mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-04-25 17:54:44 +02:00
Merge branch 'dev-stable' of github.com:QuantumPackage/qp2 into dev-stable
This commit is contained in:
commit
bf7734deb1
@ -22,7 +22,10 @@ subroutine print_basis_correction
|
||||
print*, '****************************************'
|
||||
print*, '****************************************'
|
||||
print*, 'mu_of_r_potential = ',mu_of_r_potential
|
||||
if(mu_of_r_potential.EQ."hf".or.mu_of_r_potential.EQ."hf_old".or.mu_of_r_potential.EQ."hf_sparse")then
|
||||
if(mu_of_r_potential.EQ."hf".or. &
|
||||
mu_of_r_potential.EQ."hf_old".or.&
|
||||
mu_of_r_potential.EQ."hf_sparse".or.&
|
||||
mu_of_r_potential.EQ."proj")then
|
||||
print*, ''
|
||||
print*,'Using a HF-like two-body density to define mu(r)'
|
||||
print*,'This assumes that HF is a qualitative representation of the wave function '
|
||||
@ -38,7 +41,9 @@ subroutine print_basis_correction
|
||||
write(*, '(A29,X,I3,X,A3,X,F16.10)') ' ECMD PBE-UEG , state ',istate,' = ',ecmd_pbe_ueg_mu_of_r(istate)
|
||||
enddo
|
||||
|
||||
else if(mu_of_r_potential.EQ."cas_full".or.mu_of_r_potential.EQ."cas_truncated".or.mu_of_r_potential.EQ."pure_act")then
|
||||
else if(mu_of_r_potential.EQ."cas_full".or. &
|
||||
mu_of_r_potential.EQ."cas_truncated".or. &
|
||||
mu_of_r_potential.EQ."pure_act") then
|
||||
print*, ''
|
||||
print*,'Using a CAS-like two-body density to define mu(r)'
|
||||
print*,'This assumes that the CAS is a qualitative representation of the wave function '
|
||||
|
@ -178,7 +178,7 @@ END_PROVIDER
|
||||
rank_max = np
|
||||
! Avoid too large arrays when there are many electrons
|
||||
if (elec_num > 10) then
|
||||
rank_max = min(np,20*elec_num*elec_num)
|
||||
rank_max = min(np,25*elec_num*elec_num)
|
||||
endif
|
||||
|
||||
call mmap_create_d('', (/ ndim8, rank_max /), .False., .True., map)
|
||||
|
@ -54,6 +54,7 @@ double precision function ao_two_e_integral(i, j, k, l)
|
||||
else if (use_only_lr) then
|
||||
|
||||
ao_two_e_integral = ao_two_e_integral_erf(i, j, k, l)
|
||||
return
|
||||
|
||||
else if (do_schwartz_accel(i,j,k,l)) then
|
||||
|
||||
|
@ -283,33 +283,16 @@ subroutine print_det_one_dimension(string,Nint)
|
||||
|
||||
end
|
||||
|
||||
logical function is_integer_in_string(bite,string,Nint)
|
||||
logical function is_integer_in_string(orb,bitmask,Nint)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer, intent(in) :: bite,Nint
|
||||
integer(bit_kind), intent(in) :: string(Nint)
|
||||
integer(bit_kind) :: string_bite(Nint)
|
||||
integer :: i,itot,itot_and
|
||||
character*(2048) :: output(1)
|
||||
string_bite = 0_bit_kind
|
||||
call set_bit_to_integer(bite,string_bite,Nint)
|
||||
itot = 0
|
||||
itot_and = 0
|
||||
is_integer_in_string = .False.
|
||||
!print*,''
|
||||
!print*,''
|
||||
!print*,'bite = ',bite
|
||||
!call bitstring_to_str( output(1), string_bite, Nint )
|
||||
! print *, trim(output(1))
|
||||
!call bitstring_to_str( output(1), string, Nint )
|
||||
! print *, trim(output(1))
|
||||
do i = 1, Nint
|
||||
itot += popcnt(string(i))
|
||||
itot_and += popcnt(ior(string(i),string_bite(i)))
|
||||
enddo
|
||||
!print*,'itot,itot_and',itot,itot_and
|
||||
if(itot == itot_and)then
|
||||
is_integer_in_string = .True.
|
||||
endif
|
||||
!pause
|
||||
BEGIN_DOC
|
||||
! Checks is the orbital orb is set to 1 in the bit string
|
||||
END_DOC
|
||||
integer, intent(in) :: orb, Nint
|
||||
integer(bit_kind), intent(in) :: bitmask(Nint)
|
||||
integer :: j, k
|
||||
k = ishft(orb-1,-bit_kind_shift)+1
|
||||
j = orb-ishft(k-1,bit_kind_shift)-1
|
||||
is_integer_in_string = iand(bitmask(k), ibset(0_bit_kind, j)) /= 0_bit_kind
|
||||
end
|
||||
|
@ -15,14 +15,17 @@
|
||||
pure_act_on_top_of_r = 0.d0
|
||||
do l = 1, n_act_orb
|
||||
phi_l = act_mos_in_r_array(l,ipoint)
|
||||
if (dabs(phi_l) < 1.d-12) cycle
|
||||
do k = 1, n_act_orb
|
||||
phi_k = act_mos_in_r_array(k,ipoint)
|
||||
phi_k = act_mos_in_r_array(k,ipoint) * phi_l
|
||||
if (dabs(phi_k) < 1.d-12) cycle
|
||||
do j = 1, n_act_orb
|
||||
phi_j = act_mos_in_r_array(j,ipoint)
|
||||
phi_j = act_mos_in_r_array(j,ipoint) * phi_k
|
||||
if (dabs(phi_j) < 1.d-12) cycle
|
||||
do i = 1, n_act_orb
|
||||
phi_i = act_mos_in_r_array(i,ipoint)
|
||||
phi_i = act_mos_in_r_array(i,ipoint) * phi_j
|
||||
! 1 2 1 2
|
||||
pure_act_on_top_of_r += act_2_rdm_ab_mo(i,j,k,l,istate) * phi_i * phi_j * phi_k * phi_l
|
||||
pure_act_on_top_of_r = pure_act_on_top_of_r + act_2_rdm_ab_mo(i,j,k,l,istate) * phi_i !* phi_j * phi_k * phi_l
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
@ -8,21 +8,14 @@ BEGIN_PROVIDER[double precision, aos_in_r_array, (ao_num,n_points_final_grid)]
