||
run -290.015949171697 -289.805036176618
|
||||
|
@ -44,6 +44,7 @@ program cisd
|
||||
! * "del" orbitals which will be never occupied
|
||||
!
|
||||
END_DOC
|
||||
PROVIDE N_states
|
||||
read_wf = .False.
|
||||
SOFT_TOUCH read_wf
|
||||
call run
|
||||
@ -51,29 +52,52 @@ end
|
||||
|
||||
subroutine run
|
||||
implicit none
|
||||
integer :: i
|
||||
integer :: i,k
|
||||
double precision :: cisdq(N_states), delta_e
|
||||
double precision,external :: diag_h_mat_elem
|
||||
|
||||
if(pseudo_sym)then
|
||||
call H_apply_cisd_sym
|
||||
else
|
||||
call H_apply_cisd
|
||||
endif
|
||||
print *, 'N_det = ', N_det
|
||||
print*,'******************************'
|
||||
print *, 'Energies of the states:'
|
||||
do i = 1,N_states
|
||||
print *, i, CI_energy(i)
|
||||
enddo
|
||||
if (N_states > 1) then
|
||||
print*,'******************************'
|
||||
print*,'Excitation energies '
|
||||
do i = 2, N_states
|
||||
print*, i ,CI_energy(i) - CI_energy(1)
|
||||
enddo
|
||||
endif
|
||||
psi_coef = ci_eigenvectors
|
||||
SOFT_TOUCH psi_coef
|
||||
call save_wavefunction
|
||||
call ezfio_set_cisd_energy(CI_energy)
|
||||
|
||||
do i = 1,N_states
|
||||
k = maxloc(dabs(psi_coef_sorted(1:N_det,i)),dim=1)
|
||||
delta_E = CI_electronic_energy(i) - diag_h_mat_elem(psi_det_sorted(1,1,k),N_int)
|
||||
cisdq(i) = CI_energy(i) + delta_E * (1.d0 - psi_coef_sorted(k,i)**2)
|
||||
enddo
|
||||
print *, 'N_det = ', N_det
|
||||
print*,''
|
||||
print*,'******************************'
|
||||
print *, 'CISD Energies'
|
||||
do i = 1,N_states
|
||||
print *, i, CI_energy(i)
|
||||
enddo
|
||||
print*,''
|
||||
print*,'******************************'
|
||||
print *, 'CISD+Q Energies'
|
||||
do i = 1,N_states
|
||||
print *, i, cisdq(i)
|
||||
enddo
|
||||
if (N_states > 1) then
|
||||
print*,''
|
||||
print*,'******************************'
|
||||
print*,'Excitation energies (au) (CISD+Q)'
|
||||
do i = 2, N_states
|
||||
print*, i ,CI_energy(i) - CI_energy(1), cisdq(i) - cisdq(1)
|
||||
enddo
|
||||
print*,''
|
||||
print*,'******************************'
|
||||
print*,'Excitation energies (eV) (CISD+Q)'
|
||||
do i = 2, N_states
|
||||
print*, i ,(CI_energy(i) - CI_energy(1))/0.0367502d0, &
|
||||
(cisdq(i) - cisdq(1)) / 0.0367502d0
|
||||
enddo
|
||||
endif
|
||||
|
||||
end
|
||||
|
28
src/cisd/cisd_routine.irp.f
Normal file
28
src/cisd/cisd_routine.irp.f
Normal file
@ -0,0 +1,28 @@
|
||||
subroutine run_cisd
|
||||
implicit none
|
||||
integer :: i
|
||||
|
||||
if(pseudo_sym)then
|
||||
call H_apply_cisd_sym
|
||||
else
|
||||
call H_apply_cisd
|
||||
endif
|
||||
print *, 'N_det = ', N_det
|
||||
print*,'******************************'
|
||||
print *, 'Energies of the states:'
|
||||
do i = 1,N_states
|
||||
print *, i, CI_energy(i)
|
||||
enddo
|
||||
if (N_states > 1) then
|
||||
print*,'******************************'
|
||||
print*,'Excitation energies '
|
||||
do i = 2, N_states
|
||||
print*, i ,CI_energy(i) - CI_energy(1)
|
||||
enddo
|
||||
endif
|
||||
psi_coef = ci_eigenvectors
|
||||
SOFT_TOUCH psi_coef
|
||||
call save_wavefunction
|
||||
call ezfio_set_cisd_energy(CI_energy)
|
||||
|
||||
end
|
@ -6,7 +6,7 @@ BEGIN_PROVIDER [ double precision, psi_energy_two_e, (N_states) ]
|
||||
integer :: i,j
|
||||
call u_0_H_u_0_two_e(psi_energy_two_e,psi_coef,N_det,psi_det,N_int,N_states,psi_det_size)
|
||||
do i=N_det+1,N_states
|
||||
psi_energy(i) = 0.d0
|
||||
psi_energy_two_e(i) = 0.d0
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -106,12 +106,31 @@ END_PROVIDER
|
||||
BEGIN_PROVIDER [double precision, one_e_dm_average_mo_for_dft, (mo_num,mo_num)]
|
||||
implicit none
|
||||
integer :: i
|
||||
one_e_dm_average_mo_for_dft = 0.d0
|
||||
one_e_dm_average_mo_for_dft = one_e_dm_average_alpha_mo_for_dft + one_e_dm_average_beta_mo_for_dft
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, one_e_dm_average_alpha_mo_for_dft, (mo_num,mo_num)]
|
||||
implicit none
|
||||
integer :: i
|
||||
one_e_dm_average_alpha_mo_for_dft = 0.d0
|
||||
do i = 1, N_states
|
||||
one_e_dm_average_mo_for_dft(:,:) += one_e_dm_mo_for_dft(:,:,i) * state_average_weight(i)
|
||||
one_e_dm_average_alpha_mo_for_dft(:,:) += one_e_dm_mo_alpha_for_dft(:,:,i) * state_average_weight(i)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, one_e_dm_average_beta_mo_for_dft, (mo_num,mo_num)]
|
||||
implicit none
|
||||
integer :: i
|
||||
one_e_dm_average_beta_mo_for_dft = 0.d0
|
||||
do i = 1, N_states
|
||||
one_e_dm_average_beta_mo_for_dft(:,:) += one_e_dm_mo_beta_for_dft(:,:,i) * state_average_weight(i)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ double precision, one_e_dm_alpha_ao_for_dft, (ao_num,ao_num,N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, one_e_dm_beta_ao_for_dft, (ao_num,ao_num,N_states) ]
|
||||
BEGIN_DOC
|
||||
|
@ -22,6 +22,12 @@ doc: If |true|, read the wave function from the |EZFIO| file
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
[pruning]
|
||||
type: float
|
||||
doc: If p>0., remove p*Ndet determinants at every iteration
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.
|
||||
|
||||
[s2_eig]
|
||||
type: logical
|
||||
doc: Force the wave function to be an eigenfunction of |S^2|
|
||||
@ -32,11 +38,11 @@ default: True
|
||||
type: integer
|
||||
doc: Weight used in the calculation of the one-electron density matrix. 0: 1./(c_0^2), 1: 1/N_states, 2: input state-average weight, 3: 1/(Norm_L3(Psi))
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1
|
||||
default: 2
|
||||
|
||||
[weight_selection]
|
||||
type: integer
|
||||
doc: Weight used in the selection. 0: input state-average weight, 1: 1./(c_0^2), 2: rPT2 matching, 3: variance matching, 4: variance and rPT2 matching, 5: variance minimization and matching
|
||||
doc: Weight used in the selection. 0: input state-average weight, 1: 1./(c_0^2), 2: rPT2 matching, 3: variance matching, 4: variance and rPT2 matching, 5: variance minimization and matching, 6: CI coefficients
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 2
|
||||
|
||||
|
@ -257,6 +257,18 @@ subroutine set_natural_mos
|
||||
double precision, allocatable :: tmp(:,:)
|
||||
|
||||
label = "Natural"
|
||||
integer :: i,j,iorb,jorb
|
||||
do i = 1, n_virt_orb
|
||||
iorb = list_virt(i)
|
||||
do j = 1, n_core_inact_act_orb
|
||||
jorb = list_core_inact_act(j)
|
||||
if(one_e_dm_mo(iorb,jorb).ne. 0.d0)then
|
||||
print*,'AHAHAH'
|
||||
print*,iorb,jorb,one_e_dm_mo(iorb,jorb)
|
||||
stop
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
call mo_as_svd_vectors_of_mo_matrix_eig(one_e_dm_mo,size(one_e_dm_mo,1),mo_num,mo_num,mo_occ,label)
|
||||
soft_touch mo_occ
|
||||
|
||||
|
@ -151,7 +151,7 @@ subroutine routine_example_psi_det
|
||||
print*,'Determinant connected'
|
||||
call debug_det(psi_det(1,1,idx(i)),N_int)
|
||||
print*,'excitation degree = ',degree_list(i)
|
||||
call i_H_j(psi_det(1,1,1) , psi_det(1,1,idx(i)),hij,N_int)
|
||||
call i_H_j(psi_det(1,1,1) , psi_det(1,1,idx(i)),N_int,hij)
|
||||
do j = 1, N_states
|
||||
i_H_psi(j) += hij * psi_coef(idx(i),j)
|
||||
enddo
|
||||
|
@ -124,39 +124,49 @@ subroutine copy_H_apply_buffer_to_wf
|
||||
|
||||
PROVIDE H_apply_buffer_allocated
|
||||
|
||||
|
||||
ASSERT (N_int > 0)
|
||||
ASSERT (N_det > 0)
|
||||
|
||||
allocate ( buffer_det(N_int,2,N_det), buffer_coef(N_det,N_states) )
|
||||
|
||||
! Backup determinants
|
||||
j=0
|
||||
do i=1,N_det
|
||||
do k=1,N_int
|
||||
ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num)
|
||||
ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num)
|
||||
buffer_det(k,1,i) = psi_det(k,1,i)
|
||||
buffer_det(k,2,i) = psi_det(k,2,i)
|
||||
enddo
|
||||
if (pruned(i)) cycle ! Pruned determinants
|
||||
j+=1
|
||||
ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num)
|
||||
ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num)
|
||||
buffer_det(:,:,j) = psi_det(:,:,i)
|
||||
enddo
|
||||
N_det_old = j
|
||||
|
||||
! Backup coefficients
|
||||
do k=1,N_states
|
||||
j=0
|
||||
do i=1,N_det
|
||||
buffer_coef(i,k) = psi_coef(i,k)
|
||||
if (pruned(i)) cycle ! Pruned determinants
|
||||
j += 1
|
||||
buffer_coef(j,k) = psi_coef(i,k)
|
||||
enddo
|
||||
ASSERT ( j == N_det_old )
|
||||
enddo
|
||||
|
||||
N_det_old = N_det
|
||||
! Update N_det
|
||||
N_det = N_det_old
|
||||
do j=0,nproc-1
|
||||
N_det = N_det + H_apply_buffer(j)%N_det
|
||||
enddo
|
||||
|
||||
! Update array sizes
|
||||
if (psi_det_size < N_det) then
|
||||
psi_det_size = N_det
|
||||
TOUCH psi_det_size
|
||||
endif
|
||||
|
||||
! Restore backup in resized array
|
||||
do i=1,N_det_old
|
||||
do k=1,N_int
|
||||
psi_det(k,1,i) = buffer_det(k,1,i)
|
||||
psi_det(k,2,i) = buffer_det(k,2,i)
|
||||
enddo
|
||||
psi_det(:,:,i) = buffer_det(:,:,i)
|
||||
