9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-13 21:35:48 +01:00

Merge branch 'dev-stable' of github.com:quantumpackage/qp2 into dev-stable

This commit is contained in:
Anthony Scemama 2024-02-21 16:45:30 +01:00
commit ba08b70d2f
106 changed files with 9351 additions and 5318 deletions

View File

@ -1,3 +1,7 @@
**Important**: The Intel ifx compiler is not able to produce correct
executables for Quantum Package. Please use ifort as long as you can, and
consider switching to gfortran in the long term.
# Quantum Package 2.2
<!--- img src="https://raw.githubusercontent.com/QuantumPackage/qp2/master/data/qp2.png" width="250" --->

62
config/gfortran_mkl.cfg Normal file
View File

@ -0,0 +1,62 @@
# Common flags
##############
#
# -ffree-line-length-none : Needed for IRPF90 which produces long lines
# -lblas -llapack : Link with libblas and liblapack libraries provided by the system
# -I . : Include the curent directory (Mandatory)
#
# --ninja : Allow the utilisation of ninja. (Mandatory)
# --align=32 : Align all provided arrays on a 32-byte boundary
#
#
[COMMON]
FC : gfortran -ffree-line-length-none -I . -mavx -g -fPIC -std=legacy
LAPACK_LIB : -I${MKLROOT}/include -L${MKLROOT}/lib/intel64 -Wl,--no-as-needed -lmkl_gf_lp64 -lmkl_core -lpthread -lm -ldl -lmkl_gnu_thread -lgomp -fopenmp
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DSET_NESTED
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -Ofast : Disregard strict standards compliance. Enables all -O3 optimizations.
# It also enables optimizations that are not valid
# for all standard-compliant programs. It turns on
# -ffast-math and the Fortran-specific
# -fno-protect-parens and -fstack-arrays.
[OPT]
FCFLAGS : -Ofast -mavx
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -Ofast
# Debugging flags
#################
#
# -fcheck=all : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
#
[DEBUG]
FCFLAGS : -fcheck=all -g
# OpenMP flags
#################
#
[OPENMP]
FC : -fopenmp
IRPF90_FLAGS : --openmp

View File

@ -6,7 +6,7 @@
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
FC : ifort -fpic -diag-disable=10448
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DINTEL

View File

@ -6,7 +6,7 @@
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : mpiifort -fpic
FC : mpiifort -fpic -diag-disable=10448
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DMPI -DINTEL

View File

@ -6,7 +6,7 @@
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
FC : ifort -fpic -diag-disable=10448
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --define=WITHOUT_TRAILZ --define=WITHOUT_SHIFTRL

View File

@ -6,7 +6,7 @@
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
FC : ifort -fpic -diag-disable=10448
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --assert -DINTEL

View File

@ -6,7 +6,7 @@
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : mpiifort -fpic
FC : mpiifort -fpic -diag-disable=10448
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DINTEL

View File

@ -6,7 +6,7 @@
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
FC : ifort -fpic -diag-disable=10448
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DINTEL

View File

@ -6,7 +6,7 @@
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
FC : ifort -fpic -diag-disable=10448
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DINTEL

View File

@ -6,7 +6,7 @@
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : mpiifort -fpic
FC : mpiifort -fpic -diag-disable=10448
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DMPI -DINTEL

View File

@ -6,7 +6,7 @@
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic -diag-disable 5462
FC : ifort -fpic -diag-disable=5462 -diag-disable=10448
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=64 -DINTEL

View File

@ -58,17 +58,32 @@ let int_of_atom_id : atom_id -> int = fun x -> x
let float_of_distance : float StringMap.t -> distance -> float =
fun map -> function
| Value x -> x
| Label s -> StringMap.find s map
| Label s -> begin
try StringMap.find s map with
| Not_found ->
Printf.sprintf "Zmatrix error: distance %s undefined" s
|> failwith
end
let float_of_angle : float StringMap.t -> angle -> float =
fun map -> function
| Value x -> x
| Label s -> StringMap.find s map
| Label s -> begin
try StringMap.find s map with
| Not_found ->
Printf.sprintf "Zmatrix error: angle %s undefined" s
|> failwith
end
let float_of_dihedral : float StringMap.t -> dihedral -> float =
fun map -> function
| Value x -> x
| Label s -> StringMap.find s map
| Label s -> begin
try StringMap.find s map with
| Not_found ->
Printf.sprintf "Zmatrix error: dihedral %s undefined" s
|> failwith
end
type line =

View File

@ -4,3 +4,4 @@ becke_numerical_grid
mo_one_e_ints
dft_utils_in_r
tc_keywords
hamiltonian

View File

@ -98,7 +98,7 @@ double precision function phi_j_erf_mu_r_phi(i, j, mu_in, C_center)
enddo
enddo
end function phi_j_erf_mu_r_phi
end
! ---
@ -201,7 +201,7 @@ subroutine erf_mu_gauss_ij_ao(i, j, mu, C_center, delta, gauss_ints)
enddo
enddo
end subroutine erf_mu_gauss_ij_ao
end
! ---
@ -266,7 +266,7 @@ subroutine NAI_pol_x_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
enddo
enddo
end subroutine NAI_pol_x_mult_erf_ao
end
! ---
@ -340,7 +340,7 @@ subroutine NAI_pol_x_mult_erf_ao_v0(i_ao, j_ao, mu_in, C_center, LD_C, ints, LD_
deallocate(integral)
end subroutine NAI_pol_x_mult_erf_ao_v0
end
! ---
@ -420,7 +420,7 @@ subroutine NAI_pol_x_mult_erf_ao_v(i_ao, j_ao, mu_in, C_center, LD_C, ints, LD_i
deallocate(integral)
end subroutine NAI_pol_x_mult_erf_ao_v
end
! ---
@ -479,7 +479,7 @@ double precision function NAI_pol_x_mult_erf_ao_x(i_ao, j_ao, mu_in, C_center)
enddo
enddo
end function NAI_pol_x_mult_erf_ao_x
end
! ---
@ -538,7 +538,7 @@ double precision function NAI_pol_x_mult_erf_ao_y(i_ao, j_ao, mu_in, C_center)
enddo
enddo
end function NAI_pol_x_mult_erf_ao_y
end
! ---
@ -597,7 +597,7 @@ double precision function NAI_pol_x_mult_erf_ao_z(i_ao, j_ao, mu_in, C_center)
enddo
enddo
end function NAI_pol_x_mult_erf_ao_z
end
! ---
@ -667,7 +667,7 @@ double precision function NAI_pol_x_mult_erf_ao_with1s_x(i_ao, j_ao, beta, B_cen
enddo
enddo
end function NAI_pol_x_mult_erf_ao_with1s_x
end
! ---
@ -737,7 +737,7 @@ double precision function NAI_pol_x_mult_erf_ao_with1s_y(i_ao, j_ao, beta, B_cen
enddo
enddo
end function NAI_pol_x_mult_erf_ao_with1s_y
end
! ---
@ -807,7 +807,7 @@ double precision function NAI_pol_x_mult_erf_ao_with1s_z(i_ao, j_ao, beta, B_cen
enddo
enddo
end function NAI_pol_x_mult_erf_ao_with1s_z
end
! ---
@ -880,7 +880,7 @@ subroutine NAI_pol_x_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_cen
enddo
enddo
end subroutine NAI_pol_x_mult_erf_ao_with1s
end
! ---
@ -967,7 +967,7 @@ subroutine NAI_pol_x_mult_erf_ao_with1s_v0(i_ao, j_ao, beta, B_center, LD_B, mu_
deallocate(integral)
end subroutine NAI_pol_x_mult_erf_ao_with1s_v0
end
! ---
@ -1057,7 +1057,7 @@ subroutine NAI_pol_x_mult_erf_ao_with1s_v(i_ao, j_ao, beta, B_center, LD_B, mu_i
deallocate(integral)
end subroutine NAI_pol_x_mult_erf_ao_with1s_v
end
! ---
@ -1175,7 +1175,7 @@ subroutine NAI_pol_x2_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_ce
enddo
enddo
end subroutine NAI_pol_x2_mult_erf_ao_with1s
end
! ---
@ -1241,7 +1241,7 @@ subroutine NAI_pol_x2_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
enddo
enddo
end subroutine NAI_pol_x2_mult_erf_ao
end
! ---
@ -1320,7 +1320,7 @@ subroutine NAI_pol_012_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_c
enddo
enddo
end subroutine NAI_pol_012_mult_erf_ao_with1s
end
! ---
@ -1328,7 +1328,7 @@ subroutine NAI_pol_012_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
BEGIN_DOC
!
! Computes the following integral :
! Computes the following integrals :
!
! int(1) = $\int_{-\infty}^{infty} dr x^0 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
@ -1395,7 +1395,7 @@ subroutine NAI_pol_012_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
enddo
enddo
end subroutine NAI_pol_012_mult_erf_ao
end
! ---

View File

@ -152,7 +152,7 @@ double precision function overlap_gauss_r12_ao(D_center, delta, i, j)
enddo
enddo
end function overlap_gauss_r12_ao
end
! --
@ -199,7 +199,7 @@ double precision function overlap_abs_gauss_r12_ao(D_center, delta, i, j)
enddo
enddo
end function overlap_gauss_r12_ao
end
! --
@ -257,7 +257,7 @@ subroutine overlap_gauss_r12_ao_v(D_center, LD_D, delta, i, j, resv, LD_resv, n_
deallocate(analytical_j)
end subroutine overlap_gauss_r12_ao_v
end
! ---
@ -327,7 +327,7 @@ double precision function overlap_gauss_r12_ao_with1s(B_center, beta, D_center,
enddo
enddo
end function overlap_gauss_r12_ao_with1s
end
! ---
@ -420,7 +420,86 @@ subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, LD_D, delta,
deallocate(fact_g, G_center, analytical_j)
end subroutine overlap_gauss_r12_ao_with1s_v
end
! ---
subroutine overlap_gauss_r12_ao_012(D_center, delta, i, j, ints)
BEGIN_DOC
!
! Computes the following integrals :
!
! ints(1) = $\int_{-\infty}^{infty} dr x^0 * \chi_i(r) \chi_j(r) e^{-\delta (r - D_center)^2}
!
! ints(2) = $\int_{-\infty}^{infty} dr x^1 * \chi_i(r) \chi_j(r) e^{-\delta (r - D_center)^2}
! ints(3) = $\int_{-\infty}^{infty} dr y^1 * \chi_i(r) \chi_j(r) e^{-\delta (r - D_center)^2}
! ints(4) = $\int_{-\infty}^{infty} dr z^1 * \chi_i(r) \chi_j(r) e^{-\delta (r - D_center)^2}
!
! ints(5) = $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) e^{-\delta (r - D_center)^2}
! ints(6) = $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) e^{-\delta (r - D_center)^2}
! ints(7) = $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) e^{-\delta (r - D_center)^2}
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i, j
double precision, intent(in) :: delta, D_center(3)
double precision, intent(out) :: ints(7)
integer :: k, l, m
integer :: power_A(3), power_B(3), power_A1(3), power_A2(3)
double precision :: A_center(3), B_center(3), alpha, beta, coef1, coef
double precision :: integral0, integral1, integral2
double precision, external :: overlap_gauss_r12
ints = 0.d0
if(ao_overlap_abs(j,i).lt.1.d-12) then
return
endif
power_A(1:3) = ao_power(i,1:3)
power_B(1:3) = ao_power(j,1:3)
A_center(1:3) = nucl_coord(ao_nucl(i),1:3)
B_center(1:3) = nucl_coord(ao_nucl(j),1:3)
do l = 1, ao_prim_num(i)
alpha = ao_expo_ordered_transp (l,i)
coef1 = ao_coef_normalized_ordered_transp(l,i)
do k = 1, ao_prim_num(j)
beta = ao_expo_ordered_transp(k,j)
coef = coef1 * ao_coef_normalized_ordered_transp(k,j)
if(dabs(coef) .lt. 1d-12) cycle
integral0 = overlap_gauss_r12(D_center, delta, A_center, B_center, power_A, power_B, alpha, beta)
ints(1) += coef * integral0
do m = 1, 3
power_A1 = power_A
power_A1(m) += 1
integral1 = overlap_gauss_r12(D_center, delta, A_center, B_center, power_A1, power_B, alpha, beta)
ints(1+m) += coef * (integral1 + A_center(m)*integral0)
power_A2 = power_A
power_A2(m) += 2
integral2 = overlap_gauss_r12(D_center, delta, A_center, B_center, power_A2, power_B, alpha, beta)
ints(4+m) += coef * (integral2 + A_center(m) * (2.d0*integral1 + A_center(m)*integral0))
enddo
enddo ! k
enddo ! l
return
end
! ---

View File

@ -1,11 +1,11 @@
! ---
BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, int2_grad1u2_grad2u2_env2_test, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! -\frac{1}{4} x int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [1 - erf(mu r12)]^2
! -\frac{1}{4} x int dr2 phi_i(r2) phi_j(r2) 1s_env(r2)^2 [1 - erf(mu r12)]^2
!
END_DOC
@ -15,29 +15,29 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test, (ao_num, ao_n
double precision :: coef, beta, B_center(3)
double precision :: tmp
double precision :: wall0, wall1
double precision :: int_gauss, dsqpi_3_2, int_j1b
double precision :: int_gauss, dsqpi_3_2, int_env
double precision :: factor_ij_1s, beta_ij, center_ij_1s(3), sq_pi_3_2
double precision, allocatable :: int_fit_v(:)
double precision, external :: overlap_gauss_r12_ao
double precision, external :: overlap_gauss_r12_ao_with1s
print*, ' providing int2_grad1u2_grad2u2_j1b2_test ...'
print*, ' providing int2_grad1u2_grad2u2_env2_test ...'
sq_pi_3_2 = (dacos(-1.d0))**(1.5d0)
provide mu_erf final_grid_points_transp j1b_pen List_comb_thr_b3_coef
provide mu_erf final_grid_points_transp List_comb_thr_b3_coef
call wall_time(wall0)
int2_grad1u2_grad2u2_j1b2_test(:,:,:) = 0.d0
int2_grad1u2_grad2u2_env2_test(:,:,:) = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit_v, tmp,int_gauss,int_j1b,factor_ij_1s,beta_ij,center_ij_1s) &
!$OMP coef_fit, expo_fit, int_fit_v, tmp,int_gauss,int_env,factor_ij_1s,beta_ij,center_ij_1s) &
!$OMP SHARED (n_points_final_grid, ao_num, final_grid_points,List_comb_thr_b3_size, &
!$OMP final_grid_points_transp, ng_fit_jast, &
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo, &
!$OMP List_comb_thr_b3_cent, int2_grad1u2_grad2u2_j1b2_test, ao_abs_comb_b3_j1b, &
!$OMP List_comb_thr_b3_cent, int2_grad1u2_grad2u2_env2_test, ao_abs_comb_b3_env, &
!$OMP ao_overlap_abs,sq_pi_3_2,thrsh_cycle_tc)
!$OMP DO SCHEDULE(dynamic)
do ipoint = 1, n_points_final_grid
@ -54,13 +54,13 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test, (ao_num, ao_n
! i_1s = 1
! --- --- ---
int_j1b = ao_abs_comb_b3_j1b(1,j,i)
int_env = ao_abs_comb_b3_env(1,j,i)
do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_1_erf_x_2(i_fit)
coef_fit = -0.25d0 * coef_gauss_1_erf_x_2(i_fit)
! if(dabs(coef_fit*int_j1b*sq_pi_3_2*(expo_fit)**(-1.5d0)).lt.thrsh_cycle_tc)cycle
! if(dabs(coef_fit*int_env*sq_pi_3_2*(expo_fit)**(-1.5d0)).lt.thrsh_cycle_tc)cycle
int_gauss = overlap_gauss_r12_ao(r, expo_fit, i, j)
int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) += coef_fit * int_gauss
int2_grad1u2_grad2u2_env2_test(j,i,ipoint) += coef_fit * int_gauss
enddo
! --- --- ---
@ -71,7 +71,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test, (ao_num, ao_n
coef = List_comb_thr_b3_coef (i_1s,j,i)
beta = List_comb_thr_b3_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b3_j1b(i_1s,j,i)
int_env = ao_abs_comb_b3_env(i_1s,j,i)
B_center(1) = List_comb_thr_b3_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b3_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b3_cent(3,i_1s,j,i)
@ -81,11 +81,11 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test, (ao_num, ao_n
!DIR$ FORCEINLINE
call gaussian_product(expo_fit,r,beta,B_center,factor_ij_1s,beta_ij,center_ij_1s)
coef_fit = -0.25d0 * coef_gauss_1_erf_x_2(i_fit) * coef
! if(dabs(coef_fit*factor_ij_1s*int_j1b*sq_pi_3_2*(beta_ij)**(-1.5d0)).lt.thrsh_cycle_tc)cycle
! if(dabs(coef_fit*factor_ij_1s*int_env*sq_pi_3_2*(beta_ij)**(-1.5d0)).lt.thrsh_cycle_tc)cycle
! call overlap_gauss_r12_ao_with1s_v(B_center, beta, final_grid_points_transp, &
! expo_fit, i, j, int_fit_v, n_points_final_grid)
int_gauss = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) += coef_fit * int_gauss
int2_grad1u2_grad2u2_env2_test(j,i,ipoint) += coef_fit * int_gauss
enddo
enddo
@ -98,26 +98,26 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test, (ao_num, ao_n
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = 1, i-1
int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) = int2_grad1u2_grad2u2_j1b2_test(i,j,ipoint)
int2_grad1u2_grad2u2_env2_test(j,i,ipoint) = int2_grad1u2_grad2u2_env2_test(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_grad1u2_grad2u2_j1b2_test', wall1 - wall0
print*, ' wall time for int2_grad1u2_grad2u2_env2_test (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test_v, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, int2_grad1u2_grad2u2_env2_test_v, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! BEGIN_DOC
! !
! ! -\frac{1}{4} x int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [1 - erf(mu r12)]^2
! !
! END_DOC
! -\frac{1}{4} x int dr2 phi_i(r2) phi_j(r2) 1s_env(r2)^2 [1 - erf(mu r12)]^2
!
END_DOC
implicit none
integer :: i, j, ipoint, i_1s, i_fit
double precision :: r(3), expo_fit, coef_fit
@ -128,23 +128,23 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test_v, (ao_num, ao
double precision, allocatable :: int_fit_v(:),big_array(:,:,:)
double precision, external :: overlap_gauss_r12_ao_with1s
print*, ' providing int2_grad1u2_grad2u2_j1b2_test_v ...'
print*, ' providing int2_grad1u2_grad2u2_env2_test_v ...'
provide mu_erf final_grid_points_transp j1b_pen
provide mu_erf final_grid_points_transp
call wall_time(wall0)
double precision :: int_j1b
double precision :: int_env
big_array(:,:,:) = 0.d0
allocate(big_array(n_points_final_grid,ao_num, ao_num))
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,&
!$OMP coef_fit, expo_fit, int_fit_v, tmp,int_j1b) &
!$OMP coef_fit, expo_fit, int_fit_v, tmp,int_env) &
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_thr_b3_size,&
!$OMP final_grid_points_transp, ng_fit_jast, &
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo, &
!$OMP List_comb_thr_b3_cent, big_array,&
!$OMP ao_abs_comb_b3_j1b,ao_overlap_abs,thrsh_cycle_tc)
!$OMP ao_abs_comb_b3_env,ao_overlap_abs,thrsh_cycle_tc)
!
allocate(int_fit_v(n_points_final_grid))
!$OMP DO SCHEDULE(dynamic)
@ -159,7 +159,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test_v, (ao_num, ao
coef = List_comb_thr_b3_coef (i_1s,j,i)
beta = List_comb_thr_b3_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b3_j1b(i_1s,j,i)
int_env = ao_abs_comb_b3_env(i_1s,j,i)
B_center(1) = List_comb_thr_b3_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b3_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b3_cent(3,i_1s,j,i)
@ -187,7 +187,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test_v, (ao_num, ao
do i = 1, ao_num
do j = i, ao_num
do ipoint = 1, n_points_final_grid
int2_grad1u2_grad2u2_j1b2_test_v(j,i,ipoint) = big_array(ipoint,j,i)
int2_grad1u2_grad2u2_env2_test_v(j,i,ipoint) = big_array(ipoint,j,i)
enddo
enddo
enddo
@ -195,23 +195,23 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test_v, (ao_num, ao
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_grad1u2_grad2u2_j1b2_test_v(j,i,ipoint) = big_array(ipoint,i,j)
int2_grad1u2_grad2u2_env2_test_v(j,i,ipoint) = big_array(ipoint,i,j)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_grad1u2_grad2u2_j1b2_test_v', wall1 - wall0
print*, ' wall time for int2_grad1u2_grad2u2_env2_test_v (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_u2_j1b2_test, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, int2_u2_env2_test, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [u_12^mu]^2
! int dr2 phi_i(r2) phi_j(r2) 1s_env(r2)^2 [u_12^mu]^2
!
END_DOC
@ -219,29 +219,29 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2_test, (ao_num, ao_num, n_points_
integer :: i, j, ipoint, i_1s, i_fit
double precision :: r(3), int_fit, expo_fit, coef_fit
double precision :: coef, beta, B_center(3), tmp
double precision :: wall0, wall1,int_j1b
double precision :: wall0, wall1,int_env
double precision, external :: overlap_gauss_r12_ao
double precision, external :: overlap_gauss_r12_ao_with1s
double precision :: factor_ij_1s,beta_ij,center_ij_1s(3),sq_pi_3_2
print*, ' providing int2_u2_j1b2_test ...'
print*, ' providing int2_u2_env2_test ...'
sq_pi_3_2 = (dacos(-1.d0))**(1.5d0)
provide mu_erf final_grid_points j1b_pen
provide mu_erf final_grid_points
call wall_time(wall0)
int2_u2_j1b2_test = 0.d0
int2_u2_env2_test = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp, int_j1b,factor_ij_1s,beta_ij,center_ij_1s) &
!$OMP coef_fit, expo_fit, int_fit, tmp, int_env,factor_ij_1s,beta_ij,center_ij_1s) &
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_thr_b3_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo,sq_pi_3_2, &
!$OMP List_comb_thr_b3_cent, int2_u2_j1b2_test,ao_abs_comb_b3_j1b,thrsh_cycle_tc)
!$OMP List_comb_thr_b3_cent, int2_u2_env2_test,ao_abs_comb_b3_env,thrsh_cycle_tc)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
@ -257,12 +257,12 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2_test, (ao_num, ao_num, n_points_
! i_1s = 1
! --- --- ---
int_j1b = ao_abs_comb_b3_j1b(1,j,i)
if(dabs(int_j1b).lt.thrsh_cycle_tc) cycle
int_env = ao_abs_comb_b3_env(1,j,i)
if(dabs(int_env).lt.thrsh_cycle_tc) cycle
do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_j_mu_x_2(i_fit)
coef_fit = coef_gauss_j_mu_x_2(i_fit)
! if(dabs(coef_fit*int_j1b*sq_pi_3_2*(expo_fit)**(-1.5d0)).lt.thrsh_cycle_tc)cycle
! if(dabs(coef_fit*int_env*sq_pi_3_2*(expo_fit)**(-1.5d0)).lt.thrsh_cycle_tc)cycle
int_fit = overlap_gauss_r12_ao(r, expo_fit, i, j)
tmp += coef_fit * int_fit
enddo
@ -275,8 +275,8 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2_test, (ao_num, ao_num, n_points_
coef = List_comb_thr_b3_coef (i_1s,j,i)
beta = List_comb_thr_b3_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b3_j1b(i_1s,j,i)
! if(dabs(coef)*dabs(int_j1b).lt.thrsh_cycle_tc)cycle
int_env = ao_abs_comb_b3_env(i_1s,j,i)
! if(dabs(coef)*dabs(int_env).lt.thrsh_cycle_tc)cycle
B_center(1) = List_comb_thr_b3_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b3_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b3_cent(3,i_1s,j,i)
@ -286,13 +286,13 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2_test, (ao_num, ao_num, n_points_
coef_fit = coef_gauss_j_mu_x_2(i_fit)
!DIR$ FORCEINLINE
call gaussian_product(expo_fit,r,beta,B_center,factor_ij_1s,beta_ij,center_ij_1s)
! if(dabs(coef_fit*coef*factor_ij_1s*int_j1b*sq_pi_3_2*(beta_ij)**(-1.5d0)).lt.thrsh_cycle_tc)cycle
! if(dabs(coef_fit*coef*factor_ij_1s*int_env*sq_pi_3_2*(beta_ij)**(-1.5d0)).lt.thrsh_cycle_tc)cycle
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
tmp += coef * coef_fit * int_fit
enddo
enddo
int2_u2_j1b2_test(j,i,ipoint) = tmp
int2_u2_env2_test(j,i,ipoint) = tmp
enddo
enddo
enddo
@ -302,23 +302,23 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2_test, (ao_num, ao_num, n_points_
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_u2_j1b2_test(j,i,ipoint) = int2_u2_j1b2_test(i,j,ipoint)
int2_u2_env2_test(j,i,ipoint) = int2_u2_env2_test(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_u2_j1b2_test', wall1 - wall0
print*, ' wall time for int2_u2_env2_test (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_test, (ao_num, ao_num, n_points_final_grid, 3)]
BEGIN_PROVIDER [double precision, int2_u_grad1u_x_env2_test, (ao_num,ao_num,n_points_final_grid,3)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 u_12^mu [\grad_1 u_12^mu] r2
! int dr2 phi_i(r2) phi_j(r2) 1s_env(r2)^2 u_12^mu [\grad_1 u_12^mu] r2
!
END_DOC
@ -327,27 +327,27 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_test, (ao_num, ao_num, n
double precision :: r(3), int_fit(3), expo_fit, coef_fit
double precision :: coef, beta, B_center(3), dist
double precision :: alpha_1s, alpha_1s_inv, centr_1s(3), expo_coef_1s, coef_tmp
double precision :: tmp_x, tmp_y, tmp_z, int_j1b
double precision :: tmp_x, tmp_y, tmp_z, int_env
double precision :: wall0, wall1, sq_pi_3_2,sq_alpha
print*, ' providing int2_u_grad1u_x_j1b2_test ...'
print*, ' providing int2_u_grad1u_x_env2_test ...'
sq_pi_3_2 = dacos(-1.D0)**(1.d0)
provide mu_erf final_grid_points j1b_pen
provide mu_erf final_grid_points
call wall_time(wall0)
int2_u_grad1u_x_j1b2_test = 0.d0
int2_u_grad1u_x_env2_test = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, alpha_1s, dist, &
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp, &
!$OMP tmp_x, tmp_y, tmp_z,int_j1b,sq_alpha) &
!$OMP tmp_x, tmp_y, tmp_z,int_env,sq_alpha) &
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_thr_b3_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo, &
!$OMP List_comb_thr_b3_cent, int2_u_grad1u_x_j1b2_test,ao_abs_comb_b3_j1b,sq_pi_3_2,thrsh_cycle_tc)
!$OMP List_comb_thr_b3_cent, int2_u_grad1u_x_env2_test,ao_abs_comb_b3_env,sq_pi_3_2,thrsh_cycle_tc)
!$OMP DO
do ipoint = 1, n_points_final_grid
@ -365,8 +365,8 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_test, (ao_num, ao_num, n
coef = List_comb_thr_b3_coef (i_1s,j,i)
beta = List_comb_thr_b3_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b3_j1b(i_1s,j,i)
if(dabs(coef)*dabs(int_j1b).lt.thrsh_cycle_tc)cycle
int_env = ao_abs_comb_b3_env(i_1s,j,i)
if(dabs(coef)*dabs(int_env).lt.thrsh_cycle_tc)cycle
B_center(1) = List_comb_thr_b3_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b3_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b3_cent(3,i_1s,j,i)
@ -389,7 +389,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_test, (ao_num, ao_num, n
expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist
coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
sq_alpha = alpha_1s_inv * dsqrt(alpha_1s_inv)
! if(dabs(coef_tmp*int_j1b*sq_pi_3_2*sq_alpha) .lt. thrsh_cycle_tc) cycle
! if(dabs(coef_tmp*int_env*sq_pi_3_2*sq_alpha) .lt. thrsh_cycle_tc) cycle
call NAI_pol_x_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r, int_fit)
@ -402,9 +402,9 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_test, (ao_num, ao_num, n
enddo
int2_u_grad1u_x_j1b2_test(j,i,ipoint,1) = tmp_x
int2_u_grad1u_x_j1b2_test(j,i,ipoint,2) = tmp_y
int2_u_grad1u_x_j1b2_test(j,i,ipoint,3) = tmp_z
int2_u_grad1u_x_env2_test(j,i,ipoint,1) = tmp_x
int2_u_grad1u_x_env2_test(j,i,ipoint,2) = tmp_y
int2_u_grad1u_x_env2_test(j,i,ipoint,3) = tmp_z
enddo
enddo
enddo
@ -414,24 +414,25 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_test, (ao_num, ao_num, n
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_u_grad1u_x_j1b2_test(j,i,ipoint,1) = int2_u_grad1u_x_j1b2_test(i,j,ipoint,1)
int2_u_grad1u_x_j1b2_test(j,i,ipoint,2) = int2_u_grad1u_x_j1b2_test(i,j,ipoint,2)
int2_u_grad1u_x_j1b2_test(j,i,ipoint,3) = int2_u_grad1u_x_j1b2_test(i,j,ipoint,3)
int2_u_grad1u_x_env2_test(j,i,ipoint,1) = int2_u_grad1u_x_env2_test(i,j,ipoint,1)
int2_u_grad1u_x_env2_test(j,i,ipoint,2) = int2_u_grad1u_x_env2_test(i,j,ipoint,2)
int2_u_grad1u_x_env2_test(j,i,ipoint,3) = int2_u_grad1u_x_env2_test(i,j,ipoint,3)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_u_grad1u_x_j1b2_test', wall1 - wall0
print*, ' wall time for int2_u_grad1u_x_env2_test (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, int2_u_grad1u_env2_test, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 u_12^mu [\grad_1 u_12^mu]
! int dr2 phi_i(r2) phi_j(r2) 1s_env(r2)^2 u_12^mu [\grad_1 u_12^mu]
!
END_DOC
@ -442,31 +443,31 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
double precision :: alpha_1s, alpha_1s_inv, centr_1s(3), expo_coef_1s, tmp
double precision :: wall0, wall1
double precision, external :: NAI_pol_mult_erf_ao_with1s
double precision :: j12_mu_r12,int_j1b
double precision :: j12_mu_r12,int_env
double precision :: sigma_ij,dist_ij_ipoint,dsqpi_3_2
double precision :: beta_ij,center_ij_1s(3),factor_ij_1s
print*, ' providing int2_u_grad1u_j1b2_test ...'
print*, ' providing int2_u_grad1u_env2_test ...'
dsqpi_3_2 = (dacos(-1.d0))**(1.5d0)
provide mu_erf final_grid_points j1b_pen ao_overlap_abs List_comb_thr_b3_cent
provide mu_erf final_grid_points ao_overlap_abs List_comb_thr_b3_cent
call wall_time(wall0)
int2_u_grad1u_j1b2_test = 0.d0
int2_u_grad1u_env2_test = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp, alpha_1s, dist, &
!$OMP beta_ij,center_ij_1s,factor_ij_1s, &
!$OMP int_j1b,alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp) &
!$OMP int_env,alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_thr_b3_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
!$OMP ao_prod_dist_grid, ao_prod_sigma, ao_overlap_abs_grid,ao_prod_center,dsqpi_3_2, &
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo, ao_abs_comb_b3_j1b, &
!$OMP List_comb_thr_b3_cent, int2_u_grad1u_j1b2_test,thrsh_cycle_tc)
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo, ao_abs_comb_b3_env, &
!$OMP List_comb_thr_b3_cent, int2_u_grad1u_env2_test,thrsh_cycle_tc)
!$OMP DO
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
@ -484,11 +485,9 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
! i_1s = 1
! --- --- ---
int_j1b = ao_abs_comb_b3_j1b(1,j,i)
! if(dabs(int_j1b).lt.thrsh_cycle_tc) cycle
int_env = ao_abs_comb_b3_env(1,j,i)
do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_j_mu_1_erf(i_fit)
! if(dabs(int_j1b)*dsqpi_3_2*expo_fit**(-1.5d0).lt.thrsh_cycle_tc) cycle
coef_fit = coef_gauss_j_mu_1_erf(i_fit)
int_fit = NAI_pol_mult_erf_ao_with1s(i, j, expo_fit, r, 1.d+9, r)
tmp += coef_fit * int_fit
@ -502,8 +501,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
coef = List_comb_thr_b3_coef (i_1s,j,i)
beta = List_comb_thr_b3_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b3_j1b(i_1s,j,i)
! if(dabs(coef)*dabs(int_j1b).lt.thrsh_cycle_tc)cycle
int_env = ao_abs_comb_b3_env(i_1s,j,i)
B_center(1) = List_comb_thr_b3_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b3_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b3_cent(3,i_1s,j,i)
@ -513,7 +511,6 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_j_mu_1_erf(i_fit)
call gaussian_product(expo_fit,r,beta,B_center,factor_ij_1s,beta_ij,center_ij_1s)
! if(factor_ij_1s*dabs(coef*int_j1b)*dsqpi_3_2*beta_ij**(-1.5d0).lt.thrsh_cycle_tc)cycle
coef_fit = coef_gauss_j_mu_1_erf(i_fit)
alpha_1s = beta + expo_fit
@ -533,7 +530,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
enddo
enddo
int2_u_grad1u_j1b2_test(j,i,ipoint) = tmp
int2_u_grad1u_env2_test(j,i,ipoint) = tmp
enddo
enddo
enddo
@ -543,14 +540,15 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_u_grad1u_j1b2_test(j,i,ipoint) = int2_u_grad1u_j1b2_test(i,j,ipoint)
int2_u_grad1u_env2_test(j,i,ipoint) = int2_u_grad1u_env2_test(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_u_grad1u_j1b2_test', wall1 - wall0
print*, ' wall time for int2_u_grad1u_env2_test (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---

View File

@ -6,7 +6,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2, (ao_num, ao_num, n_poin
BEGIN_DOC
!
! -\frac{1}{4} x int dr2 phi_i(r2) phi_j(r2) [1 - erf(mu r12)]^2
! \frac{1}{4} x int dr2 phi_i(r2) phi_j(r2) [1 - erf(mu r12)]^2
!
END_DOC
@ -21,7 +21,8 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2, (ao_num, ao_num, n_poin
print*, ' providing int2_grad1u2_grad2u2 ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
provide mu_erf
provide final_grid_points
int2_grad1u2_grad2u2 = 0.d0
@ -44,7 +45,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2, (ao_num, ao_num, n_poin
expo_fit = expo_gauss_1_erf_x_2(i_fit)
coef_fit = coef_gauss_1_erf_x_2(i_fit)
tmp += -0.25d0 * coef_fit * overlap_gauss_r12_ao(r, expo_fit, i, j)
tmp += 0.25d0 * coef_fit * overlap_gauss_r12_ao(r, expo_fit, i, j)
enddo
int2_grad1u2_grad2u2(j,i,ipoint) = tmp
@ -63,17 +64,17 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2, (ao_num, ao_num, n_poin
enddo
call wall_time(wall1)
print*, ' wall time for int2_grad1u2_grad2u2 =', wall1 - wall0
print*, ' wall time for int2_grad1u2_grad2u2 (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, int2_grad1u2_grad2u2_env2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! -\frac{1}{4} x int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [1 - erf(mu r12)]^2
! -\frac{1}{4} x int dr2 phi_i(r2) phi_j(r2) 1s_env(r2)^2 [1 - erf(mu r12)]^2
!
END_DOC
@ -87,21 +88,22 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
double precision, external :: overlap_gauss_r12_ao
double precision, external :: overlap_gauss_r12_ao_with1s
print*, ' providing int2_grad1u2_grad2u2_j1b2 ...'
print*, ' providing int2_grad1u2_grad2u2_env2 ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
provide mu_erf
provide final_grid_points
int2_grad1u2_grad2u2_j1b2 = 0.d0
int2_grad1u2_grad2u2_env2 = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
!$OMP SHARED (n_points_final_grid, ao_num, List_env1s_square_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2)
!$OMP List_env1s_square_coef, List_env1s_square_expo, &
!$OMP List_env1s_square_cent, int2_grad1u2_grad2u2_env2)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
@ -125,14 +127,14 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
! ---
do i_1s = 2, List_all_comb_b3_size
do i_1s = 2, List_env1s_square_size
coef = List_all_comb_b3_coef (i_1s)
coef = List_env1s_square_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
B_center(3) = List_all_comb_b3_cent(3,i_1s)
beta = List_env1s_square_expo (i_1s)
B_center(1) = List_env1s_square_cent(1,i_1s)
B_center(2) = List_env1s_square_cent(2,i_1s)
B_center(3) = List_env1s_square_cent(3,i_1s)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
@ -143,7 +145,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
enddo
int2_grad1u2_grad2u2_j1b2(j,i,ipoint) = tmp
int2_grad1u2_grad2u2_env2(j,i,ipoint) = tmp
enddo
enddo
enddo
@ -153,23 +155,23 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_grad1u2_grad2u2_j1b2(j,i,ipoint) = int2_grad1u2_grad2u2_j1b2(i,j,ipoint)
int2_grad1u2_grad2u2_env2(j,i,ipoint) = int2_grad1u2_grad2u2_env2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_grad1u2_grad2u2_j1b2 =', wall1 - wall0
print*, ' wall time for int2_grad1u2_grad2u2_env2 (min) =', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, int2_u2_env2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [u_12^mu]^2
! int dr2 phi_i(r2) phi_j(r2) 1s_env(r2)^2 [u_12^mu]^2
!
END_DOC
@ -182,21 +184,22 @@ BEGIN_PROVIDER [double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final_
double precision, external :: overlap_gauss_r12_ao
double precision, external :: overlap_gauss_r12_ao_with1s
print*, ' providing int2_u2_j1b2 ...'
print*, ' providing int2_u2_env2 ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
provide mu_erf
provide final_grid_points
int2_u2_j1b2 = 0.d0
int2_u2_env2 = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
!$OMP SHARED (n_points_final_grid, ao_num, List_env1s_square_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_u2_j1b2)
!$OMP List_env1s_square_coef, List_env1s_square_expo, &
!$OMP List_env1s_square_cent, int2_u2_env2)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
@ -220,14 +223,14 @@ BEGIN_PROVIDER [double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final_
! ---
do i_1s = 2, List_all_comb_b3_size
do i_1s = 2, List_env1s_square_size
coef = List_all_comb_b3_coef (i_1s)
coef = List_env1s_square_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
B_center(3) = List_all_comb_b3_cent(3,i_1s)
beta = List_env1s_square_expo (i_1s)
B_center(1) = List_env1s_square_cent(1,i_1s)
B_center(2) = List_env1s_square_cent(2,i_1s)
B_center(3) = List_env1s_square_cent(3,i_1s)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
@ -238,7 +241,7 @@ BEGIN_PROVIDER [double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final_
enddo
int2_u2_j1b2(j,i,ipoint) = tmp
int2_u2_env2(j,i,ipoint) = tmp
enddo
enddo
enddo
@ -248,23 +251,23 @@ BEGIN_PROVIDER [double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final_
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_u2_j1b2(j,i,ipoint) = int2_u2_j1b2(i,j,ipoint)
int2_u2_env2(j,i,ipoint) = int2_u2_env2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_u2_j1b2', wall1 - wall0
print*, ' wall time for int2_u2_env2 (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (ao_num, ao_num, n_points_final_grid, 3)]
BEGIN_PROVIDER [double precision, int2_u_grad1u_x_env2, (ao_num, ao_num, n_points_final_grid, 3)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 u_12^mu [\grad_1 u_12^mu] r2
! int dr2 phi_i(r2) phi_j(r2) 1s_env(r2)^2 u_12^mu [\grad_1 u_12^mu] r2
!
END_DOC
@ -276,23 +279,24 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (ao_num, ao_num, n_poin
double precision :: tmp_x, tmp_y, tmp_z
double precision :: wall0, wall1
print*, ' providing int2_u_grad1u_x_j1b2 ...'
print*, ' providing int2_u_grad1u_x_env2 ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
provide mu_erf
provide final_grid_points
int2_u_grad1u_x_j1b2 = 0.d0
int2_u_grad1u_x_env2 = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, alpha_1s, dist, &
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp, &
!$OMP tmp_x, tmp_y, tmp_z) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
!$OMP SHARED (n_points_final_grid, ao_num, List_env1s_square_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_u_grad1u_x_j1b2)
!$OMP List_env1s_square_coef, List_env1s_square_expo, &
!$OMP List_env1s_square_cent, int2_u_grad1u_x_env2)
!$OMP DO
do ipoint = 1, n_points_final_grid
@ -321,14 +325,14 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (ao_num, ao_num, n_poin
! ---
do i_1s = 2, List_all_comb_b3_size
do i_1s = 2, List_env1s_square_size
coef = List_all_comb_b3_coef (i_1s)
coef = List_env1s_square_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
B_center(3) = List_all_comb_b3_cent(3,i_1s)
beta = List_env1s_square_expo (i_1s)
B_center(1) = List_env1s_square_cent(1,i_1s)
B_center(2) = List_env1s_square_cent(2,i_1s)
B_center(3) = List_env1s_square_cent(3,i_1s)
dist = (B_center(1) - r(1)) * (B_center(1) - r(1)) &
+ (B_center(2) - r(2)) * (B_center(2) - r(2)) &
+ (B_center(3) - r(3)) * (B_center(3) - r(3))
@ -355,9 +359,9 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (ao_num, ao_num, n_poin
enddo
int2_u_grad1u_x_j1b2(j,i,ipoint,1) = tmp_x
int2_u_grad1u_x_j1b2(j,i,ipoint,2) = tmp_y
int2_u_grad1u_x_j1b2(j,i,ipoint,3) = tmp_z
int2_u_grad1u_x_env2(j,i,ipoint,1) = tmp_x
int2_u_grad1u_x_env2(j,i,ipoint,2) = tmp_y
int2_u_grad1u_x_env2(j,i,ipoint,3) = tmp_z
enddo
enddo
enddo
@ -367,25 +371,25 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (ao_num, ao_num, n_poin
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_u_grad1u_x_j1b2(j,i,ipoint,1) = int2_u_grad1u_x_j1b2(i,j,ipoint,1)
int2_u_grad1u_x_j1b2(j,i,ipoint,2) = int2_u_grad1u_x_j1b2(i,j,ipoint,2)
int2_u_grad1u_x_j1b2(j,i,ipoint,3) = int2_u_grad1u_x_j1b2(i,j,ipoint,3)
int2_u_grad1u_x_env2(j,i,ipoint,1) = int2_u_grad1u_x_env2(i,j,ipoint,1)
int2_u_grad1u_x_env2(j,i,ipoint,2) = int2_u_grad1u_x_env2(i,j,ipoint,2)
int2_u_grad1u_x_env2(j,i,ipoint,3) = int2_u_grad1u_x_env2(i,j,ipoint,3)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_u_grad1u_x_j1b2 = ', wall1 - wall0
print*, ' wall time for int2_u_grad1u_x_env2 (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [ double precision, int2_u_grad1u_env2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 u_12^mu [\grad_1 u_12^mu]
! int dr2 phi_i(r2) phi_j(r2) 1s_env(r2)^2 u_12^mu [\grad_1 u_12^mu]
!
END_DOC
@ -397,22 +401,23 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
double precision :: wall0, wall1
double precision, external :: NAI_pol_mult_erf_ao_with1s
print*, ' providing int2_u_grad1u_j1b2 ...'
print*, ' providing int2_u_grad1u_env2 ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
provide mu_erf
provide final_grid_points
int2_u_grad1u_j1b2 = 0.d0
int2_u_grad1u_env2 = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp, alpha_1s, dist, &
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
!$OMP SHARED (n_points_final_grid, ao_num, List_env1s_square_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
!$OMP List_all_comb_b3_cent, int2_u_grad1u_j1b2)
!$OMP List_env1s_square_coef, List_env1s_square_expo, &
!$OMP List_env1s_square_cent, int2_u_grad1u_env2)
!$OMP DO
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
@ -436,14 +441,14 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
! ---
do i_1s = 2, List_all_comb_b3_size
do i_1s = 2, List_env1s_square_size
coef = List_all_comb_b3_coef (i_1s)
coef = List_env1s_square_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
B_center(3) = List_all_comb_b3_cent(3,i_1s)
beta = List_env1s_square_expo (i_1s)
B_center(1) = List_env1s_square_cent(1,i_1s)
B_center(2) = List_env1s_square_cent(2,i_1s)
B_center(3) = List_env1s_square_cent(3,i_1s)
dist = (B_center(1) - r(1)) * (B_center(1) - r(1)) &
+ (B_center(2) - r(2)) * (B_center(2) - r(2)) &
+ (B_center(3) - r(3)) * (B_center(3) - r(3))
@ -468,7 +473,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
enddo
int2_u_grad1u_j1b2(j,i,ipoint) = tmp
int2_u_grad1u_env2(j,i,ipoint) = tmp
enddo
enddo
enddo
@ -478,13 +483,13 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_u_grad1u_j1b2(j,i,ipoint) = int2_u_grad1u_j1b2(i,j,ipoint)
int2_u_grad1u_env2(j,i,ipoint) = int2_u_grad1u_env2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_u_grad1u_j1b2', wall1 - wall0
print*, ' wall time for int2_u_grad1u_env2 (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER

View File

@ -1,453 +0,0 @@
!
!! ---
!
!BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
!
! BEGIN_DOC
! !
! ! -\frac{1}{4} int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [1 - erf(mu r12)]^2
! !
! END_DOC
!
! implicit none
! integer :: i, j, ipoint, i_1s, i_fit
! integer :: i_mask_grid
! double precision :: r(3), expo_fit, coef_fit
! double precision :: coef, beta, B_center(3)
! double precision :: wall0, wall1
!
! integer, allocatable :: n_mask_grid(:)
! double precision, allocatable :: r_mask_grid(:,:)
! double precision, allocatable :: int_fit_v(:)
!
! print*, ' providing int2_grad1u2_grad2u2_j1b2'
!
! provide mu_erf final_grid_points_transp j1b_pen
! call wall_time(wall0)
!
! int2_grad1u2_grad2u2_j1b2(:,:,:) = 0.d0
!
! !$OMP PARALLEL DEFAULT (NONE) &
! !$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,&
! !$OMP coef_fit, expo_fit, int_fit_v, n_mask_grid, &
! !$OMP i_mask_grid, r_mask_grid) &
! !$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size,&
! !$OMP final_grid_points_transp, n_max_fit_slat, &
! !$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
! !$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
! !$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2, &
! !$OMP ao_overlap_abs)
!
! allocate(int_fit_v(n_points_final_grid))
! allocate(n_mask_grid(n_points_final_grid))
! allocate(r_mask_grid(n_points_final_grid,3))
!
! !$OMP DO SCHEDULE(dynamic)
! do i = 1, ao_num
! do j = i, ao_num
!
! if(ao_overlap_abs(j,i) .lt. 1.d-12) then
! cycle
! endif
!
! do i_fit = 1, n_max_fit_slat
!
! expo_fit = expo_gauss_1_erf_x_2(i_fit)
! coef_fit = coef_gauss_1_erf_x_2(i_fit) * (-0.25d0)
!
! ! ---
!
! call overlap_gauss_r12_ao_v(final_grid_points_transp, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, n_points_final_grid)
!
! i_mask_grid = 0 ! dim
! n_mask_grid = 0 ! ind
! r_mask_grid = 0.d0 ! val
! do ipoint = 1, n_points_final_grid
!
! int2_grad1u2_grad2u2_j1b2(j,i,ipoint) += coef_fit * int_fit_v(ipoint)
!
! if(dabs(int_fit_v(ipoint)) .gt. 1d-10) then
! i_mask_grid += 1
! n_mask_grid(i_mask_grid ) = ipoint
! r_mask_grid(i_mask_grid,1) = final_grid_points_transp(ipoint,1)
! r_mask_grid(i_mask_grid,2) = final_grid_points_transp(ipoint,2)
! r_mask_grid(i_mask_grid,3) = final_grid_points_transp(ipoint,3)
! endif
!
! enddo
!
! if(i_mask_grid .eq. 0) cycle
!
! ! ---
!
! do i_1s = 2, List_all_comb_b3_size
!
! coef = List_all_comb_b3_coef (i_1s) * coef_fit
! beta = List_all_comb_b3_expo (i_1s)
! B_center(1) = List_all_comb_b3_cent(1,i_1s)
! B_center(2) = List_all_comb_b3_cent(2,i_1s)
! B_center(3) = List_all_comb_b3_cent(3,i_1s)
!
! call overlap_gauss_r12_ao_with1s_v(B_center, beta, r_mask_grid, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, i_mask_grid)
!
! do ipoint = 1, i_mask_grid
! int2_grad1u2_grad2u2_j1b2(j,i,n_mask_grid(ipoint)) += coef * int_fit_v(ipoint)
! enddo
!
! enddo
!
! ! ---
!
! enddo
! enddo
! enddo
! !$OMP END DO
!
! deallocate(n_mask_grid)
! deallocate(r_mask_grid)
! deallocate(int_fit_v)
!
! !$OMP END PARALLEL
!
! do ipoint = 1, n_points_final_grid
! do i = 2, ao_num
! do j = 1, i-1
! int2_grad1u2_grad2u2_j1b2(j,i,ipoint) = int2_grad1u2_grad2u2_j1b2(i,j,ipoint)
! enddo
! enddo
! enddo
!
! call wall_time(wall1)
! print*, ' wall time for int2_grad1u2_grad2u2_j1b2', wall1 - wall0
!
!END_PROVIDER
!
!! ---
!
!BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
!
! BEGIN_DOC
! !
! ! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 [u_12^mu]^2
! !
! END_DOC
!
! implicit none
! integer :: i, j, ipoint, i_1s, i_fit
! integer :: i_mask_grid
! double precision :: r(3), expo_fit, coef_fit
! double precision :: coef, beta, B_center(3), tmp
! double precision :: wall0, wall1
!
! integer, allocatable :: n_mask_grid(:)
! double precision, allocatable :: r_mask_grid(:,:)
! double precision, allocatable :: int_fit_v(:)
!
! print*, ' providing int2_u2_j1b2'
!
! provide mu_erf final_grid_points_transp j1b_pen
! call wall_time(wall0)
!
! int2_u2_j1b2(:,:,:) = 0.d0
!
! !$OMP PARALLEL DEFAULT (NONE) &
! !$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
! !$OMP coef_fit, expo_fit, int_fit_v, &
! !$OMP i_mask_grid, n_mask_grid, r_mask_grid ) &
! !$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
! !$OMP final_grid_points_transp, n_max_fit_slat, &
! !$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
! !$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
! !$OMP List_all_comb_b3_cent, int2_u2_j1b2)
!
! allocate(n_mask_grid(n_points_final_grid))
! allocate(r_mask_grid(n_points_final_grid,3))
! allocate(int_fit_v(n_points_final_grid))
!
! !$OMP DO SCHEDULE(dynamic)
! do i = 1, ao_num
! do j = i, ao_num
!
! do i_fit = 1, n_max_fit_slat
!
! expo_fit = expo_gauss_j_mu_x_2(i_fit)
! coef_fit = coef_gauss_j_mu_x_2(i_fit)
!
! ! ---
!
! call overlap_gauss_r12_ao_v(final_grid_points_transp, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, n_points_final_grid)
!
! i_mask_grid = 0 ! dim
! n_mask_grid = 0 ! ind
! r_mask_grid = 0.d0 ! val
!
! do ipoint = 1, n_points_final_grid
! int2_u2_j1b2(j,i,ipoint) += coef_fit * int_fit_v(ipoint)
!
! if(dabs(int_fit_v(ipoint)) .gt. 1d-10) then
! i_mask_grid += 1
! n_mask_grid(i_mask_grid ) = ipoint
! r_mask_grid(i_mask_grid,1) = final_grid_points_transp(ipoint,1)
! r_mask_grid(i_mask_grid,2) = final_grid_points_transp(ipoint,2)
! r_mask_grid(i_mask_grid,3) = final_grid_points_transp(ipoint,3)
! endif
! enddo
!
! if(i_mask_grid .eq. 0) cycle
!
! ! ---
!
! do i_1s = 2, List_all_comb_b3_size
!
! coef = List_all_comb_b3_coef (i_1s) * coef_fit
! beta = List_all_comb_b3_expo (i_1s)
! B_center(1) = List_all_comb_b3_cent(1,i_1s)
! B_center(2) = List_all_comb_b3_cent(2,i_1s)
! B_center(3) = List_all_comb_b3_cent(3,i_1s)
!
! call overlap_gauss_r12_ao_with1s_v(B_center, beta, r_mask_grid, n_points_final_grid, expo_fit, i, j, int_fit_v, n_points_final_grid, i_mask_grid)
!
! do ipoint = 1, i_mask_grid
! int2_u2_j1b2(j,i,n_mask_grid(ipoint)) += coef * int_fit_v(ipoint)
! enddo
!
! enddo
!
! ! ---
!
! enddo
! enddo
! enddo
! !$OMP END DO
!
! deallocate(n_mask_grid)
! deallocate(r_mask_grid)
! deallocate(int_fit_v)
!
! !$OMP END PARALLEL
!
! do ipoint = 1, n_points_final_grid
! do i = 2, ao_num
! do j = 1, i-1
! int2_u2_j1b2(j,i,ipoint) = int2_u2_j1b2(i,j,ipoint)
! enddo
! enddo
! enddo
!
! call wall_time(wall1)
! print*, ' wall time for int2_u2_j1b2', wall1 - wall0
!
!END_PROVIDER
!
!! ---
!
!BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (ao_num, ao_num, n_points_final_grid, 3)]
!
! BEGIN_DOC
! !
! ! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2)^2 u_12^mu [\grad_1 u_12^mu] r2
! !
! END_DOC
!
! implicit none
!
! integer :: i, j, ipoint, i_1s, i_fit
! integer :: i_mask_grid1, i_mask_grid2, i_mask_grid3, i_mask_grid(3)
! double precision :: x, y, z, expo_fit, coef_fit
! double precision :: coef, beta, B_center(3)
! double precision :: alpha_1s, alpha_1s_inv, expo_coef_1s
! double precision :: wall0, wall1
!
! integer, allocatable :: n_mask_grid(:,:)
! double precision, allocatable :: r_mask_grid(:,:,:)
! double precision, allocatable :: int_fit_v(:,:), dist(:,:), centr_1s(:,:,:)
!
! print*, ' providing int2_u_grad1u_x_j1b2'
!
! provide mu_erf final_grid_points_transp j1b_pen
! call wall_time(wall0)
!
! int2_u_grad1u_x_j1b2(:,:,:,:) = 0.d0
!
! !$OMP PARALLEL DEFAULT (NONE) &
! !$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, x, y, z, coef, beta, &
! !$OMP coef_fit, expo_fit, int_fit_v, alpha_1s, dist, B_center,&
! !$OMP alpha_1s_inv, centr_1s, expo_coef_1s, &
! !$OMP i_mask_grid1, i_mask_grid2, i_mask_grid3, i_mask_grid, &
! !$OMP n_mask_grid, r_mask_grid) &
! !$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
! !$OMP final_grid_points_transp, n_max_fit_slat, &
! !$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
! !$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
! !$OMP List_all_comb_b3_cent, int2_u_grad1u_x_j1b2)
!
! allocate(dist(n_points_final_grid,3))
! allocate(centr_1s(n_points_final_grid,3,3))
! allocate(n_mask_grid(n_points_final_grid,3))
! allocate(r_mask_grid(n_points_final_grid,3,3))
! allocate(int_fit_v(n_points_final_grid,3))
!
! !$OMP DO SCHEDULE(dynamic)
! do i = 1, ao_num
! do j = i, ao_num
! do i_fit = 1, n_max_fit_slat
!
! expo_fit = expo_gauss_j_mu_1_erf(i_fit)
! coef_fit = coef_gauss_j_mu_1_erf(i_fit)
!
! ! ---
!
! call NAI_pol_x_mult_erf_ao_with1s_v0(i, j, expo_fit, final_grid_points_transp, n_points_final_grid, 1.d+9, final_grid_points_transp, n_points_final_grid, int_fit_v, n_points_final_grid, n_points_final_grid)
!
! i_mask_grid1 = 0 ! dim
! i_mask_grid2 = 0 ! dim
! i_mask_grid3 = 0 ! dim
! n_mask_grid = 0 ! ind
! r_mask_grid = 0.d0 ! val
! do ipoint = 1, n_points_final_grid
!
! ! ---
!
! int2_u_grad1u_x_j1b2(j,i,ipoint,1) += coef_fit * int_fit_v(ipoint,1)
!
! if(dabs(int_fit_v(ipoint,1)) .gt. 1d-10) then
! i_mask_grid1 += 1
! n_mask_grid(i_mask_grid1, 1) = ipoint
! r_mask_grid(i_mask_grid1,1,1) = final_grid_points_transp(ipoint,1)
! r_mask_grid(i_mask_grid1,2,1) = final_grid_points_transp(ipoint,2)
! r_mask_grid(i_mask_grid1,3,1) = final_grid_points_transp(ipoint,3)
! endif
!
! ! ---
!
! int2_u_grad1u_x_j1b2(j,i,ipoint,2) += coef_fit * int_fit_v(ipoint,2)
!
! if(dabs(int_fit_v(ipoint,2)) .gt. 1d-10) then
! i_mask_grid2 += 1
! n_mask_grid(i_mask_grid2, 2) = ipoint
! r_mask_grid(i_mask_grid2,1,2) = final_grid_points_transp(ipoint,1)
! r_mask_grid(i_mask_grid2,2,2) = final_grid_points_transp(ipoint,2)
! r_mask_grid(i_mask_grid2,3,2) = final_grid_points_transp(ipoint,3)
! endif
!
! ! ---
!
! int2_u_grad1u_x_j1b2(j,i,ipoint,3) += coef_fit * int_fit_v(ipoint,3)
!
! if(dabs(int_fit_v(ipoint,3)) .gt. 1d-10) then
! i_mask_grid3 += 1
! n_mask_grid(i_mask_grid3, 3) = ipoint
! r_mask_grid(i_mask_grid3,1,3) = final_grid_points_transp(ipoint,1)
! r_mask_grid(i_mask_grid3,2,3) = final_grid_points_transp(ipoint,2)
! r_mask_grid(i_mask_grid3,3,3) = final_grid_points_transp(ipoint,3)
! endif
!
! ! ---
!
! enddo
!
! if((i_mask_grid1+i_mask_grid2+i_mask_grid3) .eq. 0) cycle
!
! i_mask_grid(1) = i_mask_grid1
! i_mask_grid(2) = i_mask_grid2
! i_mask_grid(3) = i_mask_grid3
!
! ! ---
!
! do i_1s = 2, List_all_comb_b3_size
!
! coef = List_all_comb_b3_coef (i_1s) * coef_fit
! beta = List_all_comb_b3_expo (i_1s)
! B_center(1) = List_all_comb_b3_cent(1,i_1s)
! B_center(2) = List_all_comb_b3_cent(2,i_1s)
! B_center(3) = List_all_comb_b3_cent(3,i_1s)
!
! alpha_1s = beta + expo_fit
! alpha_1s_inv = 1.d0 / alpha_1s
! expo_coef_1s = beta * expo_fit * alpha_1s_inv
!
! do ipoint = 1, i_mask_grid1
!
! x = r_mask_grid(ipoint,1,1)
! y = r_mask_grid(ipoint,2,1)
! z = r_mask_grid(ipoint,3,1)
!
! centr_1s(ipoint,1,1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * x)
! centr_1s(ipoint,2,1) = alpha_1s_inv * (beta * B_center(2) + expo_fit * y)
! centr_1s(ipoint,3,1) = alpha_1s_inv * (beta * B_center(3) + expo_fit * z)
!
! dist(ipoint,1) = (B_center(1) - x) * (B_center(1) - x) + (B_center(2) - y) * (B_center(2) - y) + (B_center(3) - z) * (B_center(3) - z)
! enddo
!
! do ipoint = 1, i_mask_grid2
!
! x = r_mask_grid(ipoint,1,2)
! y = r_mask_grid(ipoint,2,2)
! z = r_mask_grid(ipoint,3,2)
!
! centr_1s(ipoint,1,2) = alpha_1s_inv * (beta * B_center(1) + expo_fit * x)
! centr_1s(ipoint,2,2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * y)
! centr_1s(ipoint,3,2) = alpha_1s_inv * (beta * B_center(3) + expo_fit * z)
!
! dist(ipoint,2) = (B_center(1) - x) * (B_center(1) - x) + (B_center(2) - y) * (B_center(2) - y) + (B_center(3) - z) * (B_center(3) - z)
! enddo
!
! do ipoint = 1, i_mask_grid3
!
! x = r_mask_grid(ipoint,1,3)
! y = r_mask_grid(ipoint,2,3)
! z = r_mask_grid(ipoint,3,3)
!
! centr_1s(ipoint,1,3) = alpha_1s_inv * (beta * B_center(1) + expo_fit * x)
! centr_1s(ipoint,2,3) = alpha_1s_inv * (beta * B_center(2) + expo_fit * y)
! centr_1s(ipoint,3,3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * z)
!
! dist(ipoint,3) = (B_center(1) - x) * (B_center(1) - x) + (B_center(2) - y) * (B_center(2) - y) + (B_center(3) - z) * (B_center(3) - z)
! enddo
!
! call NAI_pol_x_mult_erf_ao_with1s_v(i, j, alpha_1s, centr_1s, n_points_final_grid, 1.d+9, r_mask_grid, n_points_final_grid, int_fit_v, n_points_final_grid, i_mask_grid)
!
! do ipoint = 1, i_mask_grid1
! int2_u_grad1u_x_j1b2(j,i,n_mask_grid(ipoint,1),1) += coef * dexp(-expo_coef_1s * dist(ipoint,1)) * int_fit_v(ipoint,1)
! enddo
!
! do ipoint = 1, i_mask_grid2
! int2_u_grad1u_x_j1b2(j,i,n_mask_grid(ipoint,2),2) += coef * dexp(-expo_coef_1s * dist(ipoint,2)) * int_fit_v(ipoint,2)
! enddo
!
! do ipoint = 1, i_mask_grid3
! int2_u_grad1u_x_j1b2(j,i,n_mask_grid(ipoint,3),3) += coef * dexp(-expo_coef_1s * dist(ipoint,3)) * int_fit_v(ipoint,3)
! enddo
!
! enddo
!
! ! ---
!
! enddo
! enddo
! enddo
! !$OMP END DO
!
! deallocate(dist)
! deallocate(centr_1s)
! deallocate(n_mask_grid)
! deallocate(r_mask_grid)
! deallocate(int_fit_v)
!
! !$OMP END PARALLEL
!
! do ipoint = 1, n_points_final_grid
! do i = 2, ao_num
! do j = 1, i-1
! int2_u_grad1u_x_j1b2(j,i,ipoint,1) = int2_u_grad1u_x_j1b2(i,j,ipoint,1)
! int2_u_grad1u_x_j1b2(j,i,ipoint,2) = int2_u_grad1u_x_j1b2(i,j,ipoint,2)
! int2_u_grad1u_x_j1b2(j,i,ipoint,3) = int2_u_grad1u_x_j1b2(i,j,ipoint,3)
! enddo
! enddo
! enddo
!
! call wall_time(wall1)
! print*, ' wall time for int2_u_grad1u_x_j1b2 =', wall1 - wall0
!
!END_PROVIDER
!