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
integer :: i, j
|
||||
double precision :: tmp_array(ao_num), r(3)
|
||||
integer :: i
|
||||
|
||||
!$OMP PARALLEL DO &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,r,tmp_array,j) &
|
||||
!$OMP SHARED(aos_in_r_array,n_points_final_grid,ao_num,final_grid_points)
|
||||
!$OMP PRIVATE (i) &
|
||||
!$OMP SHARED(aos_in_r_array,n_points_final_grid,final_grid_points)
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call give_all_aos_at_r(r, tmp_array)
|
||||
do j = 1, ao_num
|
||||
aos_in_r_array(j,i) = tmp_array(j)
|
||||
enddo
|
||||
call give_all_aos_at_r(final_grid_points(1,i), aos_in_r_array(1,i))
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
@ -62,25 +55,27 @@ BEGIN_PROVIDER[double precision, aos_grad_in_r_array, (ao_num,n_points_final_gri
|
||||
|
||||
implicit none
|
||||
integer :: i, j, m
|
||||
double precision :: aos_array(ao_num), r(3)
|
||||
double precision :: aos_grad_array(3,ao_num)
|
||||
double precision :: r(3)
|
||||
double precision, allocatable :: aos_grad_array(:,:), aos_array(:)
|
||||
|
||||
!$OMP PARALLEL DO &
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,m,r,aos_array,aos_grad_array) &
|
||||
!$OMP SHARED(aos_grad_in_r_array,n_points_final_grid,ao_num,final_grid_points)
|
||||
allocate(aos_grad_array(3,ao_num), aos_array(ao_num))
|
||||
|
||||
!$OMP DO
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call give_all_aos_and_grad_at_r(r,aos_array,aos_grad_array)
|
||||
call give_all_aos_and_grad_at_r(final_grid_points(1,i),aos_array,aos_grad_array)
|
||||
do m = 1, 3
|
||||
do j = 1, ao_num
|
||||
aos_grad_in_r_array(j,i,m) = aos_grad_array(m,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
!$OMP END DO
|
||||
deallocate(aos_grad_array,aos_array)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
@ -126,25 +121,25 @@ END_PROVIDER
|
||||
! k = 1 : x, k= 2, y, k 3, z
|
||||
END_DOC
|
||||
integer :: i,j,m
|
||||
double precision :: aos_array(ao_num), r(3)
|
||||
double precision :: aos_grad_array(3,ao_num)
|
||||
double precision :: aos_lapl_array(3,ao_num)
|
||||
!$OMP PARALLEL DO &
|
||||
double precision, allocatable :: aos_lapl_array(:,:), aos_grad_array(:,:), aos_array(:)
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,r,aos_array,aos_grad_array,aos_lapl_array,j,m) &
|
||||
!$OMP PRIVATE (i,aos_array,aos_grad_array,aos_lapl_array,j,m) &
|
||||
!$OMP SHARED(aos_lapl_in_r_array,n_points_final_grid,ao_num,final_grid_points)
|
||||
allocate( aos_array(ao_num), aos_grad_array(3,ao_num), aos_lapl_array(3,ao_num))
|
||||
!$OMP DO
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call give_all_aos_and_grad_and_lapl_at_r(r,aos_array,aos_grad_array,aos_lapl_array)
|
||||
call give_all_aos_and_grad_and_lapl_at_r(final_grid_points(1,i),aos_array,aos_grad_array,aos_lapl_array)
|
||||
do j = 1, ao_num
|
||||
do m = 1, 3
|
||||
aos_lapl_in_r_array(m,j,i) = aos_lapl_array(m,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
!$OMP END DO
|
||||
deallocate( aos_array, aos_grad_array, aos_lapl_array)
|
||||
!$OMP END PARALLEL
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER[double precision, aos_grad_in_r_array_transp_bis, (n_points_final_grid,ao_num,3)]
|
||||
@ -189,20 +184,12 @@ END_PROVIDER
|
||||
BEGIN_DOC
|
||||
! aos_in_r_array_extra(i,j) = value of the ith ao on the jth grid point of the EXTRA grid
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
double precision :: aos_array(ao_num), r(3)
|
||||
integer :: i
|
||||
!$OMP PARALLEL DO &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,r,aos_array,j) &
|
||||
!$OMP SHARED(aos_in_r_array_extra,n_points_extra_final_grid,ao_num,final_grid_points_extra)
|
||||
!$OMP DEFAULT (NONE) PRIVATE (i) &
|
||||
!$OMP SHARED(aos_in_r_array_extra,n_points_extra_final_grid,final_grid_points_extra)
|
||||
do i = 1, n_points_extra_final_grid
|
||||
r(1) = final_grid_points_extra(1,i)
|
||||
r(2) = final_grid_points_extra(2,i)
|
||||
r(3) = final_grid_points_extra(3,i)
|
||||
call give_all_aos_at_r(r,aos_array)
|
||||
do j = 1, ao_num
|
||||
aos_in_r_array_extra(j,i) = aos_array(j)
|
||||
enddo
|
||||
call give_all_aos_at_r(final_grid_points_extra(1,i),aos_in_r_array_extra(1,i))
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
@ -235,25 +222,26 @@ BEGIN_PROVIDER[double precision, aos_grad_in_r_array_extra, (ao_num,n_points_ext
|
||||
|
||||
implicit none
|
||||
integer :: i, j, m
|
||||
double precision :: aos_array(ao_num), r(3)
|
||||
double precision :: aos_grad_array(3,ao_num)
|
||||
double precision, allocatable :: aos_array(:), aos_grad_array(:,:)
|
||||
|
||||
!$OMP PARALLEL DO &
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,j,m,r,aos_array,aos_grad_array) &