ASSERT (sum(popcnt(psi_det(:,1,i))) == elec_alpha_num)
|
||||
ASSERT (sum(popcnt(psi_det(:,2,i))) == elec_beta_num )
|
||||
enddo
|
||||
@ -165,6 +175,9 @@ subroutine copy_H_apply_buffer_to_wf
|
||||
psi_coef(i,k) = buffer_coef(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Copy new buffers
|
||||
|
||||
!$OMP PARALLEL DEFAULT(SHARED) &
|
||||
!$OMP PRIVATE(j,k,i) FIRSTPRIVATE(N_det_old) &
|
||||
!$OMP SHARED(N_int,H_apply_buffer,psi_det,psi_coef,N_states,psi_det_size)
|
||||
|
@ -33,22 +33,22 @@ subroutine $subroutine($params_main)
|
||||
do ispin=1,2
|
||||
do k=1,N_int
|
||||
mask(k,ispin,s_hole) = &
|
||||
iand(generators_bitmask(k,ispin,s_hole,i_bitmask_gen), &
|
||||
iand(generators_bitmask(k,ispin,s_hole), &
|
||||
psi_det_generators(k,ispin,i_generator) )
|
||||
mask(k,ispin,s_part) = &
|
||||
iand(generators_bitmask(k,ispin,s_part,i_bitmask_gen), &
|
||||
iand(generators_bitmask(k,ispin,s_part), &
|
||||
not(psi_det_generators(k,ispin,i_generator)) )
|
||||
mask(k,ispin,d_hole1) = &
|
||||
iand(generators_bitmask(k,ispin,d_hole1,i_bitmask_gen), &
|
||||
iand(generators_bitmask(k,ispin,d_hole1), &
|
||||
psi_det_generators(k,ispin,i_generator) )
|
||||
mask(k,ispin,d_part1) = &
|
||||
iand(generators_bitmask(k,ispin,d_part1,i_bitmask_gen), &
|
||||
iand(generators_bitmask(k,ispin,d_part1), &
|
||||
not(psi_det_generators(k,ispin,i_generator)) )
|
||||
mask(k,ispin,d_hole2) = &
|
||||
iand(generators_bitmask(k,ispin,d_hole2,i_bitmask_gen), &
|
||||
iand(generators_bitmask(k,ispin,d_hole2), &
|
||||
psi_det_generators(k,ispin,i_generator) )
|
||||
mask(k,ispin,d_part2) = &
|
||||
iand(generators_bitmask(k,ispin,d_part2,i_bitmask_gen), &
|
||||
iand(generators_bitmask(k,ispin,d_part2), &
|
||||
not(psi_det_generators(k,ispin,i_generator)) )
|
||||
enddo
|
||||
enddo
|
||||
|
@ -409,6 +409,51 @@ BEGIN_PROVIDER [ double precision, weight_occ_pattern, (N_occ_pattern,N_states)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, weight_occ_pattern_average, (N_occ_pattern) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! State-average weight of the occupation patterns in the wave function
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
weight_occ_pattern_average(:) = 0.d0
|
||||
do i=1,N_det
|
||||
j = det_to_occ_pattern(i)
|
||||
do k=1,N_states
|
||||
weight_occ_pattern_average(j) += psi_coef(i,k) * psi_coef(i,k) * state_average_weight(k)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, psi_occ_pattern_sorted, (N_int,2,N_occ_pattern) ]
|
||||
&BEGIN_PROVIDER [ double precision, weight_occ_pattern_average_sorted, (N_occ_pattern) ]
|
||||
&BEGIN_PROVIDER [ integer, psi_occ_pattern_sorted_order, (N_occ_pattern) ]
|
||||
&BEGIN_PROVIDER [ integer, psi_occ_pattern_sorted_order_reverse, (N_occ_pattern) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Occupation patterns sorted by weight
|
||||
END_DOC
|
||||
integer :: i,j,k
|
||||
integer, allocatable :: iorder(:)
|
||||
allocate ( iorder(N_occ_pattern) )
|
||||
do i=1,N_occ_pattern
|
||||
weight_occ_pattern_average_sorted(i) = -weight_occ_pattern_average(i)
|
||||
iorder(i) = i
|
||||
enddo
|
||||
call dsort(weight_occ_pattern_average_sorted,iorder,N_occ_pattern)
|
||||
do i=1,N_occ_pattern
|
||||
do j=1,N_int
|
||||
psi_occ_pattern_sorted(j,1,i) = psi_occ_pattern(j,1,iorder(i))
|
||||
psi_occ_pattern_sorted(j,2,i) = psi_occ_pattern(j,2,iorder(i))
|
||||
enddo
|
||||
psi_occ_pattern_sorted_order(iorder(i)) = i
|
||||
psi_occ_pattern_sorted_order_reverse(i) = iorder(i)
|
||||
weight_occ_pattern_average_sorted(i) = -weight_occ_pattern_average_sorted(i)
|
||||
enddo
|
||||
|
||||
deallocate(iorder)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
subroutine make_s2_eigenfunction
|
||||
implicit none
|
||||
|
35
src/determinants/prune_wf.irp.f
Normal file
35
src/determinants/prune_wf.irp.f
Normal file
@ -0,0 +1,35 @@
|
||||
BEGIN_PROVIDER [ logical, pruned, (N_det) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! True if determinant is removed by pruning
|
||||
END_DOC
|
||||
|
||||
pruned(:) = .False.
|
||||
|
||||
if (pruning == 0.d0) then
|
||||
return
|
||||
endif
|
||||
|
||||
integer :: i,j,k,ndet_new,nsop_max
|
||||
double precision :: thr
|
||||
|
||||
if (s2_eig) then
|
||||
|
||||
nsop_max = max(1,int ( dble(N_occ_pattern) * (1.d0 - pruning) + 0.5d0 ))
|
||||
|
||||
do i=1,N_det
|
||||
k = det_to_occ_pattern(i)
|
||||
pruned(i) = psi_occ_pattern_sorted_order_reverse(k) > nsop_max
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
ndet_new = max(1,int( dble(N_det) * (1.d0 - pruning) + 0.5d0 ))
|
||||
thr = psi_average_norm_contrib_sorted(ndet_new)
|
||||
do i=1, N_det
|
||||
pruned(i) = psi_average_norm_contrib(i) < thr
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
@ -16,19 +16,17 @@ use bitmasks
|
||||
do l = 1, N_states
|
||||
psi_cas_coef(i,l) = 0.d0
|
||||
enddo
|
||||
do l=1,n_cas_bitmask
|
||||
good = .True.
|
||||
do k=1,N_int
|
||||
good = good .and. ( &
|
||||
iand(not(cas_bitmask(k,1,l)), psi_det(k,1,i)) == &
|
||||
iand(not(cas_bitmask(k,1,l)), hf_bitmask(k,1)) ) .and. ( &
|
||||
iand(not(cas_bitmask(k,2,l)), psi_det(k,2,i)) == &
|
||||
iand(not(cas_bitmask(k,2,l)), hf_bitmask(k,2)) )
|
||||
enddo
|
||||
if (good) then
|
||||
exit
|
||||
endif
|
||||
good = .True.
|
||||
do k=1,N_int
|
||||
good = good .and. ( &
|
||||
iand(not(act_bitmask(k,1)), psi_det(k,1,i)) == &
|
||||
iand(not(act_bitmask(k,1)), hf_bitmask(k,1)) ) .and. ( &
|
||||
iand(not(act_bitmask(k,2)), psi_det(k,2,i)) == &
|
||||
iand(not(act_bitmask(k,2)), hf_bitmask(k,2)) )
|
||||
enddo
|
||||
if (good) then
|
||||
exit
|
||||
endif
|
||||
if (good) then
|
||||
N_det_cas = N_det_cas+1
|
||||
do k=1,N_int
|
||||
|
609
src/determinants/two_e_density_matrix.irp.pouet
Normal file
609
src/determinants/two_e_density_matrix.irp.pouet
Normal file
@ -0,0 +1,609 @@
|
||||
|
||||
BEGIN_PROVIDER [double precision, two_bod_alpha_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! two_bod_alpha_beta(i,j,k,l) = <Psi| a^{dagger}_{j,alpha} a^{dagger}_{l,beta} a_{k,beta} a_{i,alpha} | Psi>
|
||||
! 1 1 2 2 = chemist notations
|
||||
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
|
||||
!
|
||||
END_DOC
|
||||
integer :: dim1,dim2,dim3,dim4
|
||||
double precision :: cpu_0,cpu_1
|
||||
dim1 = mo_num
|
||||
dim2 = mo_num
|
||||
dim3 = mo_num
|
||||
dim4 = mo_num
|
||||
two_bod_alpha_beta_mo = 0.d0
|
||||
print*,'providing two_bod_alpha_beta ...'
|
||||
call wall_time(cpu_0)
|
||||
call two_body_dm_nstates_openmp(two_bod_alpha_beta_mo,dim1,dim2,dim3,dim4,psi_coef,size(psi_coef,2),size(psi_coef,1))
|
||||
call wall_time(cpu_1)
|
||||
print*,'two_bod_alpha_beta provided in',dabs(cpu_1-cpu_0)
|
||||
|
||||
integer :: ii,jj,i,j,k,l
|
||||
if(no_core_density .EQ. "no_core_dm")then
|
||||
print*,'USING THE VALENCE ONLY TWO BODY DENSITY'
|
||||
|
||||
do ii = 1, n_core_orb ! 1
|
||||
i = list_core(ii)
|
||||
do j = 1, mo_num ! 2
|
||||
do k = 1, mo_num ! 1
|
||||
do l = 1, mo_num ! 2
|
||||
! 2 2 1 1
|
||||
two_bod_alpha_beta_mo(l,j,k,i,:) = 0.d0
|
||||
two_bod_alpha_beta_mo(j,l,k,i,:) = 0.d0
|
||||
two_bod_alpha_beta_mo(l,j,i,k,:) = 0.d0
|
||||
two_bod_alpha_beta_mo(j,l,i,k,:) = 0.d0
|
||||
|
||||
two_bod_alpha_beta_mo(k,i,l,j,:) = 0.d0
|
||||
two_bod_alpha_beta_mo(k,i,j,l,:) = 0.d0
|
||||
two_bod_alpha_beta_mo(i,k,l,j,:) = 0.d0
|
||||
two_bod_alpha_beta_mo(i,k,j,l,:) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, two_bod_alpha_beta_mo_physicist, (mo_num,mo_num,mo_num,mo_num,N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! two_bod_alpha_beta_mo_physicist,(i,j,k,l) = <Psi| a^{dagger}_{k,alpha} a^{dagger}_{l,beta} a_{j,beta} a_{i,alpha} | Psi>
|
||||
! 1 2 1 2 = physicist notations
|
||||
! note that no 1/2 factor is introduced in order to take into acccount for the spin symmetry
|
||||
!
|
||||
END_DOC
|
||||
integer :: i,j,k,l,istate
|
||||
double precision :: cpu_0,cpu_1
|
||||
two_bod_alpha_beta_mo_physicist = 0.d0
|
||||
print*,'providing two_bod_alpha_beta_mo_physicist ...'
|
||||
call wall_time(cpu_0)
|
||||
do istate = 1, N_states
|
||||
do i = 1, mo_num
|
||||
do j = 1, mo_num
|
||||
do k = 1, mo_num
|
||||
do l = 1, mo_num
|
||||
! 1 2 1 2 1 1 2 2
|
||||
two_bod_alpha_beta_mo_physicist(l,k,i,j,istate) = two_bod_alpha_beta_mo(i,l,j,k,istate)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
call wall_time(cpu_1)
|
||||
print*,'two_bod_alpha_beta_mo_physicist provided in',dabs(cpu_1-cpu_0)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
subroutine two_body_dm_nstates_openmp(big_array,dim1,dim2,dim3,dim4,u_0,N_st,sze)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
|
||||
!
|
||||
! Assumes that the determinants are in psi_det
|
||||
!
|
||||
! istart, iend, ishift, istep are used in ZMQ parallelization.