View File

@ -1,11 +1,11 @@
! ---
BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, v_ij_erf_rk_cst_mu_env_test, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr phi_i(r) phi_j(r) 1s_j1b(r) (erf(mu(R) |r - R| - 1) / |r - R|
! int dr phi_i(r) phi_j(r) 1s_env(r) (erf(mu(R) |r - R| - 1) / |r - R|
!
END_DOC
@ -13,24 +13,23 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_num,
integer :: i, j, ipoint, i_1s
double precision :: r(3), int_mu, int_coulomb
double precision :: coef, beta, B_center(3)
double precision :: tmp,int_j1b
double precision :: tmp,int_env
double precision :: wall0, wall1
double precision, external :: NAI_pol_mult_erf_ao_with1s
double precision :: sigma_ij,dist_ij_ipoint,dsqpi_3_2
print*, ' providing v_ij_erf_rk_cst_mu_j1b_test ...'
print*, ' providing v_ij_erf_rk_cst_mu_env_test ...'
dsqpi_3_2 = (dacos(-1.d0))**(1.5d0)
provide mu_erf final_grid_points j1b_pen
call wall_time(wall0)
v_ij_erf_rk_cst_mu_j1b_test = 0.d0
v_ij_erf_rk_cst_mu_env_test = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, int_mu, int_coulomb, tmp, int_j1b)&
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, int_mu, int_coulomb, tmp, int_env)&
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_thr_b2_size, final_grid_points, &
!$OMP List_comb_thr_b2_coef, List_comb_thr_b2_expo, List_comb_thr_b2_cent,ao_abs_comb_b2_j1b, &
!$OMP v_ij_erf_rk_cst_mu_j1b_test, mu_erf, &
!$OMP List_comb_thr_b2_coef, List_comb_thr_b2_expo, List_comb_thr_b2_cent,ao_abs_comb_b2_env, &
!$OMP v_ij_erf_rk_cst_mu_env_test, mu_erf, &
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2,thrsh_cycle_tc)
!$OMP DO
!do ipoint = 1, 10
@ -48,8 +47,8 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_num,
coef = List_comb_thr_b2_coef (i_1s,j,i)
beta = List_comb_thr_b2_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b2_j1b(i_1s,j,i)
! if(dabs(coef)*dabs(int_j1b).lt.thrsh_cycle_tc)cycle
int_env = ao_abs_comb_b2_env(i_1s,j,i)
! if(dabs(coef)*dabs(int_env).lt.thrsh_cycle_tc)cycle
B_center(1) = List_comb_thr_b2_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b2_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b2_cent(3,i_1s,j,i)
@ -60,7 +59,7 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_num,
tmp += coef * (int_mu - int_coulomb)
enddo
v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint) = tmp
v_ij_erf_rk_cst_mu_env_test(j,i,ipoint) = tmp
enddo
enddo
enddo
@ -70,22 +69,22 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_num,
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint) = v_ij_erf_rk_cst_mu_j1b_test(i,j,ipoint)
v_ij_erf_rk_cst_mu_env_test(j,i,ipoint) = v_ij_erf_rk_cst_mu_env_test(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_erf_rk_cst_mu_j1b_test', wall1 - wall0
print*, ' wall time for v_ij_erf_rk_cst_mu_env_test (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_num, n_points_final_grid, 3)]
BEGIN_PROVIDER [double precision, x_v_ij_erf_rk_cst_mu_env_test, (ao_num, ao_num, n_points_final_grid, 3)]
BEGIN_DOC
! int dr x phi_i(r) phi_j(r) 1s_j1b(r) (erf(mu(R) |r - R|) - 1)/|r - R|
! int dr x phi_i(r) phi_j(r) 1s_env(r) (erf(mu(R) |r - R|) - 1)/|r - R|
END_DOC
implicit none
@ -93,23 +92,23 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_nu
double precision :: coef, beta, B_center(3), r(3), ints(3), ints_coulomb(3)
double precision :: tmp_x, tmp_y, tmp_z
double precision :: wall0, wall1
double precision :: sigma_ij,dist_ij_ipoint,dsqpi_3_2,int_j1b,factor_ij_1s,beta_ij,center_ij_1s
double precision :: sigma_ij,dist_ij_ipoint,dsqpi_3_2,int_env,factor_ij_1s,beta_ij,center_ij_1s
print*, ' providing x_v_ij_erf_rk_cst_mu_j1b_test ...'
print*, ' providing x_v_ij_erf_rk_cst_mu_env_test ...'
dsqpi_3_2 = (dacos(-1.d0))**(1.5d0)
provide expo_erfc_mu_gauss ao_prod_sigma ao_prod_center
call wall_time(wall0)
x_v_ij_erf_rk_cst_mu_j1b_test = 0.d0
x_v_ij_erf_rk_cst_mu_env_test = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, ints, ints_coulomb, &
!$OMP int_j1b, tmp_x, tmp_y, tmp_z,factor_ij_1s,beta_ij,center_ij_1s) &
!$OMP int_env, tmp_x, tmp_y, tmp_z,factor_ij_1s,beta_ij,center_ij_1s) &
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_thr_b2_size, final_grid_points,&
!$OMP List_comb_thr_b2_coef, List_comb_thr_b2_expo, List_comb_thr_b2_cent, &
!$OMP x_v_ij_erf_rk_cst_mu_j1b_test, mu_erf,ao_abs_comb_b2_j1b, &
!$OMP x_v_ij_erf_rk_cst_mu_env_test, mu_erf,ao_abs_comb_b2_env, &
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,thrsh_cycle_tc)
! !$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2,expo_erfc_mu_gauss)
!$OMP DO
@ -129,8 +128,8 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_nu
coef = List_comb_thr_b2_coef (i_1s,j,i)
beta = List_comb_thr_b2_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b2_j1b(i_1s,j,i)
! if(dabs(coef)*dabs(int_j1b).lt.thrsh_cycle_tc)cycle
int_env = ao_abs_comb_b2_env(i_1s,j,i)
! if(dabs(coef)*dabs(int_env).lt.thrsh_cycle_tc)cycle
B_center(1) = List_comb_thr_b2_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b2_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b2_cent(3,i_1s,j,i)
@ -143,9 +142,9 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_nu
tmp_z += coef * (ints(3) - ints_coulomb(3))
enddo
x_v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint,1) = tmp_x
x_v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint,2) = tmp_y
x_v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint,3) = tmp_z
x_v_ij_erf_rk_cst_mu_env_test(j,i,ipoint,1) = tmp_x
x_v_ij_erf_rk_cst_mu_env_test(j,i,ipoint,2) = tmp_y
x_v_ij_erf_rk_cst_mu_env_test(j,i,ipoint,3) = tmp_z
enddo
enddo
enddo
@ -155,26 +154,26 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_nu
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
x_v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint,1) = x_v_ij_erf_rk_cst_mu_j1b_test(i,j,ipoint,1)
x_v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint,2) = x_v_ij_erf_rk_cst_mu_j1b_test(i,j,ipoint,2)
x_v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint,3) = x_v_ij_erf_rk_cst_mu_j1b_test(i,j,ipoint,3)
x_v_ij_erf_rk_cst_mu_env_test(j,i,ipoint,1) = x_v_ij_erf_rk_cst_mu_env_test(i,j,ipoint,1)
x_v_ij_erf_rk_cst_mu_env_test(j,i,ipoint,2) = x_v_ij_erf_rk_cst_mu_env_test(i,j,ipoint,2)
x_v_ij_erf_rk_cst_mu_env_test(j,i,ipoint,3) = x_v_ij_erf_rk_cst_mu_env_test(i,j,ipoint,3)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for x_v_ij_erf_rk_cst_mu_j1b_test', wall1 - wall0
print*, ' wall time for x_v_ij_erf_rk_cst_mu_env_test (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
! TODO analytically
BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_test, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_env_test, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12)
! int dr2 phi_i(r2) phi_j(r2) 1s_env(r2) u(mu, r12)
!
END_DOC
@ -185,29 +184,28 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_test, (ao_num, ao_num, n_po
double precision :: tmp
double precision :: wall0, wall1
double precision :: beta_ij_u, factor_ij_1s_u, center_ij_1s_u(3), coeftot
double precision :: sigma_ij, dist_ij_ipoint, dsqpi_3_2, int_j1b
double precision :: sigma_ij, dist_ij_ipoint, dsqpi_3_2, int_env
double precision, external :: overlap_gauss_r12_ao
double precision, external :: overlap_gauss_r12_ao_with1s
print*, ' providing v_ij_u_cst_mu_j1b_test ...'
print*, ' providing v_ij_u_cst_mu_env_test ...'
dsqpi_3_2 = (dacos(-1.d0))**(1.5d0)
provide mu_erf final_grid_points j1b_pen
call wall_time(wall0)
v_ij_u_cst_mu_j1b_test = 0.d0
v_ij_u_cst_mu_env_test = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP beta_ij_u, factor_ij_1s_u, center_ij_1s_u, &
!$OMP coef_fit, expo_fit, int_fit, tmp,coeftot,int_j1b) &
!$OMP coef_fit, expo_fit, int_fit, tmp,coeftot,int_env) &
!$OMP SHARED (n_points_final_grid, ao_num, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
!$OMP List_comb_thr_b2_coef, List_comb_thr_b2_expo,List_comb_thr_b2_size, &
!$OMP List_comb_thr_b2_cent, v_ij_u_cst_mu_j1b_test,ao_abs_comb_b2_j1b, &
!$OMP List_comb_thr_b2_cent, v_ij_u_cst_mu_env_test,ao_abs_comb_b2_env, &
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2,thrsh_cycle_tc)
!$OMP DO
do ipoint = 1, n_points_final_grid
@ -225,8 +223,8 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_test, (ao_num, ao_num, n_po
! i_1s = 1
! --- --- ---
int_j1b = ao_abs_comb_b2_j1b(1,j,i)
! if(dabs(int_j1b).lt.thrsh_cycle_tc) cycle
int_env = ao_abs_comb_b2_env(1,j,i)
! if(dabs(int_env).lt.thrsh_cycle_tc) cycle
do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_j_mu_x(i_fit)
coef_fit = coef_gauss_j_mu_x(i_fit)
@ -242,8 +240,8 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_test, (ao_num, ao_num, n_po
do i_1s = 2, List_comb_thr_b2_size(j,i)
coef = List_comb_thr_b2_coef (i_1s,j,i)
beta = List_comb_thr_b2_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b2_j1b(i_1s,j,i)
! if(dabs(coef)*dabs(int_j1b).lt.thrsh_cycle_tc)cycle
int_env = ao_abs_comb_b2_env(i_1s,j,i)
! if(dabs(coef)*dabs(int_env).lt.thrsh_cycle_tc)cycle
B_center(1) = List_comb_thr_b2_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b2_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b2_cent(3,i_1s,j,i)
@ -259,7 +257,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_test, (ao_num, ao_num, n_po
enddo
enddo
v_ij_u_cst_mu_j1b_test(j,i,ipoint) = tmp
v_ij_u_cst_mu_env_test(j,i,ipoint) = tmp
enddo
enddo
enddo
@ -269,23 +267,23 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_test, (ao_num, ao_num, n_po
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_u_cst_mu_j1b_test(j,i,ipoint) = v_ij_u_cst_mu_j1b_test(i,j,ipoint)
v_ij_u_cst_mu_env_test(j,i,ipoint) = v_ij_u_cst_mu_env_test(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_u_cst_mu_j1b_test', wall1 - wall0
print*, ' wall time for v_ij_u_cst_mu_env_test (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_ng_1_test, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_env_ng_1_test, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12) with u(mu,r12) \approx 1/2 mu e^{-2.5 * mu (r12)^2}
! int dr2 phi_i(r2) phi_j(r2) 1s_env(r2) u(mu, r12) with u(mu,r12) \approx 1/2 mu e^{-2.5 * mu (r12)^2}
!
END_DOC
@ -296,27 +294,26 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_ng_1_test, (ao_num, ao_num,
double precision :: tmp
double precision :: wall0, wall1
double precision :: beta_ij_u, factor_ij_1s_u, center_ij_1s_u(3), coeftot
double precision :: sigma_ij, dist_ij_ipoint, dsqpi_3_2, int_j1b
double precision :: sigma_ij, dist_ij_ipoint, dsqpi_3_2, int_env
double precision, external :: overlap_gauss_r12_ao
double precision, external :: overlap_gauss_r12_ao_with1s
dsqpi_3_2 = (dacos(-1.d0))**(1.5d0)
provide mu_erf final_grid_points j1b_pen
call wall_time(wall0)
v_ij_u_cst_mu_j1b_ng_1_test = 0.d0
v_ij_u_cst_mu_env_ng_1_test = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, &
!$OMP beta_ij_u, factor_ij_1s_u, center_ij_1s_u, &
!$OMP coef_fit, expo_fit, int_fit, tmp,coeftot,int_j1b) &
!$OMP coef_fit, expo_fit, int_fit, tmp,coeftot,int_env) &
!$OMP SHARED (n_points_final_grid, ao_num, &
!$OMP final_grid_points, expo_good_j_mu_1gauss,coef_good_j_mu_1gauss, &
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
!$OMP List_comb_thr_b2_coef, List_comb_thr_b2_expo,List_comb_thr_b2_size, &
!$OMP List_comb_thr_b2_cent, v_ij_u_cst_mu_j1b_ng_1_test,ao_abs_comb_b2_j1b, &
!$OMP List_comb_thr_b2_cent, v_ij_u_cst_mu_env_ng_1_test,ao_abs_comb_b2_env, &
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2,thrsh_cycle_tc)
!$OMP DO
do ipoint = 1, n_points_final_grid
@ -334,8 +331,8 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_ng_1_test, (ao_num, ao_num,
! i_1s = 1
! --- --- ---
int_j1b = ao_abs_comb_b2_j1b(1,j,i)
! if(dabs(int_j1b).lt.thrsh_cycle_tc) cycle
int_env = ao_abs_comb_b2_env(1,j,i)
! if(dabs(int_env).lt.thrsh_cycle_tc) cycle
expo_fit = expo_good_j_mu_1gauss
int_fit = overlap_gauss_r12_ao(r, expo_fit, i, j)
tmp += int_fit
@ -347,8 +344,8 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_ng_1_test, (ao_num, ao_num,
do i_1s = 2, List_comb_thr_b2_size(j,i)
coef = List_comb_thr_b2_coef (i_1s,j,i)
beta = List_comb_thr_b2_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b2_j1b(i_1s,j,i)
! if(dabs(coef)*dabs(int_j1b).lt.thrsh_cycle_tc)cycle
int_env = ao_abs_comb_b2_env(i_1s,j,i)
! if(dabs(coef)*dabs(int_env).lt.thrsh_cycle_tc)cycle
B_center(1) = List_comb_thr_b2_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b2_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b2_cent(3,i_1s,j,i)
@ -364,7 +361,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_ng_1_test, (ao_num, ao_num,
! enddo
enddo
v_ij_u_cst_mu_j1b_ng_1_test(j,i,ipoint) = tmp
v_ij_u_cst_mu_env_ng_1_test(j,i,ipoint) = tmp
enddo
enddo
enddo
@ -374,13 +371,13 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_ng_1_test, (ao_num, ao_num,
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_u_cst_mu_j1b_ng_1_test(j,i,ipoint) = v_ij_u_cst_mu_j1b_ng_1_test(i,j,ipoint)
v_ij_u_cst_mu_env_ng_1_test(j,i,ipoint) = v_ij_u_cst_mu_env_ng_1_test(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_u_cst_mu_j1b_ng_1_test', wall1 - wall0
print*, ' wall time for v_ij_u_cst_mu_env_ng_1_test (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER

View File

@ -1,11 +1,11 @@
! ---
BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, v_ij_erf_rk_cst_mu_env, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr phi_i(r) phi_j(r) 1s_j1b(r) (erf(mu(R) |r - R| - 1) / |r - R|
! int dr phi_i(r) phi_j(r) 1s_env(r) (erf(mu(R) |r - R| - 1) / |r - R|
!
END_DOC
@ -17,18 +17,20 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_po
double precision :: wall0, wall1
double precision, external :: NAI_pol_mult_erf_ao_with1s
print *, ' providing v_ij_erf_rk_cst_mu_j1b ...'
PROVIDE mu_erf
PROVIDE final_grid_points
PROVIDE env_expo
print *, ' providing v_ij_erf_rk_cst_mu_env ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
v_ij_erf_rk_cst_mu_j1b = 0.d0
v_ij_erf_rk_cst_mu_env = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, int_mu, int_coulomb, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, final_grid_points, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, List_all_comb_b2_cent, &
!$OMP v_ij_erf_rk_cst_mu_j1b, mu_erf)
!$OMP SHARED (n_points_final_grid, ao_num, List_env1s_size, final_grid_points, &
!$OMP List_env1s_coef, List_env1s_expo, List_env1s_cent, &
!$OMP v_ij_erf_rk_cst_mu_env, mu_erf)
!$OMP DO
!do ipoint = 1, 10
do ipoint = 1, n_points_final_grid
@ -43,28 +45,27 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_po
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
coef = List_env1s_coef (1)
beta = List_env1s_expo (1)
B_center(1) = List_env1s_cent(1,1)
B_center(2) = List_env1s_cent(2,1)
B_center(3) = List_env1s_cent(3,1)
int_mu = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
int_coulomb = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
! if(dabs(coef)*dabs(int_mu - int_coulomb) .lt. 1d-12) cycle
tmp += coef * (int_mu - int_coulomb)
! ---
do i_1s = 2, List_all_comb_b2_size
do i_1s = 2, List_env1s_size
coef = List_all_comb_b2_coef (i_1s)
coef = List_env1s_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
beta = List_env1s_expo (i_1s)
B_center(1) = List_env1s_cent(1,i_1s)
B_center(2) = List_env1s_cent(2,i_1s)
B_center(3) = List_env1s_cent(3,i_1s)
int_mu = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
int_coulomb = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
@ -74,7 +75,7 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_po
! ---
v_ij_erf_rk_cst_mu_j1b(j,i,ipoint) = tmp
v_ij_erf_rk_cst_mu_env(j,i,ipoint) = tmp
enddo
enddo
enddo
@ -84,22 +85,22 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_po
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_erf_rk_cst_mu_j1b(j,i,ipoint) = v_ij_erf_rk_cst_mu_j1b(i,j,ipoint)
v_ij_erf_rk_cst_mu_env(j,i,ipoint) = v_ij_erf_rk_cst_mu_env(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_erf_rk_cst_mu_j1b', wall1 - wall0
print*, ' wall time for v_ij_erf_rk_cst_mu_env (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_points_final_grid, 3)]
BEGIN_PROVIDER [double precision, x_v_ij_erf_rk_cst_mu_env, (ao_num, ao_num, n_points_final_grid, 3)]
BEGIN_DOC
! int dr x phi_i(r) phi_j(r) 1s_j1b(r) (erf(mu(R) |r - R|) - 1)/|r - R|
! int dr x phi_i(r) phi_j(r) 1s_env(r) (erf(mu(R) |r - R|) - 1)/|r - R|
END_DOC
implicit none
@ -108,17 +109,17 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_
double precision :: tmp_x, tmp_y, tmp_z
double precision :: wall0, wall1
print*, ' providing x_v_ij_erf_rk_cst_mu_j1b ...'
print*, ' providing x_v_ij_erf_rk_cst_mu_env ...'
call wall_time(wall0)
x_v_ij_erf_rk_cst_mu_j1b = 0.d0
x_v_ij_erf_rk_cst_mu_env = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, ints, ints_coulomb, &
!$OMP tmp_x, tmp_y, tmp_z) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, final_grid_points,&
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, List_all_comb_b2_cent, &
!$OMP x_v_ij_erf_rk_cst_mu_j1b, mu_erf)
!$OMP SHARED (n_points_final_grid, ao_num, List_env1s_size, final_grid_points,&
!$OMP List_env1s_coef, List_env1s_expo, List_env1s_cent, &
!$OMP x_v_ij_erf_rk_cst_mu_env, mu_erf)
!$OMP DO
!do ipoint = 1, 10
do ipoint = 1, n_points_final_grid
@ -135,11 +136,11 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
coef = List_env1s_coef (1)
beta = List_env1s_expo (1)
B_center(1) = List_env1s_cent(1,1)
B_center(2) = List_env1s_cent(2,1)
B_center(3) = List_env1s_cent(3,1)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, ints )
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, ints_coulomb)
@ -152,14 +153,14 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_
! ---
do i_1s = 2, List_all_comb_b2_size
do i_1s = 2, List_env1s_size
coef = List_all_comb_b2_coef (i_1s)
coef = List_env1s_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
beta = List_env1s_expo (i_1s)
B_center(1) = List_env1s_cent(1,i_1s)
B_center(2) = List_env1s_cent(2,i_1s)
B_center(3) = List_env1s_cent(3,i_1s)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, ints )
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, ints_coulomb)
@ -171,9 +172,9 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_
! ---
x_v_ij_erf_rk_cst_mu_j1b(j,i,ipoint,1) = tmp_x
x_v_ij_erf_rk_cst_mu_j1b(j,i,ipoint,2) = tmp_y
x_v_ij_erf_rk_cst_mu_j1b(j,i,ipoint,3) = tmp_z
x_v_ij_erf_rk_cst_mu_env(j,i,ipoint,1) = tmp_x
x_v_ij_erf_rk_cst_mu_env(j,i,ipoint,2) = tmp_y
x_v_ij_erf_rk_cst_mu_env(j,i,ipoint,3) = tmp_z
enddo
enddo
enddo
@ -183,25 +184,25 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
x_v_ij_erf_rk_cst_mu_j1b(j,i,ipoint,1) = x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,1)
x_v_ij_erf_rk_cst_mu_j1b(j,i,ipoint,2) = x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,2)
x_v_ij_erf_rk_cst_mu_j1b(j,i,ipoint,3) = x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,3)
x_v_ij_erf_rk_cst_mu_env(j,i,ipoint,1) = x_v_ij_erf_rk_cst_mu_env(i,j,ipoint,1)
x_v_ij_erf_rk_cst_mu_env(j,i,ipoint,2) = x_v_ij_erf_rk_cst_mu_env(i,j,ipoint,2)
x_v_ij_erf_rk_cst_mu_env(j,i,ipoint,3) = x_v_ij_erf_rk_cst_mu_env(i,j,ipoint,3)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for x_v_ij_erf_rk_cst_mu_j1b =', wall1 - wall0
print*, ' wall time for x_v_ij_erf_rk_cst_mu_env (min) =', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_fit, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_env_fit, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12)
! int dr2 phi_i(r2) phi_j(r2) 1s_env(r2) u(mu, r12)
!
END_DOC
@ -214,23 +215,23 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_fit, (ao_num, ao_num, n_poi
double precision, external :: overlap_gauss_r12_ao_with1s
print*, ' providing v_ij_u_cst_mu_j1b_fit ...'
print*, ' providing v_ij_u_cst_mu_env_fit ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
provide mu_erf final_grid_points env_expo
PROVIDE ng_fit_jast expo_gauss_j_mu_x coef_gauss_j_mu_x
PROVIDE List_all_comb_b2_size List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
PROVIDE List_env1s_size List_env1s_coef List_env1s_expo List_env1s_cent
v_ij_u_cst_mu_j1b_fit = 0.d0
v_ij_u_cst_mu_env_fit = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
!$OMP SHARED (n_points_final_grid, ao_num, List_env1s_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_fit)
!$OMP List_env1s_coef, List_env1s_expo, &
!$OMP List_env1s_cent, v_ij_u_cst_mu_env_fit)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
@ -247,11 +248,11 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_fit, (ao_num, ao_num, n_poi
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
coef = List_env1s_coef (1)
beta = List_env1s_expo (1)
B_center(1) = List_env1s_cent(1,1)
B_center(2) = List_env1s_cent(2,1)
B_center(3) = List_env1s_cent(3,1)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
@ -259,14 +260,14 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_fit, (ao_num, ao_num, n_poi
! ---
do i_1s = 2, List_all_comb_b2_size
do i_1s = 2, List_env1s_size
coef = List_all_comb_b2_coef (i_1s)
coef = List_env1s_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
beta = List_env1s_expo (i_1s)
B_center(1) = List_env1s_cent(1,i_1s)
B_center(2) = List_env1s_cent(2,i_1s)
B_center(3) = List_env1s_cent(3,i_1s)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
@ -277,7 +278,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_fit, (ao_num, ao_num, n_poi
enddo
v_ij_u_cst_mu_j1b_fit(j,i,ipoint) = tmp
v_ij_u_cst_mu_env_fit(j,i,ipoint) = tmp
enddo
enddo
enddo
@ -287,23 +288,23 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_fit, (ao_num, ao_num, n_poi
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_u_cst_mu_j1b_fit(j,i,ipoint) = v_ij_u_cst_mu_j1b_fit(i,j,ipoint)
v_ij_u_cst_mu_env_fit(j,i,ipoint) = v_ij_u_cst_mu_env_fit(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_u_cst_mu_j1b_fit', wall1 - wall0
print*, ' wall time for v_ij_u_cst_mu_env_fit (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an_old, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_env_an_old, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12)
! int dr2 phi_i(r2) phi_j(r2) 1s_env(r2) u(mu, r12)
!
END_DOC
@ -322,24 +323,24 @@ BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an_old, (ao_num, ao_num, n_p
double precision, external :: overlap_gauss_r12_ao_with1s
double precision, external :: NAI_pol_mult_erf_ao_with1s
print*, ' providing v_ij_u_cst_mu_j1b_an_old ...'
print*, ' providing v_ij_u_cst_mu_env_an_old ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
PROVIDE List_all_comb_b2_size List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
provide mu_erf final_grid_points env_expo
PROVIDE List_env1s_size List_env1s_coef List_env1s_expo List_env1s_cent
ct = inv_sq_pi_2 / mu_erf
v_ij_u_cst_mu_j1b_an_old = 0.d0
v_ij_u_cst_mu_env_an_old = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, &
!$OMP r1_2, tmp, int_c1, int_e1, int_o, int_c2, &
!$OMP int_e2, int_c3, int_e3) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
!$OMP SHARED (n_points_final_grid, ao_num, List_env1s_size, &
!$OMP final_grid_points, mu_erf, ct, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_an_old)
!$OMP List_env1s_coef, List_env1s_expo, &
!$OMP List_env1s_cent, v_ij_u_cst_mu_env_an_old)
!$OMP DO
do ipoint = 1, n_points_final_grid
@ -353,11 +354,11 @@ BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an_old, (ao_num, ao_num, n_p
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
coef = List_env1s_coef (1)
beta = List_env1s_expo (1)
B_center(1) = List_env1s_cent(1,1)
B_center(2) = List_env1s_cent(2,1)
B_center(3) = List_env1s_cent(3,1)
int_c1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
int_e1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
@ -379,14 +380,14 @@ BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an_old, (ao_num, ao_num, n_p
! ---
do i_1s = 2, List_all_comb_b2_size
do i_1s = 2, List_env1s_size
coef = List_all_comb_b2_coef (i_1s)
coef = List_env1s_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
beta = List_env1s_expo (i_1s)
B_center(1) = List_env1s_cent(1,i_1s)
B_center(2) = List_env1s_cent(2,i_1s)
B_center(3) = List_env1s_cent(3,i_1s)
int_c1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
int_e1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
@ -410,7 +411,7 @@ BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an_old, (ao_num, ao_num, n_p
! ---
v_ij_u_cst_mu_j1b_an_old(j,i,ipoint) = tmp
v_ij_u_cst_mu_env_an_old(j,i,ipoint) = tmp
enddo
enddo
enddo
@ -420,23 +421,23 @@ BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an_old, (ao_num, ao_num, n_p
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_u_cst_mu_j1b_an_old(j,i,ipoint) = v_ij_u_cst_mu_j1b_an_old(i,j,ipoint)
v_ij_u_cst_mu_env_an_old(j,i,ipoint) = v_ij_u_cst_mu_env_an_old(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_u_cst_mu_j1b_an_old', wall1 - wall0
print*, ' wall time for v_ij_u_cst_mu_env_an_old (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_env_an, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12)
! int dr2 phi_i(r2) phi_j(r2) 1s_env(r2) u(mu, r12)
!
END_DOC
@ -454,23 +455,23 @@ BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_point
double precision, external :: overlap_gauss_r12_ao_with1s
double precision, external :: NAI_pol_mult_erf_ao_with1s
print*, ' providing v_ij_u_cst_mu_j1b_an ...'
print*, ' providing v_ij_u_cst_mu_env_an ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
PROVIDE List_all_comb_b2_size List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
provide mu_erf final_grid_points env_expo
PROVIDE List_env1s_size List_env1s_coef List_env1s_expo List_env1s_cent
ct = inv_sq_pi_2 / mu_erf
v_ij_u_cst_mu_j1b_an = 0.d0
v_ij_u_cst_mu_env_an = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, &
!$OMP r1_2, tmp, int_c, int_e, int_o) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
!$OMP SHARED (n_points_final_grid, ao_num, List_env1s_size, &
!$OMP final_grid_points, mu_erf, ct, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_an)
!$OMP List_env1s_coef, List_env1s_expo, &
!$OMP List_env1s_cent, v_ij_u_cst_mu_env_an)
!$OMP DO
do ipoint = 1, n_points_final_grid
@ -484,11 +485,11 @@ BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_point
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
coef = List_env1s_coef (1)
beta = List_env1s_expo (1)
B_center(1) = List_env1s_cent(1,1)
B_center(2) = List_env1s_cent(2,1)
B_center(3) = List_env1s_cent(3,1)
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c)
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e)
@ -504,14 +505,14 @@ BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_point
! ---
do i_1s = 2, List_all_comb_b2_size
do i_1s = 2, List_env1s_size
coef = List_all_comb_b2_coef (i_1s)
coef = List_env1s_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
beta = List_env1s_expo (i_1s)
B_center(1) = List_env1s_cent(1,i_1s)
B_center(2) = List_env1s_cent(2,i_1s)
B_center(3) = List_env1s_cent(3,i_1s)
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c)
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e)
@ -529,7 +530,7 @@ BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_point
! ---
v_ij_u_cst_mu_j1b_an(j,i,ipoint) = tmp
v_ij_u_cst_mu_env_an(j,i,ipoint) = tmp
enddo
enddo
enddo
@ -539,13 +540,13 @@ BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_point
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_u_cst_mu_j1b_an(j,i,ipoint) = v_ij_u_cst_mu_j1b_an(i,j,ipoint)
v_ij_u_cst_mu_env_an(j,i,ipoint) = v_ij_u_cst_mu_env_an(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_u_cst_mu_j1b_an', wall1 - wall0
print*, ' wall time for v_ij_u_cst_mu_env_an (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER

View File

@ -0,0 +1,574 @@
! ---
BEGIN_PROVIDER [double precision, Ir2_Mu_long_Du_0, (ao_num, ao_num, n_points_final_grid)]
&BEGIN_PROVIDER [double precision, Ir2_Mu_long_Du_x, (ao_num, ao_num, n_points_final_grid)]
&BEGIN_PROVIDER [double precision, Ir2_Mu_long_Du_y, (ao_num, ao_num, n_points_final_grid)]
&BEGIN_PROVIDER [double precision, Ir2_Mu_long_Du_z, (ao_num, ao_num, n_points_final_grid)]
&BEGIN_PROVIDER [double precision, Ir2_Mu_long_Du_2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! Ir2_Mu_long_Du_0 = int dr2 phi_i(r2) phi_j(r2) fc_env(r2) [(1 - erf(mu r_12) / r_12]
!
! Ir2_Mu_long_Du_x = int dr2 phi_i(r2) phi_j(r2) fc_env(r2) [(1 - erf(mu r_12) / r_12] * x2
! Ir2_Mu_long_Du_y = int dr2 phi_i(r2) phi_j(r2) fc_env(r2) [(1 - erf(mu r_12) / r_12] * y2
! Ir2_Mu_long_Du_z = int dr2 phi_i(r2) phi_j(r2) fc_env(r2) [(1 - erf(mu r_12) / r_12] * z2
!
! Ir2_Mu_long_Du_2 = int dr2 phi_i(r2) phi_j(r2) fc_env(r2) [(1 - erf(mu r_12) / r_12] * r2^2
!
END_DOC
implicit none
integer :: i, j, ipoint, i_1s
double precision :: r(3), int_clb(7), int_erf(7)
double precision :: c_1s, e_1s, R_1s(3)
double precision :: tmp_Du_0, tmp_Du_x, tmp_Du_y, tmp_Du_z, tmp_Du_2
double precision :: wall0, wall1
PROVIDE mu_erf
PROVIDE final_grid_points
PROVIDE List_env1s_size List_env1s_expo List_env1s_coef List_env1s_cent
print *, ' providing Ir2_Mu_long_Du ...'
call wall_time(wall0)
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, c_1s, e_1s, R_1s, int_erf, int_clb, &
!$OMP tmp_Du_0, tmp_Du_x, tmp_Du_y, tmp_Du_z, tmp_Du_2) &
!$OMP SHARED (n_points_final_grid, ao_num, final_grid_points, mu_erf, &
!$OMP List_env1s_size, List_env1s_expo, &
!$OMP List_env1s_coef, List_env1s_cent, &
!$OMP Ir2_Mu_long_Du_0, Ir2_Mu_long_Du_x, &
!$OMP Ir2_Mu_long_Du_y, Ir2_Mu_long_Du_z, &
!$OMP Ir2_Mu_long_Du_2)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do i = 1, ao_num
do j = i, ao_num
call NAI_pol_012_mult_erf_ao(i, j, 1.d+9, r, int_clb)
call NAI_pol_012_mult_erf_ao(i, j, mu_erf, r, int_erf)
tmp_Du_0 = int_clb(1) - int_erf(1)
tmp_Du_x = int_clb(2) - int_erf(2)
tmp_Du_y = int_clb(3) - int_erf(3)
tmp_Du_z = int_clb(4) - int_erf(4)
tmp_Du_2 = int_clb(5) + int_clb(6) + int_clb(7) - int_erf(5) - int_erf(6) - int_erf(7)
do i_1s = 2, List_env1s_size
e_1s = List_env1s_expo(i_1s)
c_1s = List_env1s_coef(i_1s)
R_1s(1) = List_env1s_cent(1,i_1s)
R_1s(2) = List_env1s_cent(2,i_1s)
R_1s(3) = List_env1s_cent(3,i_1s)
call NAI_pol_012_mult_erf_ao_with1s(i, j, e_1s, R_1s, 1.d+9, r, int_clb)
call NAI_pol_012_mult_erf_ao_with1s(i, j, e_1s, R_1s, mu_erf, r, int_erf)
tmp_Du_0 = tmp_Du_0 + c_1s * (int_clb(1) - int_erf(1))
tmp_Du_x = tmp_Du_x + c_1s * (int_clb(2) - int_erf(2))
tmp_Du_y = tmp_Du_y + c_1s * (int_clb(3) - int_erf(3))
tmp_Du_z = tmp_Du_z + c_1s * (int_clb(4) - int_erf(4))
tmp_Du_2 = tmp_Du_2 + c_1s * (int_clb(5) + int_clb(6) + int_clb(7) - int_erf(5) - int_erf(6) - int_erf(7))
enddo
Ir2_Mu_long_Du_0(j,i,ipoint) = tmp_Du_0
Ir2_Mu_long_Du_x(j,i,ipoint) = tmp_Du_x
Ir2_Mu_long_Du_y(j,i,ipoint) = tmp_Du_y
Ir2_Mu_long_Du_z(j,i,ipoint) = tmp_Du_z
Ir2_Mu_long_Du_2(j,i,ipoint) = tmp_Du_2
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
Ir2_Mu_long_Du_0(j,i,ipoint) = Ir2_Mu_long_Du_0(i,j,ipoint)
Ir2_Mu_long_Du_x(j,i,ipoint) = Ir2_Mu_long_Du_x(i,j,ipoint)
Ir2_Mu_long_Du_y(j,i,ipoint) = Ir2_Mu_long_Du_y(i,j,ipoint)
Ir2_Mu_long_Du_z(j,i,ipoint) = Ir2_Mu_long_Du_z(i,j,ipoint)
Ir2_Mu_long_Du_2(j,i,ipoint) = Ir2_Mu_long_Du_2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for Ir2_Mu_long_Du (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, Ir2_Mu_gauss_Du, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! Ir2_Mu_gauss_Du = int dr2 phi_i(r2) phi_j(r2) fc_env(r2) e^{-(mu r_12)^2}
!
END_DOC
implicit none
integer :: i, j, ipoint, i_1s
double precision :: r(3)
double precision :: coef, beta, B_center(3)
double precision :: tmp_Du
double precision :: mu_sq, dx, dy, dz, tmp_arg, rmu_sq(3)
double precision :: e_1s, c_1s, R_1s(3)
double precision :: wall0, wall1
double precision, external :: overlap_gauss_r12_ao
PROVIDE mu_erf
PROVIDE final_grid_points
PROVIDE List_env1s_size List_env1s_expo List_env1s_coef List_env1s_cent
print *, ' providing Ir2_Mu_gauss_Du ...'
call wall_time(wall0)
mu_sq = mu_erf * mu_erf
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, dx, dy, dz, r, tmp_arg, coef, &
!$OMP rmu_sq, e_1s, c_1s, R_1s, beta, B_center, tmp_Du) &
!$OMP SHARED (n_points_final_grid, ao_num, final_grid_points, mu_sq, &
!$OMP List_env1s_size, List_env1s_expo, &
!$OMP List_env1s_coef, List_env1s_cent, &
!$OMP Ir2_Mu_gauss_Du)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
rmu_sq(1) = mu_sq * r(1)
rmu_sq(2) = mu_sq * r(2)
rmu_sq(3) = mu_sq * r(3)
do i = 1, ao_num
do j = i, ao_num
tmp_Du = overlap_gauss_r12_ao(r, mu_sq, j, i)
do i_1s = 2, List_env1s_size
e_1s = List_env1s_expo(i_1s)
c_1s = List_env1s_coef(i_1s)
R_1s(1) = List_env1s_cent(1,i_1s)
R_1s(2) = List_env1s_cent(2,i_1s)
R_1s(3) = List_env1s_cent(3,i_1s)
dx = r(1) - R_1s(1)
dy = r(2) - R_1s(2)
dz = r(3) - R_1s(3)
beta = mu_sq + e_1s
tmp_arg = mu_sq * e_1s * (dx*dx + dy*dy + dz*dz) / beta
coef = c_1s * dexp(-tmp_arg)
B_center(1) = (rmu_sq(1) + e_1s * R_1s(1)) / beta
B_center(2) = (rmu_sq(2) + e_1s * R_1s(2)) / beta
B_center(3) = (rmu_sq(3) + e_1s * R_1s(3)) / beta
tmp_Du += coef * overlap_gauss_r12_ao(B_center, beta, j, i)
enddo
Ir2_Mu_gauss_Du(j,i,ipoint) = tmp_Du
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
Ir2_Mu_gauss_Du(j,i,ipoint) = Ir2_Mu_gauss_Du(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for Ir2_Mu_gauss_Du (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, Ir2_Mu_long_Du2_0, (ao_num, ao_num, n_points_final_grid)]
&BEGIN_PROVIDER [double precision, Ir2_Mu_long_Du2_x, (ao_num, ao_num, n_points_final_grid)]
&BEGIN_PROVIDER [double precision, Ir2_Mu_long_Du2_y, (ao_num, ao_num, n_points_final_grid)]
&BEGIN_PROVIDER [double precision, Ir2_Mu_long_Du2_z, (ao_num, ao_num, n_points_final_grid)]
&BEGIN_PROVIDER [double precision, Ir2_Mu_long_Du2_2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! Ir2_Mu_long_Du2_0 = int dr2 phi_i(r2) phi_j(r2) [fc_env(r2)]^2 [(1 - erf(mu r_12) / r_12]
!
! Ir2_Mu_long_Du2_x = int dr2 phi_i(r2) phi_j(r2) [fc_env(r2)]^2 [(1 - erf(mu r_12) / r_12] * x2
! Ir2_Mu_long_Du2_y = int dr2 phi_i(r2) phi_j(r2) [fc_env(r2)]^2 [(1 - erf(mu r_12) / r_12] * y2
! Ir2_Mu_long_Du2_z = int dr2 phi_i(r2) phi_j(r2) [fc_env(r2)]^2 [(1 - erf(mu r_12) / r_12] * z2
!
! Ir2_Mu_long_Du2_2 = int dr2 phi_i(r2) phi_j(r2) [fc_env(r2)]^2 [(1 - erf(mu r_12) / r_12] * r2^2
!
END_DOC
implicit none
integer :: i, j, ipoint, i_1s
double precision :: r(3), int_clb(7), int_erf(7)
double precision :: coef, beta, B_center(3)
double precision :: tmp_Du2_0, tmp_Du2_x, tmp_Du2_y, tmp_Du2_z, tmp_Du2_2
double precision :: mu_sq, tmp_arg, dx, dy, dz, rmu_sq(3)
double precision :: e_1s, c_1s, R_1s(3)
double precision :: wall0, wall1
PROVIDE mu_erf
PROVIDE final_grid_points
PROVIDE List_env1s_square_size List_env1s_square_expo List_env1s_square_coef List_env1s_square_cent
print *, ' providing Ir2_Mu_long_Du2 ...'
call wall_time(wall0)
mu_sq = mu_erf * mu_erf
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, rmu_sq, dx, dy, dz, &
!$OMP e_1s, c_1s, R_1s, tmp_arg, coef, beta, B_center, &
!$OMP int_erf, int_clb, &
!$OMP tmp_Du2_0, tmp_Du2_x, tmp_Du2_y, tmp_Du2_z, tmp_Du2_2) &
!$OMP SHARED (n_points_final_grid, ao_num, final_grid_points, mu_sq, &
!$OMP mu_erf, List_env1s_square_size, List_env1s_square_expo, &
!$OMP List_env1s_square_coef, List_env1s_square_cent, &
!$OMP Ir2_Mu_long_Du2_0, Ir2_Mu_long_Du2_x, &
!$OMP Ir2_Mu_long_Du2_y, Ir2_Mu_long_Du2_z, &
!$OMP Ir2_Mu_long_Du2_2)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
rmu_sq(1) = mu_sq * r(1)
rmu_sq(2) = mu_sq * r(2)
rmu_sq(3) = mu_sq * r(3)
do i = 1, ao_num
do j = i, ao_num
call NAI_pol_012_mult_erf_ao_with1s(i, j, mu_sq, r, 1.d+9, r, int_clb)
call NAI_pol_012_mult_erf_ao_with1s(i, j, mu_sq, r, mu_erf, r, int_erf)
tmp_Du2_0 = int_clb(1) - int_erf(1)
tmp_Du2_x = int_clb(2) - int_erf(2)
tmp_Du2_y = int_clb(3) - int_erf(3)
tmp_Du2_z = int_clb(4) - int_erf(4)
tmp_Du2_2 = int_clb(5) + int_clb(6) + int_clb(7) - int_erf(5) - int_erf(6) - int_erf(7)
do i_1s = 2, List_env1s_square_size
e_1s = List_env1s_square_expo(i_1s)
c_1s = List_env1s_square_coef(i_1s)
R_1s(1) = List_env1s_square_cent(1,i_1s)
R_1s(2) = List_env1s_square_cent(2,i_1s)
R_1s(3) = List_env1s_square_cent(3,i_1s)
dx = r(1) - R_1s(1)
dy = r(2) - R_1s(2)
dz = r(3) - R_1s(3)
beta = mu_sq + e_1s
tmp_arg = mu_sq * e_1s * (dx*dx + dy*dy + dz*dz) / beta
coef = c_1s * dexp(-tmp_arg)
B_center(1) = (rmu_sq(1) + e_1s * R_1s(1)) / beta
B_center(2) = (rmu_sq(2) + e_1s * R_1s(2)) / beta
B_center(3) = (rmu_sq(3) + e_1s * R_1s(3)) / beta
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_clb)
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_erf)
tmp_Du2_0 = tmp_Du2_0 + coef * (int_clb(1) - int_erf(1))
tmp_Du2_x = tmp_Du2_x + coef * (int_clb(2) - int_erf(2))
tmp_Du2_y = tmp_Du2_y + coef * (int_clb(3) - int_erf(3))
tmp_Du2_z = tmp_Du2_z + coef * (int_clb(4) - int_erf(4))
tmp_Du2_2 = tmp_Du2_2 + coef * (int_clb(5) + int_clb(6) + int_clb(7) - int_erf(5) - int_erf(6) - int_erf(7))
enddo
Ir2_Mu_long_Du2_0(j,i,ipoint) = tmp_Du2_0
Ir2_Mu_long_Du2_x(j,i,ipoint) = tmp_Du2_x
Ir2_Mu_long_Du2_y(j,i,ipoint) = tmp_Du2_y
Ir2_Mu_long_Du2_z(j,i,ipoint) = tmp_Du2_z
Ir2_Mu_long_Du2_2(j,i,ipoint) = tmp_Du2_2
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
Ir2_Mu_long_Du2_0(j,i,ipoint) = Ir2_Mu_long_Du2_0(i,j,ipoint)
Ir2_Mu_long_Du2_x(j,i,ipoint) = Ir2_Mu_long_Du2_x(i,j,ipoint)
Ir2_Mu_long_Du2_y(j,i,ipoint) = Ir2_Mu_long_Du2_y(i,j,ipoint)
Ir2_Mu_long_Du2_z(j,i,ipoint) = Ir2_Mu_long_Du2_z(i,j,ipoint)
Ir2_Mu_long_Du2_2(j,i,ipoint) = Ir2_Mu_long_Du2_2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for Ir2_Mu_long_Du2 (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, Ir2_Mu_gauss_Du2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! Ir2_Mu_gauss_Du2 = int dr2 phi_i(r2) phi_j(r2) [fc_env(r2)]^2 e^{-(mu r_12)^2}
!
END_DOC
implicit none
integer :: i, j, ipoint, i_1s
double precision :: r(3)
double precision :: coef, beta, B_center(3)
double precision :: tmp_Du2
double precision :: mu_sq, dx, dy, dz, tmp_arg, rmu_sq(3)
double precision :: e_1s, c_1s, R_1s(3)
double precision :: wall0, wall1
double precision, external :: overlap_gauss_r12_ao
PROVIDE mu_erf
PROVIDE final_grid_points
PROVIDE List_env1s_square_size List_env1s_square_expo List_env1s_square_coef List_env1s_square_cent
print *, ' providing Ir2_Mu_gauss_Du2 ...'
call wall_time(wall0)
mu_sq = 2.d0 * mu_erf * mu_erf
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, dx, dy, dz, r, tmp_arg, coef, &
!$OMP rmu_sq, e_1s, c_1s, R_1s, beta, B_center, tmp_Du2) &
!$OMP SHARED (n_points_final_grid, ao_num, final_grid_points, mu_sq, &
!$OMP List_env1s_square_size, List_env1s_square_expo, &
!$OMP List_env1s_square_coef, List_env1s_square_cent, &
!$OMP Ir2_Mu_gauss_Du2)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
rmu_sq(1) = mu_sq * r(1)
rmu_sq(2) = mu_sq * r(2)
rmu_sq(3) = mu_sq * r(3)
do i = 1, ao_num
do j = i, ao_num
tmp_Du2 = overlap_gauss_r12_ao(r, mu_sq, j, i)
do i_1s = 2, List_env1s_square_size
e_1s = List_env1s_square_expo(i_1s)
c_1s = List_env1s_square_coef(i_1s)
R_1s(1) = List_env1s_square_cent(1,i_1s)
R_1s(2) = List_env1s_square_cent(2,i_1s)
R_1s(3) = List_env1s_square_cent(3,i_1s)
dx = r(1) - R_1s(1)
dy = r(2) - R_1s(2)
dz = r(3) - R_1s(3)
beta = mu_sq + e_1s
tmp_arg = mu_sq * e_1s * (dx*dx + dy*dy + dz*dz) / beta
coef = c_1s * dexp(-tmp_arg)
B_center(1) = (rmu_sq(1) + e_1s * R_1s(1)) / beta
B_center(2) = (rmu_sq(2) + e_1s * R_1s(2)) / beta
B_center(3) = (rmu_sq(3) + e_1s * R_1s(3)) / beta
tmp_Du2 += coef * overlap_gauss_r12_ao(B_center, beta, j, i)
enddo
Ir2_Mu_gauss_Du2(j,i,ipoint) = tmp_Du2
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
Ir2_Mu_gauss_Du2(j,i,ipoint) = Ir2_Mu_gauss_Du2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for Ir2_Mu_gauss_Du2 (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, Ir2_Mu_short_Du2_0, (ao_num, ao_num, n_points_final_grid)]
&BEGIN_PROVIDER [double precision, Ir2_Mu_short_Du2_x, (ao_num, ao_num, n_points_final_grid)]
&BEGIN_PROVIDER [double precision, Ir2_Mu_short_Du2_y, (ao_num, ao_num, n_points_final_grid)]
&BEGIN_PROVIDER [double precision, Ir2_Mu_short_Du2_z, (ao_num, ao_num, n_points_final_grid)]
&BEGIN_PROVIDER [double precision, Ir2_Mu_short_Du2_2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! Ir2_Mu_short_Du2_0 = int dr2 phi_i(r2) phi_j(r2) [fc_env(r2)]^2 [(1 - erf(mu r_12)]^2
!
! Ir2_Mu_short_Du2_x = int dr2 phi_i(r2) phi_j(r2) [fc_env(r2)]^2 [(1 - erf(mu r_12)]^2 * x2
! Ir2_Mu_short_Du2_y = int dr2 phi_i(r2) phi_j(r2) [fc_env(r2)]^2 [(1 - erf(mu r_12)]^2 * y2
! Ir2_Mu_short_Du2_z = int dr2 phi_i(r2) phi_j(r2) [fc_env(r2)]^2 [(1 - erf(mu r_12)]^2 * z2
!
! Ir2_Mu_short_Du2_2 = int dr2 phi_i(r2) phi_j(r2) [fc_env(r2)]^2 [(1 - erf(mu r_12)]^2 * r2^2
!
END_DOC
implicit none
integer :: i, j, ipoint, i_1s, i_fit
double precision :: r(3), ints(7)
double precision :: coef, beta, B_center(3)
double precision :: tmp_Du2_0, tmp_Du2_x, tmp_Du2_y, tmp_Du2_z, tmp_Du2_2
double precision :: tmp_arg, dx, dy, dz
double precision :: expo_fit, coef_fit, e_1s, c_1s, R_1s(3)
double precision :: wall0, wall1
PROVIDE final_grid_points
PROVIDE List_env1s_square_size List_env1s_square_expo List_env1s_square_coef List_env1s_square_cent
PROVIDE ng_fit_jast expo_gauss_1_erf_x_2 coef_gauss_1_erf_x_2
print *, ' providing Ir2_Mu_short_Du2 ...'
call wall_time(wall0)
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, dx, dy, dz, &
!$OMP expo_fit, coef_fit, e_1s, c_1s, R_1s, &
!$OMP tmp_arg, coef, beta, B_center, ints, &
!$OMP tmp_Du2_0, tmp_Du2_x, tmp_Du2_y, tmp_Du2_z, tmp_Du2_2) &
!$OMP SHARED (n_points_final_grid, ao_num, final_grid_points, &
!$OMP ng_fit_jast, expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
!$OMP List_env1s_square_size, List_env1s_square_expo, &
!$OMP List_env1s_square_coef, List_env1s_square_cent, &
!$OMP Ir2_Mu_short_Du2_0, Ir2_Mu_short_Du2_x, &
!$OMP Ir2_Mu_short_Du2_y, Ir2_Mu_short_Du2_z, &
!$OMP Ir2_Mu_short_Du2_2)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do i = 1, ao_num
do j = i, ao_num
tmp_Du2_0 = 0.d0
tmp_Du2_x = 0.d0
tmp_Du2_y = 0.d0
tmp_Du2_z = 0.d0
tmp_Du2_2 = 0.d0
do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_1_erf_x_2(i_fit)
coef_fit = coef_gauss_1_erf_x_2(i_fit)
call overlap_gauss_r12_ao_012(r, expo_fit, i, j, ints)
tmp_Du2_0 += coef_fit * ints(1)
tmp_Du2_x += coef_fit * ints(2)
tmp_Du2_y += coef_fit * ints(3)
tmp_Du2_z += coef_fit * ints(4)
tmp_Du2_2 += coef_fit * (ints(5) + ints(6) + ints(7))
do i_1s = 2, List_env1s_square_size
e_1s = List_env1s_square_expo(i_1s)
c_1s = List_env1s_square_coef(i_1s)
R_1s(1) = List_env1s_square_cent(1,i_1s)
R_1s(2) = List_env1s_square_cent(2,i_1s)
R_1s(3) = List_env1s_square_cent(3,i_1s)
dx = r(1) - R_1s(1)
dy = r(2) - R_1s(2)
dz = r(3) - R_1s(3)
beta = expo_fit + e_1s
tmp_arg = expo_fit * e_1s * (dx*dx + dy*dy + dz*dz) / beta
coef = coef_fit * c_1s * dexp(-tmp_arg)
B_center(1) = (expo_fit * r(1) + e_1s * R_1s(1)) / beta
B_center(2) = (expo_fit * r(2) + e_1s * R_1s(2)) / beta
B_center(3) = (expo_fit * r(3) + e_1s * R_1s(3)) / beta
call overlap_gauss_r12_ao_012(B_center, beta, i, j, ints)
tmp_Du2_0 += coef * ints(1)
tmp_Du2_x += coef * ints(2)
tmp_Du2_y += coef * ints(3)
tmp_Du2_z += coef * ints(4)
tmp_Du2_2 += coef * (ints(5) + ints(6) + ints(7))
enddo ! i_1s
enddo ! i_fit
Ir2_Mu_short_Du2_0(j,i,ipoint) = tmp_Du2_0
Ir2_Mu_short_Du2_x(j,i,ipoint) = tmp_Du2_x
Ir2_Mu_short_Du2_y(j,i,ipoint) = tmp_Du2_y
Ir2_Mu_short_Du2_z(j,i,ipoint) = tmp_Du2_z
Ir2_Mu_short_Du2_2(j,i,ipoint) = tmp_Du2_2
enddo ! j
enddo ! i
enddo ! ipoint
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
Ir2_Mu_short_Du2_0(j,i,ipoint) = Ir2_Mu_short_Du2_0(i,j,ipoint)
Ir2_Mu_short_Du2_x(j,i,ipoint) = Ir2_Mu_short_Du2_x(i,j,ipoint)
Ir2_Mu_short_Du2_y(j,i,ipoint) = Ir2_Mu_short_Du2_y(i,j,ipoint)
Ir2_Mu_short_Du2_z(j,i,ipoint) = Ir2_Mu_short_Du2_z(i,j,ipoint)
Ir2_Mu_short_Du2_2(j,i,ipoint) = Ir2_Mu_short_Du2_2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for Ir2_Mu_short_Du2 (min) = ', (wall1 - wall0) / 60.d0
END_PROVIDER
! ---