|
||||
!$OMP PRIVATE (i,j,m,aos_array,aos_grad_array) &
|
||||
!$OMP SHARED(aos_grad_in_r_array_extra,n_points_extra_final_grid,ao_num,final_grid_points_extra)
|
||||
allocate(aos_array(ao_num), aos_grad_array(3,ao_num))
|
||||
!$OMP DO
|
||||
do i = 1, n_points_extra_final_grid
|
||||
r(1) = final_grid_points_extra(1,i)
|
||||
r(2) = final_grid_points_extra(2,i)
|
||||
r(3) = final_grid_points_extra(3,i)
|
||||
call give_all_aos_and_grad_at_r(r, aos_array, aos_grad_array)
|
||||
call give_all_aos_and_grad_at_r(final_grid_points_extra(1,i), aos_array, aos_grad_array)
|
||||
do m = 1, 3
|
||||
do j = 1, ao_num
|
||||
aos_grad_in_r_array_extra(j,i,m) = aos_grad_array(m,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
!$OMP END DO
|
||||
deallocate(aos_array,aos_grad_array)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -21,20 +21,11 @@
|
||||
BEGIN_DOC
|
||||
! mos_in_r_array(i,j) = value of the ith mo on the jth grid point
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
double precision :: mos_array(mo_num), r(3)
|
||||
!$OMP PARALLEL DO &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,r,mos_array,j) &
|
||||
integer :: i
|
||||
!$OMP PARALLEL DO DEFAULT(NONE) PRIVATE (i) &
|
||||
!$OMP SHARED(mos_in_r_array_omp,n_points_final_grid,mo_num,final_grid_points)
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call give_all_mos_at_r(r,mos_array)
|
||||
do j = 1, mo_num
|
||||
mos_in_r_array_omp(j,i) = mos_array(j)
|
||||
enddo
|
||||
call give_all_mos_at_r(final_grid_points(1,i),mos_in_r_array_omp(1,i))
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
END_PROVIDER
|
||||
|
@ -22,15 +22,26 @@
|
||||
endif
|
||||
|
||||
do istate = 1, N_states
|
||||
do ipoint = 1, n_points_final_grid
|
||||
if(mu_of_r_potential.EQ."hf")then
|
||||
do ipoint = 1, n_points_final_grid
|
||||
mu_of_r_prov(ipoint,istate) = mu_of_r_hf(ipoint)
|
||||
enddo
|
||||
else if(mu_of_r_potential.EQ."hf_old")then
|
||||
do ipoint = 1, n_points_final_grid
|
||||
mu_of_r_prov(ipoint,istate) = mu_of_r_hf_old(ipoint)
|
||||
enddo
|
||||
else if(mu_of_r_potential.EQ."hf_sparse")then
|
||||
do ipoint = 1, n_points_final_grid
|
||||
mu_of_r_prov(ipoint,istate) = mu_of_r_hf_sparse(ipoint)
|
||||
enddo
|
||||
else if(mu_of_r_potential.EQ."cas_full".or.mu_of_r_potential.EQ."cas_truncated".or.mu_of_r_potential.EQ."pure_act")then
|
||||
do ipoint = 1, n_points_final_grid
|
||||
mu_of_r_prov(ipoint,istate) = mu_of_r_psi_cas(ipoint,istate)
|
||||
enddo
|
||||
else if(mu_of_r_potential.EQ."proj")then
|
||||
do ipoint = 1, n_points_final_grid
|
||||
mu_of_r_prov(ipoint,istate) = mu_of_r_projector_mo(ipoint)
|
||||
enddo
|
||||
else
|
||||
print*,'you requested the following mu_of_r_potential'
|
||||
print*,mu_of_r_potential
|
||||
@ -38,7 +49,6 @@
|
||||
stop
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if (write_mu_of_r) then
|
||||
print*,'Writing mu(r) on disk ...'
|
||||
@ -225,3 +235,66 @@
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, mu_of_r_projector_mo, (n_points_final_grid) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mu(r) computed with the projector onto the atomic basis
|
||||
! P_B(\mathbf{r},\mathbf{r}') = \sum_{ij} |
|
||||
! \chi_{i} \rangle \left[S^{-1}\right]_{ij} \langle \chi_{j} |
|
||||
! \] where $i$ and $j$ denote all atomic orbitals.
|
||||
END_DOC
|
||||
|
||||
double precision, parameter :: factor = dsqrt(2.d0*dacos(-1.d0))
|
||||
double precision, allocatable :: tmp(:,:)
|
||||
integer :: ipoint
|
||||
|
||||
|
||||
do ipoint=1,n_points_final_grid
|
||||
mu_of_r_projector_mo(ipoint) = 0.d0
|
||||
integer :: i,j
|
||||
do j=1,n_inact_act_orb
|
||||
i = list_inact_act(j)
|
||||
mu_of_r_projector_mo(ipoint) = mu_of_r_projector_mo(ipoint) + &
|
||||
mos_in_r_array_omp(i,ipoint) * mos_in_r_array_omp(i,ipoint)
|
||||
enddo
|
||||
do j=1,n_virt_orb
|
||||
i = list_virt(j)
|
||||
mu_of_r_projector_mo(ipoint) = mu_of_r_projector_mo(ipoint) + &
|
||||
mos_in_r_array_omp(i,ipoint) * mos_in_r_array_omp(i,ipoint)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do ipoint=1,n_points_final_grid
|
||||
! epsilon
|
||||
mu_of_r_projector_mo(ipoint) = 1.d0/(2.d0*dacos(-1.d0) * mu_of_r_projector_mo(ipoint)**(2.d0/3.d0))
|
||||
! mu
|
||||
mu_of_r_projector_mo(ipoint) = 1.d0/dsqrt( 2.d0*mu_of_r_projector_mo(ipoint) )
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, mu_average_proj, (N_states)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! average value of mu(r) weighted with the total one-e density and divided by the number of electrons
|
||||
!
|
||||
! !!!!!! WARNING !!!!!! if no_core_density == .True. then all contributions from the core orbitals
|
||||
!