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: u_0(sze,N_st)
|
||||
integer :: k
|
||||
double precision, allocatable :: u_t(:,:)
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
|
||||
allocate(u_t(N_st,N_det))
|
||||
do k=1,N_st
|
||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
|
||||
enddo
|
||||
call dtranspose( &
|
||||
u_0, &
|
||||
size(u_0, 1), &
|
||||
u_t, &
|
||||
size(u_t, 1), &
|
||||
N_det, N_st)
|
||||
|
||||
call two_body_dm_nstates_openmp_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,1,N_det,0,1)
|
||||
deallocate(u_t)
|
||||
|
||||
do k=1,N_st
|
||||
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine two_body_dm_nstates_openmp_work(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes v_0 = H|u_0> and s_0 = S^2 |u_0>
|
||||
!
|
||||
! Default should be 1,N_det,0,1
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(in) :: u_t(N_st,N_det)
|
||||
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
select case (N_int)
|
||||
case (1)
|
||||
call two_body_dm_nstates_openmp_work_1(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (2)
|
||||
call two_body_dm_nstates_openmp_work_2(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (3)
|
||||
call two_body_dm_nstates_openmp_work_3(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case (4)
|
||||
call two_body_dm_nstates_openmp_work_4(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
case default
|
||||
call two_body_dm_nstates_openmp_work_N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
end select
|
||||
end
|
||||
BEGIN_TEMPLATE
|
||||
|
||||
subroutine two_body_dm_nstates_openmp_work_$N_int(big_array,dim1,dim2,dim3,dim4,u_t,N_st,sze,istart,iend,ishift,istep)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(in) :: u_t(N_st,N_det)
|
||||
|
||||
double precision :: hij, sij
|
||||
integer :: i,j,k,l
|
||||
integer :: k_a, k_b, l_a, l_b, m_a, m_b
|
||||
integer :: istate
|
||||
integer :: krow, kcol, krow_b, kcol_b
|
||||
integer :: lrow, lcol
|
||||
integer :: mrow, mcol
|
||||
integer(bit_kind) :: spindet($N_int)
|
||||
integer(bit_kind) :: tmp_det($N_int,2)
|
||||
integer(bit_kind) :: tmp_det2($N_int,2)
|
||||
integer(bit_kind) :: tmp_det3($N_int,2)
|
||||
integer(bit_kind), allocatable :: buffer(:,:)
|
||||
integer :: n_doubles
|
||||
integer, allocatable :: doubles(:)
|
||||
integer, allocatable :: singles_a(:)
|
||||
integer, allocatable :: singles_b(:)
|
||||
integer, allocatable :: idx(:), idx0(:)
|
||||
integer :: maxab, n_singles_a, n_singles_b, kcol_prev, nmax
|
||||
integer*8 :: k8
|
||||
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||||
allocate(idx0(maxab))
|
||||
|
||||
do i=1,maxab
|
||||
idx0(i) = i
|
||||
enddo
|
||||
|
||||
! Prepare the array of all alpha single excitations
|
||||
! -------------------------------------------------
|
||||
|
||||
PROVIDE N_int nthreads_davidson
|
||||
|
||||
! Alpha/Beta double excitations
|
||||
! =============================
|
||||
|
||||
allocate( buffer($N_int,maxab), &
|
||||
singles_a(maxab), &
|
||||
singles_b(maxab), &
|
||||
doubles(maxab), &
|
||||
idx(maxab))
|
||||
|
||||
kcol_prev=-1
|
||||
|
||||
ASSERT (iend <= N_det)
|
||||
ASSERT (istart > 0)
|
||||
ASSERT (istep > 0)
|
||||
|
||||
do k_a=istart+ishift,iend,istep
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
if (kcol /= kcol_prev) then
|
||||
call get_all_spin_singles_$N_int( &
|
||||
psi_det_beta_unique, idx0, &
|
||||
tmp_det(1,2), N_det_beta_unique, &
|
||||
singles_b, n_singles_b)
|
||||
endif
|
||||
kcol_prev = kcol
|
||||
|
||||
! Loop over singly excited beta columns
|
||||
! -------------------------------------
|
||||
|
||||
do i=1,n_singles_b
|
||||
lcol = singles_b(i)
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - l_a
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
|
||||
ASSERT (l_a <= N_det)
|
||||
idx(j) = l_a
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
j = j-1
|
||||
|
||||
call get_all_spin_singles_$N_int( &
|
||||
buffer, idx, tmp_det(1,1), j, &
|
||||
singles_a, n_singles_a )
|
||||
|
||||
! Loop over alpha singles
|
||||
! -----------------------
|
||||
|
||||
do k = 1,n_singles_a
|
||||
l_a = singles_a(k)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
!!!!!!!!!!!!!!!!!! ALPHA BETA
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
call off_diagonal_double_to_two_body_ab_dm(tmp_det,tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
do k_a=istart+ishift,iend,istep
|
||||
|
||||
|
||||
! Single and double alpha excitations
|
||||
! ===================================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
! Initial determinant is at k_b in beta-major representation
|
||||
! ----------------------------------------------------------------------
|
||||
|
||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||||
|
||||
spindet(1:$N_int) = tmp_det(1:$N_int,1)
|
||||
|
||||
! Loop inside the beta column to gather all the connected alphas
|
||||
lcol = psi_bilinear_matrix_columns(k_a)
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
do i=1,N_det_alpha_unique
|
||||
if (l_a > N_det) exit
|
||||
lcol = psi_bilinear_matrix_columns(l_a)
|
||||
if (lcol /= kcol) exit
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
buffer(1:$N_int,i) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
idx(i) = l_a
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
i = i-1
|
||||
|
||||
call get_all_spin_singles_and_doubles_$N_int( &
|
||||
buffer, idx, spindet, i, &
|
||||
singles_a, doubles, n_singles_a, n_doubles )
|
||||
|
||||
! Compute Hij for all alpha singles
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
do i=1,n_singles_a
|
||||
l_a = singles_a(i)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
|
||||
!!!! MONO SPIN
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
call off_diagonal_single_to_two_body_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
!! Compute Hij for all alpha doubles
|
||||
!! ----------------------------------
|
||||
!
|
||||
!do i=1,n_doubles
|
||||
! l_a = doubles(i)
|
||||
! ASSERT (l_a <= N_det)
|
||||
|
||||
! lrow = psi_bilinear_matrix_rows(l_a)
|
||||
! ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
! call i_H_j_double_spin_erf( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
|
||||
! do l=1,N_st
|
||||
! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
||||
! ! same spin => sij = 0
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
|
||||
|
||||
! Single and double beta excitations
|
||||
! ==================================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
spindet(1:$N_int) = tmp_det(1:$N_int,2)
|
||||
|
||||
! Initial determinant is at k_b in beta-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
k_b = psi_bilinear_matrix_order_transp_reverse(k_a)
|
||||
|
||||
! Loop inside the alpha row to gather all the connected betas
|
||||
lrow = psi_bilinear_matrix_transp_rows(k_b)
|
||||
l_b = psi_bilinear_matrix_transp_rows_loc(lrow)
|
||||
do i=1,N_det_beta_unique
|
||||
if (l_b > N_det) exit
|
||||
lrow = psi_bilinear_matrix_transp_rows(l_b)
|
||||
if (lrow /= krow) exit
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
buffer(1:$N_int,i) = psi_det_beta_unique(1:$N_int, lcol)
|
||||
idx(i) = l_b
|
||||
l_b = l_b+1
|
||||
enddo
|
||||
i = i-1
|
||||
|
||||
call get_all_spin_singles_and_doubles_$N_int( &
|
||||
buffer, idx, spindet, i, &
|
||||
singles_b, doubles, n_singles_b, n_doubles )
|
||||
|
||||
! Compute Hij for all beta singles
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
do i=1,n_singles_b
|
||||
l_b = singles_b(i)
|
||||
ASSERT (l_b <= N_det)
|
||||
|
||||
lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
|
||||
l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a)
|
||||
c_2(l) = u_t(l,k_a)
|
||||
enddo
|
||||
call off_diagonal_single_to_two_body_ab_dm(tmp_det, tmp_det2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
||||
ASSERT (l_a <= N_det)
|
||||
enddo
|
||||
!
|
||||
!! Compute Hij for all beta doubles
|
||||
!! ----------------------------------
|
||||
!
|
||||
!do i=1,n_doubles
|
||||
! l_b = doubles(i)
|
||||
! ASSERT (l_b <= N_det)
|
||||
|
||||
! lcol = psi_bilinear_matrix_transp_columns(l_b)
|
||||
! ASSERT (lcol <= N_det_beta_unique)
|
||||
|
||||
! call i_H_j_double_spin_erf( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
|
||||
! l_a = psi_bilinear_matrix_transp_order(l_b)
|
||||
! ASSERT (l_a <= N_det)
|
||||
|
||||
! do l=1,N_st
|
||||
! v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,l_a)
|
||||
! ! same spin => sij = 0
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
|
||||
! Diagonal contribution
|
||||
! =====================
|
||||
|
||||
|
||||
! Initial determinant is at k_a in alpha-major representation
|
||||
! -----------------------------------------------------------------------
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
|
||||
kcol = psi_bilinear_matrix_columns(k_a)
|
||||
ASSERT (kcol <= N_det_beta_unique)
|
||||
|
||||
tmp_det(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
tmp_det(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
|
||||
double precision, external :: diag_H_mat_elem_erf, diag_S_mat_elem
|
||||