View File

@ -1,366 +0,0 @@
! ---
BEGIN_PROVIDER [integer, List_all_comb_b2_size]
implicit none
PROVIDE j1b_type
if((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
List_all_comb_b2_size = 2**nucl_num
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
List_all_comb_b2_size = nucl_num + 1
else
print *, 'j1b_type = ', j1b_type, 'is not implemented'
stop
endif
print *, ' nb of linear terms in the envelope is ', List_all_comb_b2_size
END_PROVIDER
! ---
BEGIN_PROVIDER [integer, List_all_comb_b2, (nucl_num, List_all_comb_b2_size)]
implicit none
integer :: i, j
if(nucl_num .gt. 32) then
print *, ' nucl_num = ', nucl_num, '> 32'
stop
endif
List_all_comb_b2 = 0
do i = 0, List_all_comb_b2_size-1
do j = 0, nucl_num-1
if (btest(i,j)) then
List_all_comb_b2(j+1,i+1) = 1
endif
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, List_all_comb_b2_coef, ( List_all_comb_b2_size)]
&BEGIN_PROVIDER [ double precision, List_all_comb_b2_expo, ( List_all_comb_b2_size)]
&BEGIN_PROVIDER [ double precision, List_all_comb_b2_cent, (3, List_all_comb_b2_size)]
implicit none
integer :: i, j, k, phase
double precision :: tmp_alphaj, tmp_alphak
double precision :: tmp_cent_x, tmp_cent_y, tmp_cent_z
provide j1b_pen
provide j1b_pen_coef
List_all_comb_b2_coef = 0.d0
List_all_comb_b2_expo = 0.d0
List_all_comb_b2_cent = 0.d0
if((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
do i = 1, List_all_comb_b2_size
tmp_cent_x = 0.d0
tmp_cent_y = 0.d0
tmp_cent_z = 0.d0
do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
List_all_comb_b2_expo(i) += tmp_alphaj
tmp_cent_x += tmp_alphaj * nucl_coord(j,1)
tmp_cent_y += tmp_alphaj * nucl_coord(j,2)
tmp_cent_z += tmp_alphaj * nucl_coord(j,3)
enddo
if(List_all_comb_b2_expo(i) .lt. 1d-10) cycle
List_all_comb_b2_cent(1,i) = tmp_cent_x / List_all_comb_b2_expo(i)
List_all_comb_b2_cent(2,i) = tmp_cent_y / List_all_comb_b2_expo(i)
List_all_comb_b2_cent(3,i) = tmp_cent_z / List_all_comb_b2_expo(i)
enddo
! ---
do i = 1, List_all_comb_b2_size
do j = 2, nucl_num, 1
tmp_alphaj = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
do k = 1, j-1, 1
tmp_alphak = dble(List_all_comb_b2(k,i)) * j1b_pen(k)
List_all_comb_b2_coef(i) += tmp_alphaj * tmp_alphak * ( (nucl_coord(j,1) - nucl_coord(k,1)) * (nucl_coord(j,1) - nucl_coord(k,1)) &
+ (nucl_coord(j,2) - nucl_coord(k,2)) * (nucl_coord(j,2) - nucl_coord(k,2)) &
+ (nucl_coord(j,3) - nucl_coord(k,3)) * (nucl_coord(j,3) - nucl_coord(k,3)) )
enddo
enddo
if(List_all_comb_b2_expo(i) .lt. 1d-10) cycle
List_all_comb_b2_coef(i) = List_all_comb_b2_coef(i) / List_all_comb_b2_expo(i)
enddo
! ---
do i = 1, List_all_comb_b2_size
phase = 0
do j = 1, nucl_num
phase += List_all_comb_b2(j,i)
enddo
List_all_comb_b2_coef(i) = (-1.d0)**dble(phase) * dexp(-List_all_comb_b2_coef(i))
enddo
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
List_all_comb_b2_coef( 1) = 1.d0
List_all_comb_b2_expo( 1) = 0.d0
List_all_comb_b2_cent(1:3,1) = 0.d0
do i = 1, nucl_num
List_all_comb_b2_coef( i+1) = -1.d0 * j1b_pen_coef(i)
List_all_comb_b2_expo( i+1) = j1b_pen(i)
List_all_comb_b2_cent(1,i+1) = nucl_coord(i,1)
List_all_comb_b2_cent(2,i+1) = nucl_coord(i,2)
List_all_comb_b2_cent(3,i+1) = nucl_coord(i,3)
enddo
else
print *, 'j1b_type = ', j1b_type, 'is not implemented'
stop
endif
!print *, ' coeff, expo & cent of list b2'
!do i = 1, List_all_comb_b2_size
! print*, i, List_all_comb_b2_coef(i), List_all_comb_b2_expo(i)
! print*, List_all_comb_b2_cent(1,i), List_all_comb_b2_cent(2,i), List_all_comb_b2_cent(3,i)
!enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ integer, List_all_comb_b3_size]
implicit none
double precision :: tmp
if((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
List_all_comb_b3_size = 3**nucl_num
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
tmp = 0.5d0 * dble(nucl_num) * (dble(nucl_num) + 3.d0)
List_all_comb_b3_size = int(tmp) + 1
else
print *, 'j1b_type = ', j1b_type, 'is not implemented'
stop
endif
print *, ' nb of linear terms in the square of the envelope is ', List_all_comb_b3_size
END_PROVIDER
! ---
BEGIN_PROVIDER [integer, List_all_comb_b3, (nucl_num, List_all_comb_b3_size)]
implicit none
integer :: i, j, ii, jj
integer, allocatable :: M(:,:), p(:)
if(nucl_num .gt. 32) then
print *, ' nucl_num = ', nucl_num, '> 32'
stop
endif
List_all_comb_b3(:,:) = 0
List_all_comb_b3(:,List_all_comb_b3_size) = 2
allocate(p(nucl_num))
p = 0
do i = 2, List_all_comb_b3_size-1
do j = 1, nucl_num
ii = 0
do jj = 1, j-1, 1
ii = ii + p(jj) * 3**(jj-1)
enddo
p(j) = modulo(i-1-ii, 3**j) / 3**(j-1)
List_all_comb_b3(j,i) = p(j)
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, List_all_comb_b3_coef, ( List_all_comb_b3_size)]
&BEGIN_PROVIDER [ double precision, List_all_comb_b3_expo, ( List_all_comb_b3_size)]
&BEGIN_PROVIDER [ double precision, List_all_comb_b3_cent, (3, List_all_comb_b3_size)]
implicit none
integer :: i, j, k, phase
integer :: ii
double precision :: tmp_alphaj, tmp_alphak, facto
double precision :: tmp1, tmp2, tmp3, tmp4
double precision :: xi, yi, zi, xj, yj, zj
double precision :: dx, dy, dz, r2
provide j1b_pen
provide j1b_pen_coef
List_all_comb_b3_coef = 0.d0
List_all_comb_b3_expo = 0.d0
List_all_comb_b3_cent = 0.d0
if((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
do i = 1, List_all_comb_b3_size
do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb_b3(j,i)) * j1b_pen(j)
List_all_comb_b3_expo(i) += tmp_alphaj
List_all_comb_b3_cent(1,i) += tmp_alphaj * nucl_coord(j,1)
List_all_comb_b3_cent(2,i) += tmp_alphaj * nucl_coord(j,2)
List_all_comb_b3_cent(3,i) += tmp_alphaj * nucl_coord(j,3)
enddo
if(List_all_comb_b3_expo(i) .lt. 1d-10) cycle
ASSERT(List_all_comb_b3_expo(i) .gt. 0d0)
List_all_comb_b3_cent(1,i) = List_all_comb_b3_cent(1,i) / List_all_comb_b3_expo(i)
List_all_comb_b3_cent(2,i) = List_all_comb_b3_cent(2,i) / List_all_comb_b3_expo(i)
List_all_comb_b3_cent(3,i) = List_all_comb_b3_cent(3,i) / List_all_comb_b3_expo(i)
enddo
! ---
do i = 1, List_all_comb_b3_size
do j = 2, nucl_num, 1
tmp_alphaj = dble(List_all_comb_b3(j,i)) * j1b_pen(j)
do k = 1, j-1, 1
tmp_alphak = dble(List_all_comb_b3(k,i)) * j1b_pen(k)
List_all_comb_b3_coef(i) += tmp_alphaj * tmp_alphak * ( (nucl_coord(j,1) - nucl_coord(k,1)) * (nucl_coord(j,1) - nucl_coord(k,1)) &
+ (nucl_coord(j,2) - nucl_coord(k,2)) * (nucl_coord(j,2) - nucl_coord(k,2)) &
+ (nucl_coord(j,3) - nucl_coord(k,3)) * (nucl_coord(j,3) - nucl_coord(k,3)) )
enddo
enddo
if(List_all_comb_b3_expo(i) .lt. 1d-10) cycle
List_all_comb_b3_coef(i) = List_all_comb_b3_coef(i) / List_all_comb_b3_expo(i)
enddo
! ---
do i = 1, List_all_comb_b3_size
facto = 1.d0
phase = 0
do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb_b3(j,i))
facto *= 2.d0 / (gamma(tmp_alphaj+1.d0) * gamma(3.d0-tmp_alphaj))
phase += List_all_comb_b3(j,i)
enddo
List_all_comb_b3_coef(i) = (-1.d0)**dble(phase) * facto * dexp(-List_all_comb_b3_coef(i))
enddo
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
ii = 1
List_all_comb_b3_coef( ii) = 1.d0
List_all_comb_b3_expo( ii) = 0.d0
List_all_comb_b3_cent(1:3,ii) = 0.d0
do i = 1, nucl_num
ii = ii + 1
List_all_comb_b3_coef( ii) = -2.d0 * j1b_pen_coef(i)
List_all_comb_b3_expo( ii) = j1b_pen(i)
List_all_comb_b3_cent(1,ii) = nucl_coord(i,1)
List_all_comb_b3_cent(2,ii) = nucl_coord(i,2)
List_all_comb_b3_cent(3,ii) = nucl_coord(i,3)
enddo
do i = 1, nucl_num
ii = ii + 1
List_all_comb_b3_coef( ii) = 1.d0 * j1b_pen_coef(i) * j1b_pen_coef(i)
List_all_comb_b3_expo( ii) = 2.d0 * j1b_pen(i)
List_all_comb_b3_cent(1,ii) = nucl_coord(i,1)
List_all_comb_b3_cent(2,ii) = nucl_coord(i,2)
List_all_comb_b3_cent(3,ii) = nucl_coord(i,3)
enddo
do i = 1, nucl_num-1
tmp1 = j1b_pen(i)
xi = nucl_coord(i,1)
yi = nucl_coord(i,2)
zi = nucl_coord(i,3)
do j = i+1, nucl_num
tmp2 = j1b_pen(j)
tmp3 = tmp1 + tmp2
tmp4 = 1.d0 / tmp3
xj = nucl_coord(j,1)
yj = nucl_coord(j,2)
zj = nucl_coord(j,3)
dx = xi - xj
dy = yi - yj
dz = zi - zj
r2 = dx*dx + dy*dy + dz*dz
ii = ii + 1
! x 2 to avoid doing integrals twice
List_all_comb_b3_coef( ii) = 2.d0 * dexp(-tmp1*tmp2*tmp4*r2) * j1b_pen_coef(i) * j1b_pen_coef(j)
List_all_comb_b3_expo( ii) = tmp3
List_all_comb_b3_cent(1,ii) = tmp4 * (tmp1 * xi + tmp2 * xj)
List_all_comb_b3_cent(2,ii) = tmp4 * (tmp1 * yi + tmp2 * yj)
List_all_comb_b3_cent(3,ii) = tmp4 * (tmp1 * zi + tmp2 * zj)
enddo
enddo
else
print *, 'j1b_type = ', j1b_type, 'is not implemented'
stop
endif
!print *, ' coeff, expo & cent of list b3'
!do i = 1, List_all_comb_b3_size
! print*, i, List_all_comb_b3_coef(i), List_all_comb_b3_expo(i)
! print*, List_all_comb_b3_cent(1,i), List_all_comb_b3_cent(2,i), List_all_comb_b3_cent(3,i)
!enddo
END_PROVIDER
! ---

View File

@ -1,82 +1,92 @@
! ---
BEGIN_PROVIDER [integer, List_comb_thr_b2_size, (ao_num, ao_num)]
&BEGIN_PROVIDER [integer, max_List_comb_thr_b2_size]
implicit none
integer :: i_1s, i, j, ipoint
double precision :: coef,beta,center(3),int_j1b
integer :: list(ao_num)
double precision :: coef,beta,center(3),int_env
double precision :: r(3),weight,dist
List_comb_thr_b2_size = 0
print*,'List_all_comb_b2_size = ',List_all_comb_b2_size
! pause
print*,'List_env1s_size = ',List_env1s_size
do i = 1, ao_num
do j = i, ao_num
do i_1s = 1, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
do i_1s = 1, List_env1s_size
coef = List_env1s_coef(i_1s)
if(dabs(coef).lt.thrsh_cycle_tc) cycle
beta = List_all_comb_b2_expo (i_1s)
beta = List_env1s_expo(i_1s)
beta = max(beta,1.d-12)
center(1:3) = List_all_comb_b2_cent(1:3,i_1s)
int_j1b = 0.d0
center(1:3) = List_env1s_cent(1:3,i_1s)
int_env = 0.d0
do ipoint = 1, n_points_extra_final_grid
r(1:3) = final_grid_points_extra(1:3,ipoint)
weight = final_weight_at_r_vector_extra(ipoint)
dist = ( center(1) - r(1) )*( center(1) - r(1) )
dist += ( center(2) - r(2) )*( center(2) - r(2) )
dist += ( center(3) - r(3) )*( center(3) - r(3) )
int_j1b += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
int_env += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
enddo
if(dabs(coef)*dabs(int_j1b).gt.thrsh_cycle_tc)then
if(dabs(coef)*dabs(int_env).gt.thrsh_cycle_tc)then
List_comb_thr_b2_size(j,i) += 1
endif
enddo
enddo
enddo
do i = 1, ao_num
do j = 1, i-1
List_comb_thr_b2_size(j,i) = List_comb_thr_b2_size(i,j)
enddo
enddo
integer :: list(ao_num)
do i = 1, ao_num
list(i) = maxval(List_comb_thr_b2_size(:,i))
enddo
max_List_comb_thr_b2_size = maxval(list)
print*, ' max_List_comb_thr_b2_size = ',max_List_comb_thr_b2_size
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, List_comb_thr_b2_coef, ( max_List_comb_thr_b2_size,ao_num,ao_num)]
&BEGIN_PROVIDER [ double precision, List_comb_thr_b2_expo, ( max_List_comb_thr_b2_size,ao_num,ao_num)]
&BEGIN_PROVIDER [ double precision, List_comb_thr_b2_cent, (3,max_List_comb_thr_b2_size,ao_num,ao_num)]
&BEGIN_PROVIDER [ double precision, ao_abs_comb_b2_j1b, ( max_List_comb_thr_b2_size ,ao_num, ao_num)]
&BEGIN_PROVIDER [ double precision, ao_abs_comb_b2_env , ( max_List_comb_thr_b2_size,ao_num,ao_num)]
implicit none
integer :: i_1s,i,j,ipoint,icount
double precision :: coef,beta,center(3),int_j1b
double precision :: coef,beta,center(3),int_env
double precision :: r(3),weight,dist
ao_abs_comb_b2_j1b = 10000000.d0
ao_abs_comb_b2_env = 10000000.d0
do i = 1, ao_num
do j = i, ao_num
icount = 0
do i_1s = 1, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
do i_1s = 1, List_env1s_size
coef = List_env1s_coef (i_1s)
if(dabs(coef).lt.thrsh_cycle_tc)cycle
beta = List_all_comb_b2_expo (i_1s)
center(1:3) = List_all_comb_b2_cent(1:3,i_1s)
int_j1b = 0.d0
beta = List_env1s_expo (i_1s)
center(1:3) = List_env1s_cent(1:3,i_1s)
int_env = 0.d0
do ipoint = 1, n_points_extra_final_grid
r(1:3) = final_grid_points_extra(1:3,ipoint)
weight = final_weight_at_r_vector_extra(ipoint)
dist = ( center(1) - r(1) )*( center(1) - r(1) )
dist += ( center(2) - r(2) )*( center(2) - r(2) )
dist += ( center(3) - r(3) )*( center(3) - r(3) )
int_j1b += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
int_env += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
enddo
if(dabs(coef)*dabs(int_j1b).gt.thrsh_cycle_tc)then
if(dabs(coef)*dabs(int_env).gt.thrsh_cycle_tc)then
icount += 1
List_comb_thr_b2_coef(icount,j,i) = coef
List_comb_thr_b2_expo(icount,j,i) = beta
List_comb_thr_b2_cent(1:3,icount,j,i) = center(1:3)
ao_abs_comb_b2_j1b(icount,j,i) = int_j1b
ao_abs_comb_b2_env(icount,j,i) = int_env
endif
enddo
enddo
@ -94,84 +104,88 @@ END_PROVIDER
END_PROVIDER
! ---
BEGIN_PROVIDER [integer, List_comb_thr_b3_size, (ao_num,ao_num)]
&BEGIN_PROVIDER [integer, max_List_comb_thr_b3_size]
implicit none
integer :: i_1s,i,j,ipoint
double precision :: coef,beta,center(3),int_j1b
integer :: list(ao_num)
double precision :: coef,beta,center(3),int_env
double precision :: r(3),weight,dist
List_comb_thr_b3_size = 0
print*,'List_all_comb_b3_size = ',List_all_comb_b3_size
print*,'List_env1s_square_size = ',List_env1s_square_size
do i = 1, ao_num
do j = 1, ao_num
do i_1s = 1, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s)
beta = List_all_comb_b3_expo (i_1s)
center(1:3) = List_all_comb_b3_cent(1:3,i_1s)
do i_1s = 1, List_env1s_square_size
coef = List_env1s_square_coef (i_1s)
beta = List_env1s_square_expo (i_1s)
center(1:3) = List_env1s_square_cent(1:3,i_1s)
if(dabs(coef).lt.thrsh_cycle_tc)cycle
int_j1b = 0.d0
int_env = 0.d0
do ipoint = 1, n_points_extra_final_grid
r(1:3) = final_grid_points_extra(1:3,ipoint)
weight = final_weight_at_r_vector_extra(ipoint)
dist = ( center(1) - r(1) )*( center(1) - r(1) )
dist += ( center(2) - r(2) )*( center(2) - r(2) )
dist += ( center(3) - r(3) )*( center(3) - r(3) )
int_j1b += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
int_env += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
enddo
if(dabs(coef)*dabs(int_j1b).gt.thrsh_cycle_tc)then
if(dabs(coef)*dabs(int_env).gt.thrsh_cycle_tc) then
List_comb_thr_b3_size(j,i) += 1
endif
enddo
enddo
enddo
! do i = 1, ao_num
! do j = 1, i-1
! List_comb_thr_b3_size(j,i) = List_comb_thr_b3_size(i,j)
! enddo
! enddo
integer :: list(ao_num)
do i = 1, ao_num
list(i) = maxval(List_comb_thr_b3_size(:,i))
enddo
max_List_comb_thr_b3_size = maxval(list)
print*, ' max_List_comb_thr_b3_size = ',max_List_comb_thr_b3_size
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, List_comb_thr_b3_coef, ( max_List_comb_thr_b3_size,ao_num,ao_num)]
&BEGIN_PROVIDER [double precision, List_comb_thr_b3_expo, ( max_List_comb_thr_b3_size,ao_num,ao_num)]
&BEGIN_PROVIDER [double precision, List_comb_thr_b3_cent, (3, max_List_comb_thr_b3_size,ao_num,ao_num)]
&BEGIN_PROVIDER [ double precision, ao_abs_comb_b3_j1b, ( max_List_comb_thr_b3_size ,ao_num, ao_num)]
&BEGIN_PROVIDER [double precision, ao_abs_comb_b3_env , ( max_List_comb_thr_b3_size,ao_num,ao_num)]
implicit none
integer :: i_1s,i,j,ipoint,icount
double precision :: coef,beta,center(3),int_j1b
double precision :: coef,beta,center(3),int_env
double precision :: r(3),weight,dist
ao_abs_comb_b3_j1b = 10000000.d0
ao_abs_comb_b3_env = 10000000.d0
do i = 1, ao_num
do j = 1, ao_num
icount = 0
do i_1s = 1, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s)
beta = List_all_comb_b3_expo (i_1s)
do i_1s = 1, List_env1s_square_size
coef = List_env1s_square_coef (i_1s)
beta = List_env1s_square_expo (i_1s)
beta = max(beta,1.d-12)
center(1:3) = List_all_comb_b3_cent(1:3,i_1s)
center(1:3) = List_env1s_square_cent(1:3,i_1s)
if(dabs(coef).lt.thrsh_cycle_tc)cycle
int_j1b = 0.d0
int_env = 0.d0
do ipoint = 1, n_points_extra_final_grid
r(1:3) = final_grid_points_extra(1:3,ipoint)
weight = final_weight_at_r_vector_extra(ipoint)
dist = ( center(1) - r(1) )*( center(1) - r(1) )
dist += ( center(2) - r(2) )*( center(2) - r(2) )
dist += ( center(3) - r(3) )*( center(3) - r(3) )
int_j1b += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
int_env += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
enddo
if(dabs(coef)*dabs(int_j1b).gt.thrsh_cycle_tc)then
if(dabs(coef)*dabs(int_env).gt.thrsh_cycle_tc)then
icount += 1
List_comb_thr_b3_coef(icount,j,i) = coef
List_comb_thr_b3_expo(icount,j,i) = beta
List_comb_thr_b3_cent(1:3,icount,j,i) = center(1:3)
ao_abs_comb_b3_j1b(icount,j,i) = int_j1b
ao_abs_comb_b3_env(icount,j,i) = int_env
endif
enddo
enddo
@ -179,3 +193,5 @@ END_PROVIDER
END_PROVIDER
! ---

View File

@ -200,7 +200,7 @@ subroutine overlap_gauss_r12_v(D_center, LD_D, delta, A_center, B_center, power_
deallocate(A_new, A_center_new, fact_a_new, iorder_a_new, overlap)
end subroutine overlap_gauss_r12_v
end
!---

View File

@ -3,3 +3,5 @@ mo_one_e_ints
ao_many_one_e_ints
dft_utils_in_r
tc_keywords
hamiltonian
jastrow

View File

@ -23,10 +23,9 @@ subroutine compute_ao_tc_sym_two_e_pot_jl(j, l, n_integrals, buffer_i, buffer_va
logical, external :: ao_two_e_integral_zero
double precision :: ao_tc_sym_two_e_pot, ao_two_e_integral_erf
double precision :: j1b_gauss_2e_j1, j1b_gauss_2e_j2
double precision :: env_gauss_2e_j1, env_gauss_2e_j2
PROVIDE j1b_type
thr = ao_integrals_threshold
@ -53,14 +52,6 @@ subroutine compute_ao_tc_sym_two_e_pot_jl(j, l, n_integrals, buffer_i, buffer_va
integral_erf = ao_two_e_integral_erf(i, k, j, l)
integral = integral_erf + integral_pot
!if( j1b_type .eq. 1 ) then
! !print *, ' j1b type 1 is added'
! integral = integral + j1b_gauss_2e_j1(i, k, j, l)
!elseif( j1b_type .eq. 2 ) then
! !print *, ' j1b type 2 is added'
! integral = integral + j1b_gauss_2e_j2(i, k, j, l)
!endif
if(abs(integral) < thr) then
cycle
endif

View File

@ -1,10 +1,10 @@
! ---
BEGIN_PROVIDER [ double precision, j1b_gauss_hermII, (ao_num,ao_num)]
BEGIN_PROVIDER [double precision, env_gauss_hermII, (ao_num,ao_num)]
BEGIN_DOC
!
! :math:`\langle \chi_A | -0.5 \grad \tau_{1b} \cdot \grad \tau_{1b} | \chi_B \rangle`
! :math:`\langle \chi_A | -0.5 \grad \tau_{env} \cdot \grad \tau_{env} | \chi_B \rangle`
!
END_DOC
@ -22,8 +22,6 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_hermII, (ao_num,ao_num)]
double precision :: int_gauss_4G
PROVIDE j1b_type j1b_pen j1b_coeff
! --------------------------------------------------------------------------------
! -- Dummy call to provide everything
dim1 = 100
@ -38,10 +36,7 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_hermII, (ao_num,ao_num)]
! --------------------------------------------------------------------------------
j1b_gauss_hermII(1:ao_num,1:ao_num) = 0.d0
if(j1b_type .eq. 1) then
! \tau_1b = \sum_iA -[1 - exp(-alpha_A r_iA^2)]
env_gauss_hermII(1:ao_num,1:ao_num) = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
@ -51,7 +46,7 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_hermII, (ao_num,ao_num)]
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
!$OMP ao_power, ao_nucl, nucl_coord, &
!$OMP ao_coef_normalized_ordered_transp, &
!$OMP nucl_num, j1b_pen, j1b_gauss_hermII)
!$OMP nucl_num, env_expo, env_gauss_hermII)
!$OMP DO SCHEDULE (dynamic)
do j = 1, ao_num
num_A = ao_nucl(j)
@ -71,11 +66,11 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_hermII, (ao_num,ao_num)]
c = 0.d0
do k1 = 1, nucl_num
gama1 = j1b_pen(k1)
gama1 = env_expo(k1)
C_center1(1:3) = nucl_coord(k1,1:3)
do k2 = 1, nucl_num
gama2 = j1b_pen(k2)
gama2 = env_expo(k2)
C_center2(1:3) = nucl_coord(k2,1:3)
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] r_C1 \cdot r_C2 | XB >
@ -86,7 +81,7 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_hermII, (ao_num,ao_num)]
enddo
enddo
j1b_gauss_hermII(i,j) = j1b_gauss_hermII(i,j) &
env_gauss_hermII(i,j) = env_gauss_hermII(i,j) &
+ ao_coef_normalized_ordered_transp(l,j) &
* ao_coef_normalized_ordered_transp(m,i) * c
enddo
@ -96,68 +91,6 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_hermII, (ao_num,ao_num)]
!$OMP END DO
!$OMP END PARALLEL
elseif(j1b_type .eq. 2) then
! \tau_1b = \sum_iA [c_A exp(-alpha_A r_iA^2)]
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, k1, k2, l, m, alpha, beta, gama1, gama2, &
!$OMP A_center, B_center, C_center1, C_center2, &
!$OMP power_A, power_B, num_A, num_B, c1, c, &
!$OMP coef1, coef2) &
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
!$OMP ao_power, ao_nucl, nucl_coord, &
!$OMP ao_coef_normalized_ordered_transp, &
!$OMP nucl_num, j1b_pen, j1b_gauss_hermII, &
!$OMP j1b_coeff)
!$OMP DO SCHEDULE (dynamic)
do j = 1, ao_num
num_A = ao_nucl(j)
power_A(1:3) = ao_power(j,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
do i = 1, ao_num
num_B = ao_nucl(i)
power_B(1:3) = ao_power(i,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
do l = 1, ao_prim_num(j)
alpha = ao_expo_ordered_transp(l,j)
do m = 1, ao_prim_num(i)
beta = ao_expo_ordered_transp(m,i)
c = 0.d0
do k1 = 1, nucl_num
gama1 = j1b_pen (k1)
coef1 = j1b_coeff(k1)
C_center1(1:3) = nucl_coord(k1,1:3)
do k2 = 1, nucl_num
gama2 = j1b_pen (k2)
coef2 = j1b_coeff(k2)
C_center2(1:3) = nucl_coord(k2,1:3)
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] r_C1 \cdot r_C2 | XB >
c1 = int_gauss_4G( A_center, B_center, C_center1, C_center2 &
, power_A, power_B, alpha, beta, gama1, gama2 )
c = c - 2.d0 * gama1 * gama2 * coef1 * coef2 * c1
enddo
enddo
j1b_gauss_hermII(i,j) = j1b_gauss_hermII(i,j) &
+ ao_coef_normalized_ordered_transp(l,j) &
* ao_coef_normalized_ordered_transp(m,i) * c
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
endif
END_PROVIDER

View File

@ -1,10 +1,10 @@
! ---
BEGIN_PROVIDER [ double precision, j1b_gauss_hermI, (ao_num,ao_num)]
BEGIN_PROVIDER [double precision, env_gauss_hermI, (ao_num,ao_num)]
BEGIN_DOC
!
! :math:`\langle \chi_A | -0.5 \Delta \tau_{1b} | \chi_B \rangle`
! :math:`\langle \chi_A | -0.5 \Delta \tau_{env} | \chi_B \rangle`
!
END_DOC
@ -22,8 +22,6 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_hermI, (ao_num,ao_num)]
double precision :: int_gauss_r0, int_gauss_r2
PROVIDE j1b_type j1b_pen j1b_coeff
! --------------------------------------------------------------------------------
! -- Dummy call to provide everything
dim1 = 100
@ -37,10 +35,7 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_hermI, (ao_num,ao_num)]
, overlap_y, d_a_2, overlap_z, overlap, dim1 )
! --------------------------------------------------------------------------------
j1b_gauss_hermI(1:ao_num,1:ao_num) = 0.d0
if(j1b_type .eq. 1) then
! \tau_1b = \sum_iA -[1 - exp(-alpha_A r_iA^2)]
env_gauss_hermI(1:ao_num,1:ao_num) = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
@ -50,7 +45,7 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_hermI, (ao_num,ao_num)]
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
!$OMP ao_power, ao_nucl, nucl_coord, &
!$OMP ao_coef_normalized_ordered_transp, &
!$OMP nucl_num, j1b_pen, j1b_gauss_hermI)
!$OMP nucl_num, env_expo, env_gauss_hermI)
!$OMP DO SCHEDULE (dynamic)
do j = 1, ao_num
num_A = ao_nucl(j)
@ -70,7 +65,7 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_hermI, (ao_num,ao_num)]
c = 0.d0
do k = 1, nucl_num
gama = j1b_pen(k)
gama = env_expo(k)
C_center(1:3) = nucl_coord(k,1:3)
! < XA | exp[-gama r_C^2] | XB >
@ -84,7 +79,7 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_hermI, (ao_num,ao_num)]
c = c + 3.d0 * gama * c1 - 2.d0 * gama * gama * c2
enddo
j1b_gauss_hermI(i,j) = j1b_gauss_hermI(i,j) &
env_gauss_hermI(i,j) = env_gauss_hermI(i,j) &
+ ao_coef_normalized_ordered_transp(l,j) &
* ao_coef_normalized_ordered_transp(m,i) * c
enddo
@ -94,65 +89,6 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_hermI, (ao_num,ao_num)]
!$OMP END DO
!$OMP END PARALLEL
elseif(j1b_type .eq. 2) then
! \tau_1b = \sum_iA [c_A exp(-alpha_A r_iA^2)]
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, k, l, m, alpha, beta, gama, coef, &
!$OMP A_center, B_center, C_center, power_A, power_B, &
!$OMP num_A, num_B, c1, c2, c) &
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
!$OMP ao_power, ao_nucl, nucl_coord, &
!$OMP ao_coef_normalized_ordered_transp, &
!$OMP nucl_num, j1b_pen, j1b_gauss_hermI, &
!$OMP j1b_coeff)
!$OMP DO SCHEDULE (dynamic)
do j = 1, ao_num
num_A = ao_nucl(j)
power_A(1:3) = ao_power(j,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
do i = 1, ao_num
num_B = ao_nucl(i)
power_B(1:3) = ao_power(i,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
do l = 1, ao_prim_num(j)
alpha = ao_expo_ordered_transp(l,j)
do m = 1, ao_prim_num(i)
beta = ao_expo_ordered_transp(m,i)
c = 0.d0
do k = 1, nucl_num
gama = j1b_pen (k)
coef = j1b_coeff(k)
C_center(1:3) = nucl_coord(k,1:3)
! < XA | exp[-gama r_C^2] | XB >
c1 = int_gauss_r0( A_center, B_center, C_center &
, power_A, power_B, alpha, beta, gama )
! < XA | r_A^2 exp[-gama r_C^2] | XB >
c2 = int_gauss_r2( A_center, B_center, C_center &
, power_A, power_B, alpha, beta, gama )
c = c + 3.d0 * gama * coef * c1 - 2.d0 * gama * gama * coef * c2
enddo
j1b_gauss_hermI(i,j) = j1b_gauss_hermI(i,j) &
+ ao_coef_normalized_ordered_transp(l,j) &
* ao_coef_normalized_ordered_transp(m,i) * c
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
endif
END_PROVIDER

View File

@ -1,10 +1,11 @@
! ---
BEGIN_PROVIDER [ double precision, j1b_gauss_nonherm, (ao_num,ao_num)]
BEGIN_PROVIDER [double precision, env_gauss_nonherm, (ao_num,ao_num)]
BEGIN_DOC
!
! j1b_gauss_nonherm(i,j) = \langle \chi_j | - grad \tau_{1b} \cdot grad | \chi_i \rangle
! env_gauss_nonherm(i,j) = \langle \chi_j | - grad \tau_{env} \cdot grad | \chi_i \rangle
!
END_DOC
@ -22,8 +23,6 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_nonherm, (ao_num,ao_num)]
double precision :: int_gauss_deriv
PROVIDE j1b_type j1b_pen j1b_coeff
! --------------------------------------------------------------------------------
! -- Dummy call to provide everything
dim1 = 100
@ -38,10 +37,8 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_nonherm, (ao_num,ao_num)]
! --------------------------------------------------------------------------------
j1b_gauss_nonherm(1:ao_num,1:ao_num) = 0.d0
env_gauss_nonherm(1:ao_num,1:ao_num) = 0.d0
if(j1b_type .eq. 1) then
! \tau_1b = \sum_iA -[1 - exp(-alpha_A r_iA^2)]
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
@ -51,7 +48,7 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_nonherm, (ao_num,ao_num)]
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
!$OMP ao_power, ao_nucl, nucl_coord, &
!$OMP ao_coef_normalized_ordered_transp, &
!$OMP nucl_num, j1b_pen, j1b_gauss_nonherm)
!$OMP nucl_num, env_expo, env_gauss_nonherm)
!$OMP DO SCHEDULE (dynamic)
do j = 1, ao_num
num_A = ao_nucl(j)
@ -71,7 +68,7 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_nonherm, (ao_num,ao_num)]
c = 0.d0
do k = 1, nucl_num
gama = j1b_pen(k)
gama = env_expo(k)
C_center(1:3) = nucl_coord(k,1:3)
! \langle \chi_A | exp[-gama r_C^2] r_C \cdot grad | \chi_B \rangle
@ -81,7 +78,7 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_nonherm, (ao_num,ao_num)]
c = c + 2.d0 * gama * c1
enddo
j1b_gauss_nonherm(i,j) = j1b_gauss_nonherm(i,j) &
env_gauss_nonherm(i,j) = env_gauss_nonherm(i,j) &
+ ao_coef_normalized_ordered_transp(l,j) &
* ao_coef_normalized_ordered_transp(m,i) * c
enddo
@ -91,61 +88,6 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_nonherm, (ao_num,ao_num)]
!$OMP END DO
!$OMP END PARALLEL
elseif(j1b_type .eq. 2) then
! \tau_1b = \sum_iA [c_A exp(-alpha_A r_iA^2)]
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, k, l, m, alpha, beta, gama, coef, &
!$OMP A_center, B_center, C_center, power_A, power_B, &
!$OMP num_A, num_B, c1, c) &
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
!$OMP ao_power, ao_nucl, nucl_coord, &
!$OMP ao_coef_normalized_ordered_transp, &
!$OMP nucl_num, j1b_pen, j1b_gauss_nonherm, &
!$OMP j1b_coeff)
!$OMP DO SCHEDULE (dynamic)
do j = 1, ao_num
num_A = ao_nucl(j)
power_A(1:3) = ao_power(j,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
do i = 1, ao_num
num_B = ao_nucl(i)
power_B(1:3) = ao_power(i,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
do l = 1, ao_prim_num(j)
alpha = ao_expo_ordered_transp(l,j)
do m = 1, ao_prim_num(i)
beta = ao_expo_ordered_transp(m,i)
c = 0.d0
do k = 1, nucl_num
gama = j1b_pen (k)
coef = j1b_coeff(k)
C_center(1:3) = nucl_coord(k,1:3)
! \langle \chi_A | exp[-gama r_C^2] r_C \cdot grad | \chi_B \rangle
c1 = int_gauss_deriv( A_center, B_center, C_center &
, power_A, power_B, alpha, beta, gama )
c = c + 2.d0 * gama * coef * c1
enddo
j1b_gauss_nonherm(i,j) = j1b_gauss_nonherm(i,j) &
+ ao_coef_normalized_ordered_transp(l,j) &
* ao_coef_normalized_ordered_transp(m,i) * c
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
endif
END_PROVIDER

View File

@ -22,9 +22,6 @@ BEGIN_PROVIDER [ logical, ao_tc_sym_two_e_pot_in_map ]
integer :: kk, m, j1, i1, lmax
character*(64) :: fmt
!double precision :: j1b_gauss_coul_debug
!integral = j1b_gauss_coul_debug(1,1,1,1)
integral = ao_tc_sym_two_e_pot(1,1,1,1)
double precision :: map_mb

View File

@ -1,6 +1,6 @@
! ---
double precision function j1b_gauss_2e_j1(i, j, k, l)
double precision function env_gauss_2e_j1(i, j, k, l)
BEGIN_DOC
!
@ -36,10 +36,10 @@ double precision function j1b_gauss_2e_j1(i, j, k, l)
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
double precision :: ff, gg, cx, cy, cz
double precision :: j1b_gauss_2e_j1_schwartz
double precision :: env_gauss_2e_j1_schwartz
if( ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
j1b_gauss_2e_j1 = j1b_gauss_2e_j1_schwartz(i, j, k, l)
env_gauss_2e_j1 = env_gauss_2e_j1_schwartz(i, j, k, l)
return
endif
@ -59,7 +59,7 @@ double precision function j1b_gauss_2e_j1(i, j, k, l)
L_center(p) = nucl_coord(num_l,p)
enddo
j1b_gauss_2e_j1 = 0.d0
env_gauss_2e_j1 = 0.d0
do p = 1, ao_prim_num(i)
coef1 = ao_coef_normalized_ordered_transp(p, i)
@ -89,18 +89,18 @@ double precision function j1b_gauss_2e_j1(i, j, k, l)
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
j1b_gauss_2e_j1 = j1b_gauss_2e_j1 + coef4 * ( cx + cy + cz )
env_gauss_2e_j1 = env_gauss_2e_j1 + coef4 * ( cx + cy + cz )
enddo ! s
enddo ! r
enddo ! q
enddo ! p
return
end function j1b_gauss_2e_j1
end
! ---
double precision function j1b_gauss_2e_j1_schwartz(i, j, k, l)
double precision function env_gauss_2e_j1_schwartz(i, j, k, l)
BEGIN_DOC
!
@ -137,8 +137,6 @@ double precision function j1b_gauss_2e_j1_schwartz(i, j, k, l)
double precision :: schwartz_ij, thr
double precision, allocatable :: schwartz_kl(:,:)
PROVIDE j1b_pen
dim1 = n_pt_max_integrals
thr = ao_integrals_threshold * ao_integrals_threshold
@ -186,8 +184,7 @@ double precision function j1b_gauss_2e_j1_schwartz(i, j, k, l)
schwartz_kl(0,0) = max( schwartz_kl(0,r) , schwartz_kl(0,0) )
enddo
j1b_gauss_2e_j1_schwartz = 0.d0
env_gauss_2e_j1_schwartz = 0.d0
do p = 1, ao_prim_num(i)
expo1 = ao_expo_ordered_transp(p, i)
@ -226,7 +223,7 @@ double precision function j1b_gauss_2e_j1_schwartz(i, j, k, l)
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
j1b_gauss_2e_j1_schwartz = j1b_gauss_2e_j1_schwartz + coef4 * ( cx + cy + cz )
env_gauss_2e_j1_schwartz = env_gauss_2e_j1_schwartz + coef4 * ( cx + cy + cz )
enddo ! s
enddo ! r
enddo ! q
@ -235,7 +232,7 @@ double precision function j1b_gauss_2e_j1_schwartz(i, j, k, l)
deallocate( schwartz_kl )
return
end function j1b_gauss_2e_j1_schwartz
end
! ---
@ -263,14 +260,12 @@ subroutine get_cxcycz_j1( dim1, cx, cy, cz &
double precision :: general_primitive_integral_erf_shifted
double precision :: general_primitive_integral_coul_shifted
PROVIDE j1b_pen
cx = 0.d0
cy = 0.d0
cz = 0.d0
do ii = 1, nucl_num
expoii = j1b_pen(ii)
expoii = env_expo(ii)
Centerii(1:3) = nucl_coord(ii, 1:3)
call gaussian_product(pp1, P1_center, expoii, Centerii, factii, pp2, P2_center)

View File

@ -1,6 +1,6 @@
! ---
double precision function j1b_gauss_2e_j2(i, j, k, l)
double precision function env_gauss_2e_j2(i, j, k, l)
BEGIN_DOC
!
@ -36,12 +36,12 @@ double precision function j1b_gauss_2e_j2(i, j, k, l)
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
double precision :: ff, gg, cx, cy, cz
double precision :: j1b_gauss_2e_j2_schwartz
double precision :: env_gauss_2e_j2_schwartz
dim1 = n_pt_max_integrals
if( ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
j1b_gauss_2e_j2 = j1b_gauss_2e_j2_schwartz(i, j, k, l)
env_gauss_2e_j2 = env_gauss_2e_j2_schwartz(i, j, k, l)
return
endif
@ -61,7 +61,7 @@ double precision function j1b_gauss_2e_j2(i, j, k, l)
L_center(p) = nucl_coord(num_l,p)
enddo
j1b_gauss_2e_j2 = 0.d0
env_gauss_2e_j2 = 0.d0
do p = 1, ao_prim_num(i)
coef1 = ao_coef_normalized_ordered_transp(p, i)
@ -91,18 +91,18 @@ double precision function j1b_gauss_2e_j2(i, j, k, l)
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
j1b_gauss_2e_j2 = j1b_gauss_2e_j2 + coef4 * ( cx + cy + cz )
env_gauss_2e_j2 = env_gauss_2e_j2 + coef4 * ( cx + cy + cz )
enddo ! s
enddo ! r
enddo ! q
enddo ! p
return
end function j1b_gauss_2e_j2
end
! ---
double precision function j1b_gauss_2e_j2_schwartz(i, j, k, l)
double precision function env_gauss_2e_j2_schwartz(i, j, k, l)
BEGIN_DOC
!
@ -187,7 +187,7 @@ double precision function j1b_gauss_2e_j2_schwartz(i, j, k, l)
enddo
j1b_gauss_2e_j2_schwartz = 0.d0
env_gauss_2e_j2_schwartz = 0.d0
do p = 1, ao_prim_num(i)
expo1 = ao_expo_ordered_transp(p, i)
@ -226,7 +226,7 @@ double precision function j1b_gauss_2e_j2_schwartz(i, j, k, l)
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
j1b_gauss_2e_j2_schwartz = j1b_gauss_2e_j2_schwartz + coef4 * ( cx + cy + cz )
env_gauss_2e_j2_schwartz = env_gauss_2e_j2_schwartz + coef4 * ( cx + cy + cz )
enddo ! s
enddo ! r
enddo ! q
@ -235,7 +235,7 @@ double precision function j1b_gauss_2e_j2_schwartz(i, j, k, l)
deallocate( schwartz_kl )
return
end function j1b_gauss_2e_j2_schwartz
end
! ---
@ -263,15 +263,13 @@ subroutine get_cxcycz_j2( dim1, cx, cy, cz &
double precision :: general_primitive_integral_erf_shifted
double precision :: general_primitive_integral_coul_shifted
PROVIDE j1b_pen j1b_coeff
cx = 0.d0
cy = 0.d0
cz = 0.d0
do ii = 1, nucl_num
expoii = j1b_pen (ii)
coefii = j1b_coeff(ii)
expoii = env_expo(ii)
coefii = env_coef(ii)
Centerii(1:3) = nucl_coord(ii, 1:3)
call gaussian_product(pp1, P1_center, expoii, Centerii, factii, pp2, P2_center)

View File

@ -174,7 +174,7 @@ double precision function general_primitive_integral_coul_shifted( dim
general_primitive_integral_coul_shifted = fact_p * fact_q * accu * pi_5_2 * p_inv * q_inv / dsqrt(p_plus_q)
return
end function general_primitive_integral_coul_shifted
end
!______________________________________________________________________________________________________________________
!______________________________________________________________________________________________________________________
@ -354,7 +354,7 @@ double precision function general_primitive_integral_erf_shifted( dim
general_primitive_integral_erf_shifted = fact_p * fact_q * accu * pi_5_2 * p_inv * q_inv / dsqrt(p_plus_q)
return
end function general_primitive_integral_erf_shifted
end
!______________________________________________________________________________________________________________________
!______________________________________________________________________________________________________________________
@ -362,3 +362,48 @@ end function general_primitive_integral_erf_shifted
! ---
subroutine inv_r_times_poly(r, dist_r, dist_vec, poly)
BEGIN_DOC
!
! returns
!
! poly(1) = x / sqrt(x^2+y^2+z^2), poly(2) = y / sqrt(x^2+y^2+z^2), poly(3) = z / sqrt(x^2+y^2+z^2)
!
! with the arguments
!
! r(1) = x, r(2) = y, r(3) = z, dist_r = sqrt(x^2+y^2+z^2)
!
! dist_vec(1) = sqrt(y^2+z^2), dist_vec(2) = sqrt(x^2+z^2), dist_vec(3) = sqrt(x^2+y^2)
!
END_DOC
implicit none
double precision, intent(in) :: r(3), dist_r, dist_vec(3)
double precision, intent(out) :: poly(3)
integer :: i
double precision :: inv_dist
if (dist_r .gt. 1.d-8)then
inv_dist = 1.d0/dist_r
do i = 1, 3
poly(i) = r(i) * inv_dist
enddo
else
do i = 1, 3
if(dabs(r(i)).lt.dist_vec(i)) then
inv_dist = 1.d0/dist_r
poly(i) = r(i) * inv_dist
else
poly(i) = 1.d0
endif
enddo
endif
end
! ---

View File

@ -1,4 +1,39 @@
! ---
BEGIN_PROVIDER [double precision, ao_two_e_coul, (ao_num, ao_num, ao_num, ao_num) ]
BEGIN_DOC
!
! ao_two_e_coul(k,i,l,j) = ( k i | 1/r12 | l j ) = < l k | 1/r12 | j i >
!
END_DOC
integer :: i, j, k, l
double precision, external :: get_ao_two_e_integral
PROVIDE ao_integrals_map
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(ao_num, ao_two_e_coul, ao_integrals_map) &
!$OMP PRIVATE(i, j, k, l)
!$OMP DO
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
! < 1:k, 2:l | 1:i, 2:j >
ao_two_e_coul(k,i,l,j) = get_ao_two_e_integral(i, j, k, l, ao_integrals_map)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
END_PROVIDER
! ---
double precision function bi_ortho_mo_coul_ints(l, k, j, i)
@ -25,7 +60,7 @@ double precision function bi_ortho_mo_coul_ints(l, k, j, i)
enddo
enddo
end function bi_ortho_mo_coul_ints
end
! ---

View File

@ -8,23 +8,6 @@ BEGIN_PROVIDER [double precision, ao_one_e_integrals_tc_tot, (ao_num,ao_num)]
ao_one_e_integrals_tc_tot = ao_one_e_integrals
!provide j1b_type
!if( (j1b_type .eq. 1) .or. (j1b_type .eq. 2) ) then
!
! print *, ' do things properly !'
! stop
! !do i = 1, ao_num
! ! do j = 1, ao_num
! ! ao_one_e_integrals_tc_tot(j,i) += ( j1b_gauss_hermI (j,i) &
! ! + j1b_gauss_hermII (j,i) &
! ! + j1b_gauss_nonherm(j,i) )
! ! enddo
! !enddo
!endif
END_PROVIDER
! ---

View File

@ -1,91 +1,4 @@
! ---
BEGIN_PROVIDER [double precision, ao_two_e_vartc_tot, (ao_num, ao_num, ao_num, ao_num) ]
integer :: i, j, k, l
provide j1b_type
provide mo_r_coef mo_l_coef
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
ao_two_e_vartc_tot(k,i,l,j) = ao_vartc_int_chemist(k,i,l,j)
enddo
enddo
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_num) ]
BEGIN_DOC
!
! ao_two_e_tc_tot(k,i,l,j) = (ki|V^TC(r_12)|lj) = <lk| V^TC(r_12) |ji> where V^TC(r_12) is the total TC operator
!
! including both hermitian and non hermitian parts. THIS IS IN CHEMIST NOTATION.
!
! WARNING :: non hermitian ! acts on "the right functions" (i,j)
!
END_DOC
integer :: i, j, k, l
double precision :: integral_sym, integral_nsym
double precision, external :: get_ao_tc_sym_two_e_pot
provide j1b_type
if(j1b_type .eq. 0) then
PROVIDE ao_tc_sym_two_e_pot_in_map
!!! TODO :: OPENMP
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
integral_sym = get_ao_tc_sym_two_e_pot(i, j, k, l, ao_tc_sym_two_e_pot_map)
! ao_non_hermit_term_chemist(k,i,l,j) = < k l | [erf( mu r12) - 1] d/d_r12 | i j > on the AO basis
integral_nsym = ao_non_hermit_term_chemist(k,i,l,j)
!print *, ' sym integ = ', integral_sym
!print *, ' non-sym integ = ', integral_nsym
ao_two_e_tc_tot(k,i,l,j) = integral_sym + integral_nsym
!write(111,*) ao_two_e_tc_tot(k,i,l,j)
enddo
enddo
enddo
enddo
else
PROVIDE ao_tc_int_chemist
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
ao_two_e_tc_tot(k,i,l,j) = ao_tc_int_chemist(k,i,l,j)
!write(222,*) ao_two_e_tc_tot(k,i,l,j)
enddo
enddo
enddo
enddo
FREE ao_tc_int_chemist
endif
END_PROVIDER
! ---
double precision function bi_ortho_mo_ints(l, k, j, i)
@ -118,8 +31,6 @@ end function bi_ortho_mo_ints
! ---
! TODO :: transform into DEGEMM
BEGIN_PROVIDER [double precision, mo_bi_ortho_tc_two_e_chemist, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
@ -267,7 +178,6 @@ END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj, (mo_num,mo_num)]
&BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj_exchange, (mo_num,mo_num)]
&BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_two_e_jj_anti, (mo_num,mo_num)]

View File

@ -1,9 +1,22 @@
[jast_type]
doc: Type of Jastrow [None| Mu | Qmckl]
[j2e_type]
type: character*(32)
doc: type of the 2e-Jastrow: [ None | Mu | Mur | Qmckl ]
interface: ezfio,provider,ocaml
default: Mu
[j1e_type]
type: character*(32)
doc: type of the 1e-Jastrow: [ None | Gauss | Charge_Harmonizer ]
interface: ezfio,provider,ocaml
default: None
[env_type]
type: character*(32)
doc: type of envelop for Jastrow: [ None | Prod_Gauss | Sum_Gauss | Sum_Slat | Sum_Quartic ]
interface: ezfio, provider, ocaml
default: Sum_Gauss
[jast_qmckl_type_nucl_num]
doc: Number of different nuclei types in QMCkl jastrow
type: integer
@ -64,6 +77,77 @@ type: double precision
size: (jastrow.jast_qmckl_c_vector_size)
interface: ezfio, provider
[j1e_size]
type: integer
doc: number of functions per atom in 1e-Jastrow
interface: ezfio,provider,ocaml
default: 1
[j1e_coef]
type: double precision
doc: linear coef of functions in 1e-Jastrow
interface: ezfio
size: (jastrow.j1e_size,nuclei.nucl_num)
[j1e_coef_ao]
type: double precision
doc: coefficients of the 1-electrob Jastrow in AOs
interface: ezfio
size: (ao_basis.ao_num)
[j1e_coef_ao2]
type: double precision
doc: coefficients of the 1-electron Jastrow in AOsxAOs
interface: ezfio
size: (ao_basis.ao_num,ao_basis.ao_num)
[j1e_coef_ao3]
type: double precision
doc: coefficients of the 1-electron Jastrow in AOsxAOs
interface: ezfio
size: (ao_basis.ao_num,3)
[j1e_expo]
type: double precision
doc: exponenets of functions in 1e-Jastrow
interface: ezfio
size: (jastrow.j1e_size,nuclei.nucl_num)
[env_expo]
type: double precision
doc: exponents of the envelop for Jastrow
interface: ezfio
size: (nuclei.nucl_num)
[env_coef]
type: double precision
doc: coefficients of the envelop for Jastrow
interface: ezfio
size: (nuclei.nucl_num)
[murho_type]
type: integer
doc: type of mu(rho) Jastrow
interface: ezfio, provider, ocaml
default: 0
[ng_fit_jast]
type: integer
doc: nb of Gaussians used to fit Jastrow fcts
interface: ezfio,provider,ocaml
default: 20
[a_boys]
type: double precision
doc: cutting of the interaction in the range separated model
interface: ezfio,provider,ocaml
default: 1.0
ezfio_name: a_boys
[nu_erf]
type: double precision
doc: e-e correlation in the core
interface: ezfio,provider,ocaml
default: 1.0
ezfio_name: nu_erf

View File

@ -1,2 +1,3 @@
nuclei
electrons
ao_basis

View File

@ -1,3 +1,78 @@
# Jastrow
Information relative to the Jastrow factor in trans-correlated calculations.
Information related to the Jastrow factor in trans-correlated calculations.
The main keywords are:
- `j2e_type`
- `j1e_type`
- `env_type`
## j2e_type Options
1. **None:** No 2e-Jastrow is used.
2. **Mu:** 2e-Jastrow inspired by Range Separated Density Functional Theory. It has the following shape:
<p align="center">
<img src="https://latex.codecogs.com/png.image?%5Cinline%20%5Clarge%20%5Cdpi%7B200%7D%5Cbg%7Bwhite%7D%5Ctau=%5Cfrac%7B1%7D%7B2%7D%5Csum_%7Bi,j%5Cneq%20i%7Du(%5Cmathbf%7Br%7D_i,%5Cmathbf%7Br%7D_j)">
</p>
with,
<p align="center">
<img src="https://latex.codecogs.com/png.image?%5Cinline%20%5Clarge%20%5Cdpi%7B200%7D%5Cbg%7Bwhite%7D%20u(%5Cmathbf%7Br%7D_1,%5Cmathbf%7Br%7D_2)=u(r_%7B12%7D)=%5Cfrac%7Br_%7B12%7D%7D%7B2%7D%5Cleft%5B1-%5Ctext%7Berf%7D(%5Cmu%20r_%7B12%7D)%5Cright%5D-%5Cfrac%7B%5Cexp%5B-(%5Cmu%20r_%7B12%7D)%5E2%5D%7D%7B2%5Csqrt%7B%5Cpi%7D%5Cmu%7D">
</p>
3. **Mu_Nu:** A valence and a core correlation terms are used
<p align="center">
<img src="https://latex.codecogs.com/png.image?\inline&space;\large&space;\dpi{110}\bg{white}&space;u(\mathbf{r}_1,\mathbf{r}_2)=u(\mu;r_{12})\,v(\mathbf{r}_1)\,v(\mathbf{r}_2)&plus;u(\nu;r_{12})[1-v(\mathbf{r}_1)\,v(\mathbf{r}_2)]">
</p>
with envelop \(v\).
## env_type Options
The 2-electron Jastrow is multiplied by an envelope \(v\):
<p align="center">
<img src="https://latex.codecogs.com/png.image?%5Cinline%20%5Clarge%20%5Cdpi%7B200%7D%5Cbg%7Bwhite%7D%5Ctau=%5Cfrac%7B1%7D%7B2%7D%5Csum_%7Bi,j%5Cneq%20i%7Du(%5Cmathbf%7Br%7D_i,%5Cmathbf%7Br%7D_j)%5C,v(%5Cmathbf%7Br%7D_i)%5C,v(%5Cmathbf%7Br%7D_j)">
</p>
- if `env_type` is **None**: No envelope is used.
- if `env_type` is **Prod_Gauss**:
<p align="center">
<img src="https://latex.codecogs.com/png.image?%5Cinline%20%5Clarge%20%5Cdpi%7B200%7D%5Cbg%7Bwhite%7D%20v(%5Cmathbf%7Br%7D)=%5Cprod_%7BA%7D%5Cleft(1-e%5E%7B-%5Calpha_A(%5Cmathbf%7Br%7D-%5Cmathbf%7BR%7D_A)%5E2%7D%5Cright)">
</p>
- if `env_type` is **Sum_Gauss**:
<p align="center">
<img src="https://latex.codecogs.com/png.image?%5Cinline%20%5Clarge%20%5Cdpi%7B200%7D%5Cbg%7Bwhite%7D%20v(%5Cmathbf%7Br%7D)=1-%5Csum_%7BA%7Dc_A%20e%5E%7B-%5Calpha_A(%5Cmathbf%7Br%7D-%5Cmathbf%7BR%7D_A)%5E2%7D">
</p>
Here, \(A\) designates the nuclei, and the coefficients and exponents are defined in the tables `env_coef` and `env_expo` respectively.
## j1e_type Options
The 1-electron Jastrow used is:
<p align="center">
<img src="https://latex.codecogs.com/png.image?%5Cinline%20%5Clarge%20%5Cdpi%7B200%7D%5Cbg%7Bwhite%7D%5Ctau=%5Csum_i%20u_%7B1e%7D(%5Cmathbf%7Br%7D_i)">
</p>
- if `j1e_type` is **None**: No one-electron Jastrow is used.
- if `j1e_type` is **Gauss**: We use
<p align="center">
<img src="https://latex.codecogs.com/png.image?%5Cinline%20%5Clarge%20%5Cdpi%7B200%7D%5Cbg%7Bwhite%7Du_%7B1e%7D(%5Cmathbf%7Br%7D)=%5Csum_A%5Csum_%7Bp_A%7Dc_%7Bp_A%7De%5E%7B-%5Calpha_%7Bp_A%7D(%5Cmathbf%7Br%7D-%5Cmathbf%7BR%7D_A)%5E2%7D">
</p>
<img src="https://latex.codecogs.com/png.image?%5Cinline%20%5Clarge%20%5Cdpi%7B200%7D%5Cbg%7Bwhite%7D%20c_%7Bp_A%7D%5C,%5Ctext%7Band%7D%5C,%5Calpha_%7Bp_A%7D">
are defined by the tables `j1e_coef` and `j1e_expo`, respectively.
- if `j1e_type` is **Charge_Harmonizer**: The one-electron Jastrow factor aims to offset the adverse impact of modifying the charge density induced by the two-electron factor
<p align="center">
<img src="https://latex.codecogs.com/png.image?%5Cinline%20%5Clarge%20%5Cdpi%7B200%7D%5Cbg%7Bwhite%7Du_%7B1e%7D(%5Cmathbf%7Br%7D_1)=-%5Cfrac%7BN-1%7D%7B2N%7D%5C,%5Csum_%7B%5Csigma%7D%5C,%5Cint%20d%5Cmathbf%7Br%7D_2%5C,%5Crho%5E%7B%5Csigma%7D(%5Cmathbf%7Br%7D_2)%5C,u_%7B2e%7D(%5Cmathbf%7Br%7D_1,%5Cmathbf%7Br%7D_2)">
</p>
- if `j1e_type` is **Charge_Harmonizer_AO**: The one-electron Jastrow factor **Charge_Harmonizer** is fitted by the product of atomic orbitals:
<p align="center">
<img src="https://latex.codecogs.com/png.image?\inline&space;\large&space;\dpi{300}\bg{white}&space;u_{1e}(\mathbf{r})=\sum_{\alpha,\beta}C_{\alpha,\beta}\chi_{\alpha}(\mathbf{r})\chi_{\beta}(\mathbf{r})">
</p>

View File

@ -0,0 +1,102 @@
! ---
BEGIN_PROVIDER [double precision, env_expo, (nucl_num)]
&BEGIN_PROVIDER [double precision, env_coef, (nucl_num)]
BEGIN_DOC
!
! parameters of the env of the 2e-Jastrow
!
END_DOC
implicit none
logical :: exists
integer :: i
integer :: ierr
PROVIDE ezfio_filename
! ---
if (mpi_master) then
call ezfio_has_jastrow_env_expo(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
call MPI_BCAST(env_expo, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read env_expo with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: env_expo ] <<<<< ..'
call ezfio_get_jastrow_env_expo(env_expo)
IRP_IF MPI
call MPI_BCAST(env_expo, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read env_expo with MPI'
endif
IRP_ENDIF
endif
else
env_expo = 1d5
call ezfio_set_jastrow_env_expo(env_expo)
endif
! ---
if (mpi_master) then
call ezfio_has_jastrow_env_coef(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
call MPI_BCAST(env_coef, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read env_coef with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: env_coef ] <<<<< ..'
call ezfio_get_jastrow_env_coef(env_coef)
IRP_IF MPI
call MPI_BCAST(env_coef, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read env_coef with MPI'
endif
IRP_ENDIF
endif
else
env_coef = 1d0
call ezfio_set_jastrow_env_coef(env_coef)
endif
! ---
print *, ' parameters for nuclei jastrow'
print *, ' i, Z, env_expo, env_coef'
do i = 1, nucl_num
write(*,'(I4, 2x, 3(E15.7, 2X))') i, nucl_charge(i), env_expo(i), env_coef(i)
enddo
END_PROVIDER
! ---

View File

@ -1,6 +1,11 @@
! ---
BEGIN_PROVIDER [double precision, expo_j_xmu_1gauss]
&BEGIN_PROVIDER [double precision, coef_j_xmu_1gauss]
implicit none
BEGIN_DOC
! Upper bound long range fit of F(x) = x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2)
!
@ -8,33 +13,54 @@
!
! Such a function can be used to screen integrals with F(x).
END_DOC
expo_j_xmu_1gauss = 0.5d0
coef_j_xmu_1gauss = 1.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, expo_erfc_gauss]
implicit none
expo_erfc_gauss = 1.41211d0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, expo_erfc_mu_gauss]
implicit none
expo_erfc_mu_gauss = expo_erfc_gauss * mu_erf * mu_erf
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, expo_good_j_mu_1gauss]
&BEGIN_PROVIDER [double precision, coef_good_j_mu_1gauss]
implicit none
BEGIN_DOC
!
! exponent of Gaussian in order to obtain an upper bound of J(r12,mu)
!
! Can be used to scree integrals with J(r12,mu)
!
END_DOC
expo_good_j_mu_1gauss = 2.D0 * mu_erf * expo_j_xmu_1gauss
implicit none
expo_good_j_mu_1gauss = 2.d0 * mu_erf * expo_j_xmu_1gauss
coef_good_j_mu_1gauss = 0.5d0/mu_erf * coef_j_xmu_1gauss
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, expo_j_xmu, (n_fit_1_erf_x)]
BEGIN_DOC
@ -465,47 +491,80 @@ END_PROVIDER
! ---
double precision function F_x_j(x)
implicit none
BEGIN_DOC
! F_x_j(x) = dimension-less correlation factor = x (1 - erf(x)) - 1/sqrt(pi) exp(-x^2)
!
! dimension-less correlation factor:
!
! F_x_j(x) = x (1 - erf(x)) - 1/sqrt(pi) exp(-x^2)
!
END_DOC
implicit none
double precision, intent(in) :: x
F_x_j = x * (1.d0 - derf(x)) - 1/dsqrt(dacos(-1.d0)) * dexp(-x**2)
end
! ---
double precision function j_mu_F_x_j(x)
implicit none
BEGIN_DOC
! j_mu_F_x_j(x) = correlation factor = 1/2 r12 * (1 - erf(mu*r12)) - 1/(2 sqrt(pi)*mu) exp(-(mu*r12)^2)
!
! correlation factor:
!
! j_mu_F_x_j(x) = 1/2 r12 * (1 - erf(mu*r12)) - 1/(2 sqrt(pi)*mu) exp(-(mu*r12)^2)
! = 1/(2*mu) * F_x_j(mu*x)
!
END_DOC
double precision :: F_x_j
implicit none
double precision, intent(in) :: x
double precision :: F_x_j
j_mu_F_x_j = 0.5d0/mu_erf * F_x_j(x*mu_erf)
end
! ---
double precision function j_mu(x)
BEGIN_DOC
!
! correlation factor:
!
! j_mu(x) = 1/2 r12 * (1 - erf(mu*r12)) - 1/(2 sqrt(pi)*mu) exp(-(mu*r12)^2)
!
END_DOC
implicit none
double precision, intent(in) :: x
BEGIN_DOC
! j_mu(x) = correlation factor = 1/2 r12 * (1 - erf(mu*r12)) - 1/(2 sqrt(pi)*mu) exp(-(mu*r12)^2)
END_DOC
j_mu = 0.5d0* x * (1.d0 - derf(mu_erf*x)) - 0.5d0/( dsqrt(dacos(-1.d0))*mu_erf) * dexp(-(mu_erf*x)*(mu_erf*x))
end
! ---
double precision function j_mu_fit_gauss(x)
implicit none
BEGIN_DOC
! j_mu_fit_gauss(x) = correlation factor = 1/2 r12 * (1 - erf(mu*r12)) - 1/(2 sqrt(pi)*mu) exp(-(mu*r12)^2)
!
! but fitted with gaussians
! correlation factor fitted with gaussians:
!
! j_mu_fit_gauss(x) = 1/2 r12 * (1 - erf(mu*r12)) - 1/(2 sqrt(pi)*mu) exp(-(mu*r12)^2)
!
!
END_DOC
implicit none
double precision, intent(in) :: x
integer :: i
double precision :: alpha, coef
j_mu_fit_gauss = 0.d0
do i = 1, n_max_fit_slat
alpha = expo_gauss_j_mu_x(i)