|
||||
! in the one- and two-body density matrix are excluded
|
||||
END_DOC
|
||||
integer :: ipoint,istate
|
||||
double precision :: weight,density
|
||||
do istate = 1, N_states
|
||||
mu_average_proj(istate) = 0.d0
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight =final_weight_at_r_vector(ipoint)
|
||||
density = one_e_dm_and_grad_alpha_in_r(4,ipoint,istate) &
|
||||
+ one_e_dm_and_grad_beta_in_r(4,ipoint,istate)
|
||||
mu_average_proj(istate) += mu_of_r_projector_mo(ipoint) * weight * density
|
||||
enddo
|
||||
mu_average_proj(istate) = mu_average_proj(istate) / elec_num_grid_becke(istate)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -145,6 +145,7 @@
|
||||
print*,''
|
||||
print*,'Providing act_2_rdm_spin_trace_mo '
|
||||
character*(128) :: name_file
|
||||
PROVIDE all_mo_integrals
|
||||
name_file = 'act_2_rdm_spin_trace_mo'
|
||||
ispin = 4
|
||||
act_2_rdm_spin_trace_mo = 0.d0
|
||||
|
@ -13,7 +13,7 @@ subroutine orb_range_2_rdm_openmp(big_array,dim1,norb,list_orb,ispin,u_0,N_st,sz
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze
|
||||
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
|
||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1,N_st)
|
||||
double precision, intent(in) :: u_0(sze,N_st)
|
||||
|
||||
integer :: k
|
||||
@ -50,7 +50,7 @@ subroutine orb_range_2_rdm_openmp_work(big_array,dim1,norb,list_orb,ispin,u_t,N_
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
|
||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1,N_st)
|
||||
double precision, intent(in) :: u_t(N_st,N_det)
|
||||
|
||||
integer :: k
|
||||
@ -91,7 +91,7 @@ subroutine orb_range_2_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin
|
||||
integer, intent(in) :: N_st,sze,istart,iend,ishift,istep
|
||||
double precision, intent(in) :: u_t(N_st,N_det)
|
||||
integer, intent(in) :: dim1,norb,list_orb(norb),ispin
|
||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
||||
double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1,N_st)
|
||||
|
||||
integer(omp_lock_kind) :: lock_2rdm
|
||||
integer :: i,j,k,l
|
||||
@ -139,6 +139,7 @@ subroutine orb_range_2_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin
|
||||
|
||||
call list_to_bitstring( orb_bitmask, list_orb, norb, N_int)
|
||||
sze_buff = 6 * norb + elec_alpha_num * elec_alpha_num * 60
|
||||
sze_buff = sze_buff*100
|
||||
list_orb_reverse = -1000
|
||||
do i = 1, norb
|
||||
list_orb_reverse(list_orb(i)) = i
|
||||
@ -154,6 +155,8 @@ subroutine orb_range_2_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin
|
||||
! Prepare the array of all alpha single excitations
|
||||
! -------------------------------------------------
|
||||
|
||||
double precision, allocatable :: big_array_local(:,:,:,:,:)
|
||||
|
||||
PROVIDE N_int nthreads_davidson elec_alpha_num
|
||||
!$OMP PARALLEL DEFAULT(NONE) NUM_THREADS(nthreads_davidson) &
|
||||
!$OMP SHARED(psi_bilinear_matrix_rows, N_det,lock_2rdm,&
|
||||
@ -173,7 +176,7 @@ subroutine orb_range_2_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin
|
||||
!$OMP buffer, doubles, n_doubles, &
|
||||
!$OMP tmp_det2, idx, l, kcol_prev, &
|
||||
!$OMP singles_a, n_singles_a, singles_b, &
|
||||
!$OMP n_singles_b, nkeys, keys, values)
|
||||
!$OMP n_singles_b, nkeys, keys, values, big_array_local)
|
||||
|
||||
! Alpha/Beta double excitations
|
||||
! =============================
|
||||
@ -184,6 +187,8 @@ subroutine orb_range_2_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin
|
||||
singles_b(maxab), &
|
||||
doubles(maxab), &
|
||||
idx(maxab))
|
||||
allocate( big_array_local(N_states,dim1, dim1, dim1, dim1) )
|
||||
big_array_local(:,:,:,:,:) = 0.d0
|
||||
|
||||
kcol_prev=-1
|
||||
|
||||
@ -191,8 +196,9 @@ subroutine orb_range_2_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin
|
||||
ASSERT (istart > 0)
|
||||
ASSERT (istep > 0)
|
||||
|
||||
!$OMP DO SCHEDULE(dynamic,64)
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do k_a=istart+ishift,iend,istep
|
||||
!print *, 'aa', k_a, '/', iend
|
||||
|
||||
krow = psi_bilinear_matrix_rows(k_a)
|
||||
ASSERT (krow <= N_det_alpha_unique)
|
||||
@ -254,33 +260,36 @@ subroutine orb_range_2_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a) * u_t(l,k_a)
|
||||
enddo
|
||||
if(alpha_beta)then
|
||||
! only ONE contribution
|
||||
if (nkeys+1 .ge. sze_buff) then
|
||||
call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
nkeys = 0
|
||||
endif
|
||||
else if (spin_trace)then
|
||||
! TWO contributions
|
||||
! if(alpha_beta)then
|
||||
! ! only ONE contribution
|
||||
! if (nkeys+1 .ge. sze_buff) then
|
||||
! call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
! nkeys = 0
|
||||
! endif
|
||||
! else if (spin_trace)then
|
||||
! ! TWO contributions
|
||||
if (nkeys+2 .ge. sze_buff) then
|
||||
call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
! call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
call update_keys_values_n_states_local(keys,values,nkeys,dim1,n_st,big_array_local)
|
||||
nkeys = 0
|
||||
endif
|
||||
endif
|
||||
! endif
|
||||
call orb_range_off_diag_double_to_all_states_ab_dm_buffer(tmp_det,tmp_det2,c_1,N_st,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
|
||||
enddo
|
||||
endif
|
||||
|
||||
call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
enddo
|
||||
|
||||
enddo
|
||||
!$OMP END DO NOWAIT
|
||||
! call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
call update_keys_values_n_states_local(keys,values,nkeys,dim1,n_st,big_array_local)
|
||||
nkeys = 0
|
||||
enddo
|
||||
|
||||
enddo
|
||||
!$OMP END DO
|
||||
|
||||
!$OMP DO SCHEDULE(dynamic,64)
|
||||
!$OMP DO SCHEDULE(dynamic)
|
||||
do k_a=istart+ishift,iend,istep
|
||||
!print *, 'ab', k_a, '/', iend
|
||||
|
||||
|
||||
! Single and double alpha exitations
|
||||
@ -331,6 +340,7 @@ subroutine orb_range_2_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, kcol)
|
||||
if(alpha_beta.or.spin_trace.or.alpha_alpha)then