double precision :: c_1(N_states),c_2(N_states)
|
||||
do l = 1, N_states
|
||||
c_1(l) = u_t(l,k_a)
|
||||
enddo
|
||||
|
||||
call diagonal_contrib_to_two_body_ab_dm(tmp_det,c_1,big_array,dim1,dim2,dim3,dim4)
|
||||
|
||||
end do
|
||||
deallocate(buffer, singles_a, singles_b, doubles, idx)
|
||||
|
||||
end
|
||||
|
||||
SUBST [ N_int ]
|
||||
|
||||
1;;
|
||||
2;;
|
||||
3;;
|
||||
4;;
|
||||
N_int;;
|
||||
|
||||
END_TEMPLATE
|
||||
|
||||
subroutine diagonal_contrib_to_two_body_ab_dm(det_1,c_1,big_array,dim1,dim2,dim3,dim4)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2)
|
||||
double precision, intent(in) :: c_1(N_states)
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,istate
|
||||
double precision :: c_1_bis
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
do istate = 1, N_states
|
||||
c_1_bis = c_1(istate) * c_1(istate)
|
||||
do i = 1, n_occ_ab(1)
|
||||
h1 = occ(i,1)
|
||||
do j = 1, n_occ_ab(2)
|
||||
h2 = occ(j,2)
|
||||
big_array(h1,h1,h2,h2,istate) += c_1_bis
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine diagonal_contrib_to_all_two_body_dm(det_1,c_1,big_array_ab,big_array_aa,big_array_bb,dim1,dim2,dim3,dim4)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array_ab(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_aa(dim1,dim2,dim3,dim4,N_states)
|
||||
double precision, intent(inout) :: big_array_bb(dim1,dim2,dim3,dim4,N_states)
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2)
|
||||
double precision, intent(in) :: c_1(N_states)
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,istate
|
||||
double precision :: c_1_bis
|
||||
BEGIN_DOC
|
||||
! no factor 1/2 have to be taken into account as the permutations are already taken into account
|
||||
END_DOC
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
do istate = 1, N_states
|
||||
c_1_bis = c_1(istate) * c_1(istate)
|
||||
do i = 1, n_occ_ab(1)
|
||||
h1 = occ(i,1)
|
||||
do j = 1, n_occ_ab(2)
|
||||
h2 = occ(j,2)
|
||||
big_array_ab(h1,h1,h2,h2,istate) += c_1_bis
|
||||
enddo
|
||||
do j = 1, n_occ_ab(1)
|
||||
h2 = occ(j,1)
|
||||
big_array_aa(h1,h2,h1,h2,istate) -= c_1_bis
|
||||
big_array_aa(h1,h1,h2,h2,istate) += c_1_bis
|
||||
enddo
|
||||
enddo
|
||||
do i = 1, n_occ_ab(2)
|
||||
h1 = occ(i,2)
|
||||
do j = 1, n_occ_ab(2)
|
||||
h2 = occ(j,2)
|
||||
big_array_bb(h1,h1,h2,h2,istate) += c_1_bis
|
||||
big_array_bb(h1,h2,h1,h2,istate) -= c_1_bis
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
subroutine off_diagonal_double_to_two_body_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
double precision, intent(in) :: c_1(N_states),c_2(N_states)
|
||||
integer :: i,j,h1,h2,p1,p2,istate
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
call get_double_excitation(det_1,det_2,exc,phase,N_int)
|
||||
h1 = exc(1,1,1)
|
||||
h2 = exc(1,1,2)
|
||||
p1 = exc(1,2,1)
|
||||
p2 = exc(1,2,2)
|
||||
do istate = 1, N_states
|
||||
big_array(h1,p1,h2,p2,istate) += c_1(istate) * phase * c_2(istate)
|
||||
! big_array(p1,h1,p2,h2,istate) += c_1(istate) * phase * c_2(istate)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine off_diagonal_single_to_two_body_ab_dm(det_1,det_2,c_1,c_2,big_array,dim1,dim2,dim3,dim4)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer, intent(in) :: dim1,dim2,dim3,dim4
|
||||
double precision, intent(inout) :: big_array(dim1,dim2,dim3,dim4,N_states)
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
double precision, intent(in) :: c_1(N_states),c_2(N_states)
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,istate,p1
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
h1 = exc(1,1,1)
|
||||
p1 = exc(1,2,1)
|
||||
do istate = 1, N_states
|
||||
do i = 1, n_occ_ab(2)
|
||||
h2 = occ(i,2)
|
||||
big_array(h1,p1,h2,h2,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase
|
||||
enddo
|
||||
enddo
|
||||
else
|
||||
! Mono beta
|
||||
h1 = exc(1,1,2)
|
||||
p1 = exc(1,2,2)
|
||||
do istate = 1, N_states
|
||||
do i = 1, n_occ_ab(1)
|
||||
h2 = occ(i,1)
|
||||
big_array(h2,h2,h1,p1,istate) += 1.d0 * c_1(istate) * c_2(istate) * phase
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
end
|
@ -15,7 +15,7 @@ prefix = ""
|
||||
for f in functionals:
|
||||
print """
|
||||
%sif (trim(exchange_functional) == '%s') then
|
||||
energy_x = energy_x_%s"""%(prefix, f, f)
|
||||
energy_x = (1.d0 - HF_exchange ) * energy_x_%s"""%(prefix, f, f)
|
||||
prefix = "else "
|
||||
print """
|
||||
else
|
||||
|
@ -17,8 +17,8 @@ prefix = ""
|
||||
for f in functionals:
|
||||
print """
|
||||
%sif (trim(exchange_functional) == '%s') then
|
||||
potential_x_alpha_ao = potential_x_alpha_ao_%s
|
||||
potential_x_beta_ao = potential_x_beta_ao_%s"""%(prefix, f, f, f)
|
||||
potential_x_alpha_ao = ( 1.d0 - HF_exchange ) * potential_x_alpha_ao_%s
|
||||
potential_x_beta_ao = ( 1.d0 - HF_exchange ) * potential_x_beta_ao_%s"""%(prefix, f, f, f)
|
||||
prefix = "else "
|
||||
print """
|
||||
else
|
||||
|
@ -32,6 +32,7 @@
|
||||
! k = 1 : x, k= 2, y, k 3, z
|
||||
END_DOC
|
||||
integer :: m
|
||||
print*,'mo_num,n_points_final_grid',mo_num,n_points_final_grid
|
||||
mos_grad_in_r_array = 0.d0
|
||||
do m=1,3
|
||||
call dgemm('N','N',mo_num,n_points_final_grid,ao_num,1.d0,mo_coef_transp,mo_num,aos_grad_in_r_array(1,1,m),ao_num,0.d0,mos_grad_in_r_array(1,1,m),mo_num)
|
||||
|
28
src/dft_utils_one_e/ec_lyp_2.irp.f
Normal file
28
src/dft_utils_one_e/ec_lyp_2.irp.f
Normal file
@ -0,0 +1,28 @@
|
||||
double precision function ec_lyp2(RhoA,RhoB,GA,GB,GAB)
|
||||
include 'constants.include.F'
|
||||
implicit none
|
||||
double precision, intent(in) :: RhoA,RhoB,GA,GB,GAB
|
||||
double precision :: Tol,caa,cab,cac,cad,cae,RA,RB,comega,cdelta,cLaa,cLbb,cLab,E
|
||||
ec_lyp2 = 0.d0
|
||||
Tol=1D-14
|
||||
E=2.718281828459045D0
|
||||
caa=0.04918D0
|
||||
cab=0.132D0
|
||||
cac=0.2533D0
|
||||
cad=0.349D0
|
||||
cae=(2D0**(11D0/3D0))*((3D0/10D0)*((3D0*(Pi**2D0))**(2D0/3D0)))
|
||||
|
||||
|
||||
RA = MAX(RhoA,0D0)
|
||||
RB = MAX(RhoB,0D0)
|
||||
IF ((RA.gt.Tol).OR.(RB.gt.Tol)) THEN
|
||||
IF ((RA.gt.Tol).AND.(RB.gt.Tol)) THEN
|
||||
comega = 1D0/(E**(cac/(RA+RB)**(1D0/3D0))*(RA+RB)**(10D0/3D0)*(cad+(RA+RB)**(1D0/3D0)))
|
||||
cdelta = (cac+cad+(cac*cad)/(RA+RB)**(1D0/3D0))/(cad+(RA+RB)**(1D0/3D0))
|
||||
cLaa = (cab*comega*RB*(RA-3D0*cdelta*RA-9D0*RB-((-11D0+cdelta)*RA**2D0)/(RA+RB)))/9D0
|
||||
cLbb = (cab*comega*RA*(-9D0*RA+(RB*(RA-3D0*cdelta*RA-4D0*(-3D0+cdelta)*RB))/(RA+RB)))/9D0
|
||||
cLab = cab*comega*(((47D0-7D0*cdelta)*RA*RB)/9D0-(4D0*(RA+RB)**2D0)/3D0)
|
||||
ec_lyp2 = -(caa*(cLaa*GA+cLab*GAB+cLbb*GB+cab*cae*comega*RA*RB*(RA**(8D0/3D0)+RB**(8D0/3D0))+(4D0*RA*RB)/(RA+RB+cad*(RA+RB)**(2D0/3D0))))
|
||||
endif
|
||||
endif
|
||||
end
|
@ -37,7 +37,9 @@ double precision function ec_scan(rho_a,rho_b,tau,grad_rho_2)
|
||||
gama = 0.031091d0
|
||||
! correlation energy lsda1
|
||||
call ec_only_lda_sr(0.d0,nup,ndo,e_c_lsda1)
|
||||
|
||||
|
||||
! correlation energy per particle
|
||||
e_c_lsda1 = e_c_lsda1/rho
|
||||
xi = spin_d/rho
|
||||
rs = (cst_43 * pi * rho)**(-cst_13)
|
||||
s = drho/( 2.d0 * cst_3pi2**(cst_13) * rho**cst_43 )
|
||||
@ -61,7 +63,12 @@ double precision function ec_scan(rho_a,rho_b,tau,grad_rho_2)
|
||||
g_at2 = 1.d0/(1.d0 + 4.d0 * a*t*t)**0.25d0
|
||||
h1 = gama * phi_3 * dlog(1.d0 + w_1 * (1.d0 - g_at2))
|
||||
! interpolation function
|
||||
fc_alpha = dexp(-c_1c * alpha * inv_1alph) * step_f(cst_1alph) - d_c * dexp(c_2c * inv_1alph) * step_f(-cst_1alph)
|
||||
|
||||
if(cst_1alph.gt.0.d0)then
|
||||
fc_alpha = dexp(-c_1c * alpha * inv_1alph)
|
||||
else
|
||||
fc_alpha = - d_c * dexp(c_2c * inv_1alph)
|
||||
endif
|
||||
! first part of the correlation energy
|
||||
e_c_1 = e_c_lsda1 + h1
|
||||
|
||||
@ -82,15 +89,6 @@ double precision function ec_scan(rho_a,rho_b,tau,grad_rho_2)
|
||||
ec_scan = e_c_1 + fc_alpha * (e_c_0 - e_c_1)
|
||||
end
|
||||
|
||||
double precision function step_f(x)
|
||||
implicit none
|
||||
double precision, intent(in) :: x
|
||||
if(x.lt.0.d0)then
|
||||
step_f = 0.d0
|
||||
else
|
||||
step_f = 1.d0
|
||||
endif
|
||||
end
|
||||
|
||||
double precision function beta_rs(rs)
|
||||
implicit none
|
||||
@ -98,3 +96,4 @@ double precision function beta_rs(rs)
|
||||
beta_rs = 0.066725d0 * (1.d0 + 0.1d0 * rs)/(1.d0 + 0.1778d0 * rs)
|
||||
|
||||
end
|
||||
|
||||
|
100
src/dft_utils_one_e/ec_scan_2.irp.f
Normal file
100
src/dft_utils_one_e/ec_scan_2.irp.f
Normal file
@ -0,0 +1,100 @@
|
||||
double precision function ec_scan(rho_a,rho_b,tau,grad_rho_2)
|
||||
include 'constants.include.F'
|
||||
implicit none
|
||||
double precision, intent(in) :: rho_a,rho_b,tau,grad_rho_2
|
||||
double precision :: cst_13,cst_23,cst_43,cst_53,rho_inv,cst_18,cst_3pi2
|
||||
double precision :: thr,nup,ndo,xi,s,spin_d,drho,drho2,rho,inv_1alph,e_c_lsda1,h0
|
||||
double precision :: rs,t_w,t_unif,ds_xi,alpha,fc_alpha,step_f,cst_1alph,beta_inf
|
||||
double precision :: c_1c,c_2c,d_c,e_c_ldsa1,h1,phi,t,beta_rs,gama,a,w_1,g_at2,phi_3,e_c_1
|
||||
double precision :: b_1c,b_2c,b_3c,dx_xi,gc_xi,e_c_lsda0,w_0,g_inf,cx_xi,x_inf,f0,e_c_0
|
||||
thr = 1.d-12
|
||||
nup = max(rho_a,thr)
|
||||
ndo = max(rho_b,thr)
|
||||
rho = nup + ndo
|
||||
ec_scan = 0.d0
|
||||
if((rho).lt.thr)return
|
||||
! constants ...