View File

@ -1,13 +1,16 @@
! ---
BEGIN_PROVIDER [integer, n_gauss_eff_pot]
BEGIN_DOC
!
! number of gaussians to represent the effective potential :
!
! V(mu,r12) = -0.25 * (1 - erf(mu*r12))^2 + 1/(\sqrt(pi)mu) * exp(-(mu*r12)^2)
!
! Here (1 - erf(mu*r12))^2 is expanded in Gaussians as Eqs A11-A20 in JCP 154, 084119 (2021)
!
END_DOC
implicit none
@ -21,10 +24,13 @@ END_PROVIDER
BEGIN_PROVIDER [integer, n_gauss_eff_pot_deriv]
BEGIN_DOC
!
! V(r12) = -(1 - erf(mu*r12))^2 is expanded in Gaussians as Eqs A11-A20 in JCP 154, 084119 (2021)
!
END_DOC
implicit none
n_gauss_eff_pot_deriv = ng_fit_jast
END_PROVIDER
@ -35,11 +41,13 @@ END_PROVIDER
&BEGIN_PROVIDER [double precision, coef_gauss_eff_pot, (n_gauss_eff_pot)]
BEGIN_DOC
!
! Coefficients and exponents of the Fit on Gaussians of V(X) = -(1 - erf(mu*X))^2 + 1/(\sqrt(pi)mu) * exp(-(mu*X)^2)
!
! V(X) = \sum_{i=1,n_gauss_eff_pot} coef_gauss_eff_pot(i) * exp(-expo_gauss_eff_pot(i) * X^2)
!
! Relies on the fit proposed in Eqs A11-A20 in JCP 154, 084119 (2021)
!
END_DOC
include 'constants.include.F'
@ -64,7 +72,9 @@ END_PROVIDER
double precision function eff_pot_gauss(x, mu)
BEGIN_DOC
!
! V(mu,r12) = -0.25 * (1 - erf(mu*r12))^2 + 1/(\sqrt(pi)mu) * exp(-(mu*r12)^2)
!
END_DOC
implicit none
@ -74,44 +84,58 @@ double precision function eff_pot_gauss(x, mu)
end
! -------------------------------------------------------------------------------------------------
! ---
double precision function eff_pot_fit_gauss(x)
implicit none
BEGIN_DOC
!
! V(mu,r12) = -0.25 * (1 - erf(mu*r12))^2 + 1/(\sqrt(pi)mu) * exp(-(mu*r12)^2)
!
! but fitted with gaussians
!
END_DOC
implicit none
double precision, intent(in) :: x
integer :: i
double precision :: alpha
eff_pot_fit_gauss = derf(mu_erf*x)/x
do i = 1, n_gauss_eff_pot
alpha = expo_gauss_eff_pot(i)
eff_pot_fit_gauss += coef_gauss_eff_pot(i) * dexp(-alpha*x*x)
enddo
end
! ---
BEGIN_PROVIDER [integer, n_fit_1_erf_x]
implicit none
BEGIN_DOC
!
END_DOC
n_fit_1_erf_x = 2
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, expos_slat_gauss_1_erf_x, (n_fit_1_erf_x)]
implicit none
BEGIN_DOC
!
! 1 - erf(mu*x) is fitted with a Slater and gaussian as in Eq.A15 of JCP 154, 084119 (2021)
!
! 1 - erf(mu*x) = e^{-expos_slat_gauss_1_erf_x(1) * mu *x} * e^{-expos_slat_gauss_1_erf_x(2) * mu^2 * x^2}
!
END_DOC
implicit none
expos_slat_gauss_1_erf_x(1) = 1.09529d0
expos_slat_gauss_1_erf_x(2) = 0.756023d0
END_PROVIDER
! ---
@ -151,12 +175,14 @@ END_PROVIDER
double precision function fit_1_erf_x(x)
BEGIN_DOC
!
! fit_1_erf_x(x) = \sum_i c_i exp (-alpha_i x^2) \approx (1 - erf(mu*x))
!
END_DOC
implicit none
integer :: i
double precision, intent(in) :: x
integer :: i
fit_1_erf_x = 0.d0
do i = 1, n_max_fit_slat
@ -171,11 +197,13 @@ end
&BEGIN_PROVIDER [double precision, coef_gauss_1_erf_x_2, (ng_fit_jast)]
BEGIN_DOC
!
! (1 - erf(mu*x))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * x^2)
!
! This is based on a fit of (1 - erf(mu*x)) by exp(-alpha * x) exp(-beta*mu^2x^2)
!
! and the slater function exp(-alpha * x) is fitted with n_max_fit_slat gaussians
!
END_DOC
implicit none
@ -286,12 +314,17 @@ END_PROVIDER
! ---
double precision function fit_1_erf_x_2(x)
BEGIN_DOC
!
! fit_1_erf_x_2(x) = \sum_i c_i exp (-alpha_i x^2) \approx (1 - erf(mu*x))^2
!
END_DOC
implicit none
double precision, intent(in) :: x
BEGIN_DOC
! fit_1_erf_x_2(x) = \sum_i c_i exp (-alpha_i x^2) \approx (1 - erf(mu*x))^2
END_DOC
integer :: i
fit_1_erf_x_2 = 0.d0
do i = 1, n_max_fit_slat
fit_1_erf_x_2 += dexp(-expo_gauss_1_erf_x_2(i) *x*x) * coef_gauss_1_erf_x_2(i)
@ -299,37 +332,4 @@ double precision function fit_1_erf_x_2(x)
end
subroutine inv_r_times_poly(r, dist_r, dist_vec, poly)
implicit none
BEGIN_DOC
! returns
!
! poly(1) = x / sqrt(x^2+y^2+z^2), poly(2) = y / sqrt(x^2+y^2+z^2), poly(3) = z / sqrt(x^2+y^2+z^2)
!
! with the arguments
!
! r(1) = x, r(2) = y, r(3) = z, dist_r = sqrt(x^2+y^2+z^2)
!
! dist_vec(1) = sqrt(y^2+z^2), dist_vec(2) = sqrt(x^2+z^2), dist_vec(3) = sqrt(x^2+y^2)
END_DOC
double precision, intent(in) :: r(3), dist_r, dist_vec(3)
double precision, intent(out):: poly(3)
double precision :: inv_dist
integer :: i
if (dist_r.gt. 1.d-8)then
inv_dist = 1.d0/dist_r
do i = 1, 3
poly(i) = r(i) * inv_dist
enddo
else
do i = 1, 3
if(dabs(r(i)).lt.dist_vec(i))then
inv_dist = 1.d0/dist_r
poly(i) = r(i) * inv_dist
else !if(dabs(r(i)))then
poly(i) = 1.d0
! poly(i) = 0.d0
endif
enddo
endif
end
! ---

View File

@ -0,0 +1,104 @@
! ---
BEGIN_PROVIDER [double precision, j1e_expo, (j1e_size, nucl_num)]
&BEGIN_PROVIDER [double precision, j1e_coef, (j1e_size, nucl_num)]
BEGIN_DOC
!
! parameters of the 1e-Jastrow
!
END_DOC
implicit none
logical :: exists
integer :: i, j
integer :: ierr
PROVIDE ezfio_filename
! ---
if (mpi_master) then
call ezfio_has_jastrow_j1e_expo(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
call MPI_BCAST(j1e_expo, (j1e_size*nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_expo with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: j1e_expo ] <<<<< ..'
call ezfio_get_jastrow_j1e_expo(j1e_expo)
IRP_IF MPI
call MPI_BCAST(j1e_expo, (j1e_size*nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_expo with MPI'
endif
IRP_ENDIF
endif
else
j1e_expo = 1.d0
call ezfio_set_jastrow_j1e_expo(j1e_expo)
endif
! ---
if (mpi_master) then
call ezfio_has_jastrow_j1e_coef(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
call MPI_BCAST(j1e_coef, (j1e_size*nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_coef with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: j1e_coef ] <<<<< ..'
call ezfio_get_jastrow_j1e_coef(j1e_coef)
IRP_IF MPI
call MPI_BCAST(j1e_coef, (j1e_size*nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_coef with MPI'
endif
IRP_ENDIF
endif
else
j1e_coef = 0.d0
call ezfio_set_jastrow_j1e_coef(j1e_coef)
endif
! ---
print *, ' parameters of the 1e-Jastrow'
do i = 1, nucl_num
print*, ' for Z = ', nucl_charge(i)
do j = 1, j1e_size
write(*,'(I4, 2x, 2(E15.7, 2X))') j, j1e_coef(j,i), j1e_expo(j,i)
enddo
enddo
END_PROVIDER
! ---

View File

@ -0,0 +1,371 @@
! ---
BEGIN_PROVIDER [integer, List_env1s_size]
implicit none
PROVIDE env_type
if(env_type .eq. "None") then
List_env1s_size = 1
elseif(env_type .eq. "Prod_Gauss") then
List_env1s_size = 2**nucl_num
elseif(env_type .eq. "Sum_Gauss") then
List_env1s_size = nucl_num + 1
else
print *, ' Error in List_env1s_size: Unknown env_type = ', env_type
stop
endif
print *, ' nb of 1s-Gaussian in the envelope = ', List_env1s_size
END_PROVIDER
! ---
BEGIN_PROVIDER [integer, List_env1s, (nucl_num, List_env1s_size)]
implicit none
integer :: i, j
if(nucl_num .gt. 32) then
print *, ' nucl_num = ', nucl_num, '> 32'
stop
endif
List_env1s = 0
do i = 0, List_env1s_size-1
do j = 0, nucl_num-1
if (btest(i,j)) then
List_env1s(j+1,i+1) = 1
endif
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, List_env1s_coef, ( List_env1s_size)]
&BEGIN_PROVIDER [ double precision, List_env1s_expo, ( List_env1s_size)]
&BEGIN_PROVIDER [ double precision, List_env1s_cent, (3, List_env1s_size)]
implicit none
integer :: i, j, k, phase
double precision :: tmp_alphaj, tmp_alphak
double precision :: tmp_cent_x, tmp_cent_y, tmp_cent_z
provide env_type env_expo env_coef
if(env_type .eq. "None") then
List_env1s_coef( 1) = 1.d0
List_env1s_expo( 1) = 0.d0
List_env1s_cent(1:3,1) = 0.d0
elseif(env_type .eq. "Prod_Gauss") then
List_env1s_coef = 0.d0
List_env1s_expo = 0.d0
List_env1s_cent = 0.d0
do i = 1, List_env1s_size
tmp_cent_x = 0.d0
tmp_cent_y = 0.d0
tmp_cent_z = 0.d0
do j = 1, nucl_num
tmp_alphaj = dble(List_env1s(j,i)) * env_expo(j)
List_env1s_expo(i) += tmp_alphaj
tmp_cent_x += tmp_alphaj * nucl_coord(j,1)
tmp_cent_y += tmp_alphaj * nucl_coord(j,2)
tmp_cent_z += tmp_alphaj * nucl_coord(j,3)
enddo
if(List_env1s_expo(i) .lt. 1d-10) cycle
List_env1s_cent(1,i) = tmp_cent_x / List_env1s_expo(i)
List_env1s_cent(2,i) = tmp_cent_y / List_env1s_expo(i)
List_env1s_cent(3,i) = tmp_cent_z / List_env1s_expo(i)
enddo
! ---
do i = 1, List_env1s_size
do j = 2, nucl_num, 1
tmp_alphaj = dble(List_env1s(j,i)) * env_expo(j)
do k = 1, j-1, 1
tmp_alphak = dble(List_env1s(k,i)) * env_expo(k)
List_env1s_coef(i) += tmp_alphaj * tmp_alphak * ( (nucl_coord(j,1) - nucl_coord(k,1)) * (nucl_coord(j,1) - nucl_coord(k,1)) &
+ (nucl_coord(j,2) - nucl_coord(k,2)) * (nucl_coord(j,2) - nucl_coord(k,2)) &
+ (nucl_coord(j,3) - nucl_coord(k,3)) * (nucl_coord(j,3) - nucl_coord(k,3)) )
enddo
enddo
if(List_env1s_expo(i) .lt. 1d-10) cycle
List_env1s_coef(i) = List_env1s_coef(i) / List_env1s_expo(i)
enddo
! ---
do i = 1, List_env1s_size
phase = 0
do j = 1, nucl_num
phase += List_env1s(j,i)
enddo
List_env1s_coef(i) = (-1.d0)**dble(phase) * dexp(-List_env1s_coef(i))
enddo
elseif(env_type .eq. "Sum_Gauss") then
List_env1s_coef( 1) = 1.d0
List_env1s_expo( 1) = 0.d0
List_env1s_cent(1:3,1) = 0.d0
do i = 1, nucl_num
List_env1s_coef( i+1) = -1.d0 * env_coef(i)
List_env1s_expo( i+1) = env_expo(i)
List_env1s_cent(1,i+1) = nucl_coord(i,1)
List_env1s_cent(2,i+1) = nucl_coord(i,2)
List_env1s_cent(3,i+1) = nucl_coord(i,3)
enddo
else
print *, ' Error in List_env1s: Unknown env_type = ', env_type
stop
endif
END_PROVIDER
! ---
BEGIN_PROVIDER [integer, List_env1s_square_size]
implicit none
double precision :: tmp
if(env_type .eq. "None") then
List_env1s_square_size = 1
elseif(env_type .eq. "Prod_Gauss") then
List_env1s_square_size = 3**nucl_num
elseif(env_type .eq. "Sum_Gauss") then
tmp = 0.5d0 * dble(nucl_num) * (dble(nucl_num) + 3.d0)
List_env1s_square_size = int(tmp) + 1
else
print *, ' Error in List_env1s_square_size: Unknown env_type = ', env_type
stop
endif
print *, ' nb of 1s-Gaussian in the square of envelope = ', List_env1s_square_size
END_PROVIDER
! ---
BEGIN_PROVIDER [integer, List_env1s_square, (nucl_num, List_env1s_square_size)]
implicit none
integer :: i, j, ii, jj
integer, allocatable :: M(:,:), p(:)
if(nucl_num .gt. 32) then
print *, ' nucl_num = ', nucl_num, '> 32'
stop
endif
List_env1s_square(:,:) = 0
List_env1s_square(:,List_env1s_square_size) = 2
allocate(p(nucl_num))
p = 0
do i = 2, List_env1s_square_size-1
do j = 1, nucl_num
ii = 0
do jj = 1, j-1, 1
ii = ii + p(jj) * 3**(jj-1)
enddo
p(j) = modulo(i-1-ii, 3**j) / 3**(j-1)
List_env1s_square(j,i) = p(j)
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, List_env1s_square_coef, ( List_env1s_square_size)]
&BEGIN_PROVIDER [ double precision, List_env1s_square_expo, ( List_env1s_square_size)]
&BEGIN_PROVIDER [ double precision, List_env1s_square_cent, (3, List_env1s_square_size)]
implicit none
integer :: i, j, k, phase
integer :: ii
double precision :: tmp_alphaj, tmp_alphak, facto
double precision :: tmp1, tmp2, tmp3, tmp4
double precision :: xi, yi, zi, xj, yj, zj
double precision :: dx, dy, dz, r2
provide env_type env_expo env_coef
if(env_type .eq. "None") then
List_env1s_square_coef( 1) = 1.d0
List_env1s_square_expo( 1) = 0.d0
List_env1s_square_cent(1:3,1) = 0.d0
elseif(env_type .eq. "Prod_Gauss") then
List_env1s_square_coef = 0.d0
List_env1s_square_expo = 0.d0
List_env1s_square_cent = 0.d0
do i = 1, List_env1s_square_size
do j = 1, nucl_num
tmp_alphaj = dble(List_env1s_square(j,i)) * env_expo(j)
List_env1s_square_expo(i) += tmp_alphaj
List_env1s_square_cent(1,i) += tmp_alphaj * nucl_coord(j,1)
List_env1s_square_cent(2,i) += tmp_alphaj * nucl_coord(j,2)
List_env1s_square_cent(3,i) += tmp_alphaj * nucl_coord(j,3)
enddo
if(List_env1s_square_expo(i) .lt. 1d-10) cycle
List_env1s_square_cent(1,i) = List_env1s_square_cent(1,i) / List_env1s_square_expo(i)
List_env1s_square_cent(2,i) = List_env1s_square_cent(2,i) / List_env1s_square_expo(i)
List_env1s_square_cent(3,i) = List_env1s_square_cent(3,i) / List_env1s_square_expo(i)
enddo
! ---
do i = 1, List_env1s_square_size
do j = 2, nucl_num, 1
tmp_alphaj = dble(List_env1s_square(j,i)) * env_expo(j)
do k = 1, j-1, 1
tmp_alphak = dble(List_env1s_square(k,i)) * env_expo(k)
List_env1s_square_coef(i) += tmp_alphaj * tmp_alphak * ( (nucl_coord(j,1) - nucl_coord(k,1)) * (nucl_coord(j,1) - nucl_coord(k,1)) &
+ (nucl_coord(j,2) - nucl_coord(k,2)) * (nucl_coord(j,2) - nucl_coord(k,2)) &
+ (nucl_coord(j,3) - nucl_coord(k,3)) * (nucl_coord(j,3) - nucl_coord(k,3)) )
enddo
enddo
if(List_env1s_square_expo(i) .lt. 1d-10) cycle
List_env1s_square_coef(i) = List_env1s_square_coef(i) / List_env1s_square_expo(i)
enddo
! ---
do i = 1, List_env1s_square_size
facto = 1.d0
phase = 0
do j = 1, nucl_num
tmp_alphaj = dble(List_env1s_square(j,i))
facto *= 2.d0 / (gamma(tmp_alphaj+1.d0) * gamma(3.d0-tmp_alphaj))
phase += List_env1s_square(j,i)
enddo
List_env1s_square_coef(i) = (-1.d0)**dble(phase) * facto * dexp(-List_env1s_square_coef(i))
enddo
elseif(env_type .eq. "Sum_Gauss") then
ii = 1
List_env1s_square_coef( ii) = 1.d0
List_env1s_square_expo( ii) = 0.d0
List_env1s_square_cent(1:3,ii) = 0.d0
do i = 1, nucl_num
ii = ii + 1
List_env1s_square_coef( ii) = -2.d0 * env_coef(i)
List_env1s_square_expo( ii) = env_expo(i)
List_env1s_square_cent(1,ii) = nucl_coord(i,1)
List_env1s_square_cent(2,ii) = nucl_coord(i,2)
List_env1s_square_cent(3,ii) = nucl_coord(i,3)
enddo
do i = 1, nucl_num
ii = ii + 1
List_env1s_square_coef( ii) = 1.d0 * env_coef(i) * env_coef(i)
List_env1s_square_expo( ii) = 2.d0 * env_expo(i)
List_env1s_square_cent(1,ii) = nucl_coord(i,1)
List_env1s_square_cent(2,ii) = nucl_coord(i,2)
List_env1s_square_cent(3,ii) = nucl_coord(i,3)
enddo
do i = 1, nucl_num-1
tmp1 = env_expo(i)
xi = nucl_coord(i,1)
yi = nucl_coord(i,2)
zi = nucl_coord(i,3)
do j = i+1, nucl_num
tmp2 = env_expo(j)
tmp3 = tmp1 + tmp2
tmp4 = 1.d0 / tmp3
xj = nucl_coord(j,1)
yj = nucl_coord(j,2)
zj = nucl_coord(j,3)
dx = xi - xj
dy = yi - yj
dz = zi - zj
r2 = dx*dx + dy*dy + dz*dz
ii = ii + 1
! x 2 to avoid doing integrals twice
List_env1s_square_coef( ii) = 2.d0 * dexp(-tmp1*tmp2*tmp4*r2) * env_coef(i) * env_coef(j)
List_env1s_square_expo( ii) = tmp3
List_env1s_square_cent(1,ii) = tmp4 * (tmp1 * xi + tmp2 * xj)
List_env1s_square_cent(2,ii) = tmp4 * (tmp1 * yi + tmp2 * yj)
List_env1s_square_cent(3,ii) = tmp4 * (tmp1 * zi + tmp2 * zj)
enddo
enddo
else
print *, ' Error in List_env1s_square: Unknown env_type = ', env_type
stop
endif
END_PROVIDER
! ---

View File

@ -1,4 +1,5 @@
qmckl
hamiltonian
jastrow
ao_tc_eff_map
bi_ortho_mos

View File

@ -0,0 +1,56 @@
! ---
program deb_Aos
implicit none
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
if(tc_integ_type .eq. "numeric") then
my_extra_grid_becke = .True.
PROVIDE tc_grid2_a tc_grid2_r
my_n_pt_r_extra_grid = tc_grid2_r
my_n_pt_a_extra_grid = tc_grid2_a
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
endif
call print_aos()
end
! ---
subroutine print_aos()
implicit none
integer :: i, ipoint
double precision :: r(3)
double precision :: ao_val, ao_der(3), ao_lap
PROVIDE final_grid_points aos_in_r_array aos_grad_in_r_array aos_lapl_in_r_array
do ipoint = 1, n_points_final_grid
r(:) = final_grid_points(:,ipoint)
print*, r
enddo
do ipoint = 1, n_points_final_grid
r(:) = final_grid_points(:,ipoint)
do i = 1, ao_num
ao_val = aos_in_r_array (i,ipoint)
ao_der(:) = aos_grad_in_r_array(i,ipoint,:)
ao_lap = aos_lapl_in_r_array(1,i,ipoint) + aos_lapl_in_r_array(2,i,ipoint) + aos_lapl_in_r_array(3,i,ipoint)
write(*, '(5(f15.7, 3X))') ao_val, ao_der, ao_lap
enddo
enddo
return
end
! ---

View File

@ -11,9 +11,12 @@ program debug_fit
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
PROVIDE mu_erf j1b_pen
PROVIDE j2e_type mu_erf
PROVIDE j1e_type j1e_coef j1e_expo
PROVIDE env_type env_coef env_expo
provide tc_integ_type
if(j1b_type .ge. 100) then
if(tc_integ_type .eq. "numeric") then
my_extra_grid_becke = .True.
PROVIDE tc_grid2_a tc_grid2_r
my_n_pt_r_extra_grid = tc_grid2_r
@ -21,12 +24,8 @@ program debug_fit
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
endif
!call test_j1b_nucl()
!call test_grad_j1b_nucl()
!call test_lapl_j1b_nucl()
!call test_list_b2()
!call test_list_b3()
!call test_env_nucl()
!call test_grad_env_nucl()
!call test_fit_u()
!call test_fit_u2()
@ -38,17 +37,17 @@ end
! ---
subroutine test_j1b_nucl()
subroutine test_env_nucl()
implicit none
integer :: ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision :: r(3)
double precision, external :: j1b_nucl
double precision, external :: env_nucl
print*, ' test_j1b_nucl ...'
print*, ' test_env_nucl ...'
PROVIDE v_1b
PROVIDE env_val
eps_ij = 1d-7
acc_tot = 0.d0
@ -60,11 +59,11 @@ subroutine test_j1b_nucl()
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
i_exc = v_1b(ipoint)
i_num = j1b_nucl(r)
i_exc = env_val(ipoint)
i_num = env_nucl(r)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in v_1b on', ipoint
print *, ' problem in env_val on', ipoint
print *, ' analyt = ', i_exc
print *, ' numeri = ', i_num
print *, ' diff = ', acc_ij
@ -78,23 +77,23 @@ subroutine test_j1b_nucl()
print*, ' normalz = ', normalz
return
end subroutine test_j1b_nucl
end
! ---
subroutine test_grad_j1b_nucl()
subroutine test_grad_env_nucl()
implicit none
integer :: ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision :: r(3)
double precision, external :: grad_x_j1b_nucl_num
double precision, external :: grad_y_j1b_nucl_num
double precision, external :: grad_z_j1b_nucl_num
double precision, external :: grad_x_env_nucl_num
double precision, external :: grad_y_env_nucl_num
double precision, external :: grad_z_env_nucl_num
print*, ' test_grad_j1b_nucl ...'
PROVIDE env_grad
PROVIDE v_1b_grad
print*, ' test_grad_env_nucl ...'
eps_ij = 1d-7
acc_tot = 0.d0
@ -106,31 +105,31 @@ subroutine test_grad_j1b_nucl()
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
i_exc = v_1b_grad(1,ipoint)
i_num = grad_x_j1b_nucl_num(r)
i_exc = env_grad(1,ipoint)
i_num = grad_x_env_nucl_num(r)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in x of v_1b_grad on', ipoint
print *, ' problem in x of env_grad on', ipoint
print *, ' analyt = ', i_exc
print *, ' numeri = ', i_num
print *, ' diff = ', acc_ij
endif
i_exc = v_1b_grad(2,ipoint)
i_num = grad_y_j1b_nucl_num(r)
i_exc = env_grad(2,ipoint)
i_num = grad_y_env_nucl_num(r)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in y of v_1b_grad on', ipoint
print *, ' problem in y of env_grad on', ipoint
print *, ' analyt = ', i_exc
print *, ' numeri = ', i_num
print *, ' diff = ', acc_ij
endif
i_exc = v_1b_grad(3,ipoint)
i_num = grad_z_j1b_nucl_num(r)
i_exc = env_grad(3,ipoint)
i_num = grad_z_env_nucl_num(r)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in z of v_1b_grad on', ipoint
print *, ' problem in z of env_grad on', ipoint
print *, ' analyt = ', i_exc
print *, ' numeri = ', i_num
print *, ' diff = ', acc_ij
@ -144,278 +143,7 @@ subroutine test_grad_j1b_nucl()
print*, ' normalz = ', normalz
return
end subroutine test_grad_j1b_nucl
! ---
subroutine test_lapl_j1b_nucl()
implicit none
integer :: ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision :: r(3)
double precision, external :: lapl_j1b_nucl
print*, ' test_lapl_j1b_nucl ...'
PROVIDE v_1b_lapl
eps_ij = 1d-5
acc_tot = 0.d0
normalz = 0.d0
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
i_exc = v_1b_lapl(ipoint)
i_num = lapl_j1b_nucl(r)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in v_1b_lapl on', ipoint
print *, ' analyt = ', i_exc
print *, ' numeri = ', i_num
print *, ' diff = ', acc_ij
endif
acc_tot += acc_ij
normalz += dabs(i_num)
enddo
print*, ' acc_tot = ', acc_tot
print*, ' normalz = ', normalz
return
end subroutine test_lapl_j1b_nucl
! ---
subroutine test_list_b2()
implicit none
integer :: ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision :: r(3)
double precision, external :: j1b_nucl
print*, ' test_list_b2 ...'
PROVIDE v_1b_list_b2
eps_ij = 1d-7
acc_tot = 0.d0
normalz = 0.d0
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
i_exc = v_1b_list_b2(ipoint)
i_num = j1b_nucl(r)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in list_b2 on', ipoint
print *, ' analyt = ', i_exc
print *, ' numeri = ', i_num
print *, ' diff = ', acc_ij
endif
acc_tot += acc_ij
normalz += dabs(i_num)
enddo
print*, ' acc_tot = ', acc_tot
print*, ' normalz = ', normalz
return
end subroutine test_list_b2
! ---
subroutine test_list_b3()
implicit none
integer :: ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_tmp, i_num, normalz
double precision :: r(3)
double precision :: grad_num(3), eps_der, eps_lap, tmp_der, tmp_lap, i0, ip, im
double precision, external :: j1b_nucl_square
print*, ' test_list_b3 ...'
eps_ij = 1d-7
eps_der = 1d-5
tmp_der = 0.5d0 / eps_der
eps_lap = 1d-4
tmp_lap = 1.d0 / (eps_lap*eps_lap)
! ---
PROVIDE v_1b_list_b3
acc_tot = 0.d0
normalz = 0.d0
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
i_exc = v_1b_list_b3(ipoint)
i_num = j1b_nucl_square(r)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in list_b3 on', ipoint
print *, ' r = ', r
print *, ' r2 = ', r(1)*r(1) + r(2)*r(2) + r(3)*r(3)
print *, ' analyt = ', i_exc
print *, ' numeri = ', i_num
print *, ' diff = ', acc_ij
endif
acc_tot += acc_ij
normalz += dabs(i_num)
enddo
print*, ' acc_tot on val = ', acc_tot
print*, ' normalz on val = ', normalz
! ---
PROVIDE v_1b_square_grad
acc_tot = 0.d0
normalz = 0.d0
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
i_exc = v_1b_square_grad(ipoint,1)
r(1) = r(1) + eps_der
ip = j1b_nucl_square(r)
r(1) = r(1) - 2.d0 * eps_der
im = j1b_nucl_square(r)
r(1) = r(1) + eps_der
i_num = tmp_der * (ip - im)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in grad_x list_b3 on', ipoint
print *, ' r = ', r
print *, ' r2 = ', r(1)*r(1) + r(2)*r(2) + r(3)*r(3)
print *, ' analyt = ', i_exc
print *, ' numeri = ', i_num
print *, ' diff = ', acc_ij
endif
acc_tot += acc_ij
normalz += dabs(i_num)
i_exc = v_1b_square_grad(ipoint,2)
r(2) = r(2) + eps_der
ip = j1b_nucl_square(r)
r(2) = r(2) - 2.d0 * eps_der
im = j1b_nucl_square(r)
r(2) = r(2) + eps_der
i_num = tmp_der * (ip - im)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in grad_y list_b3 on', ipoint
print *, ' r = ', r
print *, ' r2 = ', r(1)*r(1) + r(2)*r(2) + r(3)*r(3)
print *, ' analyt = ', i_exc
print *, ' numeri = ', i_num
print *, ' diff = ', acc_ij
endif
acc_tot += acc_ij
normalz += dabs(i_num)
i_exc = v_1b_square_grad(ipoint,3)
r(3) = r(3) + eps_der
ip = j1b_nucl_square(r)
r(3) = r(3) - 2.d0 * eps_der
im = j1b_nucl_square(r)
r(3) = r(3) + eps_der
i_num = tmp_der * (ip - im)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in grad_z list_b3 on', ipoint
print *, ' r = ', r
print *, ' r2 = ', r(1)*r(1) + r(2)*r(2) + r(3)*r(3)
print *, ' analyt = ', i_exc
print *, ' numeri = ', i_num
print *, ' diff = ', acc_ij
endif
acc_tot += acc_ij
normalz += dabs(i_num)
enddo
print*, ' acc_tot on grad = ', acc_tot
print*, ' normalz on grad = ', normalz
! ---
PROVIDE v_1b_square_lapl
acc_tot = 0.d0
normalz = 0.d0
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
i0 = j1b_nucl_square(r)
i_exc = v_1b_square_lapl(ipoint)
r(1) = r(1) + eps_lap
ip = j1b_nucl_square(r)
r(1) = r(1) - 2.d0 * eps_lap
im = j1b_nucl_square(r)
r(1) = r(1) + eps_lap
i_num = tmp_lap * (ip - 2.d0 * i0 + im)
r(2) = r(2) + eps_lap
ip = j1b_nucl_square(r)
r(2) = r(2) - 2.d0 * eps_lap
im = j1b_nucl_square(r)
r(2) = r(2) + eps_lap
i_num = i_num + tmp_lap * (ip - 2.d0 * i0 + im)
r(3) = r(3) + eps_lap
ip = j1b_nucl_square(r)
r(3) = r(3) - 2.d0 * eps_lap
im = j1b_nucl_square(r)
r(3) = r(3) + eps_lap
i_num = i_num + tmp_lap * (ip - 2.d0 * i0 + im)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in lapl list_b3 on', ipoint
print *, ' r = ', r
print *, ' r2 = ', r(1)*r(1) + r(2)*r(2) + r(3)*r(3)
print *, ' analyt = ', i_exc
print *, ' numeri = ', i_num
print *, ' diff = ', acc_ij
endif
acc_tot += acc_ij
normalz += dabs(i_num)
enddo
print*, ' acc_tot on lapl = ', acc_tot
print*, ' normalz on lapl = ', normalz
! ---
return
end subroutine test_list_b3
end
! ---
@ -516,7 +244,7 @@ subroutine test_fit_ugradu()
enddo
return
end subroutine test_fit_ugradu
end
! ---
@ -582,7 +310,7 @@ subroutine test_fit_u()
enddo
return
end subroutine test_fit_u
end
! ---
@ -649,7 +377,7 @@ subroutine test_fit_u2()
enddo
return
end subroutine test_fit_u2
end
! ---
@ -673,7 +401,7 @@ subroutine test_grad1_u12_withsq_num()
do ipoint = 1, n_points_final_grid
call get_grad1_u12_withsq_r1_seq(final_grid_points(1,ipoint), n_points_extra_final_grid, tmp_grad1_u12(1,ipoint,1) &
call get_grad1_u12_withsq_r1_seq(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,ipoint,1) &
, tmp_grad1_u12(1,ipoint,2) &
, tmp_grad1_u12(1,ipoint,3) &
, tmp_grad1_u12_squared(1,ipoint))
@ -714,7 +442,7 @@ subroutine test_grad1_u12_withsq_num()
print*, ' accuracy (%) = ', 100.d0 * acc_tot / normalz
return
end subroutine test_grad1_u12_withsq_num
end
! ---

View File

@ -11,40 +11,40 @@ program debug_integ_jmu_modif
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
PROVIDE mu_erf j1b_pen
PROVIDE mu_erf
! call test_v_ij_u_cst_mu_j1b()
! call test_v_ij_erf_rk_cst_mu_j1b()
! call test_x_v_ij_erf_rk_cst_mu_j1b()
! call test_int2_u2_j1b2()
! call test_int2_grad1u2_grad2u2_j1b2()
! call test_int2_u_grad1u_total_j1b2()
! call test_v_ij_u_cst_mu_env()
! call test_v_ij_erf_rk_cst_mu_env()
! call test_x_v_ij_erf_rk_cst_mu_env()
! call test_int2_u2_env2()
! call test_int2_grad1u2_grad2u2_env2()
! call test_int2_u_grad1u_total_env2()
!
! call test_int2_grad1_u12_ao()
! call test_int2_grad1_u12_ao_num()
!
! call test_grad12_j12()
call test_tchint_rsdft()
! call test_u12sq_j1bsq()
! call test_u12_grad1_u12_j1b_grad1_j1b()
! !call test_gradu_squared_u_ij_mu()
! call test_u12sq_envsq()
! call test_u12_grad1_u12_env_grad1_env()
!call test_vect_overlap_gauss_r12_ao()
!call test_vect_overlap_gauss_r12_ao_with1s()
!call test_Ir2_Mu_long_Du_0()
end
! ---
subroutine test_v_ij_u_cst_mu_j1b()
subroutine test_v_ij_u_cst_mu_env()
implicit none
integer :: i, j, ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision, external :: num_v_ij_u_cst_mu_j1b
double precision, external :: num_v_ij_u_cst_mu_env
print*, ' test_v_ij_u_cst_mu_j1b ...'
print*, ' test_v_ij_u_cst_mu_env ...'
PROVIDE v_ij_u_cst_mu_j1b_fit
PROVIDE v_ij_u_cst_mu_env_fit
eps_ij = 1d-3
acc_tot = 0.d0
@ -54,11 +54,11 @@ subroutine test_v_ij_u_cst_mu_j1b()
do j = 1, ao_num
do i = 1, ao_num
i_exc = v_ij_u_cst_mu_j1b_fit(i,j,ipoint)
i_num = num_v_ij_u_cst_mu_j1b (i,j,ipoint)
i_exc = v_ij_u_cst_mu_env_fit(i,j,ipoint)
i_num = num_v_ij_u_cst_mu_env (i,j,ipoint)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in v_ij_u_cst_mu_j1b_fit on', i, j, ipoint
print *, ' problem in v_ij_u_cst_mu_env_fit on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
@ -70,24 +70,23 @@ subroutine test_v_ij_u_cst_mu_j1b()
enddo
enddo
print*, ' acc_tot = ', acc_tot
print*, ' normalz = ', normalz
print*, ' acc_tot (%) = ', 100.d0 * acc_tot / normalz
return
end subroutine test_v_ij_u_cst_mu_j1b
end
! ---
subroutine test_v_ij_erf_rk_cst_mu_j1b()
subroutine test_v_ij_erf_rk_cst_mu_env()
implicit none
integer :: i, j, ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision, external :: num_v_ij_erf_rk_cst_mu_j1b
double precision, external :: num_v_ij_erf_rk_cst_mu_env
print*, ' test_v_ij_erf_rk_cst_mu_j1b ...'
print*, ' test_v_ij_erf_rk_cst_mu_env ...'
PROVIDE v_ij_erf_rk_cst_mu_j1b
PROVIDE v_ij_erf_rk_cst_mu_env
eps_ij = 1d-3
acc_tot = 0.d0
@ -98,11 +97,11 @@ subroutine test_v_ij_erf_rk_cst_mu_j1b()
do j = 1, ao_num
do i = 1, ao_num
i_exc = v_ij_erf_rk_cst_mu_j1b(i,j,ipoint)
i_num = num_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint)
i_exc = v_ij_erf_rk_cst_mu_env(i,j,ipoint)
i_num = num_v_ij_erf_rk_cst_mu_env(i,j,ipoint)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in v_ij_erf_rk_cst_mu_j1b on', i, j, ipoint
print *, ' problem in v_ij_erf_rk_cst_mu_env on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
@ -118,20 +117,20 @@ subroutine test_v_ij_erf_rk_cst_mu_j1b()
print*, ' normalz = ', normalz
return
end subroutine test_v_ij_erf_rk_cst_mu_j1b
end
! ---
subroutine test_x_v_ij_erf_rk_cst_mu_j1b()
subroutine test_x_v_ij_erf_rk_cst_mu_env()
implicit none
integer :: i, j, ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision :: integ(3)
print*, ' test_x_v_ij_erf_rk_cst_mu_j1b ...'
print*, ' test_x_v_ij_erf_rk_cst_mu_env ...'
PROVIDE x_v_ij_erf_rk_cst_mu_j1b
PROVIDE x_v_ij_erf_rk_cst_mu_env
eps_ij = 1d-3
acc_tot = 0.d0
@ -142,13 +141,13 @@ subroutine test_x_v_ij_erf_rk_cst_mu_j1b()
do j = 1, ao_num
do i = 1, ao_num
call num_x_v_ij_erf_rk_cst_mu_j1b(i, j, ipoint, integ)
call num_x_v_ij_erf_rk_cst_mu_env(i, j, ipoint, integ)
i_exc = x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,1)
i_exc = x_v_ij_erf_rk_cst_mu_env(i,j,ipoint,1)
i_num = integ(1)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in x part of x_v_ij_erf_rk_cst_mu_j1b on', i, j, ipoint
print *, ' problem in x part of x_v_ij_erf_rk_cst_mu_env on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
@ -156,11 +155,11 @@ subroutine test_x_v_ij_erf_rk_cst_mu_j1b()
acc_tot += acc_ij
normalz += dabs(i_num)
i_exc = x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,2)
i_exc = x_v_ij_erf_rk_cst_mu_env(i,j,ipoint,2)
i_num = integ(2)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in y part of x_v_ij_erf_rk_cst_mu_j1b on', i, j, ipoint
print *, ' problem in y part of x_v_ij_erf_rk_cst_mu_env on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
@ -168,11 +167,11 @@ subroutine test_x_v_ij_erf_rk_cst_mu_j1b()
acc_tot += acc_ij
normalz += dabs(i_num)
i_exc = x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,3)
i_exc = x_v_ij_erf_rk_cst_mu_env(i,j,ipoint,3)
i_num = integ(3)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in z part of x_v_ij_erf_rk_cst_mu_j1b on', i, j, ipoint
print *, ' problem in z part of x_v_ij_erf_rk_cst_mu_env on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
@ -188,35 +187,34 @@ subroutine test_x_v_ij_erf_rk_cst_mu_j1b()
print*, ' normalz = ', normalz
return
end subroutine test_x_v_ij_erf_rk_cst_mu_j1b
end
! ---
subroutine test_int2_u2_j1b2()
subroutine test_int2_u2_env2()
implicit none
integer :: i, j, ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision, external :: num_int2_u2_j1b2
double precision, external :: num_int2_u2_env2
print*, ' test_int2_u2_j1b2 ...'
print*, ' test_int2_u2_env2 ...'
PROVIDE int2_u2_j1b2
PROVIDE int2_u2_env2
eps_ij = 1d-3
acc_tot = 0.d0
normalz = 0.d0
!do ipoint = 1, 10
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
i_exc = int2_u2_j1b2(i,j,ipoint)
i_num = num_int2_u2_j1b2(i,j,ipoint)
i_exc = int2_u2_env2(i,j,ipoint)
i_num = num_int2_u2_env2(i,j,ipoint)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in int2_u2_j1b2 on', i, j, ipoint
print *, ' problem in int2_u2_env2 on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
@ -233,20 +231,20 @@ subroutine test_int2_u2_j1b2()
print*, ' normalz = ', normalz
return
end subroutine test_int2_u2_j1b2
end
! ---
subroutine test_int2_grad1u2_grad2u2_j1b2()
subroutine test_int2_grad1u2_grad2u2_env2()
implicit none
integer :: i, j, ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision, external :: num_int2_grad1u2_grad2u2_j1b2
double precision, external :: num_int2_grad1u2_grad2u2_env2
print*, ' test_int2_grad1u2_grad2u2_j1b2 ...'
print*, ' test_int2_grad1u2_grad2u2_env2 ...'
PROVIDE int2_grad1u2_grad2u2_j1b2
PROVIDE int2_grad1u2_grad2u2_env2
eps_ij = 1d-3
acc_tot = 0.d0
@ -257,11 +255,11 @@ subroutine test_int2_grad1u2_grad2u2_j1b2()
do j = 1, ao_num
do i = 1, ao_num
i_exc = int2_grad1u2_grad2u2_j1b2(i,j,ipoint)
i_num = num_int2_grad1u2_grad2u2_j1b2(i,j,ipoint)
i_exc = int2_grad1u2_grad2u2_env2(i,j,ipoint)
i_num = num_int2_grad1u2_grad2u2_env2(i,j,ipoint)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in int2_grad1u2_grad2u2_j1b2 on', i, j, ipoint
print *, ' problem in int2_grad1u2_grad2u2_env2 on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
@ -277,18 +275,18 @@ subroutine test_int2_grad1u2_grad2u2_j1b2()
print*, ' normalz = ', normalz
return
end subroutine test_int2_grad1u2_grad2u2_j1b2
end
! ---
subroutine test_int2_grad1_u12_ao()
subroutine test_int2_grad1_u12_ao_num()
implicit none
integer :: i, j, ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision :: integ(3)
print*, ' test_int2_grad1_u12_ao ...'
print*, ' test_int2_grad1_u12_ao_num ...'
PROVIDE int2_grad1_u12_ao
@ -346,11 +344,11 @@ subroutine test_int2_grad1_u12_ao()
print*, ' normalz = ', normalz
return
end subroutine test_int2_grad1_u12_ao
end
! ---
subroutine test_int2_u_grad1u_total_j1b2()
subroutine test_int2_u_grad1u_total_env2()
implicit none
integer :: i, j, ipoint
@ -358,10 +356,10 @@ subroutine test_int2_u_grad1u_total_j1b2()
double precision :: x, y, z
double precision :: integ(3)
print*, ' test_int2_u_grad1u_total_j1b2 ...'
print*, ' test_int2_u_grad1u_total_env2 ...'
PROVIDE int2_u_grad1u_j1b2
PROVIDE int2_u_grad1u_x_j1b2
PROVIDE int2_u_grad1u_env2
PROVIDE int2_u_grad1u_x_env2
eps_ij = 1d-3
acc_tot = 0.d0
@ -376,13 +374,13 @@ subroutine test_int2_u_grad1u_total_j1b2()
do j = 1, ao_num
do i = 1, ao_num
call num_int2_u_grad1u_total_j1b2(i, j, ipoint, integ)
call num_int2_u_grad1u_total_env2(i, j, ipoint, integ)
i_exc = x * int2_u_grad1u_j1b2(i,j,ipoint) - int2_u_grad1u_x_j1b2(i,j,ipoint,1)
i_exc = x * int2_u_grad1u_env2(i,j,ipoint) - int2_u_grad1u_x_env2(i,j,ipoint,1)
i_num = integ(1)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in x part of int2_u_grad1u_total_j1b2 on', i, j, ipoint
print *, ' problem in x part of int2_u_grad1u_total_env2 on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
@ -390,11 +388,11 @@ subroutine test_int2_u_grad1u_total_j1b2()
acc_tot += acc_ij
normalz += dabs(i_num)
i_exc = y * int2_u_grad1u_j1b2(i,j,ipoint) - int2_u_grad1u_x_j1b2(i,j,ipoint,2)
i_exc = y * int2_u_grad1u_env2(i,j,ipoint) - int2_u_grad1u_x_env2(i,j,ipoint,2)
i_num = integ(2)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in y part of int2_u_grad1u_total_j1b2 on', i, j, ipoint
print *, ' problem in y part of int2_u_grad1u_total_env2 on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
@ -402,11 +400,11 @@ subroutine test_int2_u_grad1u_total_j1b2()
acc_tot += acc_ij
normalz += dabs(i_num)
i_exc = z * int2_u_grad1u_j1b2(i,j,ipoint) - int2_u_grad1u_x_j1b2(i,j,ipoint,3)
i_exc = z * int2_u_grad1u_env2(i,j,ipoint) - int2_u_grad1u_x_env2(i,j,ipoint,3)
i_num = integ(3)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in z part of int2_u_grad1u_total_j1b2 on', i, j, ipoint
print *, ' problem in z part of int2_u_grad1u_total_env2 on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
@ -422,109 +420,7 @@ subroutine test_int2_u_grad1u_total_j1b2()
print*, ' normalz = ', normalz
return
end subroutine test_int2_u_grad1u_total_j1b2
! ---
subroutine test_gradu_squared_u_ij_mu()
implicit none
integer :: i, j, ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision, external :: num_gradu_squared_u_ij_mu
print*, ' test_gradu_squared_u_ij_mu ...'
PROVIDE gradu_squared_u_ij_mu
eps_ij = 1d-3
acc_tot = 0.d0
normalz = 0.d0
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
i_exc = gradu_squared_u_ij_mu(i,j,ipoint)
i_num = num_gradu_squared_u_ij_mu(i, j, ipoint)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in gradu_squared_u_ij_mu on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
endif
acc_tot += acc_ij
normalz += dabs(i_num)
enddo
enddo
enddo
print*, ' acc_tot = ', acc_tot
print*, ' normalz = ', normalz
return
end subroutine test_gradu_squared_u_ij_mu
! ---
subroutine test_tchint_rsdft()
implicit none
integer :: i, j, m, ipoint, jpoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision :: x(3), y(3), dj_1(3), dj_2(3), dj_3(3)
print*, ' test rsdft_jastrow ...'
PROVIDE grad1_u12_num
eps_ij = 1d-4
acc_tot = 0.d0
normalz = 0.d0
do ipoint = 1, n_points_final_grid
x(1) = final_grid_points(1,ipoint)
x(2) = final_grid_points(2,ipoint)
x(3) = final_grid_points(3,ipoint)
do jpoint = 1, n_points_extra_final_grid
y(1) = final_grid_points_extra(1,jpoint)
y(2) = final_grid_points_extra(2,jpoint)
y(3) = final_grid_points_extra(3,jpoint)
dj_1(1) = grad1_u12_num(jpoint,ipoint,1)
dj_1(2) = grad1_u12_num(jpoint,ipoint,2)
dj_1(3) = grad1_u12_num(jpoint,ipoint,3)
call get_tchint_rsdft_jastrow(x, y, dj_2)
do m = 1, 3
i_exc = dj_1(m)
i_num = dj_2(m)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem on', ipoint, jpoint, m
print *, ' x = ', x
print *, ' y = ', y
print *, ' exc, num, diff = ', i_exc, i_num, acc_ij
call grad1_jmu_modif_num(x, y, dj_3)
print *, ' check = ', dj_3(m)
stop
endif
acc_tot += acc_ij
normalz += dabs(i_exc)
enddo
enddo
enddo
print*, ' acc_tot = ', acc_tot
print*, ' normalz = ', normalz
return
end subroutine test_tchint_rsdft
end
! ---
@ -567,20 +463,20 @@ subroutine test_grad12_j12()
print*, ' normalz = ', normalz
return
end subroutine test_grad12_j12
end
! ---
subroutine test_u12sq_j1bsq()
subroutine test_u12sq_envsq()
implicit none
integer :: i, j, ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision, external :: num_u12sq_j1bsq
double precision, external :: num_u12sq_envsq
print*, ' test_u12sq_j1bsq ...'
print*, ' test_u12sq_envsq ...'
PROVIDE u12sq_j1bsq
PROVIDE u12sq_envsq
eps_ij = 1d-3
acc_tot = 0.d0
@ -590,11 +486,11 @@ subroutine test_u12sq_j1bsq()
do j = 1, ao_num
do i = 1, ao_num
i_exc = u12sq_j1bsq(i,j,ipoint)
i_num = num_u12sq_j1bsq(i, j, ipoint)
i_exc = u12sq_envsq(i,j,ipoint)
i_num = num_u12sq_envsq(i, j, ipoint)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in u12sq_j1bsq on', i, j, ipoint
print *, ' problem in u12sq_envsq on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
@ -610,20 +506,20 @@ subroutine test_u12sq_j1bsq()
print*, ' normalz = ', normalz
return
end subroutine test_u12sq_j1bsq
end
! ---
subroutine test_u12_grad1_u12_j1b_grad1_j1b()
subroutine test_u12_grad1_u12_env_grad1_env()
implicit none
integer :: i, j, ipoint
double precision :: acc_ij, acc_tot, eps_ij, i_exc, i_num, normalz
double precision, external :: num_u12_grad1_u12_j1b_grad1_j1b
double precision, external :: num_u12_grad1_u12_env_grad1_env
print*, ' test_u12_grad1_u12_j1b_grad1_j1b ...'
print*, ' test_u12_grad1_u12_env_grad1_env ...'
PROVIDE u12_grad1_u12_j1b_grad1_j1b
PROVIDE u12_grad1_u12_env_grad1_env
eps_ij = 1d-3
acc_tot = 0.d0
@ -633,11 +529,11 @@ subroutine test_u12_grad1_u12_j1b_grad1_j1b()
do j = 1, ao_num
do i = 1, ao_num
i_exc = u12_grad1_u12_j1b_grad1_j1b(i,j,ipoint)
i_num = num_u12_grad1_u12_j1b_grad1_j1b(i, j, ipoint)
i_exc = u12_grad1_u12_env_grad1_env(i,j,ipoint)
i_num = num_u12_grad1_u12_env_grad1_env(i, j, ipoint)
acc_ij = dabs(i_exc - i_num)
if(acc_ij .gt. eps_ij) then
print *, ' problem in u12_grad1_u12_j1b_grad1_j1b on', i, j, ipoint
print *, ' problem in u12_grad1_u12_env_grad1_env on', i, j, ipoint
print *, ' analyt integ = ', i_exc
print *, ' numeri integ = ', i_num
print *, ' diff = ', acc_ij
@ -653,7 +549,7 @@ subroutine test_u12_grad1_u12_j1b_grad1_j1b()
print*, ' normalz = ', normalz
return
end subroutine test_u12_grad1_u12_j1b_grad1_j1b
end
! ---
@ -670,7 +566,7 @@ subroutine test_vect_overlap_gauss_r12_ao()
print *, ' test_vect_overlap_gauss_r12_ao ...'
provide mu_erf final_grid_points_transp j1b_pen
provide mu_erf final_grid_points_transp
expo_fit = expo_gauss_j_mu_x_2(1)
@ -740,7 +636,7 @@ subroutine test_vect_overlap_gauss_r12_ao()
print*, ' normalz = ', normalz
return
end subroutine test_vect_overlap_gauss_r12_ao
end
! ---
@ -757,13 +653,13 @@ subroutine test_vect_overlap_gauss_r12_ao_with1s()
print *, ' test_vect_overlap_gauss_r12_ao_with1s ...'
provide mu_erf final_grid_points_transp j1b_pen
provide mu_erf final_grid_points_transp
expo_fit = expo_gauss_j_mu_x_2(1)
beta = List_all_comb_b3_expo (2)
B_center(1) = List_all_comb_b3_cent(1,2)
B_center(2) = List_all_comb_b3_cent(2,2)
B_center(3) = List_all_comb_b3_cent(3,2)
beta = List_env1s_square_expo (2)
B_center(1) = List_env1s_square_cent(1,2)
B_center(2) = List_env1s_square_cent(2,2)
B_center(3) = List_env1s_square_cent(3,2)
! ---
@ -831,5 +727,52 @@ subroutine test_vect_overlap_gauss_r12_ao_with1s()
print*, ' normalz = ', normalz
return
end subroutine test_vect_overlap_gauss_r12_ao
end
! ---
subroutine test_Ir2_Mu_long_Du_0()
implicit none
integer :: i, j, ipoint
double precision :: i_old, i_new
double precision :: acc_ij, acc_tot, eps_ij, normalz
print*, ' test_Ir2_Mu_long_Du_0 ...'
PROVIDE v_ij_erf_rk_cst_mu_env
PROVIDE Ir2_Mu_long_Du_0
eps_ij = 1d-10
acc_tot = 0.d0
normalz = 0.d0
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
i_old = v_ij_erf_rk_cst_mu_env(i,j,ipoint)
i_new = Ir2_Mu_long_Du_0 (i,j,ipoint)
acc_ij = dabs(i_old - i_new)
if(acc_ij .gt. eps_ij) then
print *, ' problem in Ir2_Mu_long_Du_0 on', i, j, ipoint
print *, ' old integ = ', i_old
print *, ' new integ = ', i_new
print *, ' diff = ', acc_ij
stop
endif
acc_tot += acc_ij
normalz += dabs(i_old)
enddo
enddo
enddo
print*, ' acc_tot (%) = ', 100.d0 * acc_tot / normalz
return
end
! ---