|
||||
do i=1,n_singles_a
|
||||
l_a = singles_a(i)
|
||||
ASSERT (l_a <= N_det)
|
||||
@ -342,25 +352,27 @@ subroutine orb_range_2_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a) * u_t(l,k_a)
|
||||
enddo
|
||||
if(alpha_beta.or.spin_trace.or.alpha_alpha)then
|
||||
|
||||
! increment the alpha/beta part for single excitations
|
||||
if (nkeys+ 2 * elec_alpha_num .ge. sze_buff) then
|
||||
call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
! call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
call update_keys_values_n_states_local(keys,values,nkeys,dim1,n_st,big_array_local)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_single_to_all_states_ab_dm_buffer(tmp_det, tmp_det2,c_1,N_st,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
! increment the alpha/alpha part for single excitations
|
||||
if (nkeys+4 * elec_alpha_num .ge. sze_buff ) then
|
||||
call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
! call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
call update_keys_values_n_states_local(keys,values,nkeys,dim1,n_st,big_array_local)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_single_to_all_states_aa_dm_buffer(tmp_det,tmp_det2,c_1,N_st,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
endif
|
||||
|
||||
enddo
|
||||
endif
|
||||
|
||||
call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
nkeys = 0
|
||||
! call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
! nkeys = 0
|
||||
|
||||
! Compute Hij for all alpha doubles
|
||||
! ----------------------------------
|
||||
@ -377,14 +389,15 @@ subroutine orb_range_2_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin
|
||||
c_1(l) = u_t(l,l_a) * u_t(l,k_a)
|
||||
enddo
|
||||
if (nkeys+4 .ge. sze_buff) then
|
||||
call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
! call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
call update_keys_values_n_states_local(keys,values,nkeys,dim1,n_st,big_array_local)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_double_to_all_states_aa_dm_buffer(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_1,N_st,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
enddo
|
||||
endif
|
||||
call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
nkeys = 0
|
||||
! call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
! nkeys = 0
|
||||
|
||||
|
||||
! Single and double beta excitations
|
||||
@ -432,6 +445,7 @@ subroutine orb_range_2_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin
|
||||
! ----------------------------------
|
||||
|
||||
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, krow)
|
||||
if(alpha_beta.or.spin_trace.or.beta_beta)then
|
||||
do i=1,n_singles_b
|
||||
l_b = singles_b(i)
|
||||
ASSERT (l_b <= N_det)
|
||||
@ -444,23 +458,26 @@ subroutine orb_range_2_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin
|
||||
do l= 1, N_states
|
||||
c_1(l) = u_t(l,l_a) * u_t(l,k_a)
|
||||
enddo
|
||||
if(alpha_beta.or.spin_trace.or.beta_beta)then
|
||||
|
||||
! increment the alpha/beta part for single excitations
|
||||
if (nkeys+2 * elec_alpha_num .ge. sze_buff ) then
|
||||
call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
! call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
call update_keys_values_n_states_local(keys,values,nkeys,dim1,n_st,big_array_local)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_single_to_all_states_ab_dm_buffer(tmp_det, tmp_det2,c_1,N_st,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
! increment the beta /beta part for single excitations
|
||||
if (nkeys+4 * elec_alpha_num .ge. sze_buff) then
|
||||
call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
! call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
call update_keys_values_n_states_local(keys,values,nkeys,dim1,n_st,big_array_local)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_single_to_all_states_bb_dm_buffer(tmp_det, tmp_det2,c_1,N_st,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
endif
|
||||
enddo
|
||||
call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
nkeys = 0
|
||||
endif
|
||||
|
||||
! call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
! nkeys = 0
|
||||
|
||||
! Compute Hij for all beta doubles
|
||||
! ----------------------------------
|
||||
@ -478,7 +495,8 @@ subroutine orb_range_2_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin
|
||||
c_1(l) = u_t(l,l_a) * u_t(l,k_a)
|
||||
enddo
|
||||
if (nkeys+4 .ge. sze_buff) then
|
||||
call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
! call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
call update_keys_values_n_states_local(keys,values,nkeys,dim1,n_st,big_array_local)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_double_to_all_states_bb_dm_buffer(tmp_det(1,2),psi_det_beta_unique(1, lcol),c_1,N_st,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
@ -487,8 +505,8 @@ subroutine orb_range_2_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin
|
||||
|
||||
enddo
|
||||
endif
|
||||
call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
nkeys = 0
|
||||
! call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
! nkeys = 0
|
||||
|
||||
|
||||
! Diagonal contribution
|
||||
@ -514,15 +532,27 @@ subroutine orb_range_2_rdm_openmp_work_$N_int(big_array,dim1,norb,list_orb,ispin
|
||||
c_1(l) = u_t(l,k_a) * u_t(l,k_a)
|
||||
enddo
|
||||
|
||||
call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
if (nkeys+elec_alpha_num*elec_alpha_num .ge. sze_buff) then
|
||||
! call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
call update_keys_values_n_states_local(keys,values,nkeys,dim1,n_st,big_array_local)
|
||||
nkeys = 0
|
||||
endif
|
||||
|
||||
call orb_range_diag_to_all_states_2_rdm_dm_buffer(tmp_det,c_1,N_states,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
|
||||
! call update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,lock_2rdm)
|
||||