|
||||
rho_inv = 1.d0/rho
|
||||
cst_13 = 1.d0/3.d0
|
||||
cst_23 = 2.d0 * cst_13
|
||||
cst_43 = 4.d0 * cst_13
|
||||
cst_53 = 5.d0 * cst_13
|
||||
cst_18 = 1.d0/8.d0
|
||||
cst_3pi2 = 3.d0 * pi*pi
|
||||
drho2 = max(grad_rho_2,thr)
|
||||
drho = dsqrt(drho2)
|
||||
if((nup-ndo).gt.0.d0)then
|
||||
spin_d = max(nup-ndo,thr)
|
||||
else
|
||||
spin_d = min(nup-ndo,-thr)
|
||||
endif
|
||||
c_1c = 0.64d0
|
||||
c_2c = 1.5d0
|
||||
d_c = 0.7d0
|
||||
b_1c = 0.0285764d0
|
||||
b_2c = 0.0889d0
|
||||
b_3c = 0.125541d0
|
||||
gama = 0.031091d0
|
||||
! correlation energy lsda1
|
||||
call ec_only_lda_sr(0.d0,nup,ndo,e_c_lsda1)
|
||||
|
||||
xi = spin_d/rho
|
||||
rs = (cst_43 * pi * rho)**(-cst_13)
|
||||
s = drho/( 2.d0 * cst_3pi2**(cst_13) * rho**cst_43 )
|
||||
t_w = drho2 * cst_18 * rho_inv
|
||||
ds_xi = 0.5d0 * ( (1.d0+xi)**cst_53 + (1.d0 - xi)**cst_53)
|
||||
t_unif = 0.3d0 * (cst_3pi2)**cst_23 * rho**cst_53*ds_xi
|
||||
t_unif = max(t_unif,thr)
|
||||
alpha = (tau - t_w)/t_unif
|
||||
cst_1alph= 1.d0 - alpha
|
||||
if(cst_1alph.gt.0.d0)then
|
||||
cst_1alph= max(cst_1alph,thr)
|
||||
else
|
||||
cst_1alph= min(cst_1alph,-thr)
|
||||
endif
|
||||
inv_1alph= 1.d0/cst_1alph
|
||||
phi = 0.5d0 * ( (1.d0+xi)**cst_23 + (1.d0 - xi)**cst_23)
|
||||
phi_3 = phi*phi*phi
|
||||
t = (cst_3pi2/16.d0)**cst_13 * s / (phi * rs**0.5d0)
|
||||
w_1 = dexp(-e_c_lsda1/(gama * phi_3)) - 1.d0
|
||||
a = beta_rs(rs) /(gama * w_1)
|
||||
g_at2 = 1.d0/(1.d0 + 4.d0 * a*t*t)**0.25d0
|
||||
h1 = gama * phi_3 * dlog(1.d0 + w_1 * (1.d0 - g_at2))
|
||||
! interpolation function
|
||||
fc_alpha = dexp(-c_1c * alpha * inv_1alph) * step_f(cst_1alph) - d_c * dexp(c_2c * inv_1alph) * step_f(-cst_1alph)
|
||||
! first part of the correlation energy
|
||||
e_c_1 = e_c_lsda1 + h1
|
||||
|
||||
dx_xi = 0.5d0 * ( (1.d0+xi)**cst_43 + (1.d0 - xi)**cst_43)
|
||||
gc_xi = (1.d0 - 2.3631d0 * (dx_xi - 1.d0) ) * (1.d0 - xi**12.d0)
|
||||
e_c_lsda0= - b_1c / (1.d0 + b_2c * rs**0.5d0 + b_3c * rs)
|
||||
w_0 = dexp(-e_c_lsda0/b_1c) - 1.d0
|
||||
beta_inf = 0.066725d0 * 0.1d0 / 0.1778d0
|
||||
cx_xi = -3.d0/(4.d0*pi) * (9.d0 * pi/4.d0)**cst_13 * dx_xi
|
||||
|
||||
x_inf = 0.128026d0
|
||||
f0 = -0.9d0
|
||||
g_inf = 1.d0/(1.d0 + 4.d0 * x_inf * s*s)**0.25d0
|
||||
|
||||
h0 = b_1c * dlog(1.d0 + w_0 * (1.d0 - g_inf))
|
||||
e_c_0 = (e_c_lsda0 + h0) * gc_xi
|
||||
|
||||
ec_scan = e_c_1 + fc_alpha * (e_c_0 - e_c_1)
|
||||
end
|
||||
|
||||
double precision function step_f(x)
|
||||
implicit none
|
||||
double precision, intent(in) :: x
|
||||
if(x.lt.0.d0)then
|
||||
step_f = 0.d0
|
||||
else
|
||||
step_f = 1.d0
|
||||
endif
|
||||
end
|
||||
|
||||
double precision function beta_rs(rs)
|
||||
implicit none
|
||||
double precision, intent(in) ::rs
|
||||
beta_rs = 0.066725d0 * (1.d0 + 0.1d0 * rs)/(1.d0 + 0.1778d0 * rs)
|
||||
|
||||
end
|
@ -24,6 +24,11 @@ function run {
|
||||
}
|
||||
|
||||
|
||||
@test "B-B" {
|
||||
qp set_file b2_stretched.ezfio
|
||||
run b2_stretched.zmt 1 0 6-31g
|
||||
}
|
||||
|
||||
@test "C2H2" {
|
||||
run c2h2.xyz 1 0 cc-pvdz_ecp_bfd bfd
|
||||
}
|
||||
|
@ -22,7 +22,7 @@ function run_stoch() {
|
||||
thresh=$2
|
||||
test_exe fci || skip
|
||||
qp set perturbation do_pt2 True
|
||||
qp set determinants n_det_max 100000
|
||||
qp set determinants n_det_max $3
|
||||
qp set determinants n_states 1
|
||||
qp set davidson threshold_davidson 1.e-10
|
||||
qp set davidson n_states_diag 1
|
||||
@ -31,137 +31,143 @@ function run_stoch() {
|
||||
eq $energy1 $1 $thresh
|
||||
}
|
||||
|
||||
@test "B-B" {
|
||||
qp set_file b2_stretched.ezfio
|
||||
qp set determinants n_det_max 10000
|
||||
qp set_frozen_core
|
||||
run_stoch -49.14103054419 3.e-4 10000
|
||||
}
|
||||
|
||||
@test "F2" { # 4.07m
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file f2.ezfio
|
||||
qp set_frozen_core
|
||||
run_stoch -199.30486 1.e-4
|
||||
run_stoch -199.304922384814 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "NH3" { # 10.6657s
|
||||
qp set_file nh3.ezfio
|
||||
qp set_mo_class --core="[1-4]" --act="[5-72]"
|
||||
run -56.244753429144986 1.e-4
|
||||
run -56.244753429144986 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "DHNO" { # 11.4721s
|
||||
qp set_file dhno.ezfio
|
||||
qp set_mo_class --core="[1-7]" --act="[8-64]"
|
||||
run -130.459020029816 1.e-4
|
||||
run -130.459020029816 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "HCO" { # 12.2868s
|
||||
qp set_file hco.ezfio
|
||||
run -113.297494345682 1.e-4
|
||||
run -113.297931671897 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "H2O2" { # 12.9214s
|
||||
qp set_file h2o2.ezfio
|
||||
qp set_mo_class --core="[1-2]" --act="[3-24]" --del="[25-38]"
|
||||
run -151.00477 1.e-4
|
||||
run -151.00467 1.e-4 100000
|
||||
}
|
||||
|
||||
@test "HBO" { # 13.3144s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file hbo.ezfio
|
||||
run -100.212829869715 1.e-4
|
||||
run -100.212721540746 1.e-3 100000
|
||||
}
|
||||
|
||||
@test "H2O" { # 11.3727s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file h2o.ezfio
|
||||
run -76.2359268957699 1.e-4
|
||||
run -76.2361605151999 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "ClO" { # 13.3755s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file clo.ezfio
|
||||
run -534.545881614967 1.e-4
|
||||
run -534.545616787223 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "SO" { # 13.4952s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file so.ezfio
|
||||
run -26.0158153138924 1.e-4
|
||||
run -26.0060656855457 1.e-3 100000
|
||||
}
|
||||
|
||||
@test "H2S" { # 13.6745s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file h2s.ezfio
|
||||
run -398.859168655255 1.e-4
|
||||
run -398.859168655255 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "OH" { # 13.865s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file oh.ezfio
|
||||
run -75.6120779012574 1.e-4
|
||||
run -75.6121856748294 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "SiH2_3B1" { # 13.938ss
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file sih2_3b1.ezfio
|
||||
run -290.017539006762 1.e-4
|
||||
run -290.017539006762 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "H3COH" { # 14.7299s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file h3coh.ezfio
|
||||
run -115.205941463667 1.e-4
|
||||
run -115.205191406072 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "SiH3" { # 15.99s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file sih3.ezfio
|
||||
run -5.57241217753818 1.e-4
|
||||
run -5.57241217753818 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "CH4" { # 16.1612s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file ch4.ezfio
|
||||
qp set_mo_class --core="[1]" --act="[2-30]" --del="[31-59]"
|
||||
run -40.2409678239136 1.e-4
|
||||
run -40.2409678239136 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "ClF" { # 16.8864s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file clf.ezfio
|
||||
run -559.170272077166 1.e-4
|
||||
run -559.1702772994 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "SO2" { # 17.5645s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file so2.ezfio
|
||||
qp set_mo_class --core="[1-8]" --act="[9-87]"
|
||||
run -41.5746738713298 1.e-4
|
||||
run -41.5746738713298 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "C2H2" { # 17.6827s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file c2h2.ezfio
|
||||
qp set_mo_class --act="[1-30]" --del="[31-36]"
|
||||
run -12.3656179738175 1.e-4
|
||||
run -12.3671816782954 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "N2" { # 18.0198s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file n2.ezfio
|
||||
qp set_mo_class --core="[1,2]" --act="[3-40]" --del="[41-60]"
|
||||
run -109.291600196629 1.e-4
|
||||
run -109.291711886659 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "N2H4" { # 18.5006s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file n2h4.ezfio
|
||||
qp set_mo_class --core="[1-2]" --act="[3-24]" --del="[25-48]"
|
||||
run -111.367332681559 1.e-4
|
||||
run -111.367332681559 3.e-4 100000
|
||||
}
|
||||
|
||||
@test "CO2" { # 21.1748s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file co2.ezfio
|
||||
qp set_mo_class --core="[1,2]" --act="[3-30]" --del="[31-42]"
|
||||
run -187.968599504402 1.e-4
|
||||
run -187.96924172901 3.e-4 100000
|
||||
}
|
||||
|
||||
|
||||
@ -169,13 +175,13 @@ function run_stoch() {
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file cu_nh3_4_2plus.ezfio
|
||||
qp set_mo_class --core="[1-24]" --act="[25-45]" --del="[46-87]"
|
||||
run -1862.98614665139 1.e-04
|
||||
run -1862.98614665139 3.e-04 100000
|
||||
}
|
||||
|
||||
@test "HCN" { # 20.3273s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file hcn.ezfio
|
||||
qp set_mo_class --core="[1,2]" --act="[3-40]" --del="[41-55]"
|
||||
run -93.0728641601823 1.e-4
|
||||
run -93.0803416322765 3.e-4 100000
|
||||
}
|
||||
|
||||
|
@ -1,10 +1,12 @@
|
||||
BEGIN_PROVIDER [ logical, do_only_1h1p ]
|
||||
&BEGIN_PROVIDER [ logical, do_only_cas ]
|
||||
&BEGIN_PROVIDER [ logical, do_ddci ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! In the FCI case, all those are always false
|
||||
END_DOC
|
||||
do_only_1h1p = .False.
|
||||
do_only_cas = .False.
|
||||
do_ddci = .False.
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -55,6 +55,7 @@ END_PROVIDER
|
||||
nongen(inongen) = i
|
||||
endif
|
||||
enddo
|
||||
ASSERT (m == N_det_generators)
|
||||
|
||||
psi_det_sorted_gen(:,:,:N_det_generators) = psi_det_generators(:,:,:N_det_generators)
|
||||
psi_coef_sorted_gen(:N_det_generators, :) = psi_coef_generators(:N_det_generators, :)
|
||||
|
@ -17,6 +17,10 @@ function run() {
|
||||
}
|
||||
|
||||
|
||||
@test "B-B" { # 3s
|
||||
run b2_stretched.ezfio -48.9950585752809
|
||||
}
|
||||
|
||||
@test "SiH2_3B1" { # 0.539000 1.51094s
|
||||
run sih2_3b1.ezfio -289.9654718650881
|
||||
}
|
||||
|
@ -21,7 +21,6 @@ function run() {
|
||||
eq $energy $3 $thresh
|
||||
}
|
||||
|
||||
|
||||
@test "H3COH" {
|
||||
run h3coh.ezfio sr_pbe -115.50238225208
|
||||
}
|
||||
|
@ -23,7 +23,7 @@ size: (mo_basis.mo_num)
|
||||
[mo_class]
|
||||
type: MO_class
|
||||
doc: [ Core | Inactive | Active | Virtual | Deleted ], as defined by :ref:`qp_set_mo_class`
|
||||
interface: ezfio, provider
|
||||
interface: ezfio
|
||||
size: (mo_basis.mo_num)
|
||||
|
||||
[ao_md5]
|
||||
|
40
src/mo_basis/mo_class.irp.f
Normal file
40
src/mo_basis/mo_class.irp.f
Normal file
@ -0,0 +1,40 @@
|
||||
! DO NOT MODIFY BY HAND
|
||||
! Created by $QP_ROOT/scripts/ezfio_interface/ei_handler.py
|
||||
! from file /home/eginer/programs/qp2/src/mo_basis/EZFIO.cfg
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ character*(32), mo_class , (mo_num) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! [ Core | Inactive | Active | Virtual | Deleted ], as defined by :ref:`qp_set_mo_class`
|
||||
END_DOC
|
||||
|
||||
logical :: has
|
||||
PROVIDE ezfio_filename
|
||||
if (mpi_master) then
|
||||
if (size(mo_class) == 0) return
|
||||
|
||||
call ezfio_has_mo_basis_mo_class(has)
|
||||
if (has) then
|
||||
write(6,'(A)') '.. >>>>> [ IO READ: mo_class ] <<<<< ..'