View File

@ -1,223 +1,6 @@
! ---
! TODO : strong optmization : write the loops in a different way
! : for each couple of AO, the gaussian product are done once for all
BEGIN_PROVIDER [ double precision, gradu_squared_u_ij_mu, (ao_num, ao_num, n_points_final_grid) ]
BEGIN_DOC
!
! if J(r1,r2) = u12:
!
! gradu_squared_u_ij_mu = -0.50 x \int r2 [ (grad_1 u12)^2 + (grad_2 u12^2)] \phi_i(2) \phi_j(2)
! = -0.25 x \int r2 (1 - erf(mu*r12))^2 \phi_i(2) \phi_j(2)
! and
! (1 - erf(mu*r12))^2 = \sum_i coef_gauss_1_erf_x_2(i) * exp(-expo_gauss_1_erf_x_2(i) * r12^2)
!
! if J(r1,r2) = u12 x v1 x v2
!
! gradu_squared_u_ij_mu = -0.50 x \int r2 \phi_i(2) \phi_j(2) [ v1^2 v2^2 ((grad_1 u12)^2 + (grad_2 u12^2)) + u12^2 v2^2 (grad_1 v1)^2 + 2 u12 v1 v2^2 (grad_1 u12) . (grad_1 v1) ]
! = -0.25 x v1^2 \int r2 \phi_i(2) \phi_j(2) [1 - erf(mu r12)]^2 v2^2
! + -0.50 x (grad_1 v1)^2 \int r2 \phi_i(2) \phi_j(2) u12^2 v2^2
! + -1.00 x v1 (grad_1 v1) \int r2 \phi_i(2) \phi_j(2) (grad_1 u12) v2^2
! = v1^2 x int2_grad1u2_grad2u2_j1b2
! + -0.5 x (grad_1 v1)^2 x int2_u2_j1b2
! + -1.0 X V1 x (grad_1 v1) \cdot [ int2_u_grad1u_j1b2 x r - int2_u_grad1u_x_j1b ]
!
!
END_DOC
implicit none
integer :: ipoint, i, j, m, igauss
double precision :: x, y, z, r(3), delta, coef
double precision :: tmp_v, tmp_x, tmp_y, tmp_z
double precision :: tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7, tmp8, tmp9
double precision :: time0, time1
double precision, external :: overlap_gauss_r12_ao
print*, ' providing gradu_squared_u_ij_mu ...'
call wall_time(time0)
PROVIDE j1b_type
if(j1b_type .eq. 3) then
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp_v = v_1b (ipoint)
tmp_x = v_1b_grad(1,ipoint)
tmp_y = v_1b_grad(2,ipoint)
tmp_z = v_1b_grad(3,ipoint)
tmp1 = tmp_v * tmp_v
tmp2 = -0.5d0 * (tmp_x * tmp_x + tmp_y * tmp_y + tmp_z * tmp_z)
tmp3 = tmp_v * tmp_x
tmp4 = tmp_v * tmp_y
tmp5 = tmp_v * tmp_z
tmp6 = -x * tmp3
tmp7 = -y * tmp4
tmp8 = -z * tmp5
do j = 1, ao_num
do i = 1, ao_num
tmp9 = int2_u_grad1u_j1b2(i,j,ipoint)
gradu_squared_u_ij_mu(i,j,ipoint) = tmp1 * int2_grad1u2_grad2u2_j1b2(i,j,ipoint) &
+ tmp2 * int2_u2_j1b2 (i,j,ipoint) &
+ tmp6 * tmp9 + tmp3 * int2_u_grad1u_x_j1b2(i,j,ipoint,1) &
+ tmp7 * tmp9 + tmp4 * int2_u_grad1u_x_j1b2(i,j,ipoint,2) &
+ tmp8 * tmp9 + tmp5 * int2_u_grad1u_x_j1b2(i,j,ipoint,3)
enddo
enddo
enddo
else
gradu_squared_u_ij_mu = 0.d0
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do j = 1, ao_num
do i = 1, ao_num
do igauss = 1, n_max_fit_slat
delta = expo_gauss_1_erf_x_2(igauss)
coef = coef_gauss_1_erf_x_2(igauss)
gradu_squared_u_ij_mu(i,j,ipoint) += -0.25d0 * coef * overlap_gauss_r12_ao(r, delta, i, j)
enddo
enddo
enddo
enddo
endif
call wall_time(time1)
print*, ' Wall time for gradu_squared_u_ij_mu = ', time1 - time0
END_PROVIDER
! ---
!BEGIN_PROVIDER [double precision, tc_grad_square_ao_loop, (ao_num, ao_num, ao_num, ao_num)]
!
! BEGIN_DOC
! !
! ! tc_grad_square_ao_loop(k,i,l,j) = -1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_1 u(r1,r2)|^2 | ij>
! !
! END_DOC
!
! implicit none
! integer :: ipoint, i, j, k, l
! double precision :: weight1, ao_ik_r, ao_i_r
! double precision, allocatable :: ac_mat(:,:,:,:)
!
! allocate(ac_mat(ao_num,ao_num,ao_num,ao_num))
! ac_mat = 0.d0
!
! do ipoint = 1, n_points_final_grid
! weight1 = final_weight_at_r_vector(ipoint)
!
! do i = 1, ao_num
! ao_i_r = weight1 * aos_in_r_array_transp(ipoint,i)
!
! do k = 1, ao_num
! ao_ik_r = ao_i_r * aos_in_r_array_transp(ipoint,k)
!
! do j = 1, ao_num
! do l = 1, ao_num
! ac_mat(k,i,l,j) += ao_ik_r * gradu_squared_u_ij_mu(l,j,ipoint)
! enddo
! enddo
! enddo
! enddo
! enddo
!
! do j = 1, ao_num
! do l = 1, ao_num
! do i = 1, ao_num
! do k = 1, ao_num
! tc_grad_square_ao_loop(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i)
! !write(11,*) tc_grad_square_ao_loop(k,i,l,j)
! enddo
! enddo
! enddo
! enddo
!
! deallocate(ac_mat)
!
!END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, tc_grad_square_ao_loop, (ao_num, ao_num, ao_num, ao_num)]
BEGIN_DOC
!
! tc_grad_square_ao_loop(k,i,l,j) = 1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_2 u(r1,r2)|^2 | ij>
!
END_DOC
implicit none
integer :: ipoint, i, j, k, l
double precision :: weight1, ao_ik_r, ao_i_r
double precision :: time0, time1
double precision, allocatable :: ac_mat(:,:,:,:), bc_mat(:,:,:,:)
print*, ' providing tc_grad_square_ao_loop ...'
call wall_time(time0)
allocate(ac_mat(ao_num,ao_num,ao_num,ao_num))
ac_mat = 0.d0
allocate(bc_mat(ao_num,ao_num,ao_num,ao_num))
bc_mat = 0.d0
do ipoint = 1, n_points_final_grid
weight1 = final_weight_at_r_vector(ipoint)
do i = 1, ao_num
!ao_i_r = weight1 * aos_in_r_array_transp(ipoint,i)
ao_i_r = weight1 * aos_in_r_array(i,ipoint)
do k = 1, ao_num
!ao_ik_r = ao_i_r * aos_in_r_array_transp(ipoint,k)
ao_ik_r = ao_i_r * aos_in_r_array(k,ipoint)
do j = 1, ao_num
do l = 1, ao_num
ac_mat(k,i,l,j) += ao_ik_r * ( u12sq_j1bsq(l,j,ipoint) + u12_grad1_u12_j1b_grad1_j1b(l,j,ipoint) )
bc_mat(k,i,l,j) += ao_ik_r * grad12_j12(l,j,ipoint)
enddo
enddo
enddo
enddo
enddo
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
tc_grad_square_ao_loop(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i) + bc_mat(k,i,l,j)
enddo
enddo
enddo
enddo
deallocate(ac_mat)
deallocate(bc_mat)
call wall_time(time1)
print*, ' Wall time for tc_grad_square_ao_loop = ', time1 - time0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, grad12_j12, (ao_num, ao_num, n_points_final_grid)]
implicit none
@ -230,48 +13,28 @@ BEGIN_PROVIDER [ double precision, grad12_j12, (ao_num, ao_num, n_points_final_g
print*, ' providing grad12_j12 ...'
call wall_time(time0)
PROVIDE j1b_type
PROVIDE int2_grad1u2_grad2u2_j1b2
PROVIDE int2_grad1u2_grad2u2_env2
do ipoint = 1, n_points_final_grid
tmp1 = v_1b(ipoint)
tmp1 = env_val(ipoint)
tmp1 = tmp1 * tmp1
do j = 1, ao_num
do i = 1, ao_num
grad12_j12(i,j,ipoint) = tmp1 * int2_grad1u2_grad2u2_j1b2(i,j,ipoint)
grad12_j12(i,j,ipoint) = tmp1 * int2_grad1u2_grad2u2_env2(i,j,ipoint)
enddo
enddo
enddo
FREE int2_grad1u2_grad2u2_j1b2
!if(j1b_type .eq. 0) then
! grad12_j12 = 0.d0
! do ipoint = 1, n_points_final_grid
! r(1) = final_grid_points(1,ipoint)
! r(2) = final_grid_points(2,ipoint)
! r(3) = final_grid_points(3,ipoint)
! do j = 1, ao_num
! do i = 1, ao_num
! do igauss = 1, n_max_fit_slat
! delta = expo_gauss_1_erf_x_2(igauss)
! coef = coef_gauss_1_erf_x_2(igauss)
! grad12_j12(i,j,ipoint) += -0.25d0 * coef * overlap_gauss_r12_ao(r, delta, i, j)
! enddo
! enddo
! enddo
! enddo
!endif
FREE int2_grad1u2_grad2u2_env2
call wall_time(time1)
print*, ' Wall time for grad12_j12 = ', time1 - time0
call print_memory_usage()
print*, ' Wall time for grad12_j12 (min) = ', (time1 - time0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, u12sq_j1bsq, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, u12sq_envsq, (ao_num, ao_num, n_points_final_grid)]
implicit none
integer :: ipoint, i, j
@ -279,33 +42,32 @@ BEGIN_PROVIDER [double precision, u12sq_j1bsq, (ao_num, ao_num, n_points_final_g
double precision :: tmp1
double precision :: time0, time1
print*, ' providing u12sq_j1bsq ...'
print*, ' providing u12sq_envsq ...'
call wall_time(time0)
! do not free here
PROVIDE int2_u2_j1b2
PROVIDE int2_u2_env2
do ipoint = 1, n_points_final_grid
tmp_x = v_1b_grad(1,ipoint)
tmp_y = v_1b_grad(2,ipoint)
tmp_z = v_1b_grad(3,ipoint)
tmp_x = env_grad(1,ipoint)
tmp_y = env_grad(2,ipoint)
tmp_z = env_grad(3,ipoint)
tmp1 = -0.5d0 * (tmp_x * tmp_x + tmp_y * tmp_y + tmp_z * tmp_z)
do j = 1, ao_num
do i = 1, ao_num
u12sq_j1bsq(i,j,ipoint) = tmp1 * int2_u2_j1b2(i,j,ipoint)
u12sq_envsq(i,j,ipoint) = tmp1 * int2_u2_env2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(time1)
print*, ' Wall time for u12sq_j1bsq = ', time1 - time0
call print_memory_usage()
print*, ' Wall time for u12sq_envsq (min) = ', (time1 - time0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b, (ao_num, ao_num, n_points_final_grid) ]
BEGIN_PROVIDER [double precision, u12_grad1_u12_env_grad1_env, (ao_num, ao_num, n_points_final_grid)]
implicit none
integer :: ipoint, i, j, m, igauss
@ -315,21 +77,21 @@ BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b, (ao_num, ao_num,
double precision :: time0, time1
double precision, external :: overlap_gauss_r12_ao
print*, ' providing u12_grad1_u12_j1b_grad1_j1b ...'
print*, ' providing u12_grad1_u12_env_grad1_env ...'
call wall_time(time0)
PROVIDE int2_u_grad1u_j1b2
PROVIDE int2_u_grad1u_x_j1b2
PROVIDE int2_u_grad1u_env2
PROVIDE int2_u_grad1u_x_env2
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp_v = v_1b (ipoint)
tmp_x = v_1b_grad(1,ipoint)
tmp_y = v_1b_grad(2,ipoint)
tmp_z = v_1b_grad(3,ipoint)
tmp_v = env_val (ipoint)
tmp_x = env_grad(1,ipoint)
tmp_y = env_grad(2,ipoint)
tmp_z = env_grad(3,ipoint)
tmp3 = tmp_v * tmp_x
tmp4 = tmp_v * tmp_y
@ -342,143 +104,20 @@ BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b, (ao_num, ao_num,
do j = 1, ao_num
do i = 1, ao_num
tmp9 = int2_u_grad1u_j1b2(i,j,ipoint)
tmp9 = int2_u_grad1u_env2(i,j,ipoint)
u12_grad1_u12_j1b_grad1_j1b(i,j,ipoint) = tmp6 * tmp9 + tmp3 * int2_u_grad1u_x_j1b2(i,j,ipoint,1) &
+ tmp7 * tmp9 + tmp4 * int2_u_grad1u_x_j1b2(i,j,ipoint,2) &
+ tmp8 * tmp9 + tmp5 * int2_u_grad1u_x_j1b2(i,j,ipoint,3)
u12_grad1_u12_env_grad1_env(i,j,ipoint) = tmp6 * tmp9 + tmp3 * int2_u_grad1u_x_env2(i,j,ipoint,1) &
+ tmp7 * tmp9 + tmp4 * int2_u_grad1u_x_env2(i,j,ipoint,2) &
+ tmp8 * tmp9 + tmp5 * int2_u_grad1u_x_env2(i,j,ipoint,3)
enddo
enddo
enddo
FREE int2_u_grad1u_j1b2
FREE int2_u_grad1u_x_j1b2
FREE int2_u_grad1u_env2
FREE int2_u_grad1u_x_env2
call wall_time(time1)
print*, ' Wall time for u12_grad1_u12_j1b_grad1_j1b = ', time1 - time0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, tc_grad_square_ao, (ao_num, ao_num, ao_num, ao_num)]
BEGIN_DOC
!
! tc_grad_square_ao(k,i,l,j) = -1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_2 u(r1,r2)|^2 | ij>
!
END_DOC
implicit none
integer :: ipoint, i, j, k, l
double precision :: weight1, ao_k_r, ao_i_r
double precision :: der_envsq_x, der_envsq_y, der_envsq_z, lap_envsq
double precision :: time0, time1
double precision, allocatable :: b_mat(:,:,:), tmp(:,:,:)
print*, ' providing tc_grad_square_ao ...'
call wall_time(time0)
if(read_tc_integ) then
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/tc_grad_square_ao', action="read")
read(11) tc_grad_square_ao
close(11)
else
! ---
PROVIDE int2_grad1_u12_square_ao
allocate(b_mat(n_points_final_grid,ao_num,ao_num))
b_mat = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) &
!$OMP SHARED (aos_in_r_array_transp, b_mat, ao_num, n_points_final_grid, final_weight_at_r_vector)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
b_mat(ipoint,k,i) = final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,k)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
tc_grad_square_ao = 0.d0
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_grad1_u12_square_ao(1,1,1), ao_num*ao_num, b_mat(1,1,1), n_points_final_grid &
, 0.d0, tc_grad_square_ao, ao_num*ao_num)
FREE int2_grad1_u12_square_ao
! ---
if(((j1b_type .eq. 3) .or. (j1b_type .eq. 4)) .and. use_ipp) then
print*, " going through Manu's IPP"
! an additional term is added here directly instead of
! being added in int2_grad1_u12_square_ao for performance
PROVIDE int2_u2_j1b2
b_mat = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint, weight1, ao_i_r, ao_k_r) &
!$OMP SHARED (aos_in_r_array_transp, b_mat, ao_num, n_points_final_grid, final_weight_at_r_vector, &
!$OMP v_1b_square_grad, v_1b_square_lapl, aos_grad_in_r_array_transp_bis)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
weight1 = 0.25d0 * final_weight_at_r_vector(ipoint)
ao_i_r = aos_in_r_array_transp(ipoint,i)
ao_k_r = aos_in_r_array_transp(ipoint,k)
b_mat(ipoint,k,i) = weight1 * ( ao_k_r * ao_i_r * v_1b_square_lapl(ipoint) &
+ (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,1) + ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,1)) * v_1b_square_grad(ipoint,1) &
+ (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,2) + ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,2)) * v_1b_square_grad(ipoint,2) &
+ (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,3) + ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,3)) * v_1b_square_grad(ipoint,3) )
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_u2_j1b2(1,1,1), ao_num*ao_num, b_mat(1,1,1), n_points_final_grid &
, 1.d0, tc_grad_square_ao, ao_num*ao_num)
FREE int2_u2_j1b2
endif
! ---
deallocate(b_mat)
call sum_A_At(tc_grad_square_ao(1,1,1,1), ao_num*ao_num)
endif
if(write_tc_integ.and.mpi_master) then
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/tc_grad_square_ao', action="write")
call ezfio_set_work_empty(.False.)
write(11) tc_grad_square_ao
close(11)
call ezfio_set_tc_keywords_io_tc_integ('Read')
endif
call wall_time(time1)
print*, ' Wall time for tc_grad_square_ao = ', time1 - time0
call print_memory_usage()
print*, ' Wall time for u12_grad1_u12_env_grad1_env (min) = ', (time1 - time0) / 60.d0
END_PROVIDER

View File

@ -1,4 +1,6 @@
! ---
BEGIN_PROVIDER [double precision, tc_grad_square_ao_test, (ao_num, ao_num, ao_num, ao_num)]
BEGIN_DOC
@ -24,7 +26,7 @@ BEGIN_PROVIDER [double precision, tc_grad_square_ao_test, (ao_num, ao_num, ao_nu
else
provide u12sq_j1bsq_test u12_grad1_u12_j1b_grad1_j1b_test grad12_j12_test
provide u12sq_envsq_test u12_grad1_u12_env_grad1_env_test grad12_j12_test
allocate(b_mat(n_points_final_grid,ao_num,ao_num), tmp(ao_num,ao_num,n_points_final_grid))
@ -48,12 +50,12 @@ BEGIN_PROVIDER [double precision, tc_grad_square_ao_test, (ao_num, ao_num, ao_nu
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, l, ipoint) &
!$OMP SHARED (tmp, ao_num, n_points_final_grid, u12sq_j1bsq_test, u12_grad1_u12_j1b_grad1_j1b_test, grad12_j12_test)
!$OMP SHARED (tmp, ao_num, n_points_final_grid, u12sq_envsq_test, u12_grad1_u12_env_grad1_env_test, grad12_j12_test)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do l = 1, ao_num
tmp(l,j,ipoint) = u12sq_j1bsq_test(l,j,ipoint) + u12_grad1_u12_j1b_grad1_j1b_test(l,j,ipoint) + 0.5d0 * grad12_j12_test(l,j,ipoint)
tmp(l,j,ipoint) = u12sq_envsq_test(l,j,ipoint) + u12_grad1_u12_env_grad1_env_test(l,j,ipoint) + 0.5d0 * grad12_j12_test(l,j,ipoint)
enddo
enddo
enddo
@ -102,7 +104,7 @@ BEGIN_PROVIDER [double precision, tc_grad_square_ao_test_ref, (ao_num, ao_num, a
print*, ' providing tc_grad_square_ao_test_ref ...'
call wall_time(time0)
provide u12sq_j1bsq_test u12_grad1_u12_j1b_grad1_j1b_test grad12_j12_test
provide u12sq_envsq_test u12_grad1_u12_env_grad1_env_test grad12_j12_test
allocate(ac_mat(ao_num,ao_num,ao_num,ao_num), b_mat(n_points_final_grid,ao_num,ao_num), tmp(ao_num,ao_num,n_points_final_grid))
@ -126,12 +128,12 @@ BEGIN_PROVIDER [double precision, tc_grad_square_ao_test_ref, (ao_num, ao_num, a
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, l, ipoint) &
!$OMP SHARED (tmp, ao_num, n_points_final_grid, u12sq_j1bsq_test, u12_grad1_u12_j1b_grad1_j1b_test, grad12_j12_test)
!$OMP SHARED (tmp, ao_num, n_points_final_grid, u12sq_envsq_test, u12_grad1_u12_env_grad1_env_test, grad12_j12_test)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do l = 1, ao_num
tmp(l,j,ipoint) = u12sq_j1bsq_test(l,j,ipoint) + u12_grad1_u12_j1b_grad1_j1b_test(l,j,ipoint) + 0.5d0 * grad12_j12_test(l,j,ipoint)
tmp(l,j,ipoint) = u12sq_envsq_test(l,j,ipoint) + u12_grad1_u12_env_grad1_env_test(l,j,ipoint) + 0.5d0 * grad12_j12_test(l,j,ipoint)
enddo
enddo
enddo
@ -170,7 +172,7 @@ END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, u12sq_j1bsq_test, (ao_num, ao_num, n_points_final_grid) ]
BEGIN_PROVIDER [ double precision, u12sq_envsq_test, (ao_num, ao_num, n_points_final_grid) ]
implicit none
integer :: ipoint, i, j
@ -178,29 +180,29 @@ BEGIN_PROVIDER [ double precision, u12sq_j1bsq_test, (ao_num, ao_num, n_points_f
double precision :: tmp1
double precision :: time0, time1
print*, ' providing u12sq_j1bsq_test ...'
print*, ' providing u12sq_envsq_test ...'
call wall_time(time0)
do ipoint = 1, n_points_final_grid
tmp_x = v_1b_grad(1,ipoint)
tmp_y = v_1b_grad(2,ipoint)
tmp_z = v_1b_grad(3,ipoint)
tmp_x = env_grad(1,ipoint)
tmp_y = env_grad(2,ipoint)
tmp_z = env_grad(3,ipoint)
tmp1 = -0.5d0 * (tmp_x * tmp_x + tmp_y * tmp_y + tmp_z * tmp_z)
do j = 1, ao_num
do i = 1, ao_num
u12sq_j1bsq_test(i,j,ipoint) = tmp1 * int2_u2_j1b2_test(i,j,ipoint)
u12sq_envsq_test(i,j,ipoint) = tmp1 * int2_u2_env2_test(i,j,ipoint)
enddo
enddo
enddo
call wall_time(time1)
print*, ' Wall time for u12sq_j1bsq_test = ', time1 - time0
print*, ' Wall time for u12sq_envsq_test (min) = ', (time1 - time0) / 60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b_test, (ao_num, ao_num, n_points_final_grid) ]
BEGIN_PROVIDER [double precision, u12_grad1_u12_env_grad1_env_test, (ao_num, ao_num, n_points_final_grid)]
implicit none
integer :: ipoint, i, j, m, igauss
@ -210,9 +212,9 @@ BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b_test, (ao_num, ao
double precision :: time0, time1
double precision, external :: overlap_gauss_r12_ao
print*, ' providing u12_grad1_u12_j1b_grad1_j1b_test ...'
print*, ' providing u12_grad1_u12_env_grad1_env_test ...'
provide int2_u_grad1u_x_j1b2_test
provide int2_u_grad1u_x_env2_test
call wall_time(time0)
do ipoint = 1, n_points_final_grid
@ -220,10 +222,10 @@ BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b_test, (ao_num, ao
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp_v = v_1b (ipoint)
tmp_x = v_1b_grad(1,ipoint)
tmp_y = v_1b_grad(2,ipoint)
tmp_z = v_1b_grad(3,ipoint)
tmp_v = env_val (ipoint)
tmp_x = env_grad(1,ipoint)
tmp_y = env_grad(2,ipoint)
tmp_z = env_grad(3,ipoint)
tmp3 = tmp_v * tmp_x
tmp4 = tmp_v * tmp_y
@ -236,17 +238,17 @@ BEGIN_PROVIDER [ double precision, u12_grad1_u12_j1b_grad1_j1b_test, (ao_num, ao
do j = 1, ao_num
do i = 1, ao_num
tmp9 = int2_u_grad1u_j1b2_test(i,j,ipoint)
tmp9 = int2_u_grad1u_env2_test(i,j,ipoint)
u12_grad1_u12_j1b_grad1_j1b_test(i,j,ipoint) = tmp6 * tmp9 + tmp3 * int2_u_grad1u_x_j1b2_test(i,j,ipoint,1) &
+ tmp7 * tmp9 + tmp4 * int2_u_grad1u_x_j1b2_test(i,j,ipoint,2) &
+ tmp8 * tmp9 + tmp5 * int2_u_grad1u_x_j1b2_test(i,j,ipoint,3)
u12_grad1_u12_env_grad1_env_test(i,j,ipoint) = tmp6 * tmp9 + tmp3 * int2_u_grad1u_x_env2_test(i,j,ipoint,1) &
+ tmp7 * tmp9 + tmp4 * int2_u_grad1u_x_env2_test(i,j,ipoint,2) &
+ tmp8 * tmp9 + tmp5 * int2_u_grad1u_x_env2_test(i,j,ipoint,3)
enddo
enddo
enddo
call wall_time(time1)
print*, ' Wall time for u12_grad1_u12_j1b_grad1_j1b_test = ', time1 - time0
print*, ' Wall time for u12_grad1_u12_env_grad1_env_test (min) = ', (time1 - time0) / 60.d0
END_PROVIDER
@ -260,46 +262,32 @@ BEGIN_PROVIDER [ double precision, grad12_j12_test, (ao_num, ao_num, n_points_fi
double precision :: tmp1
double precision :: time0, time1
double precision, external :: overlap_gauss_r12_ao
provide int2_grad1u2_grad2u2_j1b2_test
provide int2_grad1u2_grad2u2_env2_test
print*, ' providing grad12_j12_test ...'
call wall_time(time0)
PROVIDE j1b_type
if(j1b_type .eq. 3) then
if((j2e_type .eq. "Mu") .and. (env_type .eq. "Prod_Gauss")) then
do ipoint = 1, n_points_final_grid
tmp1 = v_1b(ipoint)
tmp1 = env_val(ipoint)
tmp1 = tmp1 * tmp1
do j = 1, ao_num
do i = 1, ao_num
grad12_j12_test(i,j,ipoint) = tmp1 * int2_grad1u2_grad2u2_j1b2_test(i,j,ipoint)
grad12_j12_test(i,j,ipoint) = tmp1 * int2_grad1u2_grad2u2_env2_test(i,j,ipoint)
enddo
enddo
enddo
else
grad12_j12_test = 0.d0
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do j = 1, ao_num
do i = 1, ao_num
do igauss = 1, n_max_fit_slat
delta = expo_gauss_1_erf_x_2(igauss)
coef = coef_gauss_1_erf_x_2(igauss)
grad12_j12_test(i,j,ipoint) += -0.25d0 * coef * overlap_gauss_r12_ao(r, delta, i, j)
enddo
enddo
enddo
enddo
print *, ' Error in grad12_j12_test: Unknown Jastrow'
stop
endif
call wall_time(time1)
print*, ' Wall time for grad12_j12_test = ', time1 - time0
print*, ' Wall time for grad12_j12_test (min) = ', (time1 - time0) / 60.d0
END_PROVIDER

View File

@ -1,14 +1,18 @@
! ---
BEGIN_PROVIDER [ double precision, v_1b, (n_points_final_grid)]
BEGIN_PROVIDER [double precision, env_val, (n_points_final_grid)]
implicit none
integer :: ipoint, i, j, phase
double precision :: x, y, z, dx, dy, dz
double precision :: a, d, e, fact_r
if(j1b_type .eq. 3) then
if(env_type .eq. "None") then
env_val = 1.d0
elseif(env_type .eq. "Prod_Gauss") then
! v(r) = \Pi_{a} [1 - \exp(-\alpha_a (r - r_a)^2)]
@ -20,7 +24,7 @@ BEGIN_PROVIDER [ double precision, v_1b, (n_points_final_grid)]
fact_r = 1.d0
do j = 1, nucl_num
a = j1b_pen(j)
a = env_expo(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
@ -30,10 +34,10 @@ BEGIN_PROVIDER [ double precision, v_1b, (n_points_final_grid)]
fact_r = fact_r * e
enddo
v_1b(ipoint) = fact_r
env_val(ipoint) = fact_r
enddo
elseif(j1b_type .eq. 4) then
elseif(env_type .eq. "Sum_Gauss") then
! v(r) = 1 - \sum_{a} \beta_a \exp(-\alpha_a (r - r_a)^2)
@ -45,21 +49,21 @@ BEGIN_PROVIDER [ double precision, v_1b, (n_points_final_grid)]
fact_r = 1.d0
do j = 1, nucl_num
a = j1b_pen(j)
a = env_expo(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
d = dx*dx + dy*dy + dz*dz
fact_r = fact_r - j1b_pen_coef(j) * dexp(-a*d)
fact_r = fact_r - env_coef(j) * dexp(-a*d)
enddo
v_1b(ipoint) = fact_r
env_val(ipoint) = fact_r
enddo
else
print*, 'j1b_type = ', j1b_type, 'is not implemented for v_1b'
print *, ' Error in env_val: Unknown env_type = ', env_type
stop
endif
@ -68,7 +72,7 @@ END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, v_1b_grad, (3, n_points_final_grid)]
BEGIN_PROVIDER [double precision, env_grad, (3, n_points_final_grid)]
implicit none
integer :: ipoint, i, j, phase
@ -77,9 +81,11 @@ BEGIN_PROVIDER [double precision, v_1b_grad, (3, n_points_final_grid)]
double precision :: fact_x, fact_y, fact_z
double precision :: ax_der, ay_der, az_der, a_expo
PROVIDE j1b_type
if(env_type .eq. "None") then
if(j1b_type .eq. 3) then
env_grad = 0.d0
elseif(env_type .eq. "Prod_Gauss") then
! v(r) = \Pi_{a} [1 - \exp(-\alpha_a (r - r_a)^2)]
@ -92,7 +98,7 @@ BEGIN_PROVIDER [double precision, v_1b_grad, (3, n_points_final_grid)]
fact_x = 0.d0
fact_y = 0.d0
fact_z = 0.d0
do i = 1, List_all_comb_b2_size
do i = 1, List_env1s_size
phase = 0
a_expo = 0.d0
@ -100,12 +106,12 @@ BEGIN_PROVIDER [double precision, v_1b_grad, (3, n_points_final_grid)]
ay_der = 0.d0
az_der = 0.d0
do j = 1, nucl_num
a = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
a = dble(List_env1s(j,i)) * env_expo(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
phase += List_all_comb_b2(j,i)
phase += List_env1s(j,i)
a_expo += a * (dx*dx + dy*dy + dz*dz)
ax_der += a * dx
ay_der += a * dy
@ -118,12 +124,12 @@ BEGIN_PROVIDER [double precision, v_1b_grad, (3, n_points_final_grid)]
fact_z += e * az_der
enddo
v_1b_grad(1,ipoint) = fact_x
v_1b_grad(2,ipoint) = fact_y
v_1b_grad(3,ipoint) = fact_z
env_grad(1,ipoint) = fact_x
env_grad(2,ipoint) = fact_y
env_grad(3,ipoint) = fact_z
enddo
elseif(j1b_type .eq. 4) then
elseif(env_type .eq. "Sum_Gauss") then
! v(r) = 1 - \sum_{a} \beta_a \exp(-\alpha_a (r - r_a)^2)
@ -143,22 +149,22 @@ BEGIN_PROVIDER [double precision, v_1b_grad, (3, n_points_final_grid)]
dz = z - nucl_coord(j,3)
r2 = dx*dx + dy*dy + dz*dz
a = j1b_pen(j)
e = a * j1b_pen_coef(j) * dexp(-a * r2)
a = env_expo(j)
e = a * env_coef(j) * dexp(-a * r2)
ax_der += e * dx
ay_der += e * dy
az_der += e * dz
enddo
v_1b_grad(1,ipoint) = 2.d0 * ax_der
v_1b_grad(2,ipoint) = 2.d0 * ay_der
v_1b_grad(3,ipoint) = 2.d0 * az_der
env_grad(1,ipoint) = 2.d0 * ax_der
env_grad(2,ipoint) = 2.d0 * ay_der
env_grad(3,ipoint) = 2.d0 * az_der
enddo
else
print*, 'j1b_type = ', j1b_type, 'is not implemented'
print *, ' Error in env_grad: Unknown env_type = ', env_type
stop
endif
@ -167,126 +173,8 @@ END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, v_1b_lapl, (n_points_final_grid)]
implicit none
integer :: ipoint, i, j, phase
double precision :: x, y, z, dx, dy, dz
double precision :: a, e, b
double precision :: fact_r
double precision :: ax_der, ay_der, az_der, a_expo
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
fact_r = 0.d0
do i = 1, List_all_comb_b2_size
phase = 0
b = 0.d0
a_expo = 0.d0
ax_der = 0.d0
ay_der = 0.d0
az_der = 0.d0
do j = 1, nucl_num
a = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
phase += List_all_comb_b2(j,i)
b += a
a_expo += a * (dx*dx + dy*dy + dz*dz)
ax_der += a * dx
ay_der += a * dy
az_der += a * dz
enddo
fact_r += (-1.d0)**dble(phase) * (-6.d0*b + 4.d0*(ax_der*ax_der + ay_der*ay_der + az_der*az_der) ) * dexp(-a_expo)
enddo
v_1b_lapl(ipoint) = fact_r
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, v_1b_list_b2, (n_points_final_grid)]
implicit none
integer :: i, ipoint
double precision :: x, y, z, coef, expo, dx, dy, dz
double precision :: fact_r
PROVIDE List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
fact_r = 0.d0
do i = 1, List_all_comb_b2_size
coef = List_all_comb_b2_coef(i)
expo = List_all_comb_b2_expo(i)
dx = x - List_all_comb_b2_cent(1,i)
dy = y - List_all_comb_b2_cent(2,i)
dz = z - List_all_comb_b2_cent(3,i)
fact_r += coef * dexp(-expo * (dx*dx + dy*dy + dz*dz))
enddo
v_1b_list_b2(ipoint) = fact_r
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, v_1b_list_b3, (n_points_final_grid)]
implicit none
integer :: i, ipoint
double precision :: x, y, z, coef, expo, dx, dy, dz
double precision :: fact_r
PROVIDE List_all_comb_b3_coef List_all_comb_b3_expo List_all_comb_b3_cent
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
fact_r = 0.d0
do i = 1, List_all_comb_b3_size
coef = List_all_comb_b3_coef(i)
expo = List_all_comb_b3_expo(i)
dx = x - List_all_comb_b3_cent(1,i)
dy = y - List_all_comb_b3_cent(2,i)
dz = z - List_all_comb_b3_cent(3,i)
fact_r += coef * dexp(-expo * (dx*dx + dy*dy + dz*dz))
enddo
v_1b_list_b3(ipoint) = fact_r
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, v_1b_square_grad, (n_points_final_grid,3)]
&BEGIN_PROVIDER [double precision, v_1b_square_lapl, (n_points_final_grid) ]
BEGIN_PROVIDER [double precision, env_square_grad, (n_points_final_grid,3)]
&BEGIN_PROVIDER [double precision, env_square_lapl, (n_points_final_grid) ]
implicit none
integer :: ipoint, i
@ -294,7 +182,14 @@ END_PROVIDER
double precision :: coef, expo, a_expo, tmp
double precision :: fact_x, fact_y, fact_z, fact_r
PROVIDE List_all_comb_b3_coef List_all_comb_b3_expo List_all_comb_b3_cent
PROVIDE List_env1s_square_coef List_env1s_square_expo List_env1s_square_cent
if(env_type .eq. "None") then
env_square_grad = 0.d0
env_square_lapl = 0.d0
elseif((env_type .eq. "Prod_Gauss") .or. (env_type .eq. "Sum_Gauss")) then
do ipoint = 1, n_points_final_grid
@ -306,14 +201,14 @@ END_PROVIDER
fact_y = 0.d0
fact_z = 0.d0
fact_r = 0.d0
do i = 1, List_all_comb_b3_size
do i = 1, List_env1s_square_size
coef = List_all_comb_b3_coef(i)
expo = List_all_comb_b3_expo(i)
coef = List_env1s_square_coef(i)
expo = List_env1s_square_expo(i)
dx = x - List_all_comb_b3_cent(1,i)
dy = y - List_all_comb_b3_cent(2,i)
dz = z - List_all_comb_b3_cent(3,i)
dx = x - List_env1s_square_cent(1,i)
dy = y - List_env1s_square_cent(2,i)
dz = z - List_env1s_square_cent(3,i)
r2 = dx * dx + dy * dy + dz * dz
a_expo = expo * r2
@ -325,12 +220,19 @@ END_PROVIDER
fact_r += tmp * (3.d0 - 2.d0 * a_expo)
enddo
v_1b_square_grad(ipoint,1) = -2.d0 * fact_x
v_1b_square_grad(ipoint,2) = -2.d0 * fact_y
v_1b_square_grad(ipoint,3) = -2.d0 * fact_z
v_1b_square_lapl(ipoint) = -2.d0 * fact_r
env_square_grad(ipoint,1) = -2.d0 * fact_x
env_square_grad(ipoint,2) = -2.d0 * fact_y
env_square_grad(ipoint,3) = -2.d0 * fact_z
env_square_lapl(ipoint) = -2.d0 * fact_r
enddo
else
print *, ' Error in env_val_square_grad & env_val_square_lapl: Unknown env_type = ', env_type
stop
endif
END_PROVIDER
! ---
@ -348,7 +250,7 @@ double precision function j12_mu_r12(r12)
j12_mu_r12 = 0.5d0 * r12 * (1.d0 - derf(mu_r12)) - inv_sq_pi_2 * dexp(-mu_r12*mu_r12) / mu_erf
return
end function j12_mu_r12
end
! ---
@ -361,7 +263,7 @@ double precision function jmu_modif(r1, r2)
jmu_modif = j12_mu(r1, r2) * j12_nucl(r1, r2)
return
end function jmu_modif
end
! ---
@ -385,7 +287,7 @@ double precision function j12_mu_gauss(r1, r2)
enddo
return
end function j12_mu_gauss
end
! ---
@ -393,140 +295,138 @@ double precision function j12_nucl(r1, r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision, external :: j1b_nucl
double precision, external :: env_nucl
j12_nucl = j1b_nucl(r1) * j1b_nucl(r2)
j12_nucl = env_nucl(r1) * env_nucl(r2)
return
end function j12_nucl
end
! ---
! ---------------------------------------------------------------------------------------
double precision function grad_x_j1b_nucl_num(r)
double precision function grad_x_env_nucl_num(r)
implicit none
double precision, intent(in) :: r(3)
double precision :: r_eps(3), eps, fp, fm, delta
double precision, external :: j1b_nucl
double precision, external :: env_nucl
eps = 1d-6
r_eps = r
delta = max(eps, dabs(eps*r(1)))
r_eps(1) = r_eps(1) + delta
fp = j1b_nucl(r_eps)
fp = env_nucl(r_eps)
r_eps(1) = r_eps(1) - 2.d0 * delta
fm = j1b_nucl(r_eps)
fm = env_nucl(r_eps)
grad_x_j1b_nucl_num = 0.5d0 * (fp - fm) / delta
grad_x_env_nucl_num = 0.5d0 * (fp - fm) / delta
return
end function grad_x_j1b_nucl_num
end
double precision function grad_y_j1b_nucl_num(r)
! ---
double precision function grad_y_env_nucl_num(r)
implicit none
double precision, intent(in) :: r(3)
double precision :: r_eps(3), eps, fp, fm, delta
double precision, external :: j1b_nucl
double precision, external :: env_nucl
eps = 1d-6
r_eps = r
delta = max(eps, dabs(eps*r(2)))
r_eps(2) = r_eps(2) + delta
fp = j1b_nucl(r_eps)
fp = env_nucl(r_eps)
r_eps(2) = r_eps(2) - 2.d0 * delta
fm = j1b_nucl(r_eps)
fm = env_nucl(r_eps)
grad_y_j1b_nucl_num = 0.5d0 * (fp - fm) / delta
grad_y_env_nucl_num = 0.5d0 * (fp - fm) / delta
return
end function grad_y_j1b_nucl_num
end
double precision function grad_z_j1b_nucl_num(r)
! ---
double precision function grad_z_env_nucl_num(r)
implicit none
double precision, intent(in) :: r(3)
double precision :: r_eps(3), eps, fp, fm, delta
double precision, external :: j1b_nucl
double precision, external :: env_nucl
eps = 1d-6
r_eps = r
delta = max(eps, dabs(eps*r(3)))
r_eps(3) = r_eps(3) + delta
fp = j1b_nucl(r_eps)
fp = env_nucl(r_eps)
r_eps(3) = r_eps(3) - 2.d0 * delta
fm = j1b_nucl(r_eps)
fm = env_nucl(r_eps)
grad_z_j1b_nucl_num = 0.5d0 * (fp - fm) / delta
grad_z_env_nucl_num = 0.5d0 * (fp - fm) / delta
return
end function grad_z_j1b_nucl_num
! ---------------------------------------------------------------------------------------
end
! ---
double precision function lapl_j1b_nucl(r)
double precision function lapl_env_nucl(r)
implicit none
double precision, intent(in) :: r(3)
double precision :: r_eps(3), eps, fp, fm, delta
double precision, external :: grad_x_j1b_nucl_num
double precision, external :: grad_y_j1b_nucl_num
double precision, external :: grad_z_j1b_nucl_num
double precision, external :: grad_x_env_nucl_num
double precision, external :: grad_y_env_nucl_num
double precision, external :: grad_z_env_nucl_num
eps = 1d-5
r_eps = r
lapl_j1b_nucl = 0.d0
lapl_env_nucl = 0.d0
! ---
delta = max(eps, dabs(eps*r(1)))
r_eps(1) = r_eps(1) + delta
fp = grad_x_j1b_nucl_num(r_eps)
fp = grad_x_env_nucl_num(r_eps)
r_eps(1) = r_eps(1) - 2.d0 * delta
fm = grad_x_j1b_nucl_num(r_eps)
fm = grad_x_env_nucl_num(r_eps)
r_eps(1) = r_eps(1) + delta
lapl_j1b_nucl += 0.5d0 * (fp - fm) / delta
lapl_env_nucl += 0.5d0 * (fp - fm) / delta
! ---
delta = max(eps, dabs(eps*r(2)))
r_eps(2) = r_eps(2) + delta
fp = grad_y_j1b_nucl_num(r_eps)
fp = grad_y_env_nucl_num(r_eps)
r_eps(2) = r_eps(2) - 2.d0 * delta
fm = grad_y_j1b_nucl_num(r_eps)
fm = grad_y_env_nucl_num(r_eps)
r_eps(2) = r_eps(2) + delta
lapl_j1b_nucl += 0.5d0 * (fp - fm) / delta
lapl_env_nucl += 0.5d0 * (fp - fm) / delta
! ---
delta = max(eps, dabs(eps*r(3)))
r_eps(3) = r_eps(3) + delta
fp = grad_z_j1b_nucl_num(r_eps)
fp = grad_z_env_nucl_num(r_eps)
r_eps(3) = r_eps(3) - 2.d0 * delta
fm = grad_z_j1b_nucl_num(r_eps)
fm = grad_z_env_nucl_num(r_eps)
r_eps(3) = r_eps(3) + delta
lapl_j1b_nucl += 0.5d0 * (fp - fm) / delta
lapl_env_nucl += 0.5d0 * (fp - fm) / delta
! ---
return
end function lapl_j1b_nucl
end
! ---
! ---------------------------------------------------------------------------------------
double precision function grad1_x_jmu_modif(r1, r2)
implicit none
@ -546,7 +446,9 @@ double precision function grad1_x_jmu_modif(r1, r2)
grad1_x_jmu_modif = 0.5d0 * (fp - fm) / delta
return
end function grad1_x_jmu_modif
end
! ---
double precision function grad1_y_jmu_modif(r1, r2)
@ -567,7 +469,9 @@ double precision function grad1_y_jmu_modif(r1, r2)
grad1_y_jmu_modif = 0.5d0 * (fp - fm) / delta
return
end function grad1_y_jmu_modif
end
! ---
double precision function grad1_z_jmu_modif(r1, r2)
@ -588,14 +492,10 @@ double precision function grad1_z_jmu_modif(r1, r2)
grad1_z_jmu_modif = 0.5d0 * (fp - fm) / delta
return
end function grad1_z_jmu_modif
! ---------------------------------------------------------------------------------------
end
! ---
! ---------------------------------------------------------------------------------------
double precision function grad1_x_j12_mu_num(r1, r2)
implicit none
@ -615,7 +515,9 @@ double precision function grad1_x_j12_mu_num(r1, r2)
grad1_x_j12_mu_num = 0.5d0 * (fp - fm) / delta
return
end function grad1_x_j12_mu_num
end
! ---
double precision function grad1_y_j12_mu_num(r1, r2)
@ -636,7 +538,9 @@ double precision function grad1_y_j12_mu_num(r1, r2)
grad1_y_j12_mu_num = 0.5d0 * (fp - fm) / delta
return
end function grad1_y_j12_mu_num
end
! ---
double precision function grad1_z_j12_mu_num(r1, r2)
@ -657,9 +561,9 @@ double precision function grad1_z_j12_mu_num(r1, r2)
grad1_z_j12_mu_num = 0.5d0 * (fp - fm) / delta
return
end function grad1_z_j12_mu_num
end
! ---------------------------------------------------------------------------------------
! ---
subroutine grad1_jmu_modif_num(r1, r2, grad)
@ -671,103 +575,23 @@ subroutine grad1_jmu_modif_num(r1, r2, grad)
double precision :: tmp0, tmp1, tmp2, grad_u12(3)
double precision, external :: j12_mu
double precision, external :: j1b_nucl
double precision, external :: grad_x_j1b_nucl_num
double precision, external :: grad_y_j1b_nucl_num
double precision, external :: grad_z_j1b_nucl_num
double precision, external :: env_nucl
double precision, external :: grad_x_env_nucl_num
double precision, external :: grad_y_env_nucl_num
double precision, external :: grad_z_env_nucl_num
call grad1_j12_mu(r1, r2, grad_u12)
tmp0 = j1b_nucl(r1)
tmp1 = j1b_nucl(r2)
tmp0 = env_nucl(r1)
tmp1 = env_nucl(r2)
tmp2 = j12_mu(r1, r2)
grad(1) = (tmp0 * grad_u12(1) + tmp2 * grad_x_j1b_nucl_num(r1)) * tmp1
grad(2) = (tmp0 * grad_u12(2) + tmp2 * grad_y_j1b_nucl_num(r1)) * tmp1
grad(3) = (tmp0 * grad_u12(3) + tmp2 * grad_z_j1b_nucl_num(r1)) * tmp1
grad(1) = (tmp0 * grad_u12(1) + tmp2 * grad_x_env_nucl_num(r1)) * tmp1
grad(2) = (tmp0 * grad_u12(2) + tmp2 * grad_y_env_nucl_num(r1)) * tmp1
grad(3) = (tmp0 * grad_u12(3) + tmp2 * grad_z_env_nucl_num(r1)) * tmp1
return
end subroutine grad1_jmu_modif_num
end
! ---
subroutine get_tchint_rsdft_jastrow(x, y, dj)
implicit none
double precision, intent(in) :: x(3), y(3)
double precision, intent(out) :: dj(3)
integer :: at
double precision :: a, mu_tmp, inv_sq_pi_2
double precision :: tmp_x, tmp_y, tmp_z, tmp
double precision :: dx2, dy2, pos(3), dxy, dxy2
double precision :: v1b_x, v1b_y
double precision :: u2b, grad1_u2b(3), grad1_v1b(3)
PROVIDE mu_erf
inv_sq_pi_2 = 0.5d0 / dsqrt(dacos(-1.d0))
dj = 0.d0
! double precision, external :: j12_mu, j1b_nucl
! v1b_x = j1b_nucl(x)
! v1b_y = j1b_nucl(y)
! call grad1_j1b_nucl(x, grad1_v1b)
! u2b = j12_mu(x, y)
! call grad1_j12_mu(x, y, grad1_u2b)
! 1b terms
v1b_x = 1.d0
v1b_y = 1.d0
tmp_x = 0.d0
tmp_y = 0.d0
tmp_z = 0.d0
do at = 1, nucl_num
a = j1b_pen(at)
pos(1) = nucl_coord(at,1)
pos(2) = nucl_coord(at,2)
pos(3) = nucl_coord(at,3)
dx2 = sum((x-pos)**2)
dy2 = sum((y-pos)**2)
tmp = dexp(-a*dx2) * a
v1b_x = v1b_x - dexp(-a*dx2)
v1b_y = v1b_y - dexp(-a*dy2)
tmp_x = tmp_x + tmp * (x(1) - pos(1))
tmp_y = tmp_y + tmp * (x(2) - pos(2))
tmp_z = tmp_z + tmp * (x(3) - pos(3))
end do
grad1_v1b(1) = 2.d0 * tmp_x
grad1_v1b(2) = 2.d0 * tmp_y
grad1_v1b(3) = 2.d0 * tmp_z
! 2b terms
dxy2 = sum((x-y)**2)
dxy = dsqrt(dxy2)
mu_tmp = mu_erf * dxy
u2b = 0.5d0 * dxy * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf
if(dxy .lt. 1d-8) then
grad1_u2b(1) = 0.d0
grad1_u2b(2) = 0.d0
grad1_u2b(3) = 0.d0
else
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / dxy
grad1_u2b(1) = tmp * (x(1) - y(1))
grad1_u2b(2) = tmp * (x(2) - y(2))
grad1_u2b(3) = tmp * (x(3) - y(3))
endif
dj(1) = (grad1_u2b(1) * v1b_x + u2b * grad1_v1b(1)) * v1b_y
dj(2) = (grad1_u2b(2) * v1b_x + u2b * grad1_v1b(2)) * v1b_y
dj(3) = (grad1_u2b(3) * v1b_x + u2b * grad1_v1b(3)) * v1b_y
return
end subroutine get_tchint_rsdft_jastrow
! ---

View File

@ -0,0 +1,306 @@
! ---
BEGIN_PROVIDER [double precision, j1e_val, (n_points_final_grid)]
implicit none
integer :: ipoint, i, j, p
double precision :: x, y, z, dx, dy, dz, d2
double precision :: a, c, tmp
double precision :: time0, time1
PROVIDE j1e_type
call wall_time(time0)
print*, ' providing j1e_val ...'
if(j1e_type .eq. "None") then
j1e_val = 0.d0
elseif(j1e_type .eq. "Gauss") then
! \sum_{A} \sum_p c_{p_A} \exp(-\alpha_{p_A} (r - R_A)^2)
PROVIDE j1e_size j1e_coef j1e_expo
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp = 0.d0
do j = 1, nucl_num
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
d2 = dx*dx + dy*dy + dz*dz
do p = 1, j1e_size
c = j1e_coef(p,j)
a = j1e_expo(p,j)
tmp = tmp + c * dexp(-a*d2)
enddo
enddo
j1e_val(ipoint) = tmp
enddo
else
print *, ' Error in j1e_val: Unknown j1e_type = ', j1e_type
stop
endif
call wall_time(time1)
print*, ' Wall time for j1e_val (min) = ', (time1 - time0) / 60.d0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, j1e_gradx, (n_points_final_grid)]
&BEGIN_PROVIDER [double precision, j1e_grady, (n_points_final_grid)]
&BEGIN_PROVIDER [double precision, j1e_gradz, (n_points_final_grid)]
implicit none
integer :: ipoint, i, j, ij, p
integer :: ierr
logical :: exists
double precision :: x, y, z, dx, dy, dz, d2
double precision :: a, c, g, tmp_x, tmp_y, tmp_z
double precision :: cx, cy, cz
double precision :: time0, time1
double precision, allocatable :: Pa(:,:), Pb(:,:), Pt(:,:)
double precision, allocatable :: coef_fit2(:,:)
PROVIDE j1e_type
call wall_time(time0)
print*, ' providing j1e_grad ...'
if(j1e_type .eq. "None") then
j1e_gradx = 0.d0
j1e_grady = 0.d0
j1e_gradz = 0.d0
elseif(j1e_type .eq. "Gauss") then
! - \sum_{A} (r - R_A) \sum_p c_{p_A} \exp(-\alpha_{p_A} (r - R_A)^2)
PROVIDE j1e_size j1e_coef j1e_expo
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp_x = 0.d0
tmp_y = 0.d0
tmp_z = 0.d0
do j = 1, nucl_num
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
d2 = dx*dx + dy*dy + dz*dz
do p = 1, j1e_size
c = j1e_coef(p,j)
a = j1e_expo(p,j)
g = c * a * dexp(-a*d2)
tmp_x = tmp_x + g * dx
tmp_y = tmp_y + g * dy
tmp_z = tmp_z + g * dz
enddo
enddo
j1e_gradx(ipoint) = -2.d0 * tmp_x
j1e_grady(ipoint) = -2.d0 * tmp_y
j1e_gradz(ipoint) = -2.d0 * tmp_z
enddo
elseif(j1e_type .eq. "Charge_Harmonizer") then
! -[(N-1)/2N] x \sum_{\mu,\nu} P_{\mu,\nu} \int dr2 [\grad_r1 J_2e(r1,r2)] \phi_\mu(r2) \phi_nu(r2)
PROVIDE elec_alpha_num elec_beta_num elec_num
PROVIDE mo_coef
PROVIDE int2_grad1_u2e_ao
allocate(Pa(ao_num,ao_num), Pb(ao_num,ao_num), Pt(ao_num,ao_num))
call dgemm( 'N', 'T', ao_num, ao_num, elec_alpha_num, 1.d0 &
, mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) &
, 0.d0, Pa, size(Pa, 1))
if(elec_alpha_num .eq. elec_beta_num) then
Pb = Pa
else
call dgemm( 'N', 'T', ao_num, ao_num, elec_beta_num, 1.d0 &
, mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) &
, 0.d0, Pb, size(Pb, 1))
endif
Pt = Pa + Pb
g = -0.5d0 * (dble(elec_num) - 1.d0) / dble(elec_num)
call dgemv("T", ao_num*ao_num, n_points_final_grid, g, int2_grad1_u2e_ao(1,1,1,1), ao_num*ao_num, Pt, 1, 0.d0, j1e_gradx, 1)
call dgemv("T", ao_num*ao_num, n_points_final_grid, g, int2_grad1_u2e_ao(1,1,1,2), ao_num*ao_num, Pt, 1, 0.d0, j1e_grady, 1)
call dgemv("T", ao_num*ao_num, n_points_final_grid, g, int2_grad1_u2e_ao(1,1,1,3), ao_num*ao_num, Pt, 1, 0.d0, j1e_gradz, 1)
FREE int2_grad1_u2e_ao
deallocate(Pa, Pb, Pt)
elseif(j1e_type .eq. "Charge_Harmonizer_AO") then
! \grad_1 \sum_{\eta,\beta} C_{\eta,\beta} \chi_{\eta} \chi_{\beta}
! where
! \chi_{\eta} are the AOs
! C_{\eta,\beta} are fitted to mimic (j1e_type .eq. "Charge_Harmonizer")
!
! The - sign is in the parameters C_{\eta,\beta}
PROVIDE aos_grad_in_r_array
allocate(coef_fit2(ao_num,ao_num))
if(mpi_master) then
call ezfio_has_jastrow_j1e_coef_ao2(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
call MPI_BCAST(coef_fit2, (ao_num*ao_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_coef_ao2 with MPI'
endif
IRP_ENDIF
if(exists) then
if(mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: j1e_coef_ao2 ] <<<<< ..'
call ezfio_get_jastrow_j1e_coef_ao2(coef_fit2)
IRP_IF MPI
call MPI_BCAST(coef_fit2, (ao_num*ao_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_coef_ao2 with MPI'
endif
IRP_ENDIF
endif
else
call get_j1e_coef_fit_ao2(ao_num, coef_fit2)
call ezfio_set_jastrow_j1e_coef_ao2(coef_fit2)
endif
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint, c) &
!$OMP SHARED (n_points_final_grid, ao_num, &
!$OMP aos_grad_in_r_array, coef_fit2, &
!$OMP aos_in_r_array, j1e_gradx, j1e_grady, j1e_gradz)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
j1e_gradx(ipoint) = 0.d0
j1e_grady(ipoint) = 0.d0
j1e_gradz(ipoint) = 0.d0
do i = 1, ao_num
do j = 1, ao_num
c = coef_fit2(j,i)
j1e_gradx(ipoint) += c * (aos_in_r_array(i,ipoint) * aos_grad_in_r_array(j,ipoint,1) + aos_grad_in_r_array(i,ipoint,1) * aos_in_r_array(j,ipoint))
j1e_grady(ipoint) += c * (aos_in_r_array(i,ipoint) * aos_grad_in_r_array(j,ipoint,2) + aos_grad_in_r_array(i,ipoint,2) * aos_in_r_array(j,ipoint))
j1e_gradz(ipoint) += c * (aos_in_r_array(i,ipoint) * aos_grad_in_r_array(j,ipoint,3) + aos_grad_in_r_array(i,ipoint,3) * aos_in_r_array(j,ipoint))
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(coef_fit2)
else
print *, ' Error in j1e_grad: Unknown j1e_type = ', j1e_type
stop
endif
call wall_time(time1)
print*, ' Wall time for j1e_grad (min) = ', (time1 - time0) / 60.d0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, j1e_lapl, (n_points_final_grid)]
implicit none
integer :: ipoint, i, j, p
double precision :: x, y, z, dx, dy, dz, d2
double precision :: a, c, g, tmp
if(j1e_type .eq. "None") then
j1e_lapl = 0.d0
elseif(j1e_type .eq. "Gauss") then
! - \sum_{A} (r - R_A) \sum_p c_{p_A} \exp(-\alpha_{p_A} (r - R_A)^2)
PROVIDE j1e_size j1e_coef j1e_expo
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp = 0.d0
do j = 1, nucl_num
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
d2 = dx*dx + dy*dy + dz*dz
do p = 1, j1e_size
c = j1e_coef(p,j)
a = j1e_expo(p,j)
g = c * a * dexp(-a*d2)
tmp = tmp + (2.d0 * a * d2 - 3.d0) * g
enddo
enddo
j1e_lapl(ipoint) = tmp
enddo
else
print *, ' Error in j1e_lapl: Unknown j1e_type = ', j1e_type
stop
endif
END_PROVIDER
! ---

View File

@ -0,0 +1,436 @@
! ---
subroutine get_j1e_coef_fit_ao(dim_fit, coef_fit)
implicit none
integer , intent(in) :: dim_fit
double precision, intent(out) :: coef_fit(dim_fit)
integer :: i, ipoint
double precision :: g
double precision :: t0, t1
double precision, allocatable :: A(:,:), b(:), A_inv(:,:)
double precision, allocatable :: Pa(:,:), Pb(:,:), Pt(:,:)
double precision, allocatable :: u1e_tmp(:)
PROVIDE j1e_type
PROVIDE int2_u2e_ao
PROVIDE elec_alpha_num elec_beta_num elec_num
PROVIDE mo_coef
PROVIDE ao_overlap
call wall_time(t0)
print*, ' PROVIDING the representation of 1e-Jastrow in AOs ... '
! --- --- ---
! get u1e(r)
allocate(Pa(ao_num,ao_num), Pb(ao_num,ao_num), Pt(ao_num,ao_num))
call dgemm( 'N', 'T', ao_num, ao_num, elec_alpha_num, 1.d0 &
, mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) &
, 0.d0, Pa, size(Pa, 1))
if(elec_alpha_num .eq. elec_beta_num) then
Pb = Pa
else
call dgemm( 'N', 'T', ao_num, ao_num, elec_beta_num, 1.d0 &
, mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) &
, 0.d0, Pb, size(Pb, 1))
endif
Pt = Pa + Pb
allocate(u1e_tmp(n_points_final_grid))
g = -0.5d0 * (dble(elec_num) - 1.d0) / dble(elec_num)
call dgemv("T", ao_num*ao_num, n_points_final_grid, g, int2_u2e_ao, ao_num*ao_num, Pt, 1, 0.d0, u1e_tmp, 1)
FREE int2_u2e_ao
deallocate(Pa, Pb, Pt)
! --- --- ---
! get A & b
allocate(A(ao_num,ao_num), b(ao_num))
A(1:ao_num,1:ao_num) = ao_overlap(1:ao_num,1:ao_num)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, ipoint) &
!$OMP SHARED (n_points_final_grid, ao_num, &
!$OMP final_weight_at_r_vector, aos_in_r_array_transp, u1e_tmp, b)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
b(i) = 0.d0
do ipoint = 1, n_points_final_grid
b(i) = b(i) + final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * u1e_tmp(ipoint)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(u1e_tmp)
! --- --- ---
! solve Ax = b
allocate(A_inv(ao_num,ao_num))
call get_inverse(A, ao_num, ao_num, A_inv, ao_num)
! coef_fit = A_inv x b
call dgemv("N", ao_num, ao_num, 1.d0, A_inv, ao_num, b, 1, 0.d0, coef_fit, 1)
integer :: j
double precision :: tmp, acc, nrm
acc = 0.d0
nrm = 0.d0
print *, ' check A_inv'
do i = 1, ao_num
tmp = 0.d0
do j = 1, ao_num
tmp += ao_overlap(i,j) * coef_fit(j)
enddo
tmp = tmp - b(i)
if(dabs(tmp) .gt. 1d-8) then
print*, ' problem found in fitting 1e-Jastrow'
print*, i, tmp
endif
acc += dabs(tmp)
nrm += dabs(b(i))
enddo
print *, ' Relative Error (%) =', 100.d0*acc/nrm
deallocate(A, A_inv, b)
call wall_time(t1)
print*, ' END after (min) ', (t1-t0)/60.d0
return
end
! ---
subroutine get_j1e_coef_fit_ao2(dim_fit, coef_fit)
implicit none
integer , intent(in) :: dim_fit
double precision, intent(out) :: coef_fit(dim_fit,dim_fit)
integer :: i, j, k, l, ipoint
integer :: ij, kl, mn
integer :: info, n_svd, LWORK
double precision :: g
double precision :: t0, t1, svd_t0, svd_t1
double precision :: cutoff_svd, D1_inv
double precision, allocatable :: diff(:)
double precision, allocatable :: A(:,:,:,:), b(:), A_tmp(:,:,:,:)
double precision, allocatable :: Pa(:,:), Pb(:,:), Pt(:,:)
double precision, allocatable :: u1e_tmp(:), tmp(:,:,:)
double precision, allocatable :: U(:,:), D(:), Vt(:,:), work(:)
PROVIDE j1e_type
PROVIDE int2_u2e_ao
PROVIDE elec_alpha_num elec_beta_num elec_num
PROVIDE mo_coef
cutoff_svd = 1d-10
call wall_time(t0)
print*, ' PROVIDING the representation of 1e-Jastrow in AOs x AOs ... '
! --- --- ---
! get u1e(r)
allocate(Pa(ao_num,ao_num), Pb(ao_num,ao_num), Pt(ao_num,ao_num))
call dgemm( 'N', 'T', ao_num, ao_num, elec_alpha_num, 1.d0 &
, mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) &
, 0.d0, Pa, size(Pa, 1))
if(elec_alpha_num .eq. elec_beta_num) then
Pb = Pa
else
call dgemm( 'N', 'T', ao_num, ao_num, elec_beta_num, 1.d0 &
, mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) &
, 0.d0, Pb, size(Pb, 1))
endif
Pt = Pa + Pb
allocate(u1e_tmp(n_points_final_grid))
g = -0.5d0 * (dble(elec_num) - 1.d0) / dble(elec_num)
call dgemv("T", ao_num*ao_num, n_points_final_grid, g, int2_u2e_ao, ao_num*ao_num, Pt, 1, 0.d0, u1e_tmp, 1)
FREE int2_u2e_ao
deallocate(Pa, Pb, Pt)
! --- --- ---
! get A
allocate(tmp(n_points_final_grid,ao_num,ao_num))
allocate(A(ao_num,ao_num,ao_num,ao_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (n_points_final_grid, ao_num, final_weight_at_r_vector, aos_in_r_array_transp, tmp)
!$OMP DO COLLAPSE(2)
do j = 1, ao_num
do i = 1, ao_num
do ipoint = 1, n_points_final_grid
tmp(ipoint,i,j) = dsqrt(final_weight_at_r_vector(ipoint)) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,j)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "T", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, tmp(1,1,1), n_points_final_grid, tmp(1,1,1), n_points_final_grid &
, 0.d0, A(1,1,1,1), ao_num*ao_num)
allocate(A_tmp(ao_num,ao_num,ao_num,ao_num))
A_tmp = A
! --- --- ---
! get b
allocate(b(ao_num*ao_num))
do ipoint = 1, n_points_final_grid
u1e_tmp(ipoint) = dsqrt(final_weight_at_r_vector(ipoint)) * u1e_tmp(ipoint)
enddo
call dgemv("T", n_points_final_grid, ao_num*ao_num, 1.d0, tmp(1,1,1), n_points_final_grid, u1e_tmp(1), 1, 0.d0, b(1), 1)
deallocate(u1e_tmp)
deallocate(tmp)
! --- --- ---
! solve Ax = b
allocate(D(ao_num*ao_num), U(ao_num*ao_num,ao_num*ao_num), Vt(ao_num*ao_num,ao_num*ao_num))
call wall_time(svd_t0)
allocate(work(1))
lwork = -1
call dgesvd( 'S', 'A', ao_num*ao_num, ao_num*ao_num, A(1,1,1,1), ao_num*ao_num &
, D(1), U(1,1), ao_num*ao_num, Vt(1,1), ao_num*ao_num, work, lwork, info)
if(info /= 0) then
print *, info, ': SVD failed'
stop
endif
LWORK = max(5*ao_num*ao_num, int(WORK(1)))
deallocate(work)
allocate(work(lwork))
call dgesvd( 'S', 'A', ao_num*ao_num, ao_num*ao_num, A(1,1,1,1), ao_num*ao_num &
, D(1), U(1,1), ao_num*ao_num, Vt(1,1), ao_num*ao_num, work, lwork, info)
if(info /= 0) then
print *, info, ':: SVD failed'
stop 1
endif
deallocate(work)
call wall_time(svd_t1)
print*, ' SVD time (min) ', (svd_t1-svd_t0)/60.d0
if(D(1) .lt. 1d-14) then
print*, ' largest singular value is very small:', D(1)
n_svd = 1
else
n_svd = 0
D1_inv = 1.d0 / D(1)
do ij = 1, ao_num*ao_num
if(D(ij)*D1_inv > cutoff_svd) then
D(ij) = 1.d0 / D(ij)
n_svd = n_svd + 1
else
D(ij) = 0.d0
endif
enddo
endif
print*, ' n_svd = ', n_svd
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ij, kl) &
!$OMP SHARED (ao_num, n_svd, D, Vt)
!$OMP DO
do kl = 1, ao_num*ao_num
do ij = 1, n_svd
Vt(ij,kl) = Vt(ij,kl) * D(ij)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
! A = A_inv
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_svd, 1.d0 &
, U(1,1), ao_num*ao_num, Vt(1,1), ao_num*ao_num &
, 0.d0, A(1,1,1,1), ao_num*ao_num)
deallocate(D, U, Vt)
! ---
! coef_fit = A_inv x b
call dgemv("N", ao_num*ao_num, ao_num*ao_num, 1.d0, A(1,1,1,1), ao_num*ao_num, b(1), 1, 0.d0, coef_fit(1,1), 1)
! ---
allocate(diff(ao_num*ao_num))
call dgemv("N", ao_num*ao_num, ao_num*ao_num, 1.d0, A_tmp(1,1,1,1), ao_num*ao_num, coef_fit(1,1), 1, 0.d0, diff(1), 1)
print*, ' accu total on Ax = b (%) = ', 100.d0*sum(dabs(diff-b))/sum(dabs(b))
deallocate(diff)
deallocate(A_tmp)
! ---
deallocate(A, b)
call wall_time(t1)
print*, ' END after (min) ', (t1-t0)/60.d0
return
end
! ---
subroutine get_j1e_coef_fit_ao3(dim_fit, coef_fit)
implicit none
integer , intent(in) :: dim_fit
double precision, intent(out) :: coef_fit(dim_fit,3)
integer :: i, d, ipoint
double precision :: g
double precision :: t0, t1
double precision, allocatable :: A(:,:), b(:,:), A_inv(:,:)
double precision, allocatable :: Pa(:,:), Pb(:,:), Pt(:,:)
double precision, allocatable :: u1e_tmp(:,:)
PROVIDE j1e_type
PROVIDE int2_grad1_u2e_ao
PROVIDE elec_alpha_num elec_beta_num elec_num
PROVIDE mo_coef
PROVIDE ao_overlap
call wall_time(t0)
print*, ' PROVIDING the representation of 1e-Jastrow in AOs ... '
! --- --- ---
! get u1e(r)
allocate(Pa(ao_num,ao_num), Pb(ao_num,ao_num), Pt(ao_num,ao_num))
call dgemm( 'N', 'T', ao_num, ao_num, elec_alpha_num, 1.d0 &
, mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) &
, 0.d0, Pa, size(Pa, 1))
if(elec_alpha_num .eq. elec_beta_num) then
Pb = Pa
else
call dgemm( 'N', 'T', ao_num, ao_num, elec_beta_num, 1.d0 &
, mo_coef, size(mo_coef, 1), mo_coef, size(mo_coef, 1) &
, 0.d0, Pb, size(Pb, 1))
endif
Pt = Pa + Pb
allocate(u1e_tmp(n_points_final_grid,3))
g = -0.5d0 * (dble(elec_num) - 1.d0) / dble(elec_num)
do d = 1, 3
call dgemv("T", ao_num*ao_num, n_points_final_grid, g, int2_grad1_u2e_ao(1,1,1,d), ao_num*ao_num, Pt, 1, 0.d0, u1e_tmp(1,d), 1)
enddo
deallocate(Pa, Pb, Pt)
! --- --- ---
! get A & b
allocate(A(ao_num,ao_num), b(ao_num,3))
A(1:ao_num,1:ao_num) = ao_overlap(1:ao_num,1:ao_num)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, ipoint) &
!$OMP SHARED (n_points_final_grid, ao_num, &
!$OMP final_weight_at_r_vector, aos_in_r_array_transp, u1e_tmp, b)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
b(i,1) = 0.d0
b(i,2) = 0.d0
b(i,3) = 0.d0
do ipoint = 1, n_points_final_grid
b(i,1) = b(i,1) + final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * u1e_tmp(ipoint,1)
b(i,2) = b(i,2) + final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * u1e_tmp(ipoint,2)
b(i,3) = b(i,3) + final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * u1e_tmp(ipoint,3)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(u1e_tmp)
! --- --- ---
! solve Ax = b
allocate(A_inv(ao_num,ao_num))
call get_inverse(A, ao_num, ao_num, A_inv, ao_num)
! coef_fit = A_inv x b
do d = 1, 3
call dgemv("N", ao_num, ao_num, 1.d0, A_inv, ao_num, b(1,d), 1, 0.d0, coef_fit(1,d), 1)
enddo
integer :: j
double precision :: tmp, acc, nrm
acc = 0.d0
nrm = 0.d0
print *, ' check A_inv'
do d = 1, 3
do i = 1, ao_num
tmp = 0.d0
do j = 1, ao_num
tmp += ao_overlap(i,j) * coef_fit(j,d)
enddo
tmp = tmp - b(i,d)
if(dabs(tmp) .gt. 1d-8) then
print*, ' problem found in fitting 1e-Jastrow'
print*, d, i, tmp
endif
acc += dabs(tmp)
nrm += dabs(b(i,d))
enddo
enddo
print *, ' Relative Error (%) =', 100.d0*acc/nrm
deallocate(A, A_inv, b)
call wall_time(t1)
print*, ' END after (min) ', (t1-t0)/60.d0
return
end
! ---