call update_keys_values_n_states_local(keys,values,nkeys,dim1,n_st,big_array_local)
|
||||
nkeys = 0
|
||||
|
||||
end do
|
||||
!$OMP END DO
|
||||
!$OMP END DO NOWAIT
|
||||
deallocate(buffer, singles_a, singles_b, doubles, idx, keys, values)
|
||||
!$OMP CRITICAL
|
||||
do i=1,N_states
|
||||
big_array(:,:,:,:,i) = big_array(:,:,:,:,i) + big_array_local(i,:,:,:,:)
|
||||
enddo
|
||||
!$OMP END CRITICAL
|
||||
deallocate(big_array_local)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
end
|
||||
@ -550,22 +580,66 @@ subroutine update_keys_values_n_states(keys,values,nkeys,dim1,n_st,big_array,loc
|
||||
|
||||
integer :: istate
|
||||
integer :: i,h1,h2,p1,p2
|
||||
integer, allocatable :: iorder(:)
|
||||
integer*8, allocatable :: to_sort(:)
|
||||
|
||||
allocate(iorder(nkeys))
|
||||
do i=1,nkeys
|
||||
iorder(i) = i
|
||||
enddo
|
||||
|
||||
! If the lock is already taken, sort the keys while waiting for a faster access
|
||||
if (.not.omp_test_lock(lock_2rdm)) then
|
||||
allocate(to_sort(nkeys))
|
||||
do i=1,nkeys
|
||||
h1 = keys(1,iorder(i))
|
||||
h2 = keys(2,iorder(i))-1
|
||||
p1 = keys(3,iorder(i))-1
|
||||
p2 = keys(4,iorder(i))-1
|
||||
to_sort(i) = int(h1,8) + int(dim1,8)*(int(h2,8) + int(dim1,8)*(int(p1,8) + int(dim1,8)*int(p2,8)))
|
||||
enddo
|
||||
call i8sort(to_sort, iorder, nkeys)
|
||||
deallocate(to_sort)
|
||||
call omp_set_lock(lock_2rdm)
|
||||
endif
|
||||
|
||||
! print*,'*************'
|
||||
! print*,'updating'
|
||||
! print*,'nkeys',nkeys
|
||||
do istate = 1, N_st
|
||||
do i = 1, nkeys
|
||||
h1 = keys(1,iorder(i))
|
||||
h2 = keys(2,iorder(i))
|
||||
p1 = keys(3,iorder(i))
|
||||
p2 = keys(4,iorder(i))
|
||||
big_array(h1,h2,p1,p2,istate) = big_array(h1,h2,p1,p2,istate) + values(istate,iorder(i))
|
||||
enddo
|
||||
enddo
|
||||
call omp_unset_lock(lock_2rdm)
|
||||
deallocate(iorder)
|
||||
|
||||
end
|
||||
|
||||
subroutine update_keys_values_n_states_local(keys,values,nkeys,dim1,n_st,big_array_local)
|
||||
use omp_lib
|
||||
implicit none
|
||||
integer, intent(in) :: n_st,nkeys,dim1
|
||||
integer, intent(in) :: keys(4,nkeys)
|
||||
double precision, intent(in) :: values(n_st,nkeys)
|
||||
double precision, intent(inout) :: big_array_local(n_st,dim1,dim1,dim1,dim1)
|
||||
|
||||
integer :: istate
|
||||
integer :: i,h1,h2,p1,p2
|
||||
|
||||
do i = 1, nkeys
|
||||
h1 = keys(1,i)
|
||||
h2 = keys(2,i)
|
||||
p1 = keys(3,i)
|
||||
p2 = keys(4,i)
|
||||
do istate = 1, N_st
|
||||
! print*,h1,h2,p1,p2,values(istate,i)
|
||||
big_array(h1,h2,p1,p2,istate) += values(istate,i)
|
||||
big_array_local(istate,h1,h2,p1,p2) = big_array_local(istate,h1,h2,p1,p2) + values(istate,i)
|
||||
enddo
|
||||
enddo
|
||||
call omp_unset_lock(lock_2rdm)
|
||||
|
||||
end
|
||||
|
||||
|
@ -1,3 +1,14 @@
|
||||
logical function is_integer_in_string_local(orb,bitmask,Nint)
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer, intent(in) :: orb, Nint
|
||||
integer(bit_kind), intent(in) :: bitmask(Nint)
|
||||
integer :: j, k
|
||||
k = ishft(orb-1,-bit_kind_shift)+1
|
||||
j = orb-ishft(k-1,bit_kind_shift)-1
|
||||
is_integer_in_string_local = iand(bitmask(k), ibset(0_bit_kind, j)) /= 0_bit_kind
|
||||
end
|
||||
|
||||
subroutine orb_range_diag_to_all_states_2_rdm_dm_buffer(det_1,c_1,N_st,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
@ -47,15 +58,16 @@
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
endif
|
||||
|
||||
call bitstring_to_list_ab(det_1_act, occ, n_occ_ab, N_int)
|
||||
logical :: is_integer_in_string
|
||||
logical :: is_integer_in_string_local
|
||||
integer :: i1,i2,istate
|
||||
if(alpha_beta)then
|
||||
do i = 1, n_occ_ab(1)
|
||||
i1 = occ(i,1)
|
||||
h1 = list_orb_reverse(i1)
|
||||
do j = 1, n_occ_ab(2)
|
||||
i2 = occ(j,2)
|
||||
h1 = list_orb_reverse(i1)
|
||||
h2 = list_orb_reverse(i2)
|
||||
! If alpha/beta, electron 1 is alpha, electron 2 is beta
|
||||
! Therefore you don't necessayr have symmetry between electron 1 and 2
|
||||
@ -80,11 +92,12 @@
|
||||
enddo
|
||||
|
||||
else if (alpha_alpha)then
|
||||
|
||||
do i = 1, n_occ_ab(1)
|
||||
i1 = occ(i,1)
|
||||
h1 = list_orb_reverse(i1)
|
||||
do j = 1, n_occ_ab(1)
|
||||
i2 = occ(j,1)
|
||||
h1 = list_orb_reverse(i1)
|
||||
h2 = list_orb_reverse(i2)
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
@ -104,12 +117,14 @@
|
||||
keys(4,nkeys) = h1
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else if (beta_beta)then
|
||||
|
||||
do i = 1, n_occ_ab(2)
|
||||
i1 = occ(i,2)
|
||||
h1 = list_orb_reverse(i1)
|
||||
do j = 1, n_occ_ab(2)
|
||||
i2 = occ(j,2)
|
||||
h1 = list_orb_reverse(i1)
|
||||
h2 = list_orb_reverse(i2)
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
@ -129,13 +144,15 @@
|
||||
keys(4,nkeys) = h1
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else if(spin_trace)then
|
||||
|
||||
! 0.5 * (alpha beta + beta alpha)
|
||||
do i = 1, n_occ_ab(1)
|
||||
i1 = occ(i,1)
|
||||
h1 = list_orb_reverse(i1)
|
||||
do j = 1, n_occ_ab(2)
|
||||
i2 = occ(j,2)
|
||||
h1 = list_orb_reverse(i1)
|
||||
h2 = list_orb_reverse(i2)
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
@ -154,12 +171,8 @@
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = h1
|
||||
enddo
|
||||
enddo
|
||||
do i = 1, n_occ_ab(1)
|
||||
i1 = occ(i,1)
|
||||
do j = 1, n_occ_ab(1)
|
||||
i2 = occ(j,1)
|
||||
h1 = list_orb_reverse(i1)
|
||||
h2 = list_orb_reverse(i2)
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
@ -181,9 +194,9 @@
|
||||
enddo
|
||||
do i = 1, n_occ_ab(2)
|
||||
i1 = occ(i,2)
|
||||
h1 = list_orb_reverse(i1)
|
||||
do j = 1, n_occ_ab(2)
|
||||
i2 = occ(j,2)
|
||||
h1 = list_orb_reverse(i1)
|
||||
h2 = list_orb_reverse(i2)
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
@ -210,7 +223,7 @@
|
||||
subroutine orb_range_off_diag_double_to_all_states_ab_dm_buffer(det_1,det_2,c_1,N_st,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
! routine that updates the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!