|
||||
call ezfio_get_mo_basis_mo_class(mo_class)
|
||||
else
|
||||
mo_class(:) = 'Active'
|
||||
endif
|
||||
endif
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST( mo_class, (mo_num)*32, MPI_CHARACTER, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read mo_class with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
call write_time(6)
|
||||
|
||||
END_PROVIDER
|
@ -91,7 +91,6 @@ BEGIN_PROVIDER [ double precision, mo_coef, (ao_num,mo_num) ]
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_coef_in_ao_ortho_basis, (ao_num, mo_num) ]
|
||||
|
@ -4,7 +4,6 @@ subroutine save_mos
|
||||
integer :: i,j
|
||||
|
||||
call system('$QP_ROOT/scripts/save_current_mos.sh '//trim(ezfio_filename))
|
||||
|
||||
call ezfio_set_mo_basis_mo_num(mo_num)
|
||||
call ezfio_set_mo_basis_mo_label(mo_label)
|
||||
call ezfio_set_mo_basis_ao_md5(ao_md5)
|
||||
@ -17,6 +16,29 @@ subroutine save_mos
|
||||
enddo
|
||||
call ezfio_set_mo_basis_mo_coef(buffer)
|
||||
call ezfio_set_mo_basis_mo_occ(mo_occ)
|
||||
call ezfio_set_mo_basis_mo_class(mo_class)
|
||||
deallocate (buffer)
|
||||
|
||||
end
|
||||
|
||||
|
||||
subroutine save_mos_no_occ
|
||||
implicit none
|
||||
double precision, allocatable :: buffer(:,:)
|
||||
integer :: i,j
|
||||
|
||||
call system('$QP_ROOT/scripts/save_current_mos.sh '//trim(ezfio_filename))
|
||||
!call ezfio_set_mo_basis_mo_num(mo_num)
|
||||
!call ezfio_set_mo_basis_mo_label(mo_label)
|
||||
!call ezfio_set_mo_basis_ao_md5(ao_md5)
|
||||
allocate ( buffer(ao_num,mo_num) )
|
||||
buffer = 0.d0
|
||||
do j = 1, mo_num
|
||||
do i = 1, ao_num
|
||||
buffer(i,j) = mo_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
call ezfio_set_mo_basis_mo_coef(buffer)
|
||||
deallocate (buffer)
|
||||
|
||||
end
|
||||
@ -40,6 +62,7 @@ subroutine save_mos_truncated(n)
|
||||
enddo
|
||||
call ezfio_set_mo_basis_mo_coef(buffer)
|
||||
call ezfio_set_mo_basis_mo_occ(mo_occ)
|
||||
call ezfio_set_mo_basis_mo_class(mo_class)
|
||||
deallocate (buffer)
|
||||
|
||||
end
|
||||
@ -217,3 +240,64 @@ subroutine mo_as_svd_vectors_of_mo_matrix_eig(matrix,lda,m,n,eig,label)
|
||||
end
|
||||
|
||||
|
||||
subroutine mo_coef_new_as_svd_vectors_of_mo_matrix_eig(matrix,lda,m,n,mo_coef_before,eig,mo_coef_new)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! You enter with matrix in the MO basis defined with the mo_coef_before.
|
||||
!
|
||||
! You SVD the matrix and set the eigenvectors as mo_coef_new ordered by increasing singular values
|
||||
END_DOC
|
||||
integer,intent(in) :: lda,m,n
|
||||
double precision, intent(in) :: matrix(lda,n),mo_coef_before(ao_num,m)
|
||||
double precision, intent(out) :: eig(m),mo_coef_new(ao_num,m)
|
||||
|
||||
integer :: i,j
|
||||
double precision :: accu
|
||||
double precision, allocatable :: mo_coef_tmp(:,:), U(:,:),D(:), A(:,:), Vt(:,:), work(:)
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, Vt, A
|
||||
|
||||
call write_time(6)
|
||||
if (m /= mo_num) then
|
||||
print *, irp_here, ': Error : m/= mo_num'
|
||||
stop 1
|
||||
endif
|
||||
|
||||
allocate(A(lda,n),U(lda,n),D(m),Vt(lda,n),mo_coef_tmp(ao_num,mo_num))
|
||||
|
||||
do j=1,n
|
||||
do i=1,m
|
||||
A(i,j) = matrix(i,j)
|
||||
enddo
|
||||
enddo
|
||||
mo_coef_tmp = mo_coef_before
|
||||
|
||||
call svd(A,lda,U,lda,D,Vt,lda,m,n)
|
||||
|
||||
write (6,'(A)') ''
|
||||
write (6,'(A)') 'Eigenvalues'
|
||||
write (6,'(A)') '-----------'
|
||||
write (6,'(A)') ''
|
||||
write (6,'(A)') '======== ================ ================'
|
||||
write (6,'(A)') ' MO Eigenvalue Cumulative '
|
||||
write (6,'(A)') '======== ================ ================'
|
||||
|
||||
accu = 0.d0
|
||||
do i=1,m
|
||||
accu = accu + D(i)
|
||||
write (6,'(I8,1X,F16.10,1X,F16.10)') i,D(i), accu
|
||||
enddo
|
||||
write (6,'(A)') '======== ================ ================'
|
||||
write (6,'(A)') ''
|
||||
|
||||
call dgemm('N','N',ao_num,m,m,1.d0,mo_coef_tmp,size(mo_coef_new,1),U,size(U,1),0.d0,mo_coef_new,size(mo_coef_new,1))
|
||||
|
||||
do i=1,m
|
||||
eig(i) = D(i)
|
||||
enddo
|
||||
|
||||
deallocate(A,U,Vt,D,mo_coef_tmp)
|
||||
call write_time(6)
|
||||
|
||||
end
|
||||
|
||||
|
||||
|
@ -11,24 +11,3 @@ interface: ezfio,provider,ocaml
|
||||
default: 1.e-15
|
||||
ezfio_name: threshold_mo
|
||||
|
||||
[no_vvvv_integrals]
|
||||
type: logical
|
||||
doc: If `True`, computes all integrals except for the integrals having 4 virtual indices
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
ezfio_name: no_vvvv_integrals
|
||||
|
||||
[no_ivvv_integrals]
|
||||
type: logical
|
||||
doc: Can be switched on only if `no_vvvv_integrals` is `True`, then does not compute the integrals with 3 virtual indices and 1 belonging to the core inactive active orbitals
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
ezfio_name: no_ivvv_integrals
|
||||
|
||||
[no_vvv_integrals]
|
||||
type: logical
|
||||
doc: Can be switched on only if `no_vvvv_integrals` is `True`, then does not compute the integrals with 3 virtual orbitals
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
ezfio_name: no_vvv_integrals
|
||||
|
||||
|
180
src/mo_two_e_ints/four_idx_novvvv.irp.f
Normal file
180
src/mo_two_e_ints/four_idx_novvvv.irp.f
Normal file
@ -0,0 +1,180 @@
|
||||
BEGIN_PROVIDER [ logical, no_vvvv_integrals ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! If `True`, computes all integrals except for the integrals having 3 or 4 virtual indices
|
||||
END_DOC
|
||||
|
||||
no_vvvv_integrals = .False.
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_coef_novirt, (ao_num,n_core_inact_act_orb) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! MO coefficients without virtual MOs
|
||||
END_DOC
|
||||
integer :: j,jj
|
||||
|
||||
do j=1,n_core_inact_act_orb
|
||||
jj = list_core_inact_act(j)
|
||||
mo_coef_novirt(:,j) = mo_coef(:,jj)
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine ao_to_mo_novirt(A_ao,LDA_ao,A_mo,LDA_mo)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Transform A from the |AO| basis to the |MO| basis excluding virtuals
|
||||
!
|
||||
! $C^\dagger.A_{ao}.C$
|
||||
END_DOC
|
||||
integer, intent(in) :: LDA_ao,LDA_mo
|
||||
double precision, intent(in) :: A_ao(LDA_ao,ao_num)
|
||||
double precision, intent(out) :: A_mo(LDA_mo,n_core_inact_act_orb)
|
||||
double precision, allocatable :: T(:,:)
|
||||
|
||||
allocate ( T(ao_num,n_core_inact_act_orb) )
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
|
||||
|
||||
call dgemm('N','N', ao_num, n_core_inact_act_orb, ao_num, &
|
||||
1.d0, A_ao,LDA_ao, &
|
||||
mo_coef_novirt, size(mo_coef_novirt,1), &
|
||||
0.d0, T, size(T,1))
|
||||
|
||||
call dgemm('T','N', n_core_inact_act_orb, n_core_inact_act_orb, ao_num,&
|
||||
1.d0, mo_coef_novirt,size(mo_coef_novirt,1), &
|
||||
T, ao_num, &
|
||||
0.d0, A_mo, size(A_mo,1))
|
||||
|
||||
deallocate(T)
|
||||
end
|
||||
|
||||
|
||||
subroutine four_idx_novvvv
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Retransform MO integrals for next CAS-SCF step
|
||||
END_DOC
|
||||
integer :: i,j,k,l,n_integrals
|
||||
double precision, allocatable :: f(:,:,:), f2(:,:,:), d(:,:), T(:,:,:,:), T2(:,:,:,:)
|
||||
double precision, external :: get_ao_two_e_integral
|
||||
integer(key_kind), allocatable :: idx(:)
|
||||
real(integral_kind), allocatable :: values(:)
|
||||
|
||||
integer :: p,q,r,s
|
||||
double precision :: c
|
||||
allocate( T(n_core_inact_act_orb,n_core_inact_act_orb,ao_num,ao_num) , &
|
||||
T2(n_core_inact_act_orb,n_core_inact_act_orb,ao_num,ao_num) )
|
||||
|
||||
!$OMP PARALLEL DEFAULT(NONE) &
|
||||
!$OMP SHARED(mo_num,ao_num,T,n_core_inact_act_orb, mo_coef_transp, &
|
||||
!$OMP mo_integrals_threshold,mo_coef,mo_integrals_map, &
|
||||
!$OMP list_core_inact_act,T2,ao_integrals_map) &
|
||||
!$OMP PRIVATE(i,j,k,l,p,q,r,s,idx,values,n_integrals, &
|
||||
!$OMP f,f2,d,c)
|
||||
allocate(f(ao_num,ao_num,ao_num), f2(ao_num,ao_num,ao_num), d(mo_num,mo_num), &
|
||||
idx(mo_num*mo_num), values(mo_num*mo_num) )
|
||||
|
||||
! <aa|vv>
|
||||
!$OMP DO
|
||||
do s=1,ao_num
|
||||
do r=1,ao_num
|
||||
do q=1,ao_num
|
||||
do p=1,r
|
||||
f (p,q,r) = get_ao_two_e_integral(p,q,r,s,ao_integrals_map)
|
||||
f (r,q,p) = f(p,q,r)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
do r=1,ao_num
|
||||
do q=1,ao_num
|
||||
do p=1,ao_num
|
||||
f2(p,q,r) = f(p,r,q)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
! f (p,q,r) = <pq|rs>
|
||||
! f2(p,q,r) = <pr|qs>
|
||||
|
||||
do r=1,ao_num
|
||||
call ao_to_mo_novirt(f (1,1,r),size(f ,1),T (1,1,r,s),size(T,1))
|
||||
call ao_to_mo_novirt(f2(1,1,r),size(f2,1),T2(1,1,r,s),size(T,1))
|
||||
enddo
|
||||
! T (i,j,p,q) = <ij|rs>
|
||||
! T2(i,j,p,q) = <ir|js>
|
||||
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP DO
|
||||
do j=1,n_core_inact_act_orb
|
||||
do i=1,n_core_inact_act_orb
|
||||
do s=1,ao_num
|
||||
do r=1,ao_num
|
||||
f (r,s,1) = T (i,j,r,s)
|
||||
f2(r,s,1) = T2(i,j,r,s)
|
||||
enddo
|
||||
enddo
|
||||
call ao_to_mo(f ,size(f ,1),d,size(d,1))
|
||||
n_integrals = 0
|
||||
do l=1,mo_num
|
||||
do k=1,mo_num
|
||||
n_integrals+=1
|
||||
call two_e_integrals_index(list_core_inact_act(i),list_core_inact_act(j),k,l,idx(n_integrals))
|
||||
values(n_integrals) = d(k,l)
|
||||
enddo
|
||||
enddo
|
||||
call map_append(mo_integrals_map, idx, values, n_integrals)
|
||||
|
||||
call ao_to_mo(f2,size(f2,1),d,size(d,1))
|
||||
n_integrals = 0
|
||||
do l=1,mo_num
|
||||
do k=1,mo_num
|
||||
n_integrals+=1
|
||||
call two_e_integrals_index(list_core_inact_act(i),k,list_core_inact_act(j),l,idx(n_integrals))
|
||||
values(n_integrals) = d(k,l)
|
||||
enddo
|
||||
enddo
|
||||
call map_append(mo_integrals_map, idx, values, n_integrals)
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
deallocate(f,f2,d,idx,values)
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
deallocate(T,T2)
|
||||
|
||||
|
||||
call map_sort(mo_integrals_map)
|
||||
call map_unique(mo_integrals_map)
|
||||
call map_shrink(mo_integrals_map,real(mo_integrals_threshold,integral_kind))
|
||||
|
||||
end
|
||||
|
||||
subroutine four_idx_novvvv2
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer :: i
|
||||
integer(bit_kind) :: mask_ijkl(N_int,4)
|
||||
|
||||
print*, '<ix|ix>'
|
||||
do i = 1,N_int
|
||||
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,2) = full_ijkl_bitmask_4(i,1)
|
||||
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,4) = full_ijkl_bitmask_4(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map(mask_ijkl)
|
||||
|
||||
print*, '<ii|vv>'
|
||||
do i = 1,N_int
|
||||
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,3) = virt_bitmask(i,1)
|
||||
mask_ijkl(i,4) = virt_bitmask(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map(mask_ijkl)
|
||||
|
||||
end
|
@ -145,7 +145,6 @@ subroutine get_mo_two_e_integrals(j,k,l,sze,out_val,map)
|
||||
type(map_type), intent(inout) :: map
|
||||
integer :: i
|
||||
double precision, external :: get_two_e_integral
|
||||
PROVIDE mo_two_e_integrals_in_map mo_integrals_cache
|
||||
|
||||
integer :: ii, ii0
|
||||
integer*8 :: ii_8, ii0_8
|
||||
@ -154,6 +153,13 @@ subroutine get_mo_two_e_integrals(j,k,l,sze,out_val,map)
|
||||
integer(key_kind) :: p,q,r,s,i2
|
||||
PROVIDE mo_two_e_integrals_in_map mo_integrals_cache
|
||||
|
||||
!DEBUG
|
||||
! do i=1,sze
|
||||
! out_val(i) = get_two_e_integral(i,j,k,l,map)
|
||||
! enddo
|
||||
! return
|
||||
!DEBUG
|
||||
|
||||
ii0 = l-mo_integrals_cache_min
|
||||
ii0 = ior(ii0, k-mo_integrals_cache_min)
|
||||
ii0 = ior(ii0, j-mo_integrals_cache_min)
|
||||
|
@ -22,16 +22,13 @@ end
|
||||
BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
|
||||
use map_module
|
||||
implicit none
|
||||
integer(bit_kind) :: mask_ijkl(N_int,4)
|
||||
integer(bit_kind) :: mask_ijk(N_int,3)
|
||||
|
||||
BEGIN_DOC
|
||||
! If True, the map of MO two-electron integrals is provided
|
||||
END_DOC
|
||||
integer(bit_kind) :: mask_ijkl(N_int,4)
|
||||
integer(bit_kind) :: mask_ijk(N_int,3)
|
||||
double precision :: cpu_1, cpu_2, wall_1, wall_2
|
||||
|
||||
! The following line avoids a subsequent crash when the memory used is more
|
||||
! than half of the virtual memory, due to a fork in zcat when reading arrays
|
||||
! with EZFIO
|
||||
PROVIDE mo_class
|
||||
|
||||
mo_two_e_integrals_in_map = .True.