View File

@ -0,0 +1,393 @@
! ---
BEGIN_PROVIDER [double precision, int2_u2e_ao, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int2_u2e_ao(i,j,ipoint,:) = \int dr2 J_2e(r1,r2) \phi_i(r2) \phi_j(r2)
!
! where r1 = r(ipoint)
!
END_DOC
implicit none
integer :: ipoint, i, j, jpoint
integer :: n_blocks, n_rest, n_pass
integer :: i_blocks, i_rest, i_pass, ii
double precision :: mem, n_double
double precision :: time0, time1
double precision :: x, y, z, r2
double precision :: dx, dy, dz
double precision :: tmp_ct
double precision :: tmp0, tmp1, tmp2, tmp3
double precision, allocatable :: tmp(:,:,:)
double precision, allocatable :: tmp_u12(:,:)
PROVIDE j2e_type
PROVIDE Env_type
call wall_time(time0)
print*, ' providing int2_u2e_ao ...'
if(tc_integ_type .eq. "numeric") then
PROVIDE final_weight_at_r_vector_extra aos_in_r_array_extra
allocate(tmp(n_points_extra_final_grid,ao_num,ao_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, i, jpoint) &
!$OMP SHARED (tmp, ao_num, n_points_extra_final_grid, final_weight_at_r_vector_extra, aos_in_r_array_extra_transp)
!$OMP DO SCHEDULE (static)
do j = 1, ao_num
do i = 1, ao_num
do jpoint = 1, n_points_extra_final_grid
tmp(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call total_memory(mem)
mem = max(1.d0, qp_max_mem - mem)
n_double = mem * 1.d8
n_blocks = int(min(n_double / (n_points_extra_final_grid * 1.d0), 1.d0*n_points_final_grid))
n_rest = int(mod(n_points_final_grid, n_blocks))
n_pass = int((n_points_final_grid - n_rest) / n_blocks)
call write_int(6, n_pass, 'Number of passes')
call write_int(6, n_blocks, 'Size of the blocks')
call write_int(6, n_rest, 'Size of the last block')
allocate(tmp_u12(n_points_extra_final_grid,n_blocks))
do i_pass = 1, n_pass
ii = (i_pass-1)*n_blocks + 1
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_blocks, ipoint) &
!$OMP SHARED (n_blocks, n_points_extra_final_grid, ii, &
!$OMP final_grid_points, tmp_u12)
!$OMP DO
do i_blocks = 1, n_blocks
ipoint = ii - 1 + i_blocks ! r1
call get_u12_2e_r1_seq(ipoint, n_points_extra_final_grid, tmp_u12(1,i_blocks))
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "T", "N", ao_num*ao_num, n_blocks, n_points_extra_final_grid, 1.d0 &
, tmp(1,1,1), n_points_extra_final_grid, tmp_u12(1,1), n_points_extra_final_grid &
, 0.d0, int2_u2e_ao(1,1,ii), ao_num*ao_num)
enddo
deallocate(tmp_u12)
if(n_rest .gt. 0) then
allocate(tmp_u12(n_points_extra_final_grid,n_rest))
ii = n_pass*n_blocks + 1
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_rest, ipoint) &
!$OMP SHARED (n_rest, n_points_extra_final_grid, ii, &
!$OMP final_grid_points, tmp_u12)
!$OMP DO
do i_rest = 1, n_rest
ipoint = ii - 1 + i_rest ! r1
call get_u12_2e_r1_seq(ipoint, n_points_extra_final_grid, tmp_u12(1,i_rest))
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "T", "N", ao_num*ao_num, n_rest, n_points_extra_final_grid, 1.d0 &
, tmp(1,1,1), n_points_extra_final_grid, tmp_u12(1,1), n_points_extra_final_grid &
, 0.d0, int2_u2e_ao(1,1,ii), ao_num*ao_num)
deallocate(tmp_u12)
endif
deallocate(tmp)
elseif(tc_integ_type .eq. "semi-analytic") then
if( (j2e_type .eq. "Mu") .and. &
( (env_type .eq. "None") .or. (env_type .eq. "Prod_Gauss") .or. (env_type .eq. "Sum_Gauss") ) ) then
PROVIDE mu_erf
PROVIDE env_type env_val
PROVIDE Ir2_Mu_long_Du_0 Ir2_Mu_long_Du_x Ir2_Mu_long_Du_y Ir2_Mu_long_Du_z Ir2_Mu_long_Du_2
PROVIDE Ir2_Mu_gauss_Du
tmp_ct = 0.5d0 / (dsqrt(dacos(-1.d0)) * mu_erf)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, x, y, z, r2, dx, dy, dz, &
!$OMP tmp0, tmp1, tmp2, tmp3) &
!$OMP SHARED (ao_num, n_points_final_grid, final_grid_points, &
!$OMP tmp_ct, env_val, Ir2_Mu_long_Du_0, &
!$OMP Ir2_Mu_long_Du_x, Ir2_Mu_long_Du_y, &
!$OMP Ir2_Mu_long_Du_z, Ir2_Mu_gauss_Du, &
!$OMP Ir2_Mu_long_Du_2, int2_u2e_ao)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
r2 = x*x + y*y + z*z
dx = x * env_val(ipoint)
dy = y * env_val(ipoint)
dz = z * env_val(ipoint)
tmp0 = 0.5d0 * env_val(ipoint) * r2
tmp1 = 0.5d0 * env_val(ipoint)
tmp3 = tmp_ct * env_val(ipoint)
do j = 1, ao_num
do i = 1, ao_num
tmp2 = tmp1 * Ir2_Mu_long_Du_2(i,j,ipoint) - dx * Ir2_Mu_long_Du_x(i,j,ipoint) - dy * Ir2_Mu_long_Du_y(i,j,ipoint) - dz * Ir2_Mu_long_Du_z(i,j,ipoint)
int2_u2e_ao(i,j,ipoint) = tmp0 * Ir2_Mu_long_Du_0(i,j,ipoint) + tmp2 - tmp3 * Ir2_Mu_gauss_Du(i,j,ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
else
print *, ' Error in int2_u2e_ao: Unknown Jastrow'
stop
endif ! j2e_type
else
print *, ' Error in int2_u2e_ao: Unknown tc_integ_type'
stop
endif ! tc_integ_type
call wall_time(time1)
print*, ' wall time for int2_u2e_ao (min) =', (time1-time0)/60.d0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, int2_grad1_u2e_ao, (ao_num, ao_num, n_points_final_grid, 3)]
BEGIN_DOC
!
! int2_grad1_u2e_ao(i,j,ipoint,:) = \int dr2 [\grad_r1 J_2e(r1,r2)] \phi_i(r2) \phi_j(r2)
!
! where r1 = r(ipoint)
!
END_DOC
implicit none
integer :: ipoint, i, j, m, jpoint
integer :: n_blocks, n_rest, n_pass
integer :: i_blocks, i_rest, i_pass, ii
double precision :: mem, n_double
double precision :: time0, time1
double precision :: x, y, z, r2
double precision :: dx, dy, dz
double precision :: tmp_ct
double precision :: tmp0, tmp1, tmp2
double precision :: tmp0_x, tmp0_y, tmp0_z
double precision :: tmp1_x, tmp1_y, tmp1_z
double precision, allocatable :: tmp(:,:,:)
double precision, allocatable :: tmp_grad1_u12(:,:,:)
PROVIDE j2e_type
PROVIDE Env_type
call wall_time(time0)
print*, ' providing int2_grad1_u2e_ao ...'
if(tc_integ_type .eq. "numeric") then
PROVIDE final_weight_at_r_vector_extra aos_in_r_array_extra
allocate(tmp(n_points_extra_final_grid,ao_num,ao_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, i, jpoint) &
!$OMP SHARED (tmp, ao_num, n_points_extra_final_grid, final_weight_at_r_vector_extra, aos_in_r_array_extra_transp)
!$OMP DO SCHEDULE (static)
do j = 1, ao_num
do i = 1, ao_num
do jpoint = 1, n_points_extra_final_grid
tmp(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call total_memory(mem)
mem = max(1.d0, qp_max_mem - mem)
n_double = mem * 1.d8
n_blocks = int(min(n_double / (n_points_extra_final_grid * 3.d0), 1.d0*n_points_final_grid))
n_rest = int(mod(n_points_final_grid, n_blocks))
n_pass = int((n_points_final_grid - n_rest) / n_blocks)
call write_int(6, n_pass, 'Number of passes')
call write_int(6, n_blocks, 'Size of the blocks')
call write_int(6, n_rest, 'Size of the last block')
allocate(tmp_grad1_u12(n_points_extra_final_grid,n_blocks,3))
do i_pass = 1, n_pass
ii = (i_pass-1)*n_blocks + 1
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_blocks, ipoint) &
!$OMP SHARED (n_blocks, n_points_extra_final_grid, ii, &
!$OMP final_grid_points, tmp_grad1_u12)
!$OMP DO
do i_blocks = 1, n_blocks
ipoint = ii - 1 + i_blocks ! r1
call get_grad1_u12_2e_r1_seq(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,i_blocks,1) &
, tmp_grad1_u12(1,i_blocks,2) &
, tmp_grad1_u12(1,i_blocks,3))
enddo
!$OMP END DO
!$OMP END PARALLEL
do m = 1, 3
call dgemm( "T", "N", ao_num*ao_num, n_blocks, n_points_extra_final_grid, 1.d0 &
, tmp(1,1,1), n_points_extra_final_grid, tmp_grad1_u12(1,1,m), n_points_extra_final_grid &
, 0.d0, int2_grad1_u2e_ao(1,1,ii,m), ao_num*ao_num)
enddo
enddo
deallocate(tmp_grad1_u12)
if(n_rest .gt. 0) then
allocate(tmp_grad1_u12(n_points_extra_final_grid,n_rest,3))
ii = n_pass*n_blocks + 1
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_rest, ipoint) &
!$OMP SHARED (n_rest, n_points_extra_final_grid, ii, &
!$OMP final_grid_points, tmp_grad1_u12)
!$OMP DO
do i_rest = 1, n_rest
ipoint = ii - 1 + i_rest ! r1
call get_grad1_u12_2e_r1_seq(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,i_rest,1) &
, tmp_grad1_u12(1,i_rest,2) &
, tmp_grad1_u12(1,i_rest,3))
enddo
!$OMP END DO
!$OMP END PARALLEL
do m = 1, 3
call dgemm( "T", "N", ao_num*ao_num, n_rest, n_points_extra_final_grid, 1.d0 &
, tmp(1,1,1), n_points_extra_final_grid, tmp_grad1_u12(1,1,m), n_points_extra_final_grid &
, 0.d0, int2_grad1_u2e_ao(1,1,ii,m), ao_num*ao_num)
enddo
deallocate(tmp_grad1_u12)
endif
deallocate(tmp)
elseif(tc_integ_type .eq. "semi-analytic") then
if( (j2e_type .eq. "Mu") .and. &
( (env_type .eq. "None") .or. (env_type .eq. "Prod_Gauss") .or. (env_type .eq. "Sum_Gauss") ) ) then
PROVIDE mu_erf
PROVIDE env_type env_val env_grad
PROVIDE Ir2_Mu_long_Du_0 Ir2_Mu_long_Du_x Ir2_Mu_long_Du_y Ir2_Mu_long_Du_z Ir2_Mu_long_Du_2
PROVIDE Ir2_Mu_gauss_Du
tmp_ct = 0.5d0 / (dsqrt(dacos(-1.d0)) * mu_erf)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, x, y, z, r2, dx, dy, dz, tmp1, tmp2, &
!$OMP tmp0_x, tmp0_y, tmp0_z, tmp1_x, tmp1_y, tmp1_z) &
!$OMP SHARED (ao_num, n_points_final_grid, final_grid_points, &
!$OMP tmp_ct, env_val, env_grad, Ir2_Mu_long_Du_0, &
!$OMP Ir2_Mu_long_Du_x, Ir2_Mu_long_Du_y, &
!$OMP Ir2_Mu_long_Du_z, Ir2_Mu_gauss_Du, &
!$OMP Ir2_Mu_long_Du_2, int2_grad1_u2e_ao)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
r2 = x*x + y*y + z*z
dx = env_grad(1,ipoint)
dy = env_grad(2,ipoint)
dz = env_grad(3,ipoint)
tmp0_x = 0.5d0 * (env_val(ipoint) * x + r2 * dx)
tmp0_y = 0.5d0 * (env_val(ipoint) * y + r2 * dy)
tmp0_z = 0.5d0 * (env_val(ipoint) * z + r2 * dz)
tmp1 = 0.5d0 * env_val(ipoint)
tmp1_x = tmp_ct * dx
tmp1_y = tmp_ct * dy
tmp1_z = tmp_ct * dz
do j = 1, ao_num
do i = 1, ao_num
tmp2 = 0.5d0 * Ir2_Mu_long_Du_2(i,j,ipoint) - x * Ir2_Mu_long_Du_x(i,j,ipoint) - y * Ir2_Mu_long_Du_y(i,j,ipoint) - z * Ir2_Mu_long_Du_z(i,j,ipoint)
int2_grad1_u2e_ao(i,j,ipoint,1) = Ir2_Mu_long_Du_0(i,j,ipoint) * tmp0_x - tmp1 * Ir2_Mu_long_Du_x(i,j,ipoint) + dx * tmp2 - tmp1_x * Ir2_Mu_gauss_Du(i,j,ipoint)
int2_grad1_u2e_ao(i,j,ipoint,2) = Ir2_Mu_long_Du_0(i,j,ipoint) * tmp0_y - tmp1 * Ir2_Mu_long_Du_y(i,j,ipoint) + dy * tmp2 - tmp1_y * Ir2_Mu_gauss_Du(i,j,ipoint)
int2_grad1_u2e_ao(i,j,ipoint,3) = Ir2_Mu_long_Du_0(i,j,ipoint) * tmp0_z - tmp1 * Ir2_Mu_long_Du_z(i,j,ipoint) + dz * tmp2 - tmp1_z * Ir2_Mu_gauss_Du(i,j,ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
FREE Ir2_Mu_long_Du_0 Ir2_Mu_long_Du_x Ir2_Mu_long_Du_y Ir2_Mu_long_Du_z Ir2_Mu_long_Du_2
FREE Ir2_Mu_gauss_Du
else
print *, ' Error in int2_grad1_u2e_ao: Unknown Jastrow'
stop
endif ! j2e_type
else
print *, ' Error in int2_grad1_u2e_ao: Unknown tc_integ_type'
stop
endif ! tc_integ_type
call wall_time(time1)
print*, ' wall time for int2_grad1_u2e_ao (min) =', (time1-time0)/60.d0
call print_memory_usage()
END_PROVIDER
! ---

View File

@ -6,28 +6,22 @@
BEGIN_DOC
!
!
! grad_1 u(r1,r2)
!
! this will be integrated numerically over r2:
! we use grid for r1 and extra_grid for r2
!
! for 99 < j1b_type < 199
!
! u(r1,r2) = j12_mu(r12) x v(r1) x v(r2)
! grad1 u(r1, r2) = [(grad1 j12_mu) v(r1) + j12_mu grad1 v(r1)] v(r2)
! numerical integration over r1 & r2
!
END_DOC
implicit none
integer :: ipoint, jpoint
double precision :: r1(3), r2(3)
double precision :: v1b_r1, v1b_r2, u2b_r12
double precision :: grad1_v1b(3), grad1_u2b(3)
double precision :: v_r1, v_r2, u2b_r12
double precision :: grad1_v(3), grad1_u2b(3)
double precision :: dx, dy, dz
double precision :: time0, time1
double precision, external :: j12_mu, j1b_nucl
double precision, external :: j12_mu, env_nucl
PROVIDE j1b_type
PROVIDE env_type
PROVIDE final_grid_points_extra
print*, ' providing grad1_u12_num & grad1_u12_squared_num ...'
@ -36,12 +30,12 @@
grad1_u12_num = 0.d0
grad1_u12_squared_num = 0.d0
if( (j1b_type .eq. 100) .or. &
(j1b_type .ge. 200) .and. (j1b_type .lt. 300) ) then
if( ((j2e_type .eq. "Mu") .and. (env_type .eq. "None")) .or. &
(j2e_type .eq. "Mur") ) then
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, jpoint, r1, r2, v1b_r1, v1b_r2, u2b_r12, grad1_v1b, grad1_u2b, dx, dy, dz) &
!$OMP PRIVATE (ipoint, jpoint, r1, r2, v_r1, v_r2, u2b_r12, grad1_v, grad1_u2b, dx, dy, dz) &
!$OMP SHARED (n_points_final_grid, n_points_extra_final_grid, final_grid_points, &
!$OMP final_grid_points_extra, grad1_u12_num, grad1_u12_squared_num)
!$OMP DO SCHEDULE (static)
@ -57,7 +51,7 @@
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
call grad1_j12_mu(r1, r2, grad1_u2b)
call grad1_j12_mu(r2, r1, grad1_u2b)
dx = grad1_u2b(1)
dy = grad1_u2b(2)
@ -73,13 +67,13 @@
!$OMP END DO
!$OMP END PARALLEL
elseif((j1b_type .gt. 100) .and. (j1b_type .lt. 200)) then
elseif((j2e_type .eq. "Mu") .and. (env_type .ne. "None")) then
PROVIDE final_grid_points
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, jpoint, r1, r2, v1b_r1, v1b_r2, u2b_r12, grad1_v1b, grad1_u2b, dx, dy, dz) &
!$OMP PRIVATE (ipoint, jpoint, r1, r2, v_r1, v_r2, u2b_r12, grad1_v, grad1_u2b, dx, dy, dz) &
!$OMP SHARED (n_points_final_grid, n_points_extra_final_grid, final_grid_points, &
!$OMP final_grid_points_extra, grad1_u12_num, grad1_u12_squared_num)
!$OMP DO SCHEDULE (static)
@ -89,8 +83,8 @@
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
v1b_r1 = j1b_nucl(r1)
call grad1_j1b_nucl(r1, grad1_v1b)
v_r1 = env_nucl(r1)
call grad1_env_nucl(r1, grad1_v)
do jpoint = 1, n_points_extra_final_grid ! r2
@ -98,13 +92,13 @@
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
v1b_r2 = j1b_nucl(r2)
v_r2 = env_nucl(r2)
u2b_r12 = j12_mu(r1, r2)
call grad1_j12_mu(r1, r2, grad1_u2b)
call grad1_j12_mu(r2, r1, grad1_u2b)
dx = (grad1_u2b(1) * v1b_r1 + u2b_r12 * grad1_v1b(1)) * v1b_r2
dy = (grad1_u2b(2) * v1b_r1 + u2b_r12 * grad1_v1b(2)) * v1b_r2
dz = (grad1_u2b(3) * v1b_r1 + u2b_r12 * grad1_v1b(3)) * v1b_r2
dx = (grad1_u2b(1) * v_r1 + u2b_r12 * grad1_v(1)) * v_r2
dy = (grad1_u2b(2) * v_r1 + u2b_r12 * grad1_v(2)) * v_r2
dz = (grad1_u2b(3) * v_r1 + u2b_r12 * grad1_v(3)) * v_r2
grad1_u12_num(jpoint,ipoint,1) = dx
grad1_u12_num(jpoint,ipoint,2) = dy
@ -116,7 +110,7 @@
!$OMP END DO
!$OMP END PARALLEL
elseif (j1b_type .eq. 1000) then
elseif(j2e_type .eq. "Qmckl") then
double precision :: f
f = 1.d0 / dble(elec_num - 1)
@ -227,10 +221,10 @@
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
print *, ' Error in grad1_u12_num & grad1_u12_squared_num: Unknown Jastrow'
stop
endif
endif ! j2e_type
call wall_time(time1)
print*, ' Wall time for grad1_u12_num & grad1_u12_squared_num (min) = ', (time1-time0)/60.d0

View File

@ -9,7 +9,7 @@ double precision function j12_mu(r1, r2)
double precision, intent(in) :: r1(3), r2(3)
double precision :: mu_tmp, r12
if((j1b_type .ge. 0) .and. (j1b_type .lt. 200)) then
if(j2e_type .eq. "Mu") then
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
@ -20,13 +20,13 @@ double precision function j12_mu(r1, r2)
else
print *, ' j1b_type = ', j1b_type, 'not implemented for j12_mu'
print *, ' Error in j12_mu: Unknown j2e_type = ', j2e_type
stop
endif
endif ! j2e_type
return
end function j12_mu
end
! ---
@ -36,11 +36,11 @@ subroutine grad1_j12_mu(r1, r2, grad)
!
! gradient of j(mu(r1,r2),r12) form of jastrow.
!
! if mu(r1,r2) = cst ---> j1b_type < 200 and
! if mu(r1,r2) = cst --->
!
! d/dx1 j(mu,r12) = 0.5 * (1 - erf(mu *r12))/r12 * (x1 - x2)
!
! if mu(r1,r2) /= cst ---> 200 < j1b_type < 300 and
! if mu(r1,r2) /= cst --->
!
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2)
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
@ -53,10 +53,11 @@ subroutine grad1_j12_mu(r1, r2, grad)
double precision, intent(in) :: r1(3), r2(3)
double precision, intent(out) :: grad(3)
double precision :: dx, dy, dz, r12, tmp
double precision :: mu_val, mu_tmp, mu_der(3)
grad = 0.d0
if((j1b_type .ge. 0) .and. (j1b_type .lt. 200)) then
if(j2e_type .eq. "Mu") then
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
@ -71,9 +72,7 @@ subroutine grad1_j12_mu(r1, r2, grad)
grad(2) = tmp * dy
grad(3) = tmp * dz
elseif((j1b_type .ge. 200) .and. (j1b_type .lt. 300)) then
double precision :: mu_val, mu_tmp, mu_der(3)
elseif(j2e_type .eq. "Mur") then
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
@ -95,152 +94,153 @@ subroutine grad1_j12_mu(r1, r2, grad)
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
print *, ' Error in grad1_j12_mu: Unknown j2e_type = ', j2e_type
stop
endif
endif ! j2e_type
grad = -grad
return
end subroutine grad1_j12_mu
end
! ---
double precision function j1b_nucl(r)
double precision function env_nucl(r)
implicit none
double precision, intent(in) :: r(3)
integer :: i
double precision :: a, d, e, x, y, z
if((j1b_type .eq. 2) .or. (j1b_type .eq. 102)) then
if(env_type .eq. "Sum_Slat") then
j1b_nucl = 1.d0
env_nucl = 1.d0
do i = 1, nucl_num
a = j1b_pen(i)
a = env_expo(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
j1b_nucl = j1b_nucl - dexp(-a*dsqrt(d))
env_nucl = env_nucl - env_coef(i) * dexp(-a*dsqrt(d))
enddo
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
elseif(env_type .eq. "Prod_Gauss") then
j1b_nucl = 1.d0
env_nucl = 1.d0
do i = 1, nucl_num
a = j1b_pen(i)
a = env_expo(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
e = 1.d0 - dexp(-a*d)
j1b_nucl = j1b_nucl * e
env_nucl = env_nucl * e
enddo
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
elseif(env_type .eq. "Sum_Gauss") then
j1b_nucl = 1.d0
env_nucl = 1.d0
do i = 1, nucl_num
a = j1b_pen(i)
a = env_expo(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
j1b_nucl = j1b_nucl - j1b_pen_coef(i) * dexp(-a*d)
env_nucl = env_nucl - env_coef(i) * dexp(-a*d)
enddo
elseif((j1b_type .eq. 5) .or. (j1b_type .eq. 105)) then
elseif(env_type .eq. "Sum_Quartic") then
j1b_nucl = 1.d0
env_nucl = 1.d0
do i = 1, nucl_num
a = j1b_pen(i)
a = env_expo(i)
x = r(1) - nucl_coord(i,1)
y = r(2) - nucl_coord(i,2)
z = r(3) - nucl_coord(i,3)
d = x*x + y*y + z*z
j1b_nucl = j1b_nucl - dexp(-a*d*d)
env_nucl = env_nucl - env_coef(i) * dexp(-a*d*d)
enddo
else
print *, ' j1b_type = ', j1b_type, 'not implemented for j1b_nucl'
print *, ' Error in env_nucl: Unknown env_type = ', env_type
stop
endif
return
end function j1b_nucl
end
! ---
double precision function j1b_nucl_square(r)
double precision function env_nucl_square(r)
implicit none
double precision, intent(in) :: r(3)
integer :: i
double precision :: a, d, e, x, y, z
if((j1b_type .eq. 2) .or. (j1b_type .eq. 102)) then
if(env_type .eq. "Sum_Slat") then
j1b_nucl_square = 1.d0
env_nucl_square = 1.d0
do i = 1, nucl_num
a = j1b_pen(i)
a = env_expo(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
j1b_nucl_square = j1b_nucl_square - dexp(-a*dsqrt(d))
env_nucl_square = env_nucl_square - env_coef(i) * dexp(-a*dsqrt(d))
enddo
j1b_nucl_square = j1b_nucl_square * j1b_nucl_square
env_nucl_square = env_nucl_square * env_nucl_square
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
elseif(env_type .eq. "Prod_Gauss") then
j1b_nucl_square = 1.d0
env_nucl_square = 1.d0
do i = 1, nucl_num
a = j1b_pen(i)
a = env_expo(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
e = 1.d0 - dexp(-a*d)
j1b_nucl_square = j1b_nucl_square * e
env_nucl_square = env_nucl_square * e
enddo
j1b_nucl_square = j1b_nucl_square * j1b_nucl_square
env_nucl_square = env_nucl_square * env_nucl_square
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
elseif(env_type .eq. "Sum_Gauss") then
j1b_nucl_square = 1.d0
env_nucl_square = 1.d0
do i = 1, nucl_num
a = j1b_pen(i)
a = env_expo(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
j1b_nucl_square = j1b_nucl_square - j1b_pen_coef(i) * dexp(-a*d)
env_nucl_square = env_nucl_square - env_coef(i) * dexp(-a*d)
enddo
j1b_nucl_square = j1b_nucl_square * j1b_nucl_square
env_nucl_square = env_nucl_square * env_nucl_square
elseif((j1b_type .eq. 5) .or. (j1b_type .eq. 105)) then
elseif(env_type .eq. "Sum_Quartic") then
j1b_nucl_square = 1.d0
env_nucl_square = 1.d0
do i = 1, nucl_num
a = j1b_pen(i)
a = env_expo(i)
x = r(1) - nucl_coord(i,1)
y = r(2) - nucl_coord(i,2)
z = r(3) - nucl_coord(i,3)
d = x*x + y*y + z*z
j1b_nucl_square = j1b_nucl_square - dexp(-a*d*d)
env_nucl_square = env_nucl_square - env_coef(i) * dexp(-a*d*d)
enddo
j1b_nucl_square = j1b_nucl_square * j1b_nucl_square
env_nucl_square = env_nucl_square * env_nucl_square
else
print *, ' j1b_type = ', j1b_type, 'not implemented for j1b_nucl_square'
print *, ' Error in env_nucl_square: Unknown env_type = ', env_type
stop
endif
return
end function j1b_nucl_square
end
! ---
subroutine grad1_j1b_nucl(r, grad)
subroutine grad1_env_nucl(r, grad)
implicit none
double precision, intent(in) :: r(3)
@ -251,18 +251,18 @@ subroutine grad1_j1b_nucl(r, grad)
double precision :: fact_x, fact_y, fact_z
double precision :: ax_der, ay_der, az_der, a_expo
if((j1b_type .eq. 2) .or. (j1b_type .eq. 102)) then
if(env_type .eq. "Sum_Slat") then
fact_x = 0.d0
fact_y = 0.d0
fact_z = 0.d0
do i = 1, nucl_num
a = j1b_pen(i)
a = env_expo(i)
x = r(1) - nucl_coord(i,1)
y = r(2) - nucl_coord(i,2)
z = r(3) - nucl_coord(i,3)
d = dsqrt(x*x + y*y + z*z)
e = a * dexp(-a*d) / d
e = a * env_coef(i) * dexp(-a*d) / d
fact_x += e * x
fact_y += e * y
@ -273,7 +273,7 @@ subroutine grad1_j1b_nucl(r, grad)
grad(2) = fact_y
grad(3) = fact_z
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
elseif(env_type .eq. "Prod_Gauss") then
x = r(1)
y = r(2)
@ -282,7 +282,7 @@ subroutine grad1_j1b_nucl(r, grad)
fact_x = 0.d0
fact_y = 0.d0
fact_z = 0.d0
do i = 1, List_all_comb_b2_size
do i = 1, List_env1s_size
phase = 0
a_expo = 0.d0
@ -290,12 +290,12 @@ subroutine grad1_j1b_nucl(r, grad)
ay_der = 0.d0
az_der = 0.d0
do j = 1, nucl_num
a = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
a = dble(List_env1s(j,i)) * env_expo(j)
dx = x - nucl_coord(j,1)
dy = y - nucl_coord(j,2)
dz = z - nucl_coord(j,3)
phase += List_all_comb_b2(j,i)
phase += List_env1s(j,i)
a_expo += a * (dx*dx + dy*dy + dz*dz)
ax_der += a * dx
ay_der += a * dy
@ -312,18 +312,18 @@ subroutine grad1_j1b_nucl(r, grad)
grad(2) = fact_y
grad(3) = fact_z
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
elseif(env_type .eq. "Sum_Gauss") then
fact_x = 0.d0
fact_y = 0.d0
fact_z = 0.d0
do i = 1, nucl_num
a = j1b_pen(i)
a = env_expo(i)
x = r(1) - nucl_coord(i,1)
y = r(2) - nucl_coord(i,2)
z = r(3) - nucl_coord(i,3)
d = x*x + y*y + z*z
e = a * j1b_pen_coef(i) * dexp(-a*d)
e = a * env_coef(i) * dexp(-a*d)
fact_x += e * x
fact_y += e * y
@ -334,18 +334,18 @@ subroutine grad1_j1b_nucl(r, grad)
grad(2) = 2.d0 * fact_y
grad(3) = 2.d0 * fact_z
elseif((j1b_type .eq. 5) .or. (j1b_type .eq. 105)) then
elseif(env_type .eq. "Sum_Quartic") then
fact_x = 0.d0
fact_y = 0.d0
fact_z = 0.d0
do i = 1, nucl_num
a = j1b_pen(i)
a = env_expo(i)
x = r(1) - nucl_coord(i,1)
y = r(2) - nucl_coord(i,2)
z = r(3) - nucl_coord(i,3)
d = x*x + y*y + z*z
e = a * d * dexp(-a*d*d)
e = a * env_coef(i) * d * dexp(-a*d*d)
fact_x += e * x
fact_y += e * y
@ -358,13 +358,13 @@ subroutine grad1_j1b_nucl(r, grad)
else
print *, ' j1b_type = ', j1b_type, 'not implemented for grad1_j1b_nucl'
print *, ' Error in grad1_env_nucl: Unknown env_type = ', env_type
stop
endif
return
end subroutine grad1_j1b_nucl
end
! ---
@ -380,7 +380,10 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
double precision :: f_rho1, f_rho2, d_drho_f_rho1
double precision :: d_dx1_f_rho1(3),d_dx_rho_f_rho(3),nume
if(j1b_type .eq. 200) then
PROVIDE murho_type
PROVIDE mu_r_ct mu_erf
if(murho_type .eq. 1) then
!
! r = 0.5 (r1 + r2)
@ -391,8 +394,6 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
! d mu[rho(r)] / dx = [0.5 alpha / sqrt(rho) - mu0 exp(-rho)] (d rho(r) / dx)
!
PROVIDE mu_r_ct mu_erf
r(1) = 0.5d0 * (r1(1) + r2(1))
r(2) = 0.5d0 * (r1(2) + r2(2))
r(3) = 0.5d0 * (r1(3) + r2(3))
@ -413,7 +414,7 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
mu_der(2) = tmp3 * (grad_dm_a(2,1) + grad_dm_b(2,1))
mu_der(3) = tmp3 * (grad_dm_a(3,1) + grad_dm_b(3,1))
elseif(j1b_type .eq. 201) then
elseif(murho_type .eq. 2) then
!
! r = 0.5 (r1 + r2)
@ -424,8 +425,6 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
! d mu[rho(r)] / dx = [0.5 alpha / sqrt(rho) - mu0 exp(-rho)] (d rho(r) / dx)
!
PROVIDE mu_r_ct mu_erf
r(1) = 0.5d0 * (r1(1) + r2(1))
r(2) = 0.5d0 * (r1(2) + r2(2))
r(3) = 0.5d0 * (r1(3) + r2(3))
@ -442,7 +441,7 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
mu_der(2) = tmp3 * (grad_dm_a(2,1) + grad_dm_b(2,1))
mu_der(3) = tmp3 * (grad_dm_a(3,1) + grad_dm_b(3,1))
elseif(j1b_type .eq. 202) then
elseif(murho_type .eq. 3) then
! mu(r1,r2) = {rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]} / RHO
!
@ -469,7 +468,8 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
nume = rho1 * f_rho1 + rho2 * f_rho2
mu_val = nume * inv_rho_tot
mu_der(1:3) = inv_rho_tot*inv_rho_tot * (rho_tot * d_dx_rho_f_rho(1:3) - grad_rho1(1:3) * nume)
elseif(j1b_type .eq. 203) then
elseif(murho_type .eq. 4) then
! mu(r1,r2) = {rho(r1) f[rho(r1)] + rho(r2) f[rho(r2)]} / RHO
!
@ -503,7 +503,8 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
nume = rho1 * f_rho1 + rho2 * f_rho2
mu_val = nume * inv_rho_tot
mu_der(1:3) = inv_rho_tot*inv_rho_tot * (rho_tot * d_dx_rho_f_rho(1:3) - grad_rho1(1:3) * nume)
elseif(j1b_type .eq. 204) then
elseif(murho_type .eq. 5) then
! mu(r1,r2) = 1/2 * (f[rho(r1)] + f[rho(r2)]}
!
@ -535,23 +536,24 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
mu_der(1:3) = inv_rho_tot*inv_rho_tot * (rho_tot * d_dx_rho_f_rho(1:3) - grad_rho1(1:3) * nume)
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
print *, ' Error in mu_r_val_and_grad: Unknown env_type = ', env_type
stop
endif
return
end subroutine mu_r_val_and_grad
end
! ---
subroutine grad1_j1b_nucl_square_num(r1, grad)
subroutine grad1_env_nucl_square_num(r1, grad)
implicit none
double precision, intent(in) :: r1(3)
double precision, intent(out) :: grad(3)
double precision :: r(3), eps, tmp_eps, vp, vm
double precision, external :: j1b_nucl_square
double precision, external :: env_nucl_square
eps = 1d-5
tmp_eps = 0.5d0 / eps
@ -559,28 +561,28 @@ subroutine grad1_j1b_nucl_square_num(r1, grad)
r(1:3) = r1(1:3)
r(1) = r(1) + eps
vp = j1b_nucl_square(r)
vp = env_nucl_square(r)
r(1) = r(1) - 2.d0 * eps
vm = j1b_nucl_square(r)
vm = env_nucl_square(r)
r(1) = r(1) + eps
grad(1) = tmp_eps * (vp - vm)
r(2) = r(2) + eps
vp = j1b_nucl_square(r)
vp = env_nucl_square(r)
r(2) = r(2) - 2.d0 * eps
vm = j1b_nucl_square(r)
vm = env_nucl_square(r)
r(2) = r(2) + eps
grad(2) = tmp_eps * (vp - vm)
r(3) = r(3) + eps
vp = j1b_nucl_square(r)
vp = env_nucl_square(r)
r(3) = r(3) - 2.d0 * eps
vm = j1b_nucl_square(r)
vm = env_nucl_square(r)
r(3) = r(3) + eps
grad(3) = tmp_eps * (vp - vm)
return
end subroutine grad1_j1b_nucl_square_num
end
! ---
@ -622,7 +624,7 @@ subroutine grad1_j12_mu_square_num(r1, r2, grad)
grad(3) = tmp_eps * (vp - vm)
return
end subroutine grad1_j12_mu_square_num
end
! ---
@ -635,12 +637,12 @@ double precision function j12_mu_square(r1, r2)
j12_mu_square = j12_mu(r1, r2) * j12_mu(r1, r2)
return
end function j12_mu_square
end
! ---
subroutine f_mu_and_deriv_mu(rho, alpha, mu0, beta, f_mu, d_drho_f_mu)
implicit none
BEGIN_DOC
! function giving mu as a function of rho
!
@ -648,65 +650,87 @@ subroutine f_mu_and_deriv_mu(rho,alpha,mu0,beta,f_mu,d_drho_f_mu)
!
! and its derivative with respect to rho d_drho_f_mu
END_DOC
implicit none
double precision, intent(in) :: rho, alpha, mu0, beta
double precision, intent(out) :: f_mu, d_drho_f_mu
f_mu = alpha * (rho)**beta + mu0 * dexp(-rho)
d_drho_f_mu = alpha * beta * rho**(beta-1.d0) - mu0 * dexp(-rho)
end
! ---
subroutine get_all_rho_grad_rho(r1, r2, rho1, rho2, grad_rho1)
implicit none
BEGIN_DOC
! returns the density in r1,r2 and grad_rho at r1
END_DOC
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision, intent(out) :: grad_rho1(3), rho1, rho2
double precision :: dm_a(1), dm_b(1), grad_dm_a(3,1), grad_dm_b(3,1)
call density_and_grad_alpha_beta(r1, dm_a, dm_b, grad_dm_a, grad_dm_b)
rho1 = dm_a(1) + dm_b(1)
grad_rho1(1:3) = grad_dm_a(1:3,1) + grad_dm_b(1:3,1)
call density_and_grad_alpha_beta(r2, dm_a, dm_b, grad_dm_a, grad_dm_b)
rho2 = dm_a(1) + dm_b(1)
end
! ---
subroutine get_all_f_rho(rho1, rho2, alpha, mu0, beta, f_rho1, d_drho_f_rho1, f_rho2)
implicit none
BEGIN_DOC
! returns the values f(mu(r1)), f(mu(r2)) and d/drho(1) f(mu(r1))
END_DOC
implicit none
double precision, intent(in) :: rho1, rho2, alpha, mu0, beta
double precision, intent(out) :: f_rho1, d_drho_f_rho1, f_rho2
double precision :: tmp
call f_mu_and_deriv_mu(rho1, alpha, mu0, beta, f_rho1, d_drho_f_rho1)
call f_mu_and_deriv_mu(rho2, alpha, mu0, beta, f_rho2, tmp)
end
! ---
subroutine get_all_f_rho_simple(rho1,rho2,alpha,mu0,beta,f_rho1,d_drho_f_rho1,f_rho2)
implicit none
BEGIN_DOC
! returns the values f(mu(r1)), f(mu(r2)) and d/drho(1) f(mu(r1))
END_DOC
implicit none
double precision, intent(in) :: rho1, rho2, alpha, mu0, beta
double precision, intent(out) :: f_rho1, d_drho_f_rho1, f_rho2
double precision :: tmp
if(rho1.lt.1.d-10) then
f_rho1 = 0.d0
d_drho_f_rho1 = 0.d0
else
call f_mu_and_deriv_mu_simple(rho1, alpha, mu0, beta, f_rho1, d_drho_f_rho1)
endif
if(rho2.lt.1.d-10)then
f_rho2 = 0.d0
else
call f_mu_and_deriv_mu_simple(rho2, alpha, mu0, beta, f_rho2, tmp)
endif
end
! ---
subroutine f_mu_and_deriv_mu_simple(rho, alpha, mu0, beta, f_mu, d_drho_f_mu)
implicit none
BEGIN_DOC
! function giving mu as a function of rho
!
@ -714,8 +738,11 @@ subroutine f_mu_and_deriv_mu_simple(rho,alpha,mu0,beta,f_mu,d_drho_f_mu)
!
! and its derivative with respect to rho d_drho_f_mu
END_DOC
implicit none
double precision, intent(in) :: rho, alpha, mu0, beta
double precision, intent(out) :: f_mu, d_drho_f_mu
f_mu = alpha**beta * (rho)**beta + mu0
d_drho_f_mu = alpha**beta * beta * rho**(beta-1.d0)
@ -724,8 +751,9 @@ end
! ---
subroutine f_mu_and_deriv_mu_erf(rho,alpha,zeta,mu0,beta,f_mu,d_drho_f_mu)
implicit none
include 'constants.include.F'
BEGIN_DOC
! function giving mu as a function of rho
!
@ -736,33 +764,45 @@ subroutine f_mu_and_deriv_mu_erf(rho,alpha,zeta,mu0,beta,f_mu,d_drho_f_mu)
! d_drho_f_mu = 2 beta/sqrt(pi) * exp(-(beta*rho)**2) * ( (alpha*rho)**zeta - mu0)
! + alpha * zeta * (alpha *rho)**(zeta-1) * erf(beta*rho)
END_DOC
implicit none
double precision, intent(in) :: rho, alpha, mu0, beta, zeta
double precision, intent(out) :: f_mu, d_drho_f_mu
f_mu = (alpha * rho)**zeta * derf(beta * rho) + mu0 * (1.d0 - derf(beta*rho))
d_drho_f_mu = 2.d0 * beta * inv_sq_pi * dexp(-(beta*rho)**2) * ( (alpha*rho)**zeta - mu0) &
+ alpha * zeta * (alpha *rho)**(zeta-1) * derf(beta*rho)
end
! ---
subroutine get_all_f_rho_erf(rho1, rho2, alpha, zeta, mu0, beta, f_rho1, d_drho_f_rho1, f_rho2)
implicit none
BEGIN_DOC
! returns the values f(mu(r1)), f(mu(r2)) and d/drho(1) f(mu(r1))
! with f_mu = (alpha * rho)**zeta * erf(beta * rho) + mu0 * (1 - erf(beta*rho))
END_DOC
implicit none
double precision, intent(in) :: rho1, rho2, alpha, mu0, beta, zeta
double precision, intent(out) :: f_rho1, d_drho_f_rho1, f_rho2
double precision :: tmp
if(rho1 .lt. 1.d-10) then
f_rho1 = mu_erf
d_drho_f_rho1 = 0.d0
else
call f_mu_and_deriv_mu_erf(rho1, alpha, zeta, mu0, beta, f_rho1, d_drho_f_rho1)
endif
if(rho2 .lt. 1.d-10)then
f_rho2 = mu_erf
else
call f_mu_and_deriv_mu_erf(rho2, alpha, zeta, mu0, beta, f_rho2, tmp)
endif
end
! ---