|
||||
! a given couple of determinant det_1, det_2 being a alpha/beta DOUBLE excitation with respect to one another
|
||||
!
|
||||
@ -239,21 +252,24 @@
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
endif
|
||||
logical :: is_integer_in_string_local
|
||||
if (ispin <= 2) return
|
||||
|
||||
! alpha_alpha = .False.
|
||||
! beta_beta = .False.
|
||||
! alpha_beta = .False.
|
||||
! spin_trace = .False.
|
||||
! if( ispin == 1)then
|
||||
! alpha_alpha = .True.
|
||||
! else if(ispin == 2)then
|
||||
! beta_beta = .True.
|
||||
! else if(ispin == 3)then
|
||||
! alpha_beta = .True.
|
||||
! else if(ispin == 4)then
|
||||
! spin_trace = .True.
|
||||
! endif
|
||||
call get_double_excitation(det_1,det_2,exc,phase,N_int)
|
||||
|
||||
h1 = exc(1,1,1)
|
||||
if(list_orb_reverse(h1).lt.0)return
|
||||
h1 = list_orb_reverse(h1)
|
||||
@ -266,10 +282,11 @@
|
||||
p2 = exc(1,2,2)
|
||||
if(list_orb_reverse(p2).lt.0)return
|
||||
p2 = list_orb_reverse(p2)
|
||||
if(alpha_beta)then
|
||||
! if(alpha_beta)then
|
||||
nkeys += 1
|
||||
phase = phase * 0.5d0
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
@ -277,36 +294,36 @@
|
||||
keys(4,nkeys) = p2
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
else if(spin_trace)then
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
endif
|
||||
! else if(spin_trace)then
|
||||
! nkeys += 1
|
||||
! do istate = 1, N_st
|
||||
! values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
! enddo
|
||||
! keys(1,nkeys) = h1
|
||||
! keys(2,nkeys) = h2
|
||||
! keys(3,nkeys) = p1
|
||||
! keys(4,nkeys) = p2
|
||||
! nkeys += 1
|
||||
! do istate = 1, N_st
|
||||
! values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
! enddo
|
||||
! keys(1,nkeys) = h2
|
||||
! keys(2,nkeys) = h1
|
||||
! keys(3,nkeys) = p2
|
||||
! keys(4,nkeys) = p1
|
||||
! endif
|
||||
end
|
||||
|
||||
subroutine orb_range_off_diag_single_to_all_states_ab_dm_buffer(det_1,det_2,c_1,N_st,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
! routine that updates the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!
|
||||
! a given couple of determinant det_1, det_2 being a SINGLE excitation with respect to one another
|
||||
!
|
||||
@ -342,16 +359,12 @@
|
||||
double precision :: phase
|
||||
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
logical :: is_integer_in_string_local
|
||||
if (ispin <= 2) return
|
||||
|
||||
alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
@ -360,21 +373,25 @@
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
||||
if(alpha_beta)then
|
||||
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
h1 = exc(1,1,1)
|
||||
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
||||
h1 = list_orb_reverse(h1)
|
||||
if(.not.is_integer_in_string_local(h1,orb_bitmask,N_int))return
|
||||
p1 = exc(1,2,1)
|
||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
||||
if(.not.is_integer_in_string_local(p1,orb_bitmask,N_int))return
|
||||
|
||||
h1 = list_orb_reverse(h1)
|
||||
p1 = list_orb_reverse(p1)
|
||||
|
||||
phase = 0.5d0 * phase
|
||||
do i = 1, n_occ_ab(2)
|
||||
h2 = occ(i,2)
|
||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
||||
if(.not.is_integer_in_string_local(h2,orb_bitmask,N_int))cycle
|
||||
h2 = list_orb_reverse(h2)
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
@ -382,7 +399,7 @@
|
||||
keys(4,nkeys) = h2
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
@ -392,18 +409,20 @@
|
||||
else
|
||||
! Mono beta
|
||||
h1 = exc(1,1,2)
|
||||
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
||||
h1 = list_orb_reverse(h1)
|
||||
if(.not.is_integer_in_string_local(h1,orb_bitmask,N_int))return
|
||||
p1 = exc(1,2,2)
|
||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
||||
if(.not.is_integer_in_string_local(p1,orb_bitmask,N_int))return
|
||||
|
||||
h1 = list_orb_reverse(h1)
|
||||
p1 = list_orb_reverse(p1)
|
||||
phase = 0.5d0 * phase
|
||||
do i = 1, n_occ_ab(1)
|
||||
h2 = occ(i,1)
|
||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
||||
if(.not.is_integer_in_string_local(h2,orb_bitmask,N_int))cycle
|
||||
h2 = list_orb_reverse(h2)
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
@ -411,7 +430,7 @@
|
||||
keys(4,nkeys) = h2
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
@ -419,22 +438,26 @@
|
||||
keys(4,nkeys) = p1
|
||||
enddo
|
||||
endif
|
||||
|
||||
else if(spin_trace)then
|
||||
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
h1 = exc(1,1,1)
|
||||
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
||||
h1 = list_orb_reverse(h1)
|
||||
if(.not.is_integer_in_string_local(h1,orb_bitmask,N_int))return
|
||||
p1 = exc(1,2,1)
|
||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
||||
if(.not.is_integer_in_string_local(p1,orb_bitmask,N_int))return
|
||||
|
||||
h1 = list_orb_reverse(h1)
|
||||
p1 = list_orb_reverse(p1)
|
||||
phase = 0.5d0 * phase
|
||||
do i = 1, n_occ_ab(2)
|
||||
h2 = occ(i,2)
|
||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
||||
if(.not.is_integer_in_string_local(h2,orb_bitmask,N_int))cycle
|
||||
h2 = list_orb_reverse(h2)
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
@ -442,28 +465,33 @@
|
||||
keys(4,nkeys) = h2
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = p1
|
||||
enddo
|
||||
|
||||
else
|
||||
|
||||
! Mono beta
|
||||
h1 = exc(1,1,2)
|
||||
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
||||
h1 = list_orb_reverse(h1)
|
||||
if(.not.is_integer_in_string_local(h1,orb_bitmask,N_int))return
|
||||
p1 = exc(1,2,2)
|
||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
||||
if(.not.is_integer_in_string_local(p1,orb_bitmask,N_int))return
|
||||
|
||||
h1 = list_orb_reverse(h1)
|
||||
p1 = list_orb_reverse(p1)
|
||||
|
||||
phase = 0.5d0 * phase
|
||||
do i = 1, n_occ_ab(1)
|
||||
h2 = occ(i,1)
|
||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
||||
if(.not.is_integer_in_string_local(h2,orb_bitmask,N_int))cycle
|
||||
h2 = list_orb_reverse(h2)
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
@ -471,7 +499,7 @@
|
||||
keys(4,nkeys) = h2
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
@ -479,6 +507,7 @@
|
||||
keys(4,nkeys) = p1
|
||||
enddo
|
||||
endif
|
||||
|
||||
endif
|
||||
end
|
||||
|
||||
@ -521,40 +550,42 @@
|
||||
double precision :: phase
|
||||
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
logical :: is_integer_in_string_local
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
! beta_beta = .False.