|
||||
@ -49,106 +46,28 @@ BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
|
||||
print *, '---------------------------------'
|
||||
print *, ''
|
||||
|
||||
call wall_time(wall_1)
|
||||
call cpu_time(cpu_1)
|
||||
|
||||
if(no_vvvv_integrals)then
|
||||
integer :: i,j,k,l
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I I I !!!!!!!!!!!!!!!!!!!!
|
||||
! (core+inact+act) ^ 4
|
||||
! <ii|ii>
|
||||
print*, ''
|
||||
print*, '<ii|ii>'
|
||||
do i = 1,N_int
|
||||
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,4) = core_inact_act_bitmask_4(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map(mask_ijkl)
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I V V !!!!!!!!!!!!!!!!!!!!
|
||||
! (core+inact+act) ^ 2 (virt) ^2
|
||||
! <iv|iv> = J_iv
|
||||
print*, ''
|
||||
print*, '<iv|iv>'
|
||||
do i = 1,N_int
|
||||
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,2) = virt_bitmask(i,1)
|
||||
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,4) = virt_bitmask(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map(mask_ijkl)
|
||||
|
||||
! (core+inact+act) ^ 2 (virt) ^2
|
||||
! <ii|vv> = (iv|iv)
|
||||
print*, ''
|
||||
print*, '<ii|vv>'
|
||||
do i = 1,N_int
|
||||
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,3) = virt_bitmask(i,1)
|
||||
mask_ijkl(i,4) = virt_bitmask(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map(mask_ijkl)
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! V V V !!!!!!!!!!!!!!!!!!!!!!!
|
||||
if(.not.no_vvv_integrals)then
|
||||
print*, ''
|
||||
print*, '<rv|sv> and <rv|vs>'
|
||||
do i = 1,N_int
|
||||
mask_ijk(i,1) = virt_bitmask(i,1)
|
||||
mask_ijk(i,2) = virt_bitmask(i,1)
|
||||
mask_ijk(i,3) = virt_bitmask(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map_three_indices(mask_ijk)
|
||||
endif
|
||||
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I I I V !!!!!!!!!!!!!!!!!!!!
|
||||
! (core+inact+act) ^ 3 (virt) ^1
|
||||
! <iv|ii>
|
||||
print*, ''
|
||||
print*, '<iv|ii>'
|
||||
do i = 1,N_int
|
||||
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,2) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,3) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,4) = virt_bitmask(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map(mask_ijkl)
|
||||
!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! I V V V !!!!!!!!!!!!!!!!!!!!
|
||||
! (core+inact+act) ^ 1 (virt) ^3
|
||||
! <iv|vv>
|
||||
if(.not.no_ivvv_integrals)then
|
||||
print*, ''
|
||||
print*, '<iv|vv>'
|
||||
do i = 1,N_int
|
||||
mask_ijkl(i,1) = core_inact_act_bitmask_4(i,1)
|
||||
mask_ijkl(i,2) = virt_bitmask(i,1)
|
||||
mask_ijkl(i,3) = virt_bitmask(i,1)
|
||||
mask_ijkl(i,4) = virt_bitmask(i,1)
|
||||
enddo
|
||||
call add_integrals_to_map_no_exit_34(mask_ijkl)
|
||||
endif
|
||||
|
||||
call four_idx_novvvv
|
||||
else
|
||||
call add_integrals_to_map(full_ijkl_bitmask_4)
|
||||
|
||||
! call four_index_transform_zmq(ao_integrals_map,mo_integrals_map, &
|
||||
! mo_coef, size(mo_coef,1), &
|
||||
! 1, 1, 1, 1, ao_num, ao_num, ao_num, ao_num, &
|
||||
! 1, 1, 1, 1, mo_num, mo_num, mo_num, mo_num)
|
||||
!
|
||||
! call four_index_transform_block(ao_integrals_map,mo_integrals_map, &
|
||||
! mo_coef, size(mo_coef,1), &
|
||||
! 1, 1, 1, 1, ao_num, ao_num, ao_num, ao_num, &
|
||||
! 1, 1, 1, 1, mo_num, mo_num, mo_num, mo_num)
|
||||
!
|
||||
! call four_index_transform(ao_integrals_map,mo_integrals_map, &
|
||||
! mo_coef, size(mo_coef,1), &
|
||||
! 1, 1, 1, 1, ao_num, ao_num, ao_num, ao_num, &
|
||||
! 1, 1, 1, 1, mo_num, mo_num, mo_num, mo_num)
|
||||
|
||||
integer*8 :: get_mo_map_size, mo_map_size
|
||||
mo_map_size = get_mo_map_size()
|
||||
|
||||
print*,'Molecular integrals provided'
|
||||
endif
|
||||
|
||||
call wall_time(wall_2)
|
||||
call cpu_time(cpu_2)
|
||||
|
||||
integer*8 :: get_mo_map_size, mo_map_size
|
||||
mo_map_size = get_mo_map_size()
|
||||
|
||||
double precision, external :: map_mb
|
||||
print*,'Molecular integrals provided:'
|
||||
print*,' Size of MO map ', map_mb(mo_integrals_map) ,'MB'
|
||||
print*,' Number of MO integrals: ', mo_map_size
|
||||
print*,' cpu time :',cpu_2 - cpu_1, 's'
|
||||
print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')'
|
||||
|
||||
if (write_mo_two_e_integrals.and.mpi_master) then
|
||||
call ezfio_set_work_empty(.False.)
|
||||
call map_save_to_disk(trim(ezfio_filename)//'/work/mo_ints',mo_integrals_map)
|
||||
@ -185,7 +104,7 @@ subroutine add_integrals_to_map(mask_ijkl)
|
||||
integer :: size_buffer
|
||||
integer(key_kind),allocatable :: buffer_i(:)
|
||||
real(integral_kind),allocatable :: buffer_value(:)
|
||||
double precision :: map_mb
|
||||
double precision, external :: map_mb
|
||||
|
||||
integer :: i1,j1,k1,l1, ii1, kmax, thread_num
|
||||
integer :: i2,i3,i4
|
||||
@ -201,10 +120,6 @@ subroutine add_integrals_to_map(mask_ijkl)
|
||||
call bitstring_to_list( mask_ijkl(1,2), list_ijkl(1,2), n_j, N_int )
|
||||
call bitstring_to_list( mask_ijkl(1,3), list_ijkl(1,3), n_k, N_int )
|
||||
call bitstring_to_list( mask_ijkl(1,4), list_ijkl(1,4), n_l, N_int )
|
||||
character*(2048) :: output(1)
|
||||
print *, 'i'
|
||||
call bitstring_to_str( output(1), mask_ijkl(1,1), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijkl(i,1))
|
||||
@ -213,9 +128,6 @@ subroutine add_integrals_to_map(mask_ijkl)
|
||||
return
|
||||
endif
|
||||
|
||||
print*, 'j'
|
||||
call bitstring_to_str( output(1), mask_ijkl(1,2), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijkl(i,2))
|
||||
@ -224,9 +136,6 @@ subroutine add_integrals_to_map(mask_ijkl)
|
||||
return
|
||||
endif
|
||||
|
||||
print*, 'k'
|
||||
call bitstring_to_str( output(1), mask_ijkl(1,3), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijkl(i,3))
|
||||
@ -235,9 +144,6 @@ subroutine add_integrals_to_map(mask_ijkl)
|
||||
return
|
||||
endif
|
||||
|
||||
print*, 'l'
|
||||
call bitstring_to_str( output(1), mask_ijkl(1,4), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijkl(i,4))
|
||||
@ -247,14 +153,12 @@ subroutine add_integrals_to_map(mask_ijkl)
|
||||
endif
|
||||
|
||||
size_buffer = min(ao_num*ao_num*ao_num,16000000)
|
||||
print*, 'Providing the molecular integrals '
|
||||
print*, 'Buffers : ', 8.*(mo_num*(n_j)*(n_k+1) + mo_num+&
|
||||
ao_num+ao_num*ao_num+ size_buffer*3)/(1024*1024), 'MB / core'
|
||||
|
||||
call wall_time(wall_1)
|
||||
call cpu_time(cpu_1)
|
||||
double precision :: accu_bis
|
||||
accu_bis = 0.d0
|
||||
call wall_time(wall_1)
|
||||
|
||||
!$OMP PARALLEL PRIVATE(l1,k1,j1,i1,i2,i3,i4,i,j,k,l,c, ii1,kmax, &
|
||||
!$OMP two_e_tmp_0_idx, two_e_tmp_0, two_e_tmp_1,two_e_tmp_2,two_e_tmp_3,&
|
||||
@ -452,12 +356,6 @@ subroutine add_integrals_to_map(mask_ijkl)
|
||||
deallocate(list_ijkl)
|
||||
|
||||
|
||||
print*,'Molecular integrals provided:'
|
||||
print*,' Size of MO map ', map_mb(mo_integrals_map) ,'MB'
|
||||
print*,' Number of MO integrals: ', mo_map_size
|
||||
print*,' cpu time :',cpu_2 - cpu_1, 's'
|
||||
print*,' wall time :',wall_2 - wall_1, 's ( x ', (cpu_2-cpu_1)/(wall_2-wall_1), ')'
|
||||
|
||||
end
|
||||
|
||||
|
||||
@ -504,10 +402,6 @@ subroutine add_integrals_to_map_three_indices(mask_ijk)
|
||||
call bitstring_to_list( mask_ijk(1,1), list_ijkl(1,1), n_i, N_int )
|
||||
call bitstring_to_list( mask_ijk(1,2), list_ijkl(1,2), n_j, N_int )
|
||||
call bitstring_to_list( mask_ijk(1,3), list_ijkl(1,3), n_k, N_int )
|
||||
character*(2048) :: output(1)
|
||||
print*, 'i'
|
||||
call bitstring_to_str( output(1), mask_ijk(1,1), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijk(i,1))
|
||||
@ -516,9 +410,6 @@ subroutine add_integrals_to_map_three_indices(mask_ijk)
|
||||
return
|
||||
endif
|
||||
|
||||
print*, 'j'
|
||||
call bitstring_to_str( output(1), mask_ijk(1,2), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijk(i,2))
|
||||
@ -527,9 +418,6 @@ subroutine add_integrals_to_map_three_indices(mask_ijk)
|
||||
return
|
||||
endif
|
||||
|
||||
print*, 'k'
|
||||
call bitstring_to_str( output(1), mask_ijk(1,3), N_int )