View File

@ -1,100 +1,149 @@
! ---
subroutine get_grad1_u12_withsq_r1_seq(r1, n_grid2, resx, resy, resz, res)
subroutine get_grad1_u12_withsq_r1_seq(ipoint, n_grid2, resx, resy, resz, res)
BEGIN_DOC
!
! grad_1 u(r1,r2)
!
! this will be integrated numerically over r2:
! we use grid for r1 and extra_grid for r2
!
! for 99 < j1b_type < 199
!
! u(r1,r2) = j12_mu(r12) x v(r1) x v(r2)
! grad1 u(r1, r2) = [(grad1 j12_mu) v(r1) + j12_mu grad1 v(r1)] v(r2)
!
END_DOC
implicit none
integer, intent(in) :: n_grid2
double precision, intent(in) :: r1(3)
integer, intent(in) :: ipoint, n_grid2
double precision, intent(out) :: resx(n_grid2), resy(n_grid2), resz(n_grid2), res(n_grid2)
integer :: jpoint
double precision :: v1b_r1
double precision :: grad1_v1b(3)
double precision, allocatable :: v1b_r2(:)
double precision, allocatable :: u2b_r12(:)
double precision, allocatable :: gradx1_u2b(:), grady1_u2b(:), gradz1_u2b(:)
double precision, external :: j1b_nucl
double precision :: env_r1, tmp
double precision :: grad1_env(3), r1(3)
double precision, allocatable :: env_r2(:)
double precision, allocatable :: u2b_r12(:), gradx1_u2b(:), grady1_u2b(:), gradz1_u2b(:)
double precision, allocatable :: u2b_mu(:), gradx1_mu(:), grady1_mu(:), gradz1_mu(:)
double precision, allocatable :: u2b_nu(:), gradx1_nu(:), grady1_nu(:), gradz1_nu(:)
double precision, external :: env_nucl
PROVIDE j1b_type
PROVIDE j1e_type j2e_type env_type
PROVIDE mu_erf nu_erf a_boys
PROVIDE final_grid_points
PROVIDE final_grid_points_extra
if( (j1b_type .eq. 100) .or. &
(j1b_type .ge. 200) .and. (j1b_type .lt. 300) ) then
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
call grad1_j12_mu_r1_seq(r1, n_grid2, resx, resy, resz)
do jpoint = 1, n_points_extra_final_grid
res(jpoint) = resx(jpoint) * resx(jpoint) &
+ resy(jpoint) * resy(jpoint) &
+ resz(jpoint) * resz(jpoint)
enddo
if( (j2e_type .eq. "Mu") .or. &
(j2e_type .eq. "Mur") .or. &
(j2e_type .eq. "Boys") ) then
elseif((j1b_type .gt. 100) .and. (j1b_type .lt. 200)) then
if(env_type .eq. "None") then
allocate(v1b_r2(n_grid2))
call grad1_j12_r1_seq(r1, n_grid2, resx, resy, resz)
else
! u(r1,r2) = j12_mu(r12) x v(r1) x v(r2)
! grad1 u(r1, r2) = [(grad1 j12_mu) v(r1) + j12_mu grad1 v(r1)] v(r2)
allocate(env_r2(n_grid2))
allocate(u2b_r12(n_grid2))
allocate(gradx1_u2b(n_grid2))
allocate(grady1_u2b(n_grid2))
allocate(gradz1_u2b(n_grid2))
v1b_r1 = j1b_nucl(r1)
call grad1_j1b_nucl(r1, grad1_v1b)
env_r1 = env_nucl(r1)
call grad1_env_nucl(r1, grad1_env)
call j1b_nucl_r1_seq(n_grid2, v1b_r2)
call j12_mu_r1_seq(r1, n_grid2, u2b_r12)
call grad1_j12_mu_r1_seq(r1, n_grid2, gradx1_u2b, grady1_u2b, gradz1_u2b)
call env_nucl_r1_seq(n_grid2, env_r2)
call j12_r1_seq(r1, n_grid2, u2b_r12)
call grad1_j12_r1_seq(r1, n_grid2, gradx1_u2b, grady1_u2b, gradz1_u2b)
do jpoint = 1, n_points_extra_final_grid
resx(jpoint) = (gradx1_u2b(jpoint) * v1b_r1 + u2b_r12(jpoint) * grad1_v1b(1)) * v1b_r2(jpoint)
resy(jpoint) = (grady1_u2b(jpoint) * v1b_r1 + u2b_r12(jpoint) * grad1_v1b(2)) * v1b_r2(jpoint)
resz(jpoint) = (gradz1_u2b(jpoint) * v1b_r1 + u2b_r12(jpoint) * grad1_v1b(3)) * v1b_r2(jpoint)
res (jpoint) = resx(jpoint) * resx(jpoint) &
+ resy(jpoint) * resy(jpoint) &
+ resz(jpoint) * resz(jpoint)
resx(jpoint) = (gradx1_u2b(jpoint) * env_r1 + u2b_r12(jpoint) * grad1_env(1)) * env_r2(jpoint)
resy(jpoint) = (grady1_u2b(jpoint) * env_r1 + u2b_r12(jpoint) * grad1_env(2)) * env_r2(jpoint)
resz(jpoint) = (gradz1_u2b(jpoint) * env_r1 + u2b_r12(jpoint) * grad1_env(3)) * env_r2(jpoint)
enddo
deallocate(v1b_r2, u2b_r12, gradx1_u2b, grady1_u2b, gradz1_u2b)
deallocate(env_r2, u2b_r12, gradx1_u2b, grady1_u2b, gradz1_u2b)
endif ! env_type
elseif(j2e_type .eq. "Mu_Nu") then
if(env_type .eq. "None") then
call grad1_jmu_r1_seq(mu_erf, r1, n_grid2, resx, resy, resz)
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
! u(r1,r2) = jmu(r12) x v(r1) x v(r2) + jnu(r12) x [1 - v(r1) x v(r2)]
allocate(env_r2(n_grid2))
allocate(u2b_mu(n_grid2))
allocate(u2b_nu(n_grid2))
allocate(gradx1_mu(n_grid2), grady1_mu(n_grid2), gradz1_mu(n_grid2))
allocate(gradx1_nu(n_grid2), grady1_nu(n_grid2), gradz1_nu(n_grid2))
env_r1 = env_nucl(r1)
call grad1_env_nucl(r1, grad1_env)
call env_nucl_r1_seq(n_grid2, env_r2)
call jmu_r1_seq(mu_erf, r1, n_grid2, u2b_mu)
call jmu_r1_seq(nu_erf, r1, n_grid2, u2b_nu)
call grad1_jmu_r1_seq(mu_erf, r1, n_grid2, gradx1_mu, grady1_mu, gradz1_mu)
call grad1_jmu_r1_seq(nu_erf, r1, n_grid2, gradx1_nu, grady1_nu, gradz1_nu)
do jpoint = 1, n_points_extra_final_grid
resx(jpoint) = gradx1_nu(jpoint) + ((gradx1_mu(jpoint) - gradx1_nu(jpoint)) * env_r1 + (u2b_mu(jpoint) - u2b_nu(jpoint)) * grad1_env(1)) * env_r2(jpoint)
resy(jpoint) = grady1_nu(jpoint) + ((grady1_mu(jpoint) - grady1_nu(jpoint)) * env_r1 + (u2b_mu(jpoint) - u2b_nu(jpoint)) * grad1_env(2)) * env_r2(jpoint)
resz(jpoint) = gradz1_nu(jpoint) + ((gradz1_mu(jpoint) - gradz1_nu(jpoint)) * env_r1 + (u2b_mu(jpoint) - u2b_nu(jpoint)) * grad1_env(3)) * env_r2(jpoint)
enddo
deallocate(env_r2)
deallocate(u2b_mu)
deallocate(u2b_nu)
deallocate(gradx1_mu, grady1_mu, gradz1_mu)
deallocate(gradx1_nu, grady1_nu, gradz1_nu)
endif ! env_type
else
print *, ' Error in get_grad1_u12_withsq_r1_seq: Unknown Jastrow'
stop
endif ! j2e_type
if(j1e_type .ne. "None") then
PROVIDE j1e_gradx j1e_grady j1e_gradz
PROVIDE elec_num
tmp = 1.d0 / (dble(elec_num) - 1.d0)
do jpoint = 1, n_points_extra_final_grid
resx(jpoint) = resx(jpoint) + tmp * j1e_gradx(ipoint)
resy(jpoint) = resy(jpoint) + tmp * j1e_grady(ipoint)
resz(jpoint) = resz(jpoint) + tmp * j1e_gradz(ipoint)
enddo
endif
do jpoint = 1, n_points_extra_final_grid
res(jpoint) = resx(jpoint) * resx(jpoint) + resy(jpoint) * resy(jpoint) + resz(jpoint) * resz(jpoint)
enddo
return
end subroutine get_grad1_u12_withsq_r1_seq
end
! ---
subroutine grad1_j12_mu_r1_seq(r1, n_grid2, gradx, grady, gradz)
subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
BEGIN_DOC
!
! gradient of j(mu(r1,r2),r12) form of jastrow.
!
! if mu(r1,r2) = cst ---> j1b_type < 200 and
!
! d/dx1 j(mu,r12) = 0.5 * (1 - erf(mu *r12))/r12 * (x1 - x2)
!
! if mu(r1,r2) /= cst ---> 200 < j1b_type < 300 and
!
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2)
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
! d/dx1 j_2e(1,2)
! d/dy1 j_2e(1,2)
! d/dz1 j_2e(1,2)
!
END_DOC
@ -110,8 +159,15 @@ subroutine grad1_j12_mu_r1_seq(r1, n_grid2, gradx, grady, gradz)
integer :: jpoint
double precision :: r2(3)
double precision :: dx, dy, dz, r12, tmp
double precision :: mu_val, mu_tmp, mu_der(3)
if((j1b_type .ge. 0) .and. (j1b_type .lt. 200)) then
PROVIDE j2e_type
if(j2e_type .eq. "Mu") then
! d/dx1 j(mu,r12) = 0.5 * [(1 - erf(mu * r12)) / r12] * (x1 - x2)
! d/dy1 j(mu,r12) = 0.5 * [(1 - erf(mu * r12)) / r12] * (y1 - y2)
! d/dz1 j(mu,r12) = 0.5 * [(1 - erf(mu * r12)) / r12] * (z1 - z2)
do jpoint = 1, n_points_extra_final_grid ! r2
@ -138,9 +194,10 @@ subroutine grad1_j12_mu_r1_seq(r1, n_grid2, gradx, grady, gradz)
gradz(jpoint) = tmp * dz
enddo
elseif((j1b_type .ge. 200) .and. (j1b_type .lt. 300)) then
elseif(j2e_type .eq. "Mur") then
double precision :: mu_val, mu_tmp, mu_der(3)
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2)
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
do jpoint = 1, n_points_extra_final_grid ! r2
@ -174,19 +231,107 @@ subroutine grad1_j12_mu_r1_seq(r1, n_grid2, gradx, grady, gradz)
gradz(jpoint) = gradz(jpoint) + tmp * dz
enddo
else
elseif(j2e_type .eq. "Boys") then
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
stop
!
! j(r12) = 0.5 r12 / (1 + a_boys r_12)
!
! d/dx1 j(r12) = 0.5 (x1 - x2) / [r12 * (1 + b r12^2)^2]
! d/dy1 j(r12) = 0.5 (y1 - y2) / [r12 * (1 + b r12^2)^2]
! d/dz1 j(r12) = 0.5 (z1 - z2) / [r12 * (1 + b r12^2)^2]
PROVIDE a_boys
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12 .lt. 1d-10) then
gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0
gradz(jpoint) = 0.d0
cycle
endif
tmp = 1.d0 + a_boys * r12
tmp = 0.5d0 / (r12 * tmp * tmp)
gradx(jpoint) = tmp * dx
grady(jpoint) = tmp * dy
gradz(jpoint) = tmp * dz
enddo
else
print *, ' Error in grad1_j12_r1_seq: Unknown j2e_type = ', j2e_type
stop
endif ! j2e_type
return
end subroutine grad1_j12_mu_r1_seq
end
! ---
subroutine j12_mu_r1_seq(r1, n_grid2, res)
subroutine grad1_jmu_r1_seq(mu, r1, n_grid2, gradx, grady, gradz)
BEGIN_DOC
!
! d/dx1 jmu(r12) = 0.5 * [(1 - erf(mu * r12)) / r12] * (x1 - x2)
! d/dy1 jmu(r12) = 0.5 * [(1 - erf(mu * r12)) / r12] * (y1 - y2)
! d/dz1 jmu(r12) = 0.5 * [(1 - erf(mu * r12)) / r12] * (z1 - z2)
!
END_DOC
implicit none
integer , intent(in) :: n_grid2
double precision, intent(in) :: mu, r1(3)
double precision, intent(out) :: gradx(n_grid2)
double precision, intent(out) :: grady(n_grid2)
double precision, intent(out) :: gradz(n_grid2)
integer :: jpoint
double precision :: r2(3)
double precision :: dx, dy, dz, r12, tmp
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12 .lt. 1d-10) then
gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0
gradz(jpoint) = 0.d0
cycle
endif
tmp = 0.5d0 * (1.d0 - derf(mu * r12)) / r12
gradx(jpoint) = tmp * dx
grady(jpoint) = tmp * dy
gradz(jpoint) = tmp * dz
enddo
return
end
! ---
subroutine j12_r1_seq(r1, n_grid2, res)
include 'constants.include.F'
@ -197,11 +342,14 @@ subroutine j12_mu_r1_seq(r1, n_grid2, res)
integer :: jpoint
double precision :: r2(3)
double precision :: dx, dy, dz
double precision :: mu_tmp, r12
PROVIDE final_grid_points_extra
if((j1b_type .ge. 0) .and. (j1b_type .lt. 200)) then
if(j2e_type .eq. "Mu") then
PROVIDE mu_erf
do jpoint = 1, n_points_extra_final_grid ! r2
@ -209,27 +357,87 @@ subroutine j12_mu_r1_seq(r1, n_grid2, res)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
mu_tmp = mu_erf * r12
res(jpoint) = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf
enddo
elseif(j2e_type .eq. "Boys") then
! j(r12) = 0.5 r12 / (1 + a_boys r_12)
PROVIDE a_boys
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
res(jpoint) = 0.5d0 * r12 / (1.d0 + a_boys * r12)
enddo
else
print *, ' j1b_type = ', j1b_type, 'not implemented for j12_mu_r1_seq'
print *, ' Error in j12_r1_seq: Unknown j2e_type = ', j2e_type
stop
endif
endif ! j2e_type
return
end subroutine j12_mu_r1_seq
end
! ---
subroutine j1b_nucl_r1_seq(n_grid2, res)
subroutine jmu_r1_seq(mu, r1, n_grid2, res)
include 'constants.include.F'
implicit none
integer, intent(in) :: n_grid2
double precision, intent(in) :: mu, r1(3)
double precision, intent(out) :: res(n_grid2)
integer :: jpoint
double precision :: r2(3)
double precision :: dx, dy, dz
double precision :: r12, tmp1, tmp2
tmp1 = inv_sq_pi_2 / mu
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
tmp2 = mu * r12
res(jpoint) = 0.5d0 * r12 * (1.d0 - derf(tmp2)) - tmp1 * dexp(-tmp2*tmp2)
enddo
return
end
! ---
subroutine env_nucl_r1_seq(n_grid2, res)
! TODO
! change loops order
@ -242,7 +450,7 @@ subroutine j1b_nucl_r1_seq(n_grid2, res)
integer :: i, jpoint
double precision :: a, d, e, x, y, z
if((j1b_type .eq. 2) .or. (j1b_type .eq. 102)) then
if(env_type .eq. "Sum_Slat") then
res = 1.d0
@ -252,16 +460,16 @@ subroutine j1b_nucl_r1_seq(n_grid2, res)
r(3) = final_grid_points_extra(3,jpoint)
do i = 1, nucl_num
a = j1b_pen(i)
a = env_expo(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
res(jpoint) -= dexp(-a*dsqrt(d))
res(jpoint) -= env_coef(i) * dexp(-a*dsqrt(d))
enddo
enddo
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
elseif(env_type .eq. "Prod_Gauss") then
res = 1.d0
@ -271,7 +479,7 @@ subroutine j1b_nucl_r1_seq(n_grid2, res)
r(3) = final_grid_points_extra(3,jpoint)
do i = 1, nucl_num
a = j1b_pen(i)
a = env_expo(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
@ -281,7 +489,7 @@ subroutine j1b_nucl_r1_seq(n_grid2, res)
enddo
enddo
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
elseif(env_type .eq. "Sum_Gauss") then
res = 1.d0
@ -291,15 +499,15 @@ subroutine j1b_nucl_r1_seq(n_grid2, res)
r(3) = final_grid_points_extra(3,jpoint)
do i = 1, nucl_num
a = j1b_pen(i)
a = env_expo(i)
d = ( (r(1) - nucl_coord(i,1)) * (r(1) - nucl_coord(i,1)) &
+ (r(2) - nucl_coord(i,2)) * (r(2) - nucl_coord(i,2)) &
+ (r(3) - nucl_coord(i,3)) * (r(3) - nucl_coord(i,3)) )
res(jpoint) -= j1b_pen_coef(i) * dexp(-a*d)
res(jpoint) -= env_coef(i) * dexp(-a*d)
enddo
enddo
elseif((j1b_type .eq. 5) .or. (j1b_type .eq. 105)) then
elseif(env_type .eq. "Sum_Quartic") then
res = 1.d0
@ -309,24 +517,243 @@ subroutine j1b_nucl_r1_seq(n_grid2, res)
r(3) = final_grid_points_extra(3,jpoint)
do i = 1, nucl_num
a = j1b_pen(i)
a = env_expo(i)
x = r(1) - nucl_coord(i,1)
y = r(2) - nucl_coord(i,2)
z = r(3) - nucl_coord(i,3)
d = x*x + y*y + z*z
res(jpoint) -= dexp(-a*d*d)
res(jpoint) -= env_coef(i) * dexp(-a*d*d)
enddo
enddo
else
print *, ' j1b_type = ', j1b_type, 'not implemented for j1b_nucl_r1_seq'
print *, ' Error in env_nucl_r1_seq: Unknown env_type = ', env_type
stop
endif
return
end subroutine j1b_nucl_r1_seq
end
! ---
subroutine get_grad1_u12_2e_r1_seq(ipoint, n_grid2, resx, resy, resz)
BEGIN_DOC
!
! grad_1 u_2e(r1,r2)
!
! we use grid for r1 and extra_grid for r2
!
END_DOC
implicit none
integer, intent(in) :: ipoint, n_grid2
double precision, intent(out) :: resx(n_grid2), resy(n_grid2), resz(n_grid2)
integer :: jpoint
double precision :: env_r1, tmp
double precision :: grad1_env(3), r1(3)
double precision, allocatable :: env_r2(:)
double precision, allocatable :: u2b_r12(:)
double precision, allocatable :: gradx1_u2b(:), grady1_u2b(:), gradz1_u2b(:)
double precision, allocatable :: u2b_mu(:), gradx1_mu(:), grady1_mu(:), gradz1_mu(:)
double precision, allocatable :: u2b_nu(:), gradx1_nu(:), grady1_nu(:), gradz1_nu(:)
double precision, external :: env_nucl
PROVIDE j1e_type j2e_type env_type
PROVIDE final_grid_points
PROVIDE final_grid_points_extra
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
if( (j2e_type .eq. "Mu") .or. &
(j2e_type .eq. "Mur") .or. &
(j2e_type .eq. "Boys") ) then
if(env_type .eq. "None") then
call grad1_j12_r1_seq(r1, n_grid2, resx, resy, resz)
else
! u(r1,r2) = j12_mu(r12) x v(r1) x v(r2)
! grad1 u(r1, r2) = [(grad1 j12_mu) v(r1) + j12_mu grad1 v(r1)] v(r2)
allocate(env_r2(n_grid2))
allocate(u2b_r12(n_grid2))
allocate(gradx1_u2b(n_grid2))
allocate(grady1_u2b(n_grid2))
allocate(gradz1_u2b(n_grid2))
env_r1 = env_nucl(r1)
call grad1_env_nucl(r1, grad1_env)
call env_nucl_r1_seq(n_grid2, env_r2)
call j12_r1_seq(r1, n_grid2, u2b_r12)
call grad1_j12_r1_seq(r1, n_grid2, gradx1_u2b, grady1_u2b, gradz1_u2b)
do jpoint = 1, n_points_extra_final_grid
resx(jpoint) = (gradx1_u2b(jpoint) * env_r1 + u2b_r12(jpoint) * grad1_env(1)) * env_r2(jpoint)
resy(jpoint) = (grady1_u2b(jpoint) * env_r1 + u2b_r12(jpoint) * grad1_env(2)) * env_r2(jpoint)
resz(jpoint) = (gradz1_u2b(jpoint) * env_r1 + u2b_r12(jpoint) * grad1_env(3)) * env_r2(jpoint)
enddo
deallocate(env_r2, u2b_r12, gradx1_u2b, grady1_u2b, gradz1_u2b)
endif ! env_type
elseif(j2e_type .eq. "Mu_Nu") then
if(env_type .eq. "None") then
call grad1_jmu_r1_seq(mu_erf, r1, n_grid2, resx, resy, resz)
else
! u(r1,r2) = jmu(r12) x v(r1) x v(r2) + jnu(r12) x [1 - v(r1) x v(r2)]
allocate(env_r2(n_grid2))
allocate(u2b_mu(n_grid2))
allocate(u2b_nu(n_grid2))
allocate(gradx1_mu(n_grid2), grady1_mu(n_grid2), gradz1_mu(n_grid2))
allocate(gradx1_nu(n_grid2), grady1_nu(n_grid2), gradz1_nu(n_grid2))
env_r1 = env_nucl(r1)
call grad1_env_nucl(r1, grad1_env)
call env_nucl_r1_seq(n_grid2, env_r2)
call jmu_r1_seq(mu_erf, r1, n_grid2, u2b_mu)
call jmu_r1_seq(nu_erf, r1, n_grid2, u2b_nu)
call grad1_jmu_r1_seq(mu_erf, r1, n_grid2, gradx1_mu, grady1_mu, gradz1_mu)
call grad1_jmu_r1_seq(nu_erf, r1, n_grid2, gradx1_nu, grady1_nu, gradz1_nu)
do jpoint = 1, n_points_extra_final_grid
resx(jpoint) = gradx1_nu(jpoint) + ((gradx1_mu(jpoint) - gradx1_nu(jpoint)) * env_r1 + (u2b_mu(jpoint) - u2b_nu(jpoint)) * grad1_env(1)) * env_r2(jpoint)
resy(jpoint) = grady1_nu(jpoint) + ((grady1_mu(jpoint) - grady1_nu(jpoint)) * env_r1 + (u2b_mu(jpoint) - u2b_nu(jpoint)) * grad1_env(2)) * env_r2(jpoint)
resz(jpoint) = gradz1_nu(jpoint) + ((gradz1_mu(jpoint) - gradz1_nu(jpoint)) * env_r1 + (u2b_mu(jpoint) - u2b_nu(jpoint)) * grad1_env(3)) * env_r2(jpoint)
enddo
deallocate(env_r2)
deallocate(u2b_mu)
deallocate(u2b_nu)
deallocate(gradx1_mu, grady1_mu, gradz1_mu)
deallocate(gradx1_nu, grady1_nu, gradz1_nu)
endif ! env_type
else
print *, ' Error in get_grad1_u12_withsq_r1_seq: Unknown Jastrow'
stop
endif ! j2e_type
return
end
! ---
subroutine get_u12_2e_r1_seq(ipoint, n_grid2, res)
BEGIN_DOC
!
! u_2e(r1,r2)
!
! we use grid for r1 and extra_grid for r2
!
END_DOC
implicit none
integer, intent(in) :: ipoint, n_grid2
double precision, intent(out) :: res(n_grid2)
integer :: jpoint
double precision :: env_r1, tmp
double precision :: grad1_env(3), r1(3)
double precision, allocatable :: env_r2(:)
double precision, allocatable :: u2b_r12(:)
double precision, allocatable :: u2b_mu(:), u2b_nu(:)
double precision, external :: env_nucl
PROVIDE j1e_type j2e_type env_type
PROVIDE final_grid_points
PROVIDE final_grid_points_extra
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
if( (j2e_type .eq. "Mu") .or. &
(j2e_type .eq. "Mur") .or. &
(j2e_type .eq. "Boys") ) then
if(env_type .eq. "None") then
call j12_r1_seq(r1, n_grid2, res)
else
! u(r1,r2) = j12_mu(r12) x v(r1) x v(r2)
allocate(env_r2(n_grid2))
allocate(u2b_r12(n_grid2))
env_r1 = env_nucl(r1)
call j12_r1_seq(r1, n_grid2, u2b_r12)
call env_nucl_r1_seq(n_grid2, env_r2)
do jpoint = 1, n_points_extra_final_grid
res(jpoint) = env_r1 * u2b_r12(jpoint) * env_r2(jpoint)
enddo
deallocate(env_r2, u2b_r12)
endif ! env_type
elseif(j2e_type .eq. "Mu_Nu") then
if(env_type .eq. "None") then
call jmu_r1_seq(mu_erf, r1, n_grid2, res)
else
! u(r1,r2) = jmu(r12) x v(r1) x v(r2) + jnu(r12) x [1 - v(r1) x v(r2)]
allocate(env_r2(n_grid2))
allocate(u2b_mu(n_grid2))
allocate(u2b_nu(n_grid2))
env_r1 = env_nucl(r1)
call env_nucl_r1_seq(n_grid2, env_r2)
call jmu_r1_seq(mu_erf, r1, n_grid2, u2b_mu)
call jmu_r1_seq(nu_erf, r1, n_grid2, u2b_nu)
do jpoint = 1, n_points_extra_final_grid
res(jpoint) = u2b_nu(jpoint) + (u2b_mu(jpoint) - u2b_nu(jpoint)) * env_r1 * env_r2(jpoint)
enddo
deallocate(env_r2)
deallocate(u2b_mu)
deallocate(u2b_nu)
endif ! env_type
else
print *, ' Error in get_u12_withsq_r1_seq: Unknown Jastrow'
stop
endif ! j2e_type
return
end
! ---

View File

@ -1,171 +0,0 @@
! ---
BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao_loop, (ao_num, ao_num, ao_num, ao_num)]
BEGIN_DOC
!
! tc_grad_and_lapl_ao_loop(k,i,l,j) = < k l | -1/2 \Delta_1 u(r1,r2) - \grad_1 u(r1,r2) . \grad_1 | ij >
!
! = 1/2 \int dr1 (phi_k(r1) \grad_r1 phi_i(r1) - phi_i(r1) \grad_r1 phi_k(r1)) . \int dr2 \grad_r1 u(r1,r2) \phi_l(r2) \phi_j(r2)
!
! This is obtained by integration by parts.
!
END_DOC
implicit none
integer :: ipoint, i, j, k, l
double precision :: weight1, contrib_x, contrib_y, contrib_z, tmp_x, tmp_y, tmp_z
double precision :: ao_k_r, ao_i_r, ao_i_dx, ao_i_dy, ao_i_dz
double precision :: ao_j_r, ao_l_r, ao_l_dx, ao_l_dy, ao_l_dz
double precision :: time0, time1
double precision, allocatable :: ac_mat(:,:,:,:)
print*, ' providing tc_grad_and_lapl_ao_loop ...'
call wall_time(time0)
allocate(ac_mat(ao_num,ao_num,ao_num,ao_num))
ac_mat = 0.d0
! ---
do ipoint = 1, n_points_final_grid
weight1 = 0.5d0 * final_weight_at_r_vector(ipoint)
do i = 1, ao_num
ao_i_r = weight1 * aos_in_r_array (i,ipoint)
ao_i_dx = weight1 * aos_grad_in_r_array(i,ipoint,1)
ao_i_dy = weight1 * aos_grad_in_r_array(i,ipoint,2)
ao_i_dz = weight1 * aos_grad_in_r_array(i,ipoint,3)
do k = 1, ao_num
ao_k_r = aos_in_r_array(k,ipoint)
tmp_x = ao_k_r * ao_i_dx - ao_i_r * aos_grad_in_r_array(k,ipoint,1)
tmp_y = ao_k_r * ao_i_dy - ao_i_r * aos_grad_in_r_array(k,ipoint,2)
tmp_z = ao_k_r * ao_i_dz - ao_i_r * aos_grad_in_r_array(k,ipoint,3)
do j = 1, ao_num
do l = 1, ao_num
contrib_x = int2_grad1_u12_ao(l,j,ipoint,1) * tmp_x
contrib_y = int2_grad1_u12_ao(l,j,ipoint,2) * tmp_y
contrib_z = int2_grad1_u12_ao(l,j,ipoint,3) * tmp_z
ac_mat(k,i,l,j) += contrib_x + contrib_y + contrib_z
enddo
enddo
enddo
enddo
enddo
! ---
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
tc_grad_and_lapl_ao_loop(k,i,l,j) = ac_mat(k,i,l,j) + ac_mat(l,j,k,i)
enddo
enddo
enddo
enddo
deallocate(ac_mat)
call wall_time(time1)
print*, ' Wall time for tc_grad_and_lapl_ao_loop = ', time1 - time0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao, (ao_num, ao_num, ao_num, ao_num)]
BEGIN_DOC
!
! tc_grad_and_lapl_ao(k,i,l,j) = < k l | -1/2 \Delta_1 u(r1,r2) - \grad_1 u(r1,r2) . \grad_1 | ij >
!
! = -1/2 \int dr1 (phi_k(r1) \grad_r1 phi_i(r1) - phi_i(r1) \grad_r1 phi_k(r1)) . \int dr2 \grad_r1 u(r1,r2) \phi_l(r2) \phi_j(r2)
! = 1/2 \int dr1 (phi_k(r1) \grad_r1 phi_i(r1) - phi_i(r1) \grad_r1 phi_k(r1)) . \int dr2 (-1) \grad_r1 u(r1,r2) \phi_l(r2) \phi_j(r2)
!
! -1 in \int dr2
!
! This is obtained by integration by parts.
!
END_DOC
implicit none
integer :: ipoint, i, j, k, l, m
double precision :: weight1, ao_k_r, ao_i_r
double precision :: time0, time1
double precision, allocatable :: b_mat(:,:,:,:)
print*, ' providing tc_grad_and_lapl_ao ...'
call wall_time(time0)
if(read_tc_integ) then
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/tc_grad_and_lapl_ao', action="read")
read(11) tc_grad_and_lapl_ao
close(11)
else
PROVIDE int2_grad1_u12_ao
allocate(b_mat(n_points_final_grid,ao_num,ao_num,3))
b_mat = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint, weight1, ao_i_r, ao_k_r) &
!$OMP SHARED (aos_in_r_array_transp, aos_grad_in_r_array_transp_bis, b_mat, &
!$OMP ao_num, n_points_final_grid, final_weight_at_r_vector)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
weight1 = 0.5d0 * final_weight_at_r_vector(ipoint)
ao_i_r = aos_in_r_array_transp(ipoint,i)
ao_k_r = aos_in_r_array_transp(ipoint,k)
b_mat(ipoint,k,i,1) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,1) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,1))
b_mat(ipoint,k,i,2) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,2) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,2))
b_mat(ipoint,k,i,3) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,3) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,3))
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
tc_grad_and_lapl_ao = 0.d0
do m = 1, 3
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_grad1_u12_ao(1,1,1,m), ao_num*ao_num, b_mat(1,1,1,m), n_points_final_grid &
, 1.d0, tc_grad_and_lapl_ao, ao_num*ao_num)
enddo
deallocate(b_mat)
call sum_A_At(tc_grad_and_lapl_ao(1,1,1,1), ao_num*ao_num)
endif
if(write_tc_integ.and.mpi_master) then
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/tc_grad_and_lapl_ao', action="write")
call ezfio_set_work_empty(.False.)
write(11) tc_grad_and_lapl_ao
close(11)
call ezfio_set_tc_keywords_io_tc_integ('Read')
endif
call wall_time(time1)
print*, ' Wall time for tc_grad_and_lapl_ao = ', time1 - time0
call print_memory_usage()
END_PROVIDER
! ---

View File

@ -3,6 +3,15 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_test, (ao_num, ao_num, n_po
BEGIN_DOC
!
! !!!!!! WARNING !!!!!!!!!
!
! DEFINED WITH - SIGN
!
! FOR 3e-iontegrals this doesn't matter
!
! !!!!!! WARNING !!!!!!!!!
!
!
! int2_grad1_u12_ao_test(i,j,ipoint,:) = \int dr2 [-1 * \grad_r1 J(r1,r2)] \phi_i(r2) \phi_j(r2)
!
! where r1 = r(ipoint)
@ -16,9 +25,9 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_test, (ao_num, ao_num, n_po
!
! int2_grad1_u12_ao_test(i,j,ipoint,:) = v1 x [ 0.5 x \int dr2 [(r1 - r2) (erf(mu * r12)-1)r_12] v2 \phi_i(r2) \phi_j(r2) ]
! - \grad_1 v1 x [ \int dr2 u12 v2 \phi_i(r2) \phi_j(r2) ]
! = 0.5 v_1b(ipoint) * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint) * r(:)
! - 0.5 v_1b(ipoint) * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,:)
! - v_1b_grad[:,ipoint] * v_ij_u_cst_mu_j1b(i,j,ipoint)
! = 0.5 env_val(ipoint) * v_ij_erf_rk_cst_mu_env(i,j,ipoint) * r(:)
! - 0.5 env_val(ipoint) * x_v_ij_erf_rk_cst_mu_env(i,j,ipoint,:)
! - env_grad[:,ipoint] * v_ij_u_cst_mu_env(i,j,ipoint)
!
!
END_DOC
@ -31,8 +40,6 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_test, (ao_num, ao_num, n_po
print*, ' providing int2_grad1_u12_ao_test ...'
call wall_time(time0)
PROVIDE j1b_type
if(read_tc_integ) then
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao_test', action="read")
@ -41,41 +48,33 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_test, (ao_num, ao_num, n_po
else
if(j1b_type .eq. 3) then
if((j2e_type .eq. "Mu") .and. (env_type .eq. "Prod_Gauss")) then
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp0 = 0.5d0 * v_1b(ipoint)
tmp_x = v_1b_grad(1,ipoint)
tmp_y = v_1b_grad(2,ipoint)
tmp_z = v_1b_grad(3,ipoint)
tmp0 = 0.5d0 * env_val(ipoint)
tmp_x = env_grad(1,ipoint)
tmp_y = env_grad(2,ipoint)
tmp_z = env_grad(3,ipoint)
do j = 1, ao_num
do i = 1, ao_num
tmp1 = tmp0 * v_ij_erf_rk_cst_mu_j1b_test(i,j,ipoint)
tmp2 = v_ij_u_cst_mu_j1b_test(i,j,ipoint)
int2_grad1_u12_ao_test(i,j,ipoint,1) = tmp1 * x - tmp0 * x_v_ij_erf_rk_cst_mu_j1b_test(i,j,ipoint,1) - tmp2 * tmp_x
int2_grad1_u12_ao_test(i,j,ipoint,2) = tmp1 * y - tmp0 * x_v_ij_erf_rk_cst_mu_j1b_test(i,j,ipoint,2) - tmp2 * tmp_y
int2_grad1_u12_ao_test(i,j,ipoint,3) = tmp1 * z - tmp0 * x_v_ij_erf_rk_cst_mu_j1b_test(i,j,ipoint,3) - tmp2 * tmp_z
tmp1 = tmp0 * v_ij_erf_rk_cst_mu_env_test(i,j,ipoint)
tmp2 = v_ij_u_cst_mu_env_test(i,j,ipoint)
int2_grad1_u12_ao_test(i,j,ipoint,1) = tmp1 * x - tmp0 * x_v_ij_erf_rk_cst_mu_env_test(i,j,ipoint,1) - tmp2 * tmp_x
int2_grad1_u12_ao_test(i,j,ipoint,2) = tmp1 * y - tmp0 * x_v_ij_erf_rk_cst_mu_env_test(i,j,ipoint,2) - tmp2 * tmp_y
int2_grad1_u12_ao_test(i,j,ipoint,3) = tmp1 * z - tmp0 * x_v_ij_erf_rk_cst_mu_env_test(i,j,ipoint,3) - tmp2 * tmp_z
enddo
enddo
enddo
else
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
do j = 1, ao_num
do i = 1, ao_num
tmp1 = v_ij_erf_rk_cst_mu(i,j,ipoint)
int2_grad1_u12_ao_test(i,j,ipoint,1) = tmp1 * x - x_v_ij_erf_rk_cst_mu_tmp(i,j,ipoint,1)
int2_grad1_u12_ao_test(i,j,ipoint,2) = tmp1 * y - x_v_ij_erf_rk_cst_mu_tmp(i,j,ipoint,2)
int2_grad1_u12_ao_test(i,j,ipoint,3) = tmp1 * z - x_v_ij_erf_rk_cst_mu_tmp(i,j,ipoint,3)
enddo
enddo
enddo
int2_grad1_u12_ao_test *= 0.5d0
endif
print *, ' Error in int2_grad1_u12_ao_test: Unknown j2e_type = ', j2e_type
stop
endif ! j2e_type
endif
@ -191,7 +190,7 @@ BEGIN_PROVIDER [double precision, tc_grad_and_lapl_ao_test, (ao_num, ao_num, ao_
endif
call wall_time(time1)
print*, ' Wall time for tc_grad_and_lapl_ao_test = ', time1 - time0
print*, ' Wall time for tc_grad_and_lapl_ao_test (min) = ', (time1 - time0) / 60.d0
END_PROVIDER

View File

@ -1,11 +1,11 @@
! ---
double precision function num_v_ij_u_cst_mu_j1b(i, j, ipoint)
double precision function num_v_ij_u_cst_mu_env(i, j, ipoint)
BEGIN_DOC
!
! \int dr2 u12 \phi_i(r2) \phi_j(r2) x v_1b(r2)
! \int dr2 u12 \phi_i(r2) \phi_j(r2) x v_env(r2)
!
END_DOC
@ -17,31 +17,31 @@ double precision function num_v_ij_u_cst_mu_j1b(i, j, ipoint)
double precision :: r1(3), r2(3)
double precision, external :: ao_value
double precision, external :: j12_mu, j1b_nucl, j12_mu_gauss
double precision, external :: j12_mu, env_nucl, j12_mu_gauss
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
num_v_ij_u_cst_mu_j1b = 0.d0
num_v_ij_u_cst_mu_env = 0.d0
do jpoint = 1, n_points_final_grid
r2(1) = final_grid_points(1,jpoint)
r2(2) = final_grid_points(2,jpoint)
r2(3) = final_grid_points(3,jpoint)
num_v_ij_u_cst_mu_j1b += ao_value(i, r2) * ao_value(j, r2) * j12_mu_gauss(r1, r2) * j1b_nucl(r2) * final_weight_at_r_vector(jpoint)
num_v_ij_u_cst_mu_env += ao_value(i, r2) * ao_value(j, r2) * j12_mu_gauss(r1, r2) * env_nucl(r2) * final_weight_at_r_vector(jpoint)
enddo
return
end function num_v_ij_u_cst_mu_j1b
end
! ---
double precision function num_int2_u2_j1b2(i, j, ipoint)
double precision function num_int2_u2_env2(i, j, ipoint)
BEGIN_DOC
!
! \int dr2 u12^2 \phi_i(r2) \phi_j(r2) x v_1b(r2)^2
! \int dr2 u12^2 \phi_i(r2) \phi_j(r2) x v_env(r2)^2
!
END_DOC
@ -54,14 +54,14 @@ double precision function num_int2_u2_j1b2(i, j, ipoint)
double precision :: dx, dy, dz, r12, x2, tmp1, tmp2, tmp3, coef, expo
double precision, external :: ao_value
double precision, external :: j1b_nucl
double precision, external :: env_nucl
double precision, external :: j12_mu
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
num_int2_u2_j1b2 = 0.d0
num_int2_u2_env2 = 0.d0
do jpoint = 1, n_points_final_grid
r2(1) = final_grid_points(1,jpoint)
r2(2) = final_grid_points(2,jpoint)
@ -72,7 +72,7 @@ double precision function num_int2_u2_j1b2(i, j, ipoint)
x2 = dx * dx + dy * dy + dz * dz
r12 = dsqrt(x2)
tmp1 = j1b_nucl(r2)
tmp1 = env_nucl(r2)
tmp2 = tmp1 * tmp1 * ao_value(i, r2) * ao_value(j, r2) * final_weight_at_r_vector(jpoint)
!tmp3 = 0.d0
@ -84,19 +84,19 @@ double precision function num_int2_u2_j1b2(i, j, ipoint)
tmp3 = j12_mu(r1, r2)
tmp3 = tmp3 * tmp3
num_int2_u2_j1b2 += tmp2 * tmp3
num_int2_u2_env2 += tmp2 * tmp3
enddo
return
end function num_int2_u2_j1b2
end
! ---
double precision function num_int2_grad1u2_grad2u2_j1b2(i, j, ipoint)
double precision function num_int2_grad1u2_grad2u2_env2(i, j, ipoint)
BEGIN_DOC
!
! \int dr2 \frac{-[erf(mu r12) -1]^2}{4} \phi_i(r2) \phi_j(r2) x v_1b(r2)^2
! \int dr2 \frac{-[erf(mu r12) -1]^2}{4} \phi_i(r2) \phi_j(r2) x v_env(r2)^2
!
END_DOC
@ -109,13 +109,13 @@ double precision function num_int2_grad1u2_grad2u2_j1b2(i, j, ipoint)
double precision :: dx, dy, dz, r12, x2, tmp1, tmp2, tmp3, coef, expo
double precision, external :: ao_value
double precision, external :: j1b_nucl
double precision, external :: env_nucl
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
num_int2_grad1u2_grad2u2_j1b2 = 0.d0
num_int2_grad1u2_grad2u2_env2 = 0.d0
do jpoint = 1, n_points_final_grid
r2(1) = final_grid_points(1,jpoint)
r2(2) = final_grid_points(2,jpoint)
@ -126,7 +126,7 @@ double precision function num_int2_grad1u2_grad2u2_j1b2(i, j, ipoint)
x2 = dx * dx + dy * dy + dz * dz
r12 = dsqrt(x2)
tmp1 = j1b_nucl(r2)
tmp1 = env_nucl(r2)
tmp2 = tmp1 * tmp1 * ao_value(i, r2) * ao_value(j, r2) * final_weight_at_r_vector(jpoint)
!tmp3 = 0.d0
@ -140,19 +140,19 @@ double precision function num_int2_grad1u2_grad2u2_j1b2(i, j, ipoint)
tmp3 = -0.25d0 * tmp3
num_int2_grad1u2_grad2u2_j1b2 += tmp2 * tmp3
num_int2_grad1u2_grad2u2_env2 += tmp2 * tmp3
enddo
return
end function num_int2_grad1u2_grad2u2_j1b2
end
! ---
double precision function num_v_ij_erf_rk_cst_mu_j1b(i, j, ipoint)
double precision function num_v_ij_erf_rk_cst_mu_env(i, j, ipoint)
BEGIN_DOC
!
! \int dr2 [erf(mu r12) -1]/r12 \phi_i(r2) \phi_j(r2) x v_1b(r2)
! \int dr2 [erf(mu r12) -1]/r12 \phi_i(r2) \phi_j(r2) x v_env(r2)
!
END_DOC
@ -165,13 +165,13 @@ double precision function num_v_ij_erf_rk_cst_mu_j1b(i, j, ipoint)
double precision :: dx, dy, dz, r12, tmp1, tmp2
double precision, external :: ao_value
double precision, external :: j1b_nucl
double precision, external :: env_nucl
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
num_v_ij_erf_rk_cst_mu_j1b = 0.d0
num_v_ij_erf_rk_cst_mu_env = 0.d0
do jpoint = 1, n_points_final_grid
r2(1) = final_grid_points(1,jpoint)
r2(2) = final_grid_points(2,jpoint)
@ -183,21 +183,21 @@ double precision function num_v_ij_erf_rk_cst_mu_j1b(i, j, ipoint)
if(r12 .lt. 1d-10) cycle
tmp1 = (derf(mu_erf * r12) - 1.d0) / r12
tmp2 = tmp1 * ao_value(i, r2) * ao_value(j, r2) * j1b_nucl(r2) * final_weight_at_r_vector(jpoint)
tmp2 = tmp1 * ao_value(i, r2) * ao_value(j, r2) * env_nucl(r2) * final_weight_at_r_vector(jpoint)
num_v_ij_erf_rk_cst_mu_j1b += tmp2
num_v_ij_erf_rk_cst_mu_env += tmp2
enddo
return
end function num_v_ij_erf_rk_cst_mu_j1b
end
! ---
subroutine num_x_v_ij_erf_rk_cst_mu_j1b(i, j, ipoint, integ)
subroutine num_x_v_ij_erf_rk_cst_mu_env(i, j, ipoint, integ)
BEGIN_DOC
!
! \int dr2 [erf(mu r12) -1]/r12 \phi_i(r2) \phi_j(r2) x v_1b(r2) x r2
! \int dr2 [erf(mu r12) -1]/r12 \phi_i(r2) \phi_j(r2) x v_env(r2) x r2
!
END_DOC
@ -212,7 +212,7 @@ subroutine num_x_v_ij_erf_rk_cst_mu_j1b(i, j, ipoint, integ)
double precision :: tmp_x, tmp_y, tmp_z
double precision, external :: ao_value
double precision, external :: j1b_nucl
double precision, external :: env_nucl
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
@ -232,7 +232,7 @@ subroutine num_x_v_ij_erf_rk_cst_mu_j1b(i, j, ipoint, integ)
if(r12 .lt. 1d-10) cycle
tmp1 = (derf(mu_erf * r12) - 1.d0) / r12
tmp2 = tmp1 * ao_value(i, r2) * ao_value(j, r2) * j1b_nucl(r2) * final_weight_at_r_vector(jpoint)
tmp2 = tmp1 * ao_value(i, r2) * ao_value(j, r2) * env_nucl(r2) * final_weight_at_r_vector(jpoint)
tmp_x += tmp2 * r2(1)
tmp_y += tmp2 * r2(2)
@ -244,7 +244,7 @@ subroutine num_x_v_ij_erf_rk_cst_mu_j1b(i, j, ipoint, integ)
integ(3) = tmp_z
return
end subroutine num_x_v_ij_erf_rk_cst_mu_j1b
end
! ---
@ -252,7 +252,7 @@ subroutine num_int2_grad1_u12_ao(i, j, ipoint, integ)
BEGIN_DOC
!
! \int dr2 [-grad_1 u12] \phi_i(r2) \phi_j(r2) x v12_1b(r1, r2)
! \int dr2 [-grad_1 u12] \phi_i(r2) \phi_j(r2) x v12_env(r1, r2)
!
END_DOC
@ -292,78 +292,7 @@ subroutine num_int2_grad1_u12_ao(i, j, ipoint, integ)
integ(3) = tmp_z
return
end subroutine num_int2_grad1_u12_ao
! ---
double precision function num_gradu_squared_u_ij_mu(i, j, ipoint)
BEGIN_DOC
!
! -0.50 x \int r2 \phi_i(2) \phi_j(2) x v2^2
! [ v1^2 ((grad_1 u12)^2 + (grad_2 u12^2)])
! + u12^2 (grad_1 v1)^2
! + 2 u12 v1 (grad_1 u12) . (grad_1 v1)
!
END_DOC
implicit none
integer, intent(in) :: i, j, ipoint
integer :: jpoint
double precision :: r1(3), r2(3)
double precision :: tmp_x, tmp_y, tmp_z, r12
double precision :: dx1_v1, dy1_v1, dz1_v1, grad_u12(3)
double precision :: tmp1, v1_tmp, v2_tmp, u12_tmp
double precision :: fst_term, scd_term, thd_term, tmp
double precision, external :: ao_value
double precision, external :: j1b_nucl
double precision, external :: j12_mu
double precision, external :: grad_x_j1b_nucl_num
double precision, external :: grad_y_j1b_nucl_num
double precision, external :: grad_z_j1b_nucl_num
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
num_gradu_squared_u_ij_mu = 0.d0
do jpoint = 1, n_points_final_grid
r2(1) = final_grid_points(1,jpoint)
r2(2) = final_grid_points(2,jpoint)
r2(3) = final_grid_points(3,jpoint)
tmp_x = r1(1) - r2(1)
tmp_y = r1(2) - r2(2)
tmp_z = r1(3) - r2(3)
r12 = dsqrt(tmp_x*tmp_x + tmp_y*tmp_y + tmp_z*tmp_z)
dx1_v1 = grad_x_j1b_nucl_num(r1)
dy1_v1 = grad_y_j1b_nucl_num(r1)
dz1_v1 = grad_z_j1b_nucl_num(r1)
call grad1_j12_mu(r1, r2, grad_u12)
tmp1 = 1.d0 - derf(mu_erf * r12)
v1_tmp = j1b_nucl(r1)
v2_tmp = j1b_nucl(r2)
u12_tmp = j12_mu(r1, r2)
fst_term = 0.5d0 * tmp1 * tmp1 * v1_tmp * v1_tmp
scd_term = u12_tmp * u12_tmp * (dx1_v1*dx1_v1 + dy1_v1*dy1_v1 + dz1_v1*dz1_v1)
thd_term = 2.d0 * v1_tmp * u12_tmp * (dx1_v1*grad_u12(1) + dy1_v1*grad_u12(2) + dz1_v1*grad_u12(3))
tmp = -0.5d0 * ao_value(i, r2) * ao_value(j, r2) * final_weight_at_r_vector(jpoint) * (fst_term + scd_term + thd_term) * v2_tmp * v2_tmp
num_gradu_squared_u_ij_mu += tmp
enddo
return
end function num_gradu_squared_u_ij_mu
end
! ---
@ -388,11 +317,11 @@ double precision function num_grad12_j12(i, j, ipoint)
double precision :: fst_term, scd_term, thd_term, tmp
double precision, external :: ao_value
double precision, external :: j1b_nucl
double precision, external :: env_nucl
double precision, external :: j12_mu
double precision, external :: grad_x_j1b_nucl_num
double precision, external :: grad_y_j1b_nucl_num
double precision, external :: grad_z_j1b_nucl_num
double precision, external :: grad_x_env_nucl_num
double precision, external :: grad_y_env_nucl_num
double precision, external :: grad_z_env_nucl_num
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
@ -410,15 +339,15 @@ double precision function num_grad12_j12(i, j, ipoint)
tmp_z = r1(3) - r2(3)
r12 = dsqrt(tmp_x*tmp_x + tmp_y*tmp_y + tmp_z*tmp_z)
dx1_v1 = grad_x_j1b_nucl_num(r1)
dy1_v1 = grad_y_j1b_nucl_num(r1)
dz1_v1 = grad_z_j1b_nucl_num(r1)
dx1_v1 = grad_x_env_nucl_num(r1)
dy1_v1 = grad_y_env_nucl_num(r1)
dz1_v1 = grad_z_env_nucl_num(r1)
call grad1_j12_mu(r1, r2, grad_u12)
tmp1 = 1.d0 - derf(mu_erf * r12)
v1_tmp = j1b_nucl(r1)
v2_tmp = j1b_nucl(r2)
v1_tmp = env_nucl(r1)
v2_tmp = env_nucl(r2)
u12_tmp = j12_mu(r1, r2)
fst_term = 0.5d0 * tmp1 * tmp1 * v1_tmp * v1_tmp
@ -429,11 +358,11 @@ double precision function num_grad12_j12(i, j, ipoint)
enddo
return
end function num_grad12_j12
end
! ---
double precision function num_u12sq_j1bsq(i, j, ipoint)
double precision function num_u12sq_envsq(i, j, ipoint)
BEGIN_DOC
!
@ -454,17 +383,17 @@ double precision function num_u12sq_j1bsq(i, j, ipoint)
double precision :: fst_term, scd_term, thd_term, tmp
double precision, external :: ao_value
double precision, external :: j1b_nucl
double precision, external :: env_nucl
double precision, external :: j12_mu
double precision, external :: grad_x_j1b_nucl_num
double precision, external :: grad_y_j1b_nucl_num
double precision, external :: grad_z_j1b_nucl_num
double precision, external :: grad_x_env_nucl_num
double precision, external :: grad_y_env_nucl_num
double precision, external :: grad_z_env_nucl_num
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
num_u12sq_j1bsq = 0.d0
num_u12sq_envsq = 0.d0
do jpoint = 1, n_points_final_grid
r2(1) = final_grid_points(1,jpoint)
@ -476,30 +405,30 @@ double precision function num_u12sq_j1bsq(i, j, ipoint)
tmp_z = r1(3) - r2(3)
r12 = dsqrt(tmp_x*tmp_x + tmp_y*tmp_y + tmp_z*tmp_z)
dx1_v1 = grad_x_j1b_nucl_num(r1)
dy1_v1 = grad_y_j1b_nucl_num(r1)
dz1_v1 = grad_z_j1b_nucl_num(r1)
dx1_v1 = grad_x_env_nucl_num(r1)
dy1_v1 = grad_y_env_nucl_num(r1)
dz1_v1 = grad_z_env_nucl_num(r1)
call grad1_j12_mu(r1, r2, grad_u12)
tmp1 = 1.d0 - derf(mu_erf * r12)
v1_tmp = j1b_nucl(r1)
v2_tmp = j1b_nucl(r2)
v1_tmp = env_nucl(r1)
v2_tmp = env_nucl(r2)
u12_tmp = j12_mu(r1, r2)
scd_term = u12_tmp * u12_tmp * (dx1_v1*dx1_v1 + dy1_v1*dy1_v1 + dz1_v1*dz1_v1)
tmp = -0.5d0 * ao_value(i, r2) * ao_value(j, r2) * final_weight_at_r_vector(jpoint) * scd_term * v2_tmp * v2_tmp
num_u12sq_j1bsq += tmp
num_u12sq_envsq += tmp
enddo
return
end function num_u12sq_j1bsq
end
! ---
double precision function num_u12_grad1_u12_j1b_grad1_j1b(i, j, ipoint)
double precision function num_u12_grad1_u12_env_grad1_env(i, j, ipoint)
BEGIN_DOC
!
@ -520,17 +449,17 @@ double precision function num_u12_grad1_u12_j1b_grad1_j1b(i, j, ipoint)
double precision :: fst_term, scd_term, thd_term, tmp
double precision, external :: ao_value
double precision, external :: j1b_nucl
double precision, external :: env_nucl
double precision, external :: j12_mu
double precision, external :: grad_x_j1b_nucl_num
double precision, external :: grad_y_j1b_nucl_num
double precision, external :: grad_z_j1b_nucl_num
double precision, external :: grad_x_env_nucl_num
double precision, external :: grad_y_env_nucl_num
double precision, external :: grad_z_env_nucl_num
r1(1) = final_grid_points(1,ipoint)
r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint)
num_u12_grad1_u12_j1b_grad1_j1b = 0.d0
num_u12_grad1_u12_env_grad1_env = 0.d0
do jpoint = 1, n_points_final_grid
r2(1) = final_grid_points(1,jpoint)
@ -542,34 +471,34 @@ double precision function num_u12_grad1_u12_j1b_grad1_j1b(i, j, ipoint)
tmp_z = r1(3) - r2(3)
r12 = dsqrt(tmp_x*tmp_x + tmp_y*tmp_y + tmp_z*tmp_z)
dx1_v1 = grad_x_j1b_nucl_num(r1)
dy1_v1 = grad_y_j1b_nucl_num(r1)
dz1_v1 = grad_z_j1b_nucl_num(r1)
dx1_v1 = grad_x_env_nucl_num(r1)
dy1_v1 = grad_y_env_nucl_num(r1)
dz1_v1 = grad_z_env_nucl_num(r1)
call grad1_j12_mu(r1, r2, grad_u12)
tmp1 = 1.d0 - derf(mu_erf * r12)
v1_tmp = j1b_nucl(r1)
v2_tmp = j1b_nucl(r2)
v1_tmp = env_nucl(r1)
v2_tmp = env_nucl(r2)
u12_tmp = j12_mu(r1, r2)
thd_term = 2.d0 * v1_tmp * u12_tmp * (dx1_v1*grad_u12(1) + dy1_v1*grad_u12(2) + dz1_v1*grad_u12(3))
tmp = -0.5d0 * ao_value(i, r2) * ao_value(j, r2) * final_weight_at_r_vector(jpoint) * thd_term * v2_tmp * v2_tmp
num_u12_grad1_u12_j1b_grad1_j1b += tmp
num_u12_grad1_u12_env_grad1_env += tmp
enddo
return
end function num_u12_grad1_u12_j1b_grad1_j1b
end
! ---
subroutine num_int2_u_grad1u_total_j1b2(i, j, ipoint, integ)
subroutine num_int2_u_grad1u_total_env2(i, j, ipoint, integ)
BEGIN_DOC
!
! \int dr2 u12 (grad_1 u12) \phi_i(r2) \phi_j(r2) x v_1b(r2)^2
! \int dr2 u12 (grad_1 u12) \phi_i(r2) \phi_j(r2) x v_env(r2)^2
!
END_DOC
@ -584,7 +513,7 @@ subroutine num_int2_u_grad1u_total_j1b2(i, j, ipoint, integ)
double precision :: tmp_x, tmp_y, tmp_z
double precision, external :: ao_value
double precision, external :: j1b_nucl
double precision, external :: env_nucl
double precision, external :: j12_mu
r1(1) = final_grid_points(1,ipoint)
@ -604,7 +533,7 @@ subroutine num_int2_u_grad1u_total_j1b2(i, j, ipoint, integ)
r12 = dsqrt( dx * dx + dy * dy + dz * dz )
if(r12 .lt. 1d-10) cycle
tmp0 = j1b_nucl(r2)
tmp0 = env_nucl(r2)
tmp1 = 0.5d0 * j12_mu(r1, r2) * (1.d0 - derf(mu_erf * r12)) / r12
tmp2 = tmp0 * tmp0 * tmp1 * ao_value(i, r2) * ao_value(j, r2) * final_weight_at_r_vector(jpoint)
@ -618,6 +547,6 @@ subroutine num_int2_u_grad1u_total_j1b2(i, j, ipoint, integ)
integ(3) = tmp_z
return
end subroutine num_int2_u_grad1u_total_j1b2
end
! ---

View File

@ -0,0 +1,94 @@
! ---
program print_j1ecoef_info
implicit none
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
if(tc_integ_type .eq. "numeric") then
my_extra_grid_becke = .True.
PROVIDE tc_grid2_a tc_grid2_r
my_n_pt_r_extra_grid = tc_grid2_r
my_n_pt_a_extra_grid = tc_grid2_a
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
endif
call print_j1ecoef()
end
! ---
subroutine print_j1ecoef()
implicit none
integer :: i, j, ij
integer :: ierr
logical :: exists
character(len=10) :: ni, nj
double precision, allocatable :: coef_fit2(:)
PROVIDE ao_l_char_space
allocate(coef_fit2(ao_num*ao_num))
if(mpi_master) then
call ezfio_has_jastrow_j1e_coef_ao2(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
call MPI_BCAST(coef_fit2, ao_num*ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_coef_ao2 with MPI'
endif
IRP_ENDIF
if(exists) then
if(mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: j1e_coef_ao2 ] <<<<< ..'
call ezfio_get_jastrow_j1e_coef_ao2(coef_fit2)
IRP_IF MPI
call MPI_BCAST(coef_fit2, ao_num*ao_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1e_coef_ao2 with MPI'
endif
IRP_ENDIF
endif
else
call get_j1e_coef_fit_ao2(ao_num*ao_num, coef_fit2)
call ezfio_set_jastrow_j1e_coef_ao2(coef_fit2)
endif
do i = 1, ao_num
write(ni, '(I0)') ao_l(i)+1
do j = 1, ao_num
write(nj, '(I0)') ao_l(j)+1
ij = (i-1)*ao_num + j
print *, trim(adjustl(ni)) // trim(adjustl(ao_l_char_space(i))), " " &
, trim(adjustl(nj)) // trim(adjustl(ao_l_char_space(j))), " " &
, dabs(coef_fit2(ij))
enddo
! print *, ' '
enddo
deallocate(coef_fit2)
return
end
! ---

View File

@ -0,0 +1,398 @@
BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_final_grid, 3)]
BEGIN_DOC
!
! int2_grad1_u12_ao(i,j,ipoint,:) = \int dr2 [\grad_r1 J(r1,r2)] \phi_i(r2) \phi_j(r2)
!
! where r1 = r(ipoint)
!
END_DOC
implicit none
integer :: ipoint, i, j, m, jpoint
double precision :: time0, time1
double precision :: x, y, z, r2
double precision :: dx, dy, dz
double precision :: tmp_ct
double precision :: tmp0, tmp1, tmp2
double precision :: tmp0_x, tmp0_y, tmp0_z
double precision :: tmp1_x, tmp1_y, tmp1_z
PROVIDE j2e_type
PROVIDE j1e_type
call wall_time(time0)
print*, ' providing int2_grad1_u12_ao ...'
if(read_tc_integ) then
print*, ' Reading int2_grad1_u12_ao from ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="read")
read(11) int2_grad1_u12_ao
close(11)
else
if(tc_integ_type .eq. "analytic") then
write(*, '(A, A, A)') ' Error: The integration type ', trim(tc_integ_type), ' has not been implemented yet.'
stop
elseif(tc_integ_type .eq. "numeric") then
print *, ' Numerical integration over r1 and r2 will be performed'
! TODO combine 1shot & int2_grad1_u12_ao_num
PROVIDE int2_grad1_u12_ao_num
int2_grad1_u12_ao = int2_grad1_u12_ao_num
!PROVIDE int2_grad1_u12_ao_num_1shot
!int2_grad1_u12_ao = int2_grad1_u12_ao_num_1shot
elseif(tc_integ_type .eq. "semi-analytic") then
print*, ' Numerical integration over r1, with analytical integration over r2'
! ---
if(j2e_type .eq. "None") then
int2_grad1_u12_ao = 0.d0
elseif( (j2e_type .eq. "Mu") .and. &
( (env_type .eq. "None") .or. (env_type .eq. "Prod_Gauss") .or. (env_type .eq. "Sum_Gauss") ) ) then
PROVIDE int2_grad1_u2e_ao
int2_grad1_u12_ao = int2_grad1_u2e_ao
else
print *, ' Error in int2_grad1_u12_ao: Unknown Jastrow'
stop
endif ! j2e_type
! ---
if(j1e_type .ne. "None") then
PROVIDE elec_num
PROVIDE ao_overlap
PROVIDE j1e_gradx j1e_grady j1e_gradz
tmp_ct = 1.d0 / (dble(elec_num) - 1.d0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, tmp0_x, tmp0_y, tmp0_z) &
!$OMP SHARED (ao_num, n_points_final_grid, tmp_ct, ao_overlap, &
!$OMP j1e_gradx, j1e_grady, j1e_gradz, int2_grad1_u12_ao)
!$OMP DO
do ipoint = 1, n_points_final_grid
tmp0_x = tmp_ct * j1e_gradx(ipoint)
tmp0_y = tmp_ct * j1e_grady(ipoint)
tmp0_z = tmp_ct * j1e_gradz(ipoint)
do j = 1, ao_num
do i = 1, ao_num
int2_grad1_u12_ao(i,j,ipoint,1) = int2_grad1_u12_ao(i,j,ipoint,1) + tmp0_x * ao_overlap(i,j)
int2_grad1_u12_ao(i,j,ipoint,2) = int2_grad1_u12_ao(i,j,ipoint,2) + tmp0_y * ao_overlap(i,j)
int2_grad1_u12_ao(i,j,ipoint,3) = int2_grad1_u12_ao(i,j,ipoint,3) + tmp0_z * ao_overlap(i,j)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
endif ! j1e_type
! ---
else
write(*, '(A, A, A)') ' Error: The integration type ', trim(tc_integ_type), ' has not been implemented yet'
stop
endif ! tc_integ_type
endif ! read_tc_integ
if(write_tc_integ .and. mpi_master) then
print*, ' Writing int2_grad1_u12_ao in ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="write")
call ezfio_set_work_empty(.False.)
write(11) int2_grad1_u12_ao
close(11)
call ezfio_set_tc_keywords_io_tc_integ('Read')
endif
call wall_time(time1)
print*, ' wall time for int2_grad1_u12_ao (min) =', (time1-time0)/60.d0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, int2_grad1_u12_square_ao, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int2_grad1_u12_square_ao = -(1/2) x int dr2 chi_l(r2) chi_j(r2) [grad_1 u(r1,r2)]^2
!
END_DOC
implicit none
integer :: ipoint, i, j, m, jpoint
double precision :: x, y, z, r2
double precision :: dx, dy, dz, dr2
double precision :: dx1, dy1, dz1, dx2, dy2, dz2, dr12
double precision :: tmp_ct, tmp_ct1, tmp_ct2
double precision :: tmp0, tmp1, tmp2
double precision :: tmp3, tmp4, tmp5, tmp6
double precision :: tmp0_x, tmp0_y, tmp0_z
double precision :: tmp1_x, tmp1_y, tmp1_z
double precision :: time0, time1
PROVIDE j2e_type
PROVIDE j1e_type
PROVIDE tc_integ_type
call wall_time(time0)
print*, ' providing int2_grad1_u12_square_ao ...'
if(tc_integ_type .eq. "analytic") then
write(*, '(A, A, A)') ' Error: The integration type ', trim(tc_integ_type), ' has not been implemented yet.'
stop
elseif(tc_integ_type .eq. "numeric") then
print *, ' Numerical integration over r1 and r2 will be performed'
! TODO combine 1shot & int2_grad1_u12_square_ao_num
PROVIDE int2_grad1_u12_square_ao_num
int2_grad1_u12_square_ao = int2_grad1_u12_square_ao_num
!PROVIDE int2_grad1_u12_square_ao_num_1shot
!int2_grad1_u12_square_ao = int2_grad1_u12_square_ao_num_1shot
elseif(tc_integ_type .eq. "semi-analytic") then
print*, ' Numerical integration over r1, with analytical integration over r2'
! ---
if(j2e_type .eq. "None") then
int2_grad1_u12_square_ao = 0.d0
elseif((j2e_type .eq. "Mu") .and. (env_type .eq. "None")) then
PROVIDE int2_grad1u2_grad2u2
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, int2_grad1u2_grad2u2)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
int2_grad1_u12_square_ao(i,j,ipoint) = -0.5d0 * int2_grad1u2_grad2u2(i,j,ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
FREE int2_grad1u2_grad2u2
elseif((j2e_type .eq. "Mu") .and. (env_type .eq. "Prod_Gauss")) then
PROVIDE mu_erf
PROVIDE env_val env_grad
if(use_ipp) then
! the term u12_grad1_u12_env_grad1_env is added directly for performance
PROVIDE u12sq_envsq grad12_j12
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, u12sq_envsq, grad12_j12)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
int2_grad1_u12_square_ao(i,j,ipoint) = u12sq_envsq(i,j,ipoint) + 0.5d0 * grad12_j12(i,j,ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
FREE u12sq_envsq grad12_j12
else
PROVIDE u12sq_envsq u12_grad1_u12_env_grad1_env grad12_j12
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, u12sq_envsq, grad12_j12, u12_grad1_u12_env_grad1_env)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
int2_grad1_u12_square_ao(i,j,ipoint) = u12sq_envsq(i,j,ipoint) + u12_grad1_u12_env_grad1_env(i,j,ipoint) + 0.5d0 * grad12_j12(i,j,ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
FREE u12sq_envsq u12_grad1_u12_env_grad1_env grad12_j12
endif ! use_ipp
elseif((j2e_type .eq. "Mu") .and. (env_type .eq. "Sum_Gauss")) then
PROVIDE mu_erf
PROVIDE env_type env_val env_grad
if(use_ipp) then
! do not free int2_u2_env2 here
PROVIDE int2_u2_env2
PROVIDE int2_grad1u2_grad2u2_env2
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint, tmp0_x, tmp0_y, tmp0_z, tmp1, tmp2) &
!$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, &
!$OMP env_val, env_grad, int2_u2_env2, int2_grad1u2_grad2u2_env2)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
tmp0_x = env_grad(1,ipoint)
tmp0_y = env_grad(2,ipoint)
tmp0_z = env_grad(3,ipoint)
tmp1 = -0.5d0 * (tmp0_x * tmp0_x + tmp0_y * tmp0_y + tmp0_z * tmp0_z)
tmp2 = 0.5d0 * env_val(ipoint) * env_val(ipoint)
do j = 1, ao_num
do i = 1, ao_num
int2_grad1_u12_square_ao(i,j,ipoint) = tmp1 * int2_u2_env2(i,j,ipoint) + tmp2 * int2_grad1u2_grad2u2_env2(i,j,ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
FREE int2_grad1u2_grad2u2_env2
else
PROVIDE u12sq_envsq u12_grad1_u12_env_grad1_env grad12_j12
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, u12sq_envsq, grad12_j12, u12_grad1_u12_env_grad1_env)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
int2_grad1_u12_square_ao(i,j,ipoint) = u12sq_envsq(i,j,ipoint) + u12_grad1_u12_env_grad1_env(i,j,ipoint) + 0.5d0 * grad12_j12(i,j,ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
FREE u12sq_envsq u12_grad1_u12_env_grad1_env grad12_j12
endif ! use_ipp
else
print *, ' Error in int2_grad1_u12_square_ao: Unknown Jastrow'
stop
endif ! j2e_type
! ---
if(j1e_type .ne. "None") then
PROVIDE elec_num
PROVIDE ao_overlap
PROVIDE j1e_gradx j1e_grady j1e_gradz
PROVIDE int2_grad1_u2e_ao
tmp_ct1 = -1.0d0 / (dble(elec_num) - 1.d0)
tmp_ct2 = -0.5d0 / ((dble(elec_num) - 1.d0) * (dble(elec_num) - 1.d0))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, dx, dy, dz, r2, &
!$OMP tmp0, tmp0_x, tmp0_y, tmp0_z) &
!$OMP SHARED (ao_num, n_points_final_grid, &
!$OMP tmp_ct1, tmp_ct2, ao_overlap, &
!$OMP j1e_gradx, j1e_grady, j1e_gradz, &
!$OMP int2_grad1_u2e_ao, int2_grad1_u12_square_ao)
!$OMP DO
do ipoint = 1, n_points_final_grid
dx = j1e_gradx(ipoint)
dy = j1e_grady(ipoint)
dz = j1e_gradz(ipoint)
r2 = dx*dx + dy*dy + dz*dz
tmp0 = tmp_ct2 * r2
tmp0_x = tmp_ct1 * dx
tmp0_y = tmp_ct1 * dy
tmp0_z = tmp_ct1 * dz
do j = 1, ao_num
do i = 1, ao_num
int2_grad1_u12_square_ao(i,j,ipoint) = int2_grad1_u12_square_ao(i,j,ipoint) &
+ tmp0 * ao_overlap(i,j) &
+ tmp0_x * int2_grad1_u2e_ao(i,j,ipoint,1) &
+ tmp0_y * int2_grad1_u2e_ao(i,j,ipoint,2) &
+ tmp0_z * int2_grad1_u2e_ao(i,j,ipoint,3)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
endif ! j1e_type
! ---
else
write(*, '(A, A, A)') ' Error: The integration type ', trim(tc_integ_type), ' has not been implemented yet'
stop
endif ! tc_integ_type
call wall_time(time1)
print*, ' wall time for int2_grad1_u12_square_ao (min) = ', (time1-time0) / 60.d0
call print_memory_usage()
END_PROVIDER
! ---