|
||||
! alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
else
|
||||
return
|
||||
endif
|
||||
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
! if(alpha_alpha.or.spin_trace)then
|
||||
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
||||
if(alpha_alpha.or.spin_trace)then
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
h1 = exc(1,1,1)
|
||||
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
||||
h1 = list_orb_reverse(h1)
|
||||
if(.not.is_integer_in_string_local(h1,orb_bitmask,N_int))return
|
||||
p1 = exc(1,2,1)
|
||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
||||
if(.not.is_integer_in_string_local(p1,orb_bitmask,N_int))return
|
||||
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
|
||||
h1 = list_orb_reverse(h1)
|
||||
p1 = list_orb_reverse(p1)
|
||||
|
||||
phase = 0.5d0*phase
|
||||
do i = 1, n_occ_ab(1)
|
||||
h2 = occ(i,1)
|
||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
||||
if(.not.is_integer_in_string_local(h2,orb_bitmask,N_int))cycle
|
||||
h2 = list_orb_reverse(h2)
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
@ -563,7 +594,16 @@
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = - 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = - c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = - c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
@ -572,26 +612,17 @@
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = - 0.5d0 * c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
enddo
|
||||
else
|
||||
return
|
||||
endif
|
||||
endif
|
||||
! endif
|
||||
end
|
||||
|
||||
subroutine orb_range_off_diag_single_to_all_states_bb_dm_buffer(det_1,det_2,c_1,N_st,orb_bitmask,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
@ -632,42 +663,43 @@
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
alpha_alpha = .False.
|
||||
logical :: is_integer_in_string_local
|
||||
! alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
! alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
else
|
||||
return
|
||||
endif
|
||||
|
||||
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
! if(beta_beta.or.spin_trace)then
|
||||
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
||||
if(beta_beta.or.spin_trace)then
|
||||
if (exc(0,1,1) == 1) then
|
||||
return
|
||||
else
|
||||
! Mono beta
|
||||
h1 = exc(1,1,2)
|
||||
if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
||||
h1 = list_orb_reverse(h1)
|
||||
if(.not.is_integer_in_string_local(h1,orb_bitmask,N_int))return
|
||||
p1 = exc(1,2,2)
|
||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
||||
if(.not.is_integer_in_string_local(p1,orb_bitmask,N_int))return
|
||||
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
h1 = list_orb_reverse(h1)
|
||||
p1 = list_orb_reverse(p1)
|
||||
|
||||
phase = 0.5d0*phase
|
||||
do i = 1, n_occ_ab(2)
|
||||
h2 = occ(i,2)
|
||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
||||
if(.not.is_integer_in_string_local(h2,orb_bitmask,N_int))cycle
|
||||
h2 = list_orb_reverse(h2)
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
@ -676,7 +708,16 @@
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = - 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = - c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = - c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
@ -685,24 +726,15 @@
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = - 0.5d0 * c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
enddo
|
||||
endif
|
||||
endif
|
||||
! endif
|
||||
end
|
||||
|
||||
|
||||
@ -743,38 +775,39 @@
|
||||
double precision :: phase
|
||||
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
logical :: is_integer_in_string_local
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
! beta_beta = .False.
|
||||
! alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
else
|
||||
return
|
||||
endif
|
||||
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
|
||||
h1 =exc(1,1)
|
||||
if(list_orb_reverse(h1).lt.0)return
|
||||
h1 = list_orb_reverse(h1)
|
||||
h2 =exc(2,1)
|
||||
if(list_orb_reverse(h2).lt.0)return
|
||||
h2 = list_orb_reverse(h2)
|
||||
p1 =exc(1,2)
|
||||
if(list_orb_reverse(p1).lt.0)return
|
||||
p1 = list_orb_reverse(p1)
|
||||
p2 =exc(2,2)
|
||||
if(list_orb_reverse(p2).lt.0)return
|
||||
|
||||
h1 = list_orb_reverse(h1)
|
||||
h2 = list_orb_reverse(h2)
|
||||
p1 = list_orb_reverse(p1)
|
||||
p2 = list_orb_reverse(p2)
|
||||
if(alpha_alpha.or.spin_trace)then
|
||||
|
||||
phase = 0.5d0*phase
|
||||
! if(alpha_alpha.or.spin_trace)then
|
||||
nkeys += 1
|
||||
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
@ -783,7 +816,16 @@
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = - 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = - c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = - c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
@ -792,22 +834,13 @@
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = - 0.5d0 * c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
endif
|
||||
! endif
|
||||
end
|
||||
|
||||
subroutine orb_range_off_diag_double_to_all_states_bb_dm_buffer(det_1,det_2,c_1,N_st,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
@ -846,19 +879,17 @@
|
||||
integer :: exc(0:2,2)
|
||||
double precision :: phase
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
alpha_alpha = .False.
|
||||
logical :: is_integer_in_string_local
|
||||
! alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
! alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
else
|
||||
return
|
||||
endif
|
||||
|
||||
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
|
||||
@ -874,10 +905,12 @@
|
||||
p2 =exc(2,2)
|
||||
if(list_orb_reverse(p2).lt.0)return
|
||||
p2 = list_orb_reverse(p2)
|
||||
if(beta_beta.or.spin_trace)then
|
||||
|
||||
! if(beta_beta.or.spin_trace)then
|
||||
phase = 0.5d0*phase
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
@ -886,7 +919,16 @@
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = - 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = - c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = - c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
@ -895,21 +937,12 @@
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = 0.5d0 * c_1(istate) * phase
|
||||
values(istate,nkeys) = c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
do istate = 1, N_st
|
||||
values(istate,nkeys) = - 0.5d0 * c_1(istate) * phase
|
||||
enddo
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
endif
|
||||
! endif
|
||||
end
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user