|
||||
print *, trim(output(1))
|
||||
j = 0
|
||||
do i = 1, N_int
|
||||
j += popcnt(mask_ijk(i,3))
|
||||
|
@ -50,7 +50,58 @@ BEGIN_PROVIDER [ double precision, slater_bragg_radii, (0:100)]
|
||||
slater_bragg_radii(33) = 1.15d0
|
||||
slater_bragg_radii(34) = 1.15d0
|
||||
slater_bragg_radii(35) = 1.15d0
|
||||
slater_bragg_radii(36) = 1.15d0
|
||||
slater_bragg_radii(36) = 1.10d0
|
||||
|
||||
slater_bragg_radii(37) = 2.35d0
|
||||
slater_bragg_radii(38) = 2.00d0
|
||||
slater_bragg_radii(39) = 1.80d0
|
||||
slater_bragg_radii(40) = 1.55d0
|
||||
slater_bragg_radii(41) = 1.45d0
|
||||
slater_bragg_radii(42) = 1.45d0
|
||||
slater_bragg_radii(43) = 1.35d0
|
||||
slater_bragg_radii(44) = 1.30d0
|
||||
slater_bragg_radii(45) = 1.35d0
|
||||
slater_bragg_radii(46) = 1.40d0
|
||||
slater_bragg_radii(47) = 1.60d0
|
||||
slater_bragg_radii(48) = 1.55d0
|
||||
slater_bragg_radii(49) = 1.55d0
|
||||
slater_bragg_radii(50) = 1.45d0
|
||||
slater_bragg_radii(51) = 1.45d0
|
||||
slater_bragg_radii(52) = 1.40d0
|
||||
slater_bragg_radii(53) = 1.40d0
|
||||
slater_bragg_radii(54) = 1.40d0
|
||||
slater_bragg_radii(55) = 2.60d0
|
||||
slater_bragg_radii(56) = 2.15d0
|
||||
slater_bragg_radii(57) = 1.95d0
|
||||
slater_bragg_radii(58) = 1.85d0
|
||||
slater_bragg_radii(59) = 1.85d0
|
||||
slater_bragg_radii(60) = 1.85d0
|
||||
slater_bragg_radii(61) = 1.85d0
|
||||
slater_bragg_radii(62) = 1.85d0
|
||||
slater_bragg_radii(63) = 1.85d0
|
||||
slater_bragg_radii(64) = 1.80d0
|
||||
slater_bragg_radii(65) = 1.75d0
|
||||
slater_bragg_radii(66) = 1.75d0
|
||||
slater_bragg_radii(67) = 1.75d0
|
||||
slater_bragg_radii(68) = 1.75d0
|
||||
slater_bragg_radii(69) = 1.75d0
|
||||
slater_bragg_radii(70) = 1.75d0
|
||||
slater_bragg_radii(71) = 1.75d0
|
||||
slater_bragg_radii(72) = 1.55d0
|
||||
slater_bragg_radii(73) = 1.45d0
|
||||
slater_bragg_radii(74) = 1.35d0
|
||||
slater_bragg_radii(75) = 1.30d0
|
||||
slater_bragg_radii(76) = 1.30d0
|
||||
slater_bragg_radii(77) = 1.35d0
|
||||
slater_bragg_radii(78) = 1.35d0
|
||||
slater_bragg_radii(79) = 1.35d0
|
||||
slater_bragg_radii(80) = 1.50d0
|
||||
slater_bragg_radii(81) = 1.90d0
|
||||
slater_bragg_radii(82) = 1.75d0
|
||||
slater_bragg_radii(83) = 1.60d0
|
||||
slater_bragg_radii(84) = 1.90d0
|
||||
slater_bragg_radii(85) = 1.50d0
|
||||
slater_bragg_radii(86) = 1.50d0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -38,35 +38,18 @@ END_PROVIDER
|
||||
END_DOC
|
||||
integer :: i,k
|
||||
|
||||
! if (threshold_selectors == 1.d0) then
|
||||
!
|
||||
! do i=1,N_det_selectors
|
||||
! do k=1,N_int
|
||||
! psi_selectors(k,1,i) = psi_det(k,1,i)
|
||||
! psi_selectors(k,2,i) = psi_det(k,2,i)
|
||||
! enddo
|
||||
! enddo
|
||||
! do k=1,N_states
|
||||
! do i=1,N_det_selectors
|
||||
! psi_selectors_coef(i,k) = psi_coef(i,k)
|
||||
! enddo
|
||||
! enddo
|
||||
!
|
||||
! else
|
||||
|
||||
do i=1,N_det_selectors
|
||||
do k=1,N_int
|
||||
psi_selectors(k,1,i) = psi_det_sorted(k,1,i)
|
||||
psi_selectors(k,2,i) = psi_det_sorted(k,2,i)
|
||||
enddo
|
||||
enddo
|
||||
do k=1,N_states
|
||||
do i=1,N_det_selectors
|
||||
do k=1,N_int
|
||||
psi_selectors(k,1,i) = psi_det_sorted(k,1,i)
|
||||
psi_selectors(k,2,i) = psi_det_sorted(k,2,i)
|
||||
enddo
|
||||
enddo
|
||||
do k=1,N_states
|
||||
do i=1,N_det_selectors
|
||||
psi_selectors_coef(i,k) = psi_coef_sorted(i,k)
|
||||
enddo
|
||||
psi_selectors_coef(i,k) = psi_coef_sorted(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! endif
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
@ -6,6 +6,7 @@ program molden
|
||||
character*(128) :: output
|
||||
integer :: i_unit_output,getUnitAndOpen
|
||||
integer :: i,j,k,l
|
||||
double precision, parameter :: a0 = 0.529177249d0
|
||||
|
||||
PROVIDE ezfio_filename
|
||||
|
||||
@ -22,7 +23,7 @@ program molden
|
||||
trim(element_name(int(nucl_charge(i)))), &
|
||||
i, &
|
||||
int(nucl_charge(i)), &
|
||||
nucl_coord(i,1), nucl_coord(i,2), nucl_coord(i,3)
|
||||
nucl_coord(i,1)*a0, nucl_coord(i,2)*a0, nucl_coord(i,3)*a0
|
||||
enddo
|
||||
|
||||
write(i_unit_output,'(A)') '[GTO]'
|
||||
|
@ -14,7 +14,7 @@ program print_wf
|
||||
|
||||
|
||||
! this has to be done in order to be sure that N_det, psi_det and
|
||||
! psi_coef are the wave function stored in the |EZFIO| directory.
|
||||
! psi_coef_sorted are the wave function stored in the |EZFIO| directory.
|
||||
read_wf = .True.
|
||||
touch read_wf
|
||||
call routine
|
||||
@ -45,15 +45,15 @@ subroutine routine
|
||||
do i = 1, min(N_det_print_wf,N_det)
|
||||
print*,''
|
||||
print*,'i = ',i
|
||||
call debug_det(psi_det(1,1,i),N_int)
|
||||
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,1),degree,N_int)
|
||||
call debug_det(psi_det_sorted(1,1,i),N_int)
|
||||
call get_excitation_degree(psi_det_sorted(1,1,i),psi_det_sorted(1,1,1),degree,N_int)
|
||||
print*,'degree = ',degree
|
||||
if(degree == 0)then
|
||||
print*,'Reference determinant '
|
||||
call i_H_j(psi_det(1,1,i),psi_det(1,1,i),N_int,h00)
|
||||
else
|
||||
call i_H_j(psi_det(1,1,i),psi_det(1,1,i),N_int,hii)
|
||||
call i_H_j(psi_det(1,1,1),psi_det(1,1,i),N_int,hij)
|
||||
call i_H_j(psi_det_sorted(1,1,i),psi_det_sorted(1,1,i),N_int,h00)
|
||||
else if(degree .le. 2)then
|
||||
call i_H_j(psi_det_sorted(1,1,i),psi_det_sorted(1,1,i),N_int,hii)
|
||||
call i_H_j(psi_det_sorted(1,1,1),psi_det_sorted(1,1,i),N_int,hij)
|
||||
delta_e = hii - h00
|
||||
coef_1 = hij/(h00-hii)
|
||||
if(hij.ne.0.d0)then
|
||||
@ -65,25 +65,25 @@ subroutine routine
|
||||
else
|
||||
coef_2_2 = 0.d0
|
||||
endif
|
||||
call get_excitation(psi_det(1,1,1),psi_det(1,1,i),exc,degree,phase,N_int)
|
||||
call get_excitation(psi_det_sorted(1,1,1),psi_det_sorted(1,1,i),exc,degree,phase,N_int)
|
||||
call decode_exc(exc,degree,h1,p1,h2,p2,s1,s2)
|
||||
print*,'phase = ',phase
|
||||
if(degree == 1)then
|
||||
print*,'s1',s1
|
||||
print*,'h1,p1 = ',h1,p1
|
||||
if(s1 == 1)then
|
||||
norm_mono_a += dabs(psi_coef(i,1)/psi_coef(1,1))
|
||||
norm_mono_a_2 += dabs(psi_coef(i,1)/psi_coef(1,1))**2
|
||||
norm_mono_a += dabs(psi_coef_sorted(i,1)/psi_coef_sorted(1,1))
|
||||
norm_mono_a_2 += dabs(psi_coef_sorted(i,1)/psi_coef_sorted(1,1))**2
|
||||
norm_mono_a_pert += dabs(coef_1)
|
||||
norm_mono_a_pert_2 += dabs(coef_1)**2
|
||||
else
|
||||
norm_mono_b += dabs(psi_coef(i,1)/psi_coef(1,1))
|
||||
norm_mono_b_2 += dabs(psi_coef(i,1)/psi_coef(1,1))**2
|
||||
norm_mono_b += dabs(psi_coef_sorted(i,1)/psi_coef_sorted(1,1))
|
||||
norm_mono_b_2 += dabs(psi_coef_sorted(i,1)/psi_coef_sorted(1,1))**2
|
||||
norm_mono_b_pert += dabs(coef_1)
|
||||
norm_mono_b_pert_2 += dabs(coef_1)**2
|
||||
endif
|
||||
double precision :: hmono,hdouble
|
||||
call i_H_j_verbose(psi_det(1,1,1),psi_det(1,1,i),N_int,hij,hmono,hdouble,phase)
|
||||
call i_H_j_verbose(psi_det_sorted(1,1,1),psi_det_sorted(1,1,i),N_int,hij,hmono,hdouble,phase)
|
||||
print*,'hmono = ',hmono
|
||||
print*,'hdouble = ',hdouble
|
||||
print*,'hmono+hdouble = ',hmono+hdouble
|
||||
@ -99,9 +99,9 @@ subroutine routine
|
||||
print*,'Delta E = ',h00-hii
|
||||
print*,'coef pert (1) = ',coef_1
|
||||
print*,'coef 2x2 = ',coef_2_2
|
||||
print*,'Delta E_corr = ',psi_coef(i,1)/psi_coef(1,1) * hij
|
||||
print*,'Delta E_corr = ',psi_coef_sorted(i,1)/psi_coef_sorted(1,1) * hij
|
||||
endif
|
||||
print*,'amplitude = ',psi_coef(i,1)/psi_coef(1,1)
|
||||
print*,'amplitude = ',psi_coef_sorted(i,1)/psi_coef_sorted(1,1)
|
||||
|
||||
enddo
|
||||
|
||||
|
1
src/two_body_rdm/NEED
Normal file
1
src/two_body_rdm/NEED
Normal file
@ -0,0 +1 @@
|
||||
davidson_undressed
|
8
src/two_body_rdm/README.rst
Normal file
8
src/two_body_rdm/README.rst
Normal file
@ -0,0 +1,8 @@
|
||||
============
|
||||
two_body_rdm
|
||||
============
|
||||
|
||||
Contains the two rdms $\alpha\alpha$, $\beta\beta$ and $\alpha\beta$ stored as
|
||||
arrays, with pysicists notation, consistent with the two-electron integrals in the
|
||||
MO basis.
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user