View File

@ -1,248 +0,0 @@
BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_final_grid, 3)]
BEGIN_DOC
!
! TODO
! combine with int2_grad1_u12_square_ao to avoid repeated calculation ?
!
! int2_grad1_u12_ao(i,j,ipoint,:) = \int dr2 [-1 * \grad_r1 J(r1,r2)] \phi_i(r2) \phi_j(r2)
!
! where r1 = r(ipoint)
!
! if J(r1,r2) = u12 (j1b_type .eq. 1)
!
! int2_grad1_u12_ao(i,j,ipoint,:) = 0.5 x \int dr2 [(r1 - r2) (erf(mu * r12)-1)r_12] \phi_i(r2) \phi_j(r2)
! = 0.5 * [ v_ij_erf_rk_cst_mu(i,j,ipoint) * r(:) - x_v_ij_erf_rk_cst_mu(i,j,ipoint,:) ]
!
! if J(r1,r2) = u12 x v1 x v2 (j1b_type .eq. 3)
!
! int2_grad1_u12_ao(i,j,ipoint,:) = v1 x [ 0.5 x \int dr2 [(r1 - r2) (erf(mu * r12)-1)r_12] v2 \phi_i(r2) \phi_j(r2) ]
! - \grad_1 v1 x [ \int dr2 u12 v2 \phi_i(r2) \phi_j(r2) ]
! = 0.5 v_1b(ipoint) * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint) * r(:)
! - 0.5 v_1b(ipoint) * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,:)
! - v_1b_grad[:,ipoint] * v_ij_u_cst_mu_j1b(i,j,ipoint)
!
END_DOC
implicit none
integer :: ipoint, i, j, m, jpoint
double precision :: time0, time1
double precision :: x, y, z, w, tmp_x, tmp_y, tmp_z, tmp0, tmp1, tmp2
print*, ' providing int2_grad1_u12_ao ...'
call wall_time(time0)
PROVIDE j1b_type
if(read_tc_integ) then
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="read")
read(11) int2_grad1_u12_ao
else
if(j1b_type .eq. 0) then
PROVIDE v_ij_erf_rk_cst_mu x_v_ij_erf_rk_cst_mu
int2_grad1_u12_ao = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, x, y, z, tmp1) &
!$OMP SHARED ( ao_num, n_points_final_grid, final_grid_points &
!$OMP , v_ij_erf_rk_cst_mu, x_v_ij_erf_rk_cst_mu, int2_grad1_u12_ao)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
do j = 1, ao_num
do i = 1, ao_num
tmp1 = v_ij_erf_rk_cst_mu(i,j,ipoint)
int2_grad1_u12_ao(i,j,ipoint,1) = 0.5d0 * (tmp1 * x - x_v_ij_erf_rk_cst_mu(i,j,ipoint,1))
int2_grad1_u12_ao(i,j,ipoint,2) = 0.5d0 * (tmp1 * y - x_v_ij_erf_rk_cst_mu(i,j,ipoint,2))
int2_grad1_u12_ao(i,j,ipoint,3) = 0.5d0 * (tmp1 * z - x_v_ij_erf_rk_cst_mu(i,j,ipoint,3))
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 4)) then
PROVIDE v_1b_grad
PROVIDE v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b_an x_v_ij_erf_rk_cst_mu_j1b
int2_grad1_u12_ao = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, x, y, z, tmp0, tmp1, tmp2, tmp_x, tmp_y, tmp_z) &
!$OMP SHARED ( ao_num, n_points_final_grid, final_grid_points, v_1b, v_1b_grad &
!$OMP , v_ij_erf_rk_cst_mu_j1b, v_ij_u_cst_mu_j1b_an, x_v_ij_erf_rk_cst_mu_j1b, int2_grad1_u12_ao)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint)
y = final_grid_points(2,ipoint)
z = final_grid_points(3,ipoint)
tmp0 = 0.5d0 * v_1b(ipoint)
tmp_x = v_1b_grad(1,ipoint)
tmp_y = v_1b_grad(2,ipoint)
tmp_z = v_1b_grad(3,ipoint)
do j = 1, ao_num
do i = 1, ao_num
tmp1 = tmp0 * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint)
tmp2 = v_ij_u_cst_mu_j1b_an(i,j,ipoint)
int2_grad1_u12_ao(i,j,ipoint,1) = tmp1 * x - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,1) - tmp2 * tmp_x
int2_grad1_u12_ao(i,j,ipoint,2) = tmp1 * y - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,2) - tmp2 * tmp_y
int2_grad1_u12_ao(i,j,ipoint,3) = tmp1 * z - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,3) - tmp2 * tmp_z
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
FREE v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b_an x_v_ij_erf_rk_cst_mu_j1b
elseif(j1b_type .ge. 100) then
! PROVIDE int2_grad1_u12_ao_num
! int2_grad1_u12_ao = int2_grad1_u12_ao_num
PROVIDE int2_grad1_u12_ao_num_1shot
int2_grad1_u12_ao = int2_grad1_u12_ao_num_1shot
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
stop
endif
endif
if(write_tc_integ.and.mpi_master) then
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="write")
call ezfio_set_work_empty(.False.)
write(11) int2_grad1_u12_ao
close(11)
call ezfio_set_tc_keywords_io_tc_integ('Read')
endif
call wall_time(time1)
print*, ' wall time for int2_grad1_u12_ao =', time1-time0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, int2_grad1_u12_square_ao, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int2_grad1_u12_square_ao = -(1/2) x int dr2 chi_l(r2) chi_j(r2) [grad_1 u(r1,r2)]^2
!
END_DOC
implicit none
integer :: ipoint, i, j, m, jpoint
double precision :: time0, time1
double precision :: x, y, z, w, tmp_x, tmp_y, tmp_z, tmp0, tmp1, tmp2
print*, ' providing int2_grad1_u12_square_ao ...'
call wall_time(time0)
PROVIDE j1b_type
if(j1b_type .eq. 0) then
PROVIDE int2_grad1u2_grad2u2
int2_grad1_u12_square_ao = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, int2_grad1u2_grad2u2)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
int2_grad1_u12_square_ao(i,j,ipoint) = int2_grad1u2_grad2u2(i,j,ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 4)) then
if(use_ipp) then
! the term u12_grad1_u12_j1b_grad1_j1b is added directly for performance
PROVIDE u12sq_j1bsq grad12_j12
int2_grad1_u12_square_ao = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, u12sq_j1bsq, grad12_j12)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
int2_grad1_u12_square_ao(i,j,ipoint) = u12sq_j1bsq(i,j,ipoint) + 0.5d0 * grad12_j12(i,j,ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
FREE u12sq_j1bsq grad12_j12
else
PROVIDE u12sq_j1bsq u12_grad1_u12_j1b_grad1_j1b grad12_j12
int2_grad1_u12_square_ao = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (int2_grad1_u12_square_ao, ao_num, n_points_final_grid, u12sq_j1bsq, grad12_j12, u12_grad1_u12_j1b_grad1_j1b)
!$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
int2_grad1_u12_square_ao(i,j,ipoint) = u12sq_j1bsq(i,j,ipoint) + u12_grad1_u12_j1b_grad1_j1b(i,j,ipoint) + 0.5d0 * grad12_j12(i,j,ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
FREE u12sq_j1bsq u12_grad1_u12_j1b_grad1_j1b grad12_j12
endif
elseif(j1b_type .ge. 100) then
! PROVIDE int2_grad1_u12_square_ao_num
! int2_grad1_u12_square_ao = int2_grad1_u12_square_ao_num
PROVIDE int2_grad1_u12_square_ao_num_1shot
int2_grad1_u12_square_ao = int2_grad1_u12_square_ao_num_1shot
else
print *, ' j1b_type = ', j1b_type, 'not implemented yet'
stop
endif
call wall_time(time1)
print*, ' wall time for int2_grad1_u12_square_ao =', time1-time0
call print_memory_usage()
END_PROVIDER
! ---

View File

@ -1,10 +1,12 @@
! ---
BEGIN_PROVIDER [double precision, int2_grad1_u12_ao_num , (ao_num,ao_num,n_points_final_grid,3)]
&BEGIN_PROVIDER [double precision, int2_grad1_u12_square_ao_num, (ao_num,ao_num,n_points_final_grid) ]
BEGIN_DOC
!
! int2_grad1_u12_ao_num(i,j,ipoint,:) = \int dr2 [-1 * \grad_r1 J(r1,r2)] \phi_i(r2) \phi_j(r2)
! int2_grad1_u12_ao_num(i,j,ipoint,:) = \int dr2 [\grad_r1 J(r1,r2)] \phi_i(r2) \phi_j(r2)
!
! int2_grad1_u12_square_ao_num = -(1/2) x int dr2 chi_l(r2) chi_j(r2) [grad_1 u(r1,r2)]^2
!
@ -43,7 +45,6 @@
!$OMP END DO
!$OMP END PARALLEL
! n_points_final_grid = n_blocks * n_pass + n_rest
call total_memory(mem)
mem = max(1.d0, qp_max_mem - mem)
n_double = mem * 1.d8
@ -71,7 +72,7 @@
!$OMP DO
do i_blocks = 1, n_blocks
ipoint = ii - 1 + i_blocks ! r1
call get_grad1_u12_withsq_r1_seq(final_grid_points(1,ipoint), n_points_extra_final_grid, tmp_grad1_u12(1,i_blocks,1) &
call get_grad1_u12_withsq_r1_seq(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,i_blocks,1) &
, tmp_grad1_u12(1,i_blocks,2) &
, tmp_grad1_u12(1,i_blocks,3) &
, tmp_grad1_u12_squared(1,i_blocks))
@ -107,7 +108,7 @@
!$OMP DO
do i_rest = 1, n_rest
ipoint = ii - 1 + i_rest ! r1
call get_grad1_u12_withsq_r1_seq(final_grid_points(1,ipoint), n_points_extra_final_grid, tmp_grad1_u12(1,i_rest,1) &
call get_grad1_u12_withsq_r1_seq(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,i_rest,1) &
, tmp_grad1_u12(1,i_rest,2) &
, tmp_grad1_u12(1,i_rest,3) &
, tmp_grad1_u12_squared(1,i_rest))
@ -142,7 +143,7 @@ END_PROVIDER
BEGIN_DOC
!
! int2_grad1_u12_ao_num_1shot(i,j,ipoint,:) = \int dr2 [-1 * \grad_r1 J(r1,r2)] \phi_i(r2) \phi_j(r2)
! int2_grad1_u12_ao_num_1shot(i,j,ipoint,:) = \int dr2 [\grad_r1 J(r1,r2)] \phi_i(r2) \phi_j(r2)
!
! int2_grad1_u12_square_ao_num_1shot = -(1/2) x int dr2 chi_l(r2) chi_j(r2) [grad_1 u(r1,r2)]^2
!
@ -176,9 +177,7 @@ END_PROVIDER
!$OMP END PARALLEL
do m = 1, 3
!call dgemm( "T", "N", ao_num*ao_num, n_points_final_grid, n_points_extra_final_grid, -1.d0 &
! this work also because of the symmetry in K(1,2) and sign compensation in L(1,2,3)
call dgemm( "T", "N", ao_num*ao_num, n_points_final_grid, n_points_extra_final_grid, +1.d0 &
call dgemm( "T", "N", ao_num*ao_num, n_points_final_grid, n_points_extra_final_grid, 1.d0 &
, tmp(1,1,1), n_points_extra_final_grid, grad1_u12_num(1,1,m), n_points_extra_final_grid &
, 0.d0, int2_grad1_u12_ao_num_1shot(1,1,1,m), ao_num*ao_num)
enddo

File diff suppressed because it is too large Load Diff

View File

@ -1,182 +1,199 @@
! ---
BEGIN_PROVIDER [double precision, ao_vartc_int_chemist, (ao_num, ao_num, ao_num, ao_num)]
implicit none
integer :: i, j, k, l
double precision :: wall1, wall0
print *, ' providing ao_vartc_int_chemist ...'
call wall_time(wall0)
if(test_cycle_tc) then
PROVIDE j1b_type
if(j1b_type .ne. 3) then
print*, ' TC integrals with cycle can not be used for j1b_type =', j1b_type
stop
endif
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
ao_vartc_int_chemist(k,i,l,j) = tc_grad_square_ao_test(k,i,l,j) + ao_two_e_coul(k,i,l,j)
enddo
enddo
enddo
enddo
else
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
ao_vartc_int_chemist(k,i,l,j) = tc_grad_square_ao(k,i,l,j) + ao_two_e_coul(k,i,l,j)
enddo
enddo
enddo
enddo
endif
call wall_time(wall1)
print *, ' wall time for ao_vartc_int_chemist ', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, ao_tc_int_chemist, (ao_num, ao_num, ao_num, ao_num)]
implicit none
integer :: i, j, k, l
double precision :: wall1, wall0
PROVIDE j1b_type
print *, ' providing ao_tc_int_chemist ...'
call wall_time(wall0)
if(test_cycle_tc) then
if(j1b_type .ne. 3) then
print*, ' TC integrals with cycle can not be used for j1b_type =', j1b_type
stop
endif
ao_tc_int_chemist = ao_tc_int_chemist_test
else
PROVIDE tc_grad_square_ao tc_grad_and_lapl_ao ao_two_e_coul
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
ao_tc_int_chemist(k,i,l,j) = tc_grad_square_ao(k,i,l,j) + tc_grad_and_lapl_ao(k,i,l,j) + ao_two_e_coul(k,i,l,j)
! ao_tc_int_chemist(k,i,l,j) = ao_two_e_coul(k,i,l,j)
enddo
enddo
enddo
enddo
endif
FREE tc_grad_square_ao tc_grad_and_lapl_ao ao_two_e_coul
if(j1b_type .ge. 100) then
FREE int2_grad1_u12_ao_num int2_grad1_u12_square_ao_num
endif
call wall_time(wall1)
print *, ' wall time for ao_tc_int_chemist ', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, ao_tc_int_chemist_no_cycle, (ao_num, ao_num, ao_num, ao_num)]
implicit none
integer :: i, j, k, l
double precision :: wall1, wall0
print *, ' providing ao_tc_int_chemist_no_cycle ...'
call wall_time(wall0)
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
ao_tc_int_chemist_no_cycle(k,i,l,j) = tc_grad_square_ao(k,i,l,j) + tc_grad_and_lapl_ao(k,i,l,j) + ao_two_e_coul(k,i,l,j)
!ao_tc_int_chemist(k,i,l,j) = ao_two_e_coul(k,i,l,j)
enddo
enddo
enddo
enddo
call wall_time(wall1)
print *, ' wall time for ao_tc_int_chemist_no_cycle ', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, ao_tc_int_chemist_test, (ao_num, ao_num, ao_num, ao_num)]
implicit none
integer :: i, j, k, l
double precision :: wall1, wall0
print *, ' providing ao_tc_int_chemist_test ...'
call wall_time(wall0)
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
ao_tc_int_chemist_test(k,i,l,j) = tc_grad_square_ao_test(k,i,l,j) + tc_grad_and_lapl_ao_test(k,i,l,j) + ao_two_e_coul(k,i,l,j)
! ao_tc_int_chemist_test(k,i,l,j) = ao_two_e_coul(k,i,l,j)
enddo
enddo
enddo
enddo
call wall_time(wall1)
print *, ' wall time for ao_tc_int_chemist_test ', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, ao_two_e_coul, (ao_num, ao_num, ao_num, ao_num) ]
BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_num)]
BEGIN_DOC
!
! ao_two_e_coul(k,i,l,j) = ( k i | 1/r12 | l j ) = < l k | 1/r12 | j i >
! CHEMIST NOTATION IS USED
!
! ao_two_e_tc_tot(k,i,l,j) = (ki|V^TC(r_12)|lj)
! = <lk| V^TC(r_12) |ji> where V^TC(r_12) is the total TC operator
! = tc_grad_and_lapl_ao(k,i,l,j) + tc_grad_square_ao(k,i,l,j) + ao_two_e_coul(k,i,l,j)
! AND IF(var_tc):
!
! ao_two_e_tot(k,i,l,j) = (ki|V^TC(r_12) + [(V^TC)(r_12)]^\dagger|lj) / 2.0
! = tc_grad_square_ao(k,i,l,j) + ao_two_e_coul(k,i,l,j)
!
!
! where:
!
! tc_grad_and_lapl_ao(k,i,l,j) = < k l | -1/2 \Delta_1 u(r1,r2) - \grad_1 u(r1,r2) . \grad_1 | ij >
! = -1/2 \int dr1 (phi_k(r1) \grad_r1 phi_i(r1) - phi_i(r1) \grad_r1 phi_k(r1)) . \int dr2 \grad_r1 u(r1,r2) \phi_l(r2) \phi_j(r2)
! = 1/2 \int dr1 (phi_k(r1) \grad_r1 phi_i(r1) - phi_i(r1) \grad_r1 phi_k(r1)) . \int dr2 (-1) \grad_r1 u(r1,r2) \phi_l(r2) \phi_j(r2)
!
! tc_grad_square_ao(k,i,l,j) = -1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_2 u(r1,r2)|^2 | ij>
!
! ao_two_e_coul(k,i,l,j) = < l k | 1/r12 | j i > = ( k i | 1/r12 | l j )
!
END_DOC
integer :: i, j, k, l
implicit none
integer :: i, j, k, l, m, ipoint
double precision :: weight1, ao_k_r, ao_i_r
double precision :: der_envsq_x, der_envsq_y, der_envsq_z, lap_envsq
double precision :: time0, time1
double precision, allocatable :: b_mat(:,:,:,:), c_mat(:,:,:)
double precision, external :: get_ao_two_e_integral
PROVIDe tc_integ_type
PROVIDE env_type
PROVIDE j2e_type
PROVIDE j1e_type
call wall_time(time0)
print *, ' providing ao_two_e_tc_tot ...'
print*, ' j2e_type: ', j2e_type
print*, ' j1e_type: ', j1e_type
print*, ' env_type: ', env_type
if(read_tc_integ) then
print*, ' Reading ao_two_e_tc_tot from ', trim(ezfio_filename) // '/work/ao_two_e_tc_tot'
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/ao_two_e_tc_tot', action="read")
read(11) ao_two_e_tc_tot
close(11)
else
PROVIDE tc_integ_type
print*, ' approach for integrals: ', tc_integ_type
! ---
PROVIDE int2_grad1_u12_square_ao
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) &
!$OMP SHARED (aos_in_r_array_transp, c_mat, ao_num, n_points_final_grid, final_weight_at_r_vector)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
c_mat(ipoint,k,i) = final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,k)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_grad1_u12_square_ao(1,1,1), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
, 0.d0, ao_two_e_tc_tot, ao_num*ao_num)
FREE int2_grad1_u12_square_ao
if( (tc_integ_type .eq. "semi-analytic") .and. &
(j2e_type .eq. "Mu") .and. &
((env_type .eq. "Prod_Gauss") .or. (env_type .eq. "Sum_Gauss")) .and. &
use_ipp ) then
! an additional term is added here directly instead of
! being added in int2_grad1_u12_square_ao for performance
PROVIDE int2_u2_env2
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint, weight1, ao_i_r, ao_k_r) &
!$OMP SHARED (aos_in_r_array_transp, c_mat, ao_num, n_points_final_grid, final_weight_at_r_vector, &
!$OMP env_square_grad, env_square_lapl, aos_grad_in_r_array_transp_bis)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
weight1 = 0.25d0 * final_weight_at_r_vector(ipoint)
ao_i_r = aos_in_r_array_transp(ipoint,i)
ao_k_r = aos_in_r_array_transp(ipoint,k)
c_mat(ipoint,k,i) = weight1 * ( ao_k_r * ao_i_r * env_square_lapl(ipoint) &
+ (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,1) + ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,1)) * env_square_grad(ipoint,1) &
+ (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,2) + ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,2)) * env_square_grad(ipoint,2) &
+ (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,3) + ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,3)) * env_square_grad(ipoint,3) )
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_u2_env2(1,1,1), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
, 1.d0, ao_two_e_tc_tot(1,1,1,1), ao_num*ao_num)
FREE int2_u2_env2
endif ! use_ipp
deallocate(c_mat)
! ---
if(.not. var_tc) then
PROVIDE int2_grad1_u12_ao
allocate(b_mat(n_points_final_grid,ao_num,ao_num,3))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint, weight1, ao_i_r, ao_k_r) &
!$OMP SHARED (aos_in_r_array_transp, aos_grad_in_r_array_transp_bis, b_mat, &
!$OMP ao_num, n_points_final_grid, final_weight_at_r_vector)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
weight1 = 0.5d0 * final_weight_at_r_vector(ipoint)
ao_i_r = aos_in_r_array_transp(ipoint,i)
ao_k_r = aos_in_r_array_transp(ipoint,k)
b_mat(ipoint,k,i,1) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,1) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,1))
b_mat(ipoint,k,i,2) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,2) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,2))
b_mat(ipoint,k,i,3) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,3) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,3))
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do m = 1, 3
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, -1.d0 &
, int2_grad1_u12_ao(1,1,1,m), ao_num*ao_num, b_mat(1,1,1,m), n_points_final_grid &
, 1.d0, ao_two_e_tc_tot(1,1,1,1), ao_num*ao_num)
enddo
deallocate(b_mat)
FREE int2_grad1_u12_ao
if(tc_integ_type .eq. "semi-analytic") then
FREE int2_grad1_u2e_ao
endif
endif ! var_tc
! ---
call sum_A_At(ao_two_e_tc_tot(1,1,1,1), ao_num*ao_num)
PROVIDE ao_integrals_map
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(ao_num, ao_two_e_coul, ao_integrals_map) &
!$OMP SHARED(ao_num, ao_two_e_tc_tot, ao_integrals_map) &
!$OMP PRIVATE(i, j, k, l)
!$OMP DO
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
! < 1:k, 2:l | 1:i, 2:j >
ao_two_e_coul(k,i,l,j) = get_ao_two_e_integral(i, j, k, l, ao_integrals_map)
! < 1:i, 2:j | 1:k, 2:l >
ao_two_e_tc_tot(k,i,l,j) = ao_two_e_tc_tot(k,i,l,j) + get_ao_two_e_integral(i, j, k, l, ao_integrals_map)
enddo
enddo
enddo
@ -184,6 +201,25 @@ BEGIN_PROVIDER [double precision, ao_two_e_coul, (ao_num, ao_num, ao_num, ao_num
!$OMP END DO
!$OMP END PARALLEL
if(tc_integ_type .eq. "numeric") then
FREE int2_grad1_u12_ao_num int2_grad1_u12_square_ao_num
endif
endif ! read_tc_integ
if(write_tc_integ .and. mpi_master) then
print*, ' Saving ao_two_e_tc_tot in ', trim(ezfio_filename) // '/work/ao_two_e_tc_tot'
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/ao_two_e_tc_tot', action="write")
call ezfio_set_work_empty(.False.)
write(11) ao_two_e_tc_tot
close(11)
call ezfio_set_tc_keywords_io_tc_integ('Read')
endif
call wall_time(time1)
print*, ' Wall time for ao_two_e_tc_tot (min) = ', (time1 - time0) / 60.d0
call print_memory_usage()
END_PROVIDER
! ---

View File

@ -142,7 +142,7 @@ subroutine non_hrmt_diag_split_degen(n, A, leigvec, reigvec, n_real_eigv, eigval
enddo
enddo
end subroutine non_hrmt_diag_split_degen
end
! ---
@ -248,7 +248,7 @@ subroutine non_hrmt_real_diag_new(n, A, leigvec, reigvec, n_real_eigv, eigval)
print*,'Your matrix intrinsically contains complex eigenvalues'
endif
end subroutine non_hrmt_real_diag_new
end
! ---
@ -275,10 +275,11 @@ subroutine non_hrmt_bieig(n, A, thr_d, thr_nd, leigvec, reigvec, n_real_eigv, ei
double precision :: thr, thr_cut, thr_diag, thr_norm
double precision :: accu_d, accu_nd
integer, allocatable :: list_good(:), iorder(:)
integer, allocatable :: list_good(:), iorder(:), deg_num(:)
double precision, allocatable :: WR(:), WI(:), VL(:,:), VR(:,:)
double precision, allocatable :: S(:,:)
double precision, allocatable :: phi_1_tilde(:),phi_2_tilde(:),chi_1_tilde(:),chi_2_tilde(:)
allocate(phi_1_tilde(n),phi_2_tilde(n),chi_1_tilde(n),chi_2_tilde(n))
@ -305,11 +306,11 @@ subroutine non_hrmt_bieig(n, A, thr_d, thr_nd, leigvec, reigvec, n_real_eigv, ei
print *, ' '
print *, ' eigenvalues'
!print *, ' '
!print *, ' eigenvalues'
i = 1
do while(i .le. n)
write(*, '(I3,X,1000(F16.10,X))')i, WR(i), WI(i)
!write(*, '(I3,X,1000(F16.10,X))')i, WR(i), WI(i)
if(.false.)then
if(WI(i).ne.0.d0)then
print*,'*****************'
@ -386,7 +387,7 @@ subroutine non_hrmt_bieig(n, A, thr_d, thr_nd, leigvec, reigvec, n_real_eigv, ei
thr_diag = 1d-06
thr_norm = 1d+10
call check_EIGVEC(n, n, A, WR, VL, VR, thr_diag, thr_norm, .false.)
!call check_EIGVEC(n, n, A, WR, VL, VR, thr_diag, thr_norm, .false.)
!
! -------------------------------------------------------------------------------------
@ -400,7 +401,7 @@ subroutine non_hrmt_bieig(n, A, thr_d, thr_nd, leigvec, reigvec, n_real_eigv, ei
!thr = 100d0
thr = Im_thresh_tcscf
do i = 1, n
print*, 'Re(i) + Im(i)', WR(i), WI(i)
!print*, 'Re(i) + Im(i)', WR(i), WI(i)
if(dabs(WI(i)) .lt. thr) then
n_good += 1
else
@ -479,15 +480,16 @@ subroutine non_hrmt_bieig(n, A, thr_d, thr_nd, leigvec, reigvec, n_real_eigv, ei
return
! accu_nd is modified after adding the normalization
!elseif( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n_real_eigv))/dble(n_real_eigv) .gt. thr_d) ) then
elseif( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n_real_eigv))/dble(n_real_eigv) .gt. thr_d) ) then
! print *, ' lapack vectors are not normalized but bi-orthogonalized'
! call check_biorthog_binormalize(n, n_real_eigv, leigvec, reigvec, thr_d, thr_nd, .true.)
print *, ' lapack vectors are not normalized but bi-orthogonalized'
call check_biorthog_binormalize(n, n_real_eigv, leigvec, reigvec, thr_d, thr_nd, .true.)
! call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, thr_diag, thr_norm, .true.)
call check_biorthog(n, n_real_eigv, leigvec, reigvec, accu_d, accu_nd, S, thr_d, thr_nd, .true.)
call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, thr_diag, thr_norm, .true.)
! deallocate(S)
! return
deallocate(S)
return
else
@ -495,18 +497,10 @@ subroutine non_hrmt_bieig(n, A, thr_d, thr_nd, leigvec, reigvec, n_real_eigv, ei
! ---
! call impose_orthog_degen_eigvec(n, eigval, reigvec)
! call impose_orthog_degen_eigvec(n, eigval, leigvec)
call reorder_degen_eigvec(n, eigval, leigvec, reigvec)
call impose_biorthog_degen_eigvec(n, eigval, leigvec, reigvec)
!call impose_orthog_biorthog_degen_eigvec(n, thr_d, thr_nd, eigval, leigvec, reigvec)
!call impose_unique_biorthog_degen_eigvec(n, eigval, mo_coef, ao_overlap, leigvec, reigvec)
! ---
allocate(deg_num(n))
call reorder_degen_eigvec(n, deg_num, eigval, leigvec, reigvec)
call impose_biorthog_degen_eigvec(n, deg_num, eigval, leigvec, reigvec)
deallocate(deg_num)
call check_biorthog(n, n_real_eigv, leigvec, reigvec, accu_d, accu_nd, S, thr_d, thr_nd, .false.)
if( (accu_nd .lt. thr_nd) .and. (dabs(accu_d-dble(n_real_eigv)) .gt. thr_d) ) then
@ -514,12 +508,7 @@ subroutine non_hrmt_bieig(n, A, thr_d, thr_nd, leigvec, reigvec, n_real_eigv, ei
endif
call check_biorthog(n, n_real_eigv, leigvec, reigvec, accu_d, accu_nd, S, thr_d, thr_nd, .true.)
!call impose_biorthog_qr(n, n_real_eigv, thr_d, thr_nd, leigvec, reigvec)
!call impose_biorthog_lu(n, n_real_eigv, thr_d, thr_nd, leigvec, reigvec)
! ---
call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, thr_diag, thr_norm, .true.)
!call check_EIGVEC(n, n, A, eigval, leigvec, reigvec, thr_diag, thr_norm, .true.)
deallocate(S)
@ -530,7 +519,7 @@ subroutine non_hrmt_bieig(n, A, thr_d, thr_nd, leigvec, reigvec, n_real_eigv, ei
return
end subroutine non_hrmt_bieig
end
! ---
@ -703,7 +692,7 @@ subroutine non_hrmt_bieig_random_diag(n, A, leigvec, reigvec, n_real_eigv, eigva
return
end subroutine non_hrmt_bieig_random_diag
end
! ---
@ -812,7 +801,7 @@ subroutine non_hrmt_real_im(n, A, leigvec, reigvec, n_real_eigv, eigval)
deallocate( S )
end subroutine non_hrmt_real_im
end
! ---
@ -917,7 +906,7 @@ subroutine non_hrmt_generalized_real_im(n, A, B, leigvec, reigvec, n_real_eigv,
deallocate( S )
end subroutine non_hrmt_generalized_real_im
end
! ---
@ -1053,7 +1042,7 @@ subroutine non_hrmt_bieig_fullvect(n, A, leigvec, reigvec, n_real_eigv, eigval)
return
end subroutine non_hrmt_bieig_fullvect
end
! ---

View File

@ -54,7 +54,7 @@ subroutine lapack_diag_non_sym(n, A, WR, WI, VL, VR)
deallocate(Atmp, WORK)
end subroutine lapack_diag_non_sym
end
subroutine non_sym_diag_inv_right(n,A,leigvec,reigvec,n_real_eigv,eigval)
@ -269,7 +269,7 @@ subroutine lapack_diag_non_sym_new(n, A, WR, WI, VL, VR)
deallocate( Atmp )
deallocate( WORK, SCALE_array, RCONDE, RCONDV, IWORK )
end subroutine lapack_diag_non_sym_new
end
! ---
@ -323,7 +323,7 @@ subroutine lapack_diag_non_sym_right(n, A, WR, WI, VR)
! write(*, '(1000(F16.10,X))') VR(:,i)
! enddo
end subroutine lapack_diag_non_sym_right
end
! ---
@ -437,7 +437,7 @@ subroutine non_hrmt_real_diag(n, A, leigvec, reigvec, n_real_eigv, eigval)
print*, ' Notice that if you are interested in ground state it is not a problem :)'
endif
end subroutine non_hrmt_real_diag
end
! ---
@ -495,7 +495,7 @@ subroutine lapack_diag_general_non_sym(n, A, B, WR, WI, VL, VR)
deallocate( WORK, Atmp )
end subroutine lapack_diag_general_non_sym
end
! ---
@ -570,7 +570,7 @@ subroutine non_hrmt_general_real_diag(n, A, B, reigvec, leigvec, n_real_eigv, ei
enddo
enddo
end subroutine non_hrmt_general_real_diag
end
! ---
@ -727,7 +727,7 @@ subroutine impose_biorthog_qr(m, n, thr_d, thr_nd, Vl, Vr)
deallocate(tmp)
return
end subroutine impose_biorthog_qr
end
! ---
@ -890,7 +890,7 @@ subroutine impose_biorthog_lu(m, n, Vl, Vr, S)
!stop
return
end subroutine impose_biorthog_lu
end
! ---
@ -996,7 +996,7 @@ subroutine check_EIGVEC(n, m, A, eigval, leigvec, reigvec, thr_diag, thr_norm, s
deallocate( Mtmp )
end subroutine check_EIGVEC
end
! ---
@ -1066,7 +1066,7 @@ subroutine check_degen(n, m, eigval, leigvec, reigvec)
stop
endif
end subroutine check_degen
end
! ---
@ -1169,7 +1169,7 @@ subroutine impose_weighted_orthog_svd(n, m, W, C)
! ---
end subroutine impose_weighted_orthog_svd
end
! ---
@ -1266,7 +1266,7 @@ subroutine impose_orthog_svd(n, m, C)
! ---
end subroutine impose_orthog_svd
end
! ---
@ -1365,7 +1365,7 @@ subroutine impose_orthog_svd_overlap(n, m, C, overlap)
!enddo
deallocate(S)
end subroutine impose_orthog_svd_overlap
end
! ---
@ -1442,7 +1442,7 @@ subroutine impose_orthog_GramSchmidt(n, m, C)
! ---
end subroutine impose_orthog_GramSchmidt
end
! ---
@ -1484,7 +1484,7 @@ subroutine impose_orthog_ones(n, deg_num, C)
endif
enddo
end subroutine impose_orthog_ones
end
! ---
@ -1577,7 +1577,7 @@ subroutine impose_orthog_degen_eigvec(n, e0, C0)
endif
enddo
end subroutine impose_orthog_degen_eigvec
end
! ---
@ -1661,7 +1661,7 @@ subroutine get_halfinv_svd(n, S)
deallocate(S0, Stmp, Stmp2)
end subroutine get_halfinv_svd
end
! ---
@ -1776,7 +1776,7 @@ subroutine check_biorthog_binormalize(n, m, Vl, Vr, thr_d, thr_nd, stop_ifnot)
stop
endif
end subroutine check_biorthog_binormalize
end
! ---
@ -1840,7 +1840,7 @@ subroutine check_weighted_biorthog(n, m, W, Vl, Vr, thr_d, thr_nd, accu_d, accu_
stop
endif
end subroutine check_weighted_biorthog
end
! ---
@ -1865,10 +1865,11 @@ subroutine check_biorthog(n, m, Vl, Vr, accu_d, accu_nd, S, thr_d, thr_nd, stop_
, Vl, size(Vl, 1), Vr, size(Vr, 1) &
, 0.d0, S, size(S, 1) )
print *, ' overlap matrix:'
do i = 1, m
write(*,'(1000(F16.10,X))') S(i,:)
enddo
! print S s'il y a besoin
!print *, ' overlap matrix:'
!do i = 1, m
! write(*,'(1000(F16.10,X))') S(i,:)
!enddo
accu_d = 0.d0
accu_nd = 0.d0
@ -1876,15 +1877,22 @@ subroutine check_biorthog(n, m, Vl, Vr, accu_d, accu_nd, S, thr_d, thr_nd, stop_
do j = 1, m
if(i==j) then
accu_d = accu_d + dabs(S(i,i))
!print*, i, S(i,i)
else
accu_nd = accu_nd + S(j,i) * S(j,i)
endif
enddo
enddo
!accu_nd = dsqrt(accu_nd) / dble(m*m)
accu_nd = dsqrt(accu_nd) / dble(m)
if((accu_nd .gt. thr_nd) .or. dabs(accu_d-dble(m))/dble(m) .gt. thr_d) then
print *, ' non bi-orthogonal vectors !'
print *, ' accu_nd = ', accu_nd
print *, ' accu_d = ', dabs(accu_d-dble(m))/dble(m)
else
print *, ' vectors are bi-orthogonals'
endif
! ---
@ -1899,7 +1907,7 @@ subroutine check_biorthog(n, m, Vl, Vr, accu_d, accu_nd, S, thr_d, thr_nd, stop_
stop
endif
end subroutine check_biorthog
end
! ---
@ -1941,27 +1949,25 @@ subroutine check_orthog(n, m, V, accu_d, accu_nd, S)
!print*, ' diag acc: ', accu_d
!print*, ' nondiag acc: ', accu_nd
end subroutine check_orthog
end
! ---
subroutine reorder_degen_eigvec(n, e0, L0, R0)
subroutine reorder_degen_eigvec(n, deg_num, e0, L0, R0)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: e0(n)
double precision, intent(inout) :: L0(n,n), R0(n,n)
double precision, intent(inout) :: e0(n), L0(n,n), R0(n,n)
integer, intent(out) :: deg_num(n)
logical :: complex_root
integer :: i, j, k, m
integer :: i, j, k, m, ii, j_tmp
double precision :: ei, ej, de, de_thr
double precision :: accu_d, accu_nd
integer, allocatable :: deg_num(:)
double precision :: e0_tmp, L0_tmp(n), R0_tmp(n)
double precision, allocatable :: L(:,:), R(:,:), S(:,:), S_inv_half(:,:)
! ---
allocate( deg_num(n) )
do i = 1, n
deg_num(i) = 1
enddo
@ -1974,24 +1980,117 @@ subroutine reorder_degen_eigvec(n, e0, L0, R0)
! already considered in degen vectors
if(deg_num(i) .eq. 0) cycle
ii = 0
do j = i+1, n
ej = e0(j)
de = dabs(ei - ej)
if(de .lt. de_thr) then
deg_num(i) = deg_num(i) + 1
deg_num(j) = 0
ii = ii + 1
j_tmp = i + ii
deg_num(j_tmp) = 0
e0_tmp = e0(j_tmp)
e0(j_tmp) = e0(j)
e0(j) = e0_tmp
L0_tmp(1:n) = L0(1:n,j_tmp)
L0(1:n,j_tmp) = L0(1:n,j)
L0(1:n,j) = L0_tmp(1:n)
R0_tmp(1:n) = R0(1:n,j_tmp)
R0(1:n,j_tmp) = R0(1:n,j)
R0(1:n,j) = R0_tmp(1:n)
endif
enddo
enddo
deg_num(i) = ii + 1
enddo
ii = 0
do i = 1, n
if(deg_num(i) .gt. 1) then
print *, ' degen on', i, deg_num(i), e0(i)
!print *, ' degen on', i, deg_num(i), e0(i)
ii = ii + 1
endif
enddo
if(ii .eq. 0) then
print*, ' WARNING: bi-orthogonality is lost but there is no degeneracies'
print*, ' rotations may change energy'
stop
endif
print *, ii, ' type of degeneracies'
! ---
! do i = 1, n
! m = deg_num(i)
!
! if(m .gt. 1) then
!
! allocate(L(n,m))
! allocate(R(n,m),S(m,m))
!
! do j = 1, m
! L(1:n,j) = L0(1:n,i+j-1)
! R(1:n,j) = R0(1:n,i+j-1)
! enddo
!
! !call dgemm( 'T', 'N', m, m, n, 1.d0 &
! ! , L, size(L, 1), R, size(R, 1) &
! ! , 0.d0, S, size(S, 1) )
! !print*, 'Overlap matrix '
! !accu_nd = 0.d0
! !do j = 1, m
! ! write(*,'(100(F16.10,X))') S(1:m,j)
! ! do k = 1, m
! ! if(j==k) cycle
! ! accu_nd += dabs(S(j,k))
! ! enddo
! !enddo
! !print*,'accu_nd = ',accu_nd
!! if(accu_nd .gt.1.d-10) then
!! stop
!! endif
!
! do j = 1, m
! L0(1:n,i+j-1) = L(1:n,j)
! R0(1:n,i+j-1) = R(1:n,j)
! enddo
!
! deallocate(L, R, S)
!
! endif
! enddo
!
end
! ---
subroutine impose_biorthog_degen_eigvec(n, deg_num, e0, L0, R0)
implicit none
integer, intent(in) :: n, deg_num(n)
double precision, intent(in) :: e0(n)
double precision, intent(inout) :: L0(n,n), R0(n,n)
logical :: complex_root
integer :: i, j, k, m
double precision :: ei, ej, de, de_thr
double precision :: accu_d, accu_nd
double precision, allocatable :: L(:,:), R(:,:), S(:,:), S_inv_half(:,:)
!do i = 1, n
! if(deg_num(i) .gt. 1) then
! print *, ' degen on', i, deg_num(i), e0(i)
! endif
!enddo
! ---
do i = 1, n
@ -1999,109 +2098,62 @@ subroutine reorder_degen_eigvec(n, e0, L0, R0)
if(m .gt. 1) then
allocate(L(n,m))
allocate(R(n,m),S(m,m))
allocate(L(n,m), R(n,m), S(m,m))
do j = 1, m
L(1:n,j) = L0(1:n,i+j-1)
R(1:n,j) = R0(1:n,i+j-1)
enddo
! ---
!print*, 'Overlap matrix before'
call dgemm( 'T', 'N', m, m, n, 1.d0 &
, L, size(L, 1), R, size(R, 1) &
, 0.d0, S, size(S, 1) )
print*,'Overlap matrix '
accu_nd = 0.D0
accu_nd = 0.d0
do j = 1, m
write(*,'(100(F16.10,X))')S(1:m,j)
!write(*,'(100(F16.10,X))') S(1:m,j)
do k = 1, m
if(j==k) cycle
accu_nd += dabs(S(j,k))
enddo
enddo
print*,'accu_nd = ',accu_nd
! if(accu_nd .gt.1.d-10)then
! stop
! endif
if(accu_nd .lt. 1d-12) then
deallocate(S, L, R)
cycle
endif
!print*, ' accu_nd before = ', accu_nd
call impose_biorthog_svd(n, m, L, R)
!print*, 'Overlap matrix after'
call dgemm( 'T', 'N', m, m, n, 1.d0 &
, L, size(L, 1), R, size(R, 1) &
, 0.d0, S, size(S, 1) )
accu_nd = 0.d0
do j = 1, m
L0(1:n,i+j-1) = L(1:n,j)
R0(1:n,i+j-1) = R(1:n,j)
!write(*,'(100(F16.10,X))') S(1:m,j)
do k = 1, m
if(j==k) cycle
accu_nd += dabs(S(j,k))
enddo
deallocate(L, R,S)
endif
enddo
end subroutine reorder_degen_eigvec
subroutine impose_biorthog_degen_eigvec(n, e0, L0, R0)
implicit none
integer, intent(in) :: n
double precision, intent(in) :: e0(n)
double precision, intent(inout) :: L0(n,n), R0(n,n)
logical :: complex_root
integer :: i, j, k, m
double precision :: ei, ej, de, de_thr
double precision :: accu_d, accu_nd
integer, allocatable :: deg_num(:)
double precision, allocatable :: L(:,:), R(:,:), S(:,:), S_inv_half(:,:)
! ---
allocate( deg_num(n) )
do i = 1, n
deg_num(i) = 1
enddo
de_thr = thr_degen_tc
do i = 1, n-1
ei = e0(i)
! already considered in degen vectors
if(deg_num(i).eq.0) cycle
do j = i+1, n
ej = e0(j)
de = dabs(ei - ej)
if(de .lt. de_thr) then
deg_num(i) = deg_num(i) + 1
deg_num(j) = 0
!print*,' accu_nd after = ', accu_nd
if(accu_nd .gt. 1d-12) then
print*, ' your strategy for degenerates orbitals failed !'
print*, m, 'deg on', i
stop
endif
enddo
enddo
do i = 1, n
if(deg_num(i) .gt. 1) then
print *, ' degen on', i, deg_num(i), e0(i)
endif
enddo
! ---
do i = 1, n
m = deg_num(i)
if(m .gt. 1) then
allocate(L(n,m))
allocate(R(n,m))
do j = 1, m
L(1:n,j) = L0(1:n,i+j-1)
R(1:n,j) = R0(1:n,i+j-1)
enddo
deallocate(S)
! ---
!call impose_orthog_svd(n, m, L)
call impose_orthog_svd(n, m, R)
!call impose_orthog_GramSchmidt(n, m, L)
!call impose_orthog_GramSchmidt(n, m, R)
@ -2120,7 +2172,6 @@ subroutine impose_biorthog_degen_eigvec(n, e0, L0, R0)
!call bi_ortho_s_inv_half(m, L, R, S_inv_half)
!deallocate(S, S_inv_half)
call impose_biorthog_svd(n, m, L, R)
!call impose_biorthog_inverse(n, m, L, R)
!call impose_biorthog_qr(n, m, thr_d, thr_nd, L, R)
@ -2136,9 +2187,8 @@ subroutine impose_biorthog_degen_eigvec(n, e0, L0, R0)
endif
enddo
! call impose_biorthog_inverse(n, n, L0, R0)
end subroutine impose_biorthog_degen_eigvec
end
! ---
@ -2232,7 +2282,7 @@ subroutine impose_orthog_biorthog_degen_eigvec(n, thr_d, thr_nd, e0, L0, R0)
endif
enddo
end subroutine impose_orthog_biorthog_degen_eigvec
end
! ---
@ -2370,7 +2420,7 @@ subroutine impose_unique_biorthog_degen_eigvec(n, thr_d, thr_nd, e0, C0, W0, L0,
endif
enddo
end subroutine impose_unique_biorthog_degen_eigvec
end
! ---
@ -2453,7 +2503,7 @@ subroutine max_overlap_qr(m, n, S0, V)
! ---
return
end subroutine max_overlap_qr
end
! ---
@ -2488,7 +2538,7 @@ subroutine max_overlap_invprod(n, m, S, V)
deallocate(tmp, invS)
return
end subroutine max_overlap_invprod
end
! ---
@ -2504,18 +2554,16 @@ subroutine impose_biorthog_svd(n, m, L, R)
double precision, allocatable :: S(:,:), tmp(:,:)
double precision, allocatable :: U(:,:), V(:,:), Vt(:,:), D(:)
! ---
allocate(S(m,m))
call dgemm( 'T', 'N', m, m, n, 1.d0 &
, L, size(L, 1), R, size(R, 1) &
, 0.d0, S, size(S, 1) )
print *, ' overlap bef SVD: '
do i = 1, m
write(*, '(1000(F16.10,X))') S(i,:)
enddo
!print *, ' overlap bef SVD: '
!do i = 1, m
! write(*, '(1000(F16.10,X))') S(i,:)
!enddo
! ---
@ -2552,52 +2600,33 @@ subroutine impose_biorthog_svd(n, m, L, R)
! ---
allocate(tmp(n,m))
! R <-- R x V x D^{-0.5}
! L <-- L x U x D^{-0.5}
! tmp <-- R x V
call dgemm( 'N', 'N', n, m, m, 1.d0 &
, R, size(R, 1), V, size(V, 1) &
, 0.d0, tmp, size(tmp, 1) )
deallocate(V)
! R <-- tmp x sigma^-0.5
do j = 1, m
do i = 1, n
R(i,j) = tmp(i,j) * D(j)
enddo
enddo
! tmp <-- L x U
call dgemm( 'N', 'N', n, m, m, 1.d0 &
, L, size(L, 1), U, size(U, 1) &
, 0.d0, tmp, size(tmp, 1) )
deallocate(U)
! L <-- tmp x sigma^-0.5
do j = 1, m
do i = 1, n
L(i,j) = tmp(i,j) * D(j)
enddo
enddo
deallocate(D, tmp)
! ---
allocate(S(m,m))
call dgemm( 'T', 'N', m, m, n, 1.d0 &
, L, size(L, 1), R, size(R, 1) &
, 0.d0, S, size(S, 1) )
print *, ' overlap aft SVD: '
do i = 1, m
write(*, '(1000(F16.10,X))') S(i,:)
do j = 1, m
V(j,i) = V(j,i) * D(i)
U(j,i) = U(j,i) * D(i)
enddo
enddo
deallocate(S)
allocate(tmp(n,m))
tmp(:,:) = R(:,:)
call dgemm( 'N', 'N', n, m, m, 1.d0 &
, tmp, size(tmp, 1), V, size(V, 1) &
, 0.d0, R, size(R, 1))
tmp(:,:) = L(:,:)
call dgemm( 'N', 'N', n, m, m, 1.d0 &
, tmp, size(tmp, 1), U, size(U, 1) &
, 0.d0, L, size(L, 1))
deallocate(tmp, U, V, D)
end
! ---
end subroutine impose_biorthog_svd
subroutine impose_biorthog_inverse(n, m, L, R)
implicit none
@ -2639,8 +2668,7 @@ subroutine impose_biorthog_inverse(n, m, L, R)
deallocate(S,Lt)
end subroutine impose_biorthog_svd
end
! ---
@ -2802,7 +2830,7 @@ subroutine impose_weighted_biorthog_qr(m, n, thr_d, thr_nd, Vl, W, Vr)
call check_weighted_biorthog_binormalize(m, n, Vl, W, Vr, thr_d, thr_nd, .false.)
return
end subroutine impose_weighted_biorthog_qr
end
! ---
@ -2919,7 +2947,7 @@ subroutine check_weighted_biorthog_binormalize(n, m, Vl, W, Vr, thr_d, thr_nd, s
stop
endif
end subroutine check_weighted_biorthog_binormalize
end
! ---
@ -3037,7 +3065,7 @@ subroutine impose_weighted_biorthog_svd(n, m, overlap, L, R)
deallocate(S)
return
end subroutine impose_weighted_biorthog_svd
end
! ---

View File

@ -24,10 +24,6 @@ subroutine delta_right()
integer :: k
double precision, allocatable :: delta(:,:)
print *, j1b_type
print *, j1b_pen
print *, mu_erf
allocate( delta(N_det,N_states) )
delta = 0.d0
@ -48,7 +44,7 @@ subroutine delta_right()
deallocate(delta)
return
end subroutine delta_right
end
! ---

View File

@ -17,8 +17,14 @@ program print_tc_energy
read_wf = .True.
touch read_wf
PROVIDE j1b_type
print*, 'j1b_type = ', j1b_type
PROVIDE j2e_type
PROVIDE j1e_type
PROVIDE env_type
print *, ' j2e_type = ', j2e_type
print *, ' j1e_type = ', j1e_type
print *, ' env_type = ', env_type
call write_tc_energy()

View File

@ -17,7 +17,7 @@ program tc_natorb_bi_ortho
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
if(j1b_type .ge. 100) then
if(tc_integ_type .eq. "numeric") then
my_extra_grid_becke = .True.
PROVIDE tc_grid2_a tc_grid2_r
my_n_pt_r_extra_grid = tc_grid2_r

View File

@ -27,7 +27,7 @@ subroutine htilde_mu_mat_bi_ortho_tot_slow(key_j, key_i, Nint, htot)
call htilde_mu_mat_bi_ortho_slow(key_j, key_i, Nint, hmono, htwoe, hthree, htot)
endif
end subroutine htilde_mu_mat_bi_ortho_tot_slow
end
! --
@ -260,7 +260,6 @@ subroutine single_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe,
!
! PROVIDE core_bitmask core_fock_operator mo_integrals_erf_map
! PROVIDE j1b_gauss
other_spin(1) = 2
other_spin(2) = 1
@ -295,15 +294,6 @@ subroutine single_htilde_mu_mat_bi_ortho_slow(Nint, key_j, key_i, hmono, htwoe,
hmono = mo_bi_ortho_tc_one_e(p1,h1) * phase
! if(j1b_gauss .eq. 1) then
! print*,'j1b not implemented for bi ortho TC'
! print*,'stopping ....'
! stop
! !hmono += ( mo_j1b_gauss_hermI (h1,p1) &
! ! + mo_j1b_gauss_hermII (h1,p1) &
! ! + mo_j1b_gauss_nonherm(h1,p1) ) * phase
! endif
! if(core_tc_op)then
! print*,'core_tc_op not already taken into account for bi ortho'
! print*,'stopping ...'

View File

@ -13,7 +13,7 @@ program tc_bi_ortho
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
if(j1b_type .ge. 100) then
if(tc_integ_type .eq. "numeric") then
my_extra_grid_becke = .True.
PROVIDE tc_grid2_a tc_grid2_r
my_n_pt_r_extra_grid = tc_grid2_r

View File

@ -17,12 +17,6 @@ program tc_som
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
PROVIDE mu_erf
print *, ' mu = ', mu_erf
PROVIDE j1b_type
print *, ' j1b_type = ', j1b_type
print *, j1b_pen
read_wf = .true.
touch read_wf

View File

@ -130,30 +130,6 @@ doc: if +1: only positive is selected, -1: only negative is selected, :0 both po
interface: ezfio,provider,ocaml
default: 0
[j1b_pen]
type: double precision
doc: exponents of the 1-body Jastrow
interface: ezfio
size: (nuclei.nucl_num)
[j1b_pen_coef]
type: double precision
doc: coefficients of the 1-body Jastrow
interface: ezfio
size: (nuclei.nucl_num)
[j1b_coeff]
type: double precision
doc: coeff of the 1-body Jastrow
interface: ezfio
size: (nuclei.nucl_num)
[j1b_type]
type: integer
doc: type of 1-body Jastrow
interface: ezfio, provider, ocaml
default: 0
[mu_r_ct]
type: double precision
doc: a parameter used to define mu(r)
@ -184,12 +160,6 @@ doc: If |true|, maximize the overlap between orthogonalized left- and right eige
interface: ezfio,provider,ocaml
default: False
[ng_fit_jast]
type: integer
doc: nb of Gaussians used to fit Jastrow fcts
interface: ezfio,provider,ocaml
default: 20
[max_dim_diis_tcscf]
type: integer
doc: Maximum size of the DIIS extrapolation procedure
@ -282,7 +252,7 @@ default: True
[tc_grid1_a]
type: integer
doc: size of angular grid over r1
doc: size of angular grid over r1: [ 6 | 14 | 26 | 38 | 50 | 74 | 86 | 110 | 146 | 170 | 194 | 230 | 266 | 302 | 350 | 434 | 590 | 770 | 974 | 1202 | 1454 | 1730 | 2030 | 2354 | 2702 | 3074 | 3470 | 3890 | 4334 | 4802 | 5294 | 5810 ]
interface: ezfio,provider,ocaml
default: 50
@ -294,13 +264,19 @@ default: 30
[tc_grid2_a]
type: integer
doc: size of angular grid over r2
doc: size of angular grid over r2: [ 6 | 14 | 26 | 38 | 50 | 74 | 86 | 110 | 146 | 170 | 194 | 230 | 266 | 302 | 350 | 434 | 590 | 770 | 974 | 1202 | 1454 | 1730 | 2030 | 2354 | 2702 | 3074 | 3470 | 3890 | 4334 | 4802 | 5294 | 5810 ]
interface: ezfio,provider,ocaml
default: 194
default: 266
[tc_grid2_r]
type: integer
doc: size of radial grid over r2
interface: ezfio,provider,ocaml
default: 50
default: 70
[tc_integ_type]
type: character*(32)
doc: approach used to evaluate TC integrals [ analytic | numeric | semi-analytic ]
interface: ezfio,ocaml,provider
default: semi-analytic

View File

@ -1,155 +0,0 @@
! ---
BEGIN_PROVIDER [ double precision, j1b_pen , (nucl_num) ]
&BEGIN_PROVIDER [ double precision, j1b_pen_coef, (nucl_num) ]
BEGIN_DOC
! parameters of the 1-body Jastrow
END_DOC
implicit none
logical :: exists
integer :: i
integer :: ierr
PROVIDE ezfio_filename
! ---
if (mpi_master) then
call ezfio_has_tc_keywords_j1b_pen(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
call MPI_BCAST(j1b_pen, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1b_pen with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: j1b_pen ] <<<<< ..'
call ezfio_get_tc_keywords_j1b_pen(j1b_pen)
IRP_IF MPI
call MPI_BCAST(j1b_pen, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1b_pen with MPI'
endif
IRP_ENDIF
endif
else
do i = 1, nucl_num
j1b_pen(i) = 1d5
enddo
endif
! ---
if (mpi_master) then
call ezfio_has_tc_keywords_j1b_pen_coef(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
call MPI_BCAST(j1b_pen_coef, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1b_pen_coef with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: j1b_pen_coef ] <<<<< ..'
call ezfio_get_tc_keywords_j1b_pen_coef(j1b_pen_coef)
IRP_IF MPI
call MPI_BCAST(j1b_pen_coef, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1b_pen_coef with MPI'
endif
IRP_ENDIF
endif
else
do i = 1, nucl_num
j1b_pen_coef(i) = 1d0
enddo
endif
! ---
print *, ' parameters for nuclei jastrow'
print *, ' i, Z, j1b_pen, j1b_pen_coef'
do i = 1, nucl_num
write(*,'(I4, 2x, 3(E15.7, 2X))') i, nucl_charge(i), j1b_pen(i), j1b_pen_coef(i)
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, j1b_coeff, (nucl_num) ]
BEGIN_DOC
! coefficients of the 1-body Jastrow
END_DOC
implicit none
logical :: exists
PROVIDE ezfio_filename
if (mpi_master) then
call ezfio_has_tc_keywords_j1b_coeff(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST(j1b_coeff, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1b_coeff with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: j1b_coeff ] <<<<< ..'
call ezfio_get_tc_keywords_j1b_coeff(j1b_coeff)
IRP_IF MPI
call MPI_BCAST(j1b_coeff, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read j1b_coeff with MPI'
endif
IRP_ENDIF
endif
else
integer :: i
do i = 1, nucl_num
j1b_coeff(i) = 0d5
enddo
endif
END_PROVIDER
! ---

View File

@ -15,7 +15,7 @@
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (i, j, k, l, density_a, density_b, density, tmp_a, tmp_b, I_coul, I_kjli) &
!$OMP SHARED (ao_num, TCSCF_density_matrix_ao_alpha, TCSCF_density_matrix_ao_beta, ao_two_e_vartc_tot, &
!$OMP SHARED (ao_num, TCSCF_density_matrix_ao_alpha, TCSCF_density_matrix_ao_beta, ao_two_e_tc_tot, &
!$OMP two_e_vartc_integral_alpha, two_e_vartc_integral_beta)
allocate(tmp_a(ao_num,ao_num), tmp_b(ao_num,ao_num))
@ -31,8 +31,8 @@
do i = 1, ao_num
do k = 1, ao_num
I_coul = density * ao_two_e_vartc_tot(k,i,l,j)
I_kjli = ao_two_e_vartc_tot(k,j,l,i)
I_coul = density * ao_two_e_tc_tot(k,i,l,j)
I_kjli = ao_two_e_tc_tot(k,j,l,i)
tmp_a(k,i) += I_coul - density_a * I_kjli
tmp_b(k,i) += I_coul - density_b * I_kjli

View File

@ -24,11 +24,15 @@ subroutine main()
implicit none
double precision :: etc_tot, etc_1e, etc_2e, etc_3e
PROVIDE mu_erf
PROVIDE j1b_type
PROVIDE j2e_type mu_erf
PROVIDE j1e_type j1e_coef j1e_expo
PROVIDE env_type env_coef env_expo
print*, ' j2e_type = ', j2e_type
print*, ' j1e_type = ', j1e_type
print*, ' env_type = ', env_type
print*, ' mu_erf = ', mu_erf
print*, ' j1b_type = ', j1b_type
etc_tot = TC_HF_energy
etc_1e = TC_HF_one_e_energy

View File

@ -7,11 +7,20 @@ program tc_scf
END_DOC
implicit none
integer :: i
logical :: good_angles
PROVIDE j1e_type
PROVIDE j2e_type
PROVIDE tcscf_algorithm
PROVIDE var_tc
print *, ' TC-SCF with:'
print *, ' j1e_type = ', j1e_type
print *, ' j2e_type = ', j2e_type
write(json_unit,json_array_open_fmt) 'tc-scf'
print *, ' starting ...'
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
@ -22,13 +31,7 @@ program tc_scf
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
PROVIDE mu_erf
print *, ' mu = ', mu_erf
PROVIDE j1b_type
print *, ' j1b_type = ', j1b_type
print *, j1b_pen
if(j1b_type .ge. 100) then
if(tc_integ_type .eq. "numeric") then
my_extra_grid_becke = .True.
PROVIDE tc_grid2_a tc_grid2_r
my_n_pt_r_extra_grid = tc_grid2_r
@ -42,8 +45,6 @@ program tc_scf
!call create_guess()
!call orthonormalize_mos()
PROVIDE tcscf_algorithm
PROVIDE var_tc
if(var_tc) then
@ -69,7 +70,16 @@ program tc_scf
stop
endif
call minimize_tc_orb_angles()
PROVIDE Fock_matrix_tc_diag_mo_tot
print*, ' Eigenvalues:'
do i = 1, mo_num
print*, i, Fock_matrix_tc_diag_mo_tot(i)
enddo
! TODO
! rotate angles in separate code only if necessary
!call minimize_tc_orb_angles()
call print_energy_and_mos(good_angles)
endif

View File

@ -20,41 +20,31 @@ program test_ints
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
!! OK
! call routine_int2_u_grad1u_j1b2
! call routine_int2_u_grad1u_env2
! OK
! call routine_v_ij_erf_rk_cst_mu_j1b
! call routine_v_ij_erf_rk_cst_mu_env
! OK
! call routine_x_v_ij_erf_rk_cst_mu_j1b
! call routine_x_v_ij_erf_rk_cst_mu_env
! OK
! call routine_int2_u2_j1b2
! call routine_int2_u2_env2
! OK
! call routine_int2_u_grad1u_x_j1b2
! call routine_int2_u_grad1u_x_env2
! OK
! call routine_int2_grad1u2_grad2u2_j1b2
! call routine_int2_u_grad1u_j1b2
! call test_total_grad_lapl
! call test_total_grad_square
! call routine_int2_grad1u2_grad2u2_env2
! call routine_int2_u_grad1u_env2
! call test_int2_grad1_u12_ao_test
! call routine_v_ij_u_cst_mu_j1b_test
! call test_ao_tc_int_chemist
! call routine_v_ij_u_cst_mu_env_test
! call test_grid_points_ao
! call test_tc_scf
!call test_int_gauss
!call test_fock_3e_uhf_ao()
!call test_fock_3e_uhf_mo()
!call test_tc_grad_and_lapl_ao()
!call test_tc_grad_square_ao()
!call test_two_e_tc_non_hermit_integral()
! call test_tc_grad_square_ao_test()
!!PROVIDE TC_HF_energy VARTC_HF_energy
!!print *, ' TC_HF_energy = ', TC_HF_energy
!!print *, ' VARTC_HF_energy = ', VARTC_HF_energy
! call test_old_ints
call test_fock_3e_uhf_mo_cs()
call test_fock_3e_uhf_mo_a()
@ -64,47 +54,21 @@ end
! ---
subroutine test_tc_scf
implicit none
integer :: i
! provide int2_u_grad1u_x_j1b2_test
provide x_v_ij_erf_rk_cst_mu_j1b_test
! do i = 1, ng_fit_jast
! print*,expo_gauss_1_erf_x_2(i),coef_gauss_1_erf_x_2(i)
! enddo
! provide tc_grad_square_ao_test
! provide tc_grad_and_lapl_ao_test
! provide int2_u_grad1u_x_j1b2_test
! provide x_v_ij_erf_rk_cst_mu_j1b_test
! print*,'TC_HF_energy = ',TC_HF_energy
! print*,'grad_non_hermit = ',grad_non_hermit
end
subroutine test_ao_tc_int_chemist
implicit none
provide ao_tc_int_chemist
! provide ao_tc_int_chemist_test
! provide tc_grad_square_ao_test
! provide tc_grad_and_lapl_ao_test
end
! ---
subroutine routine_test_j1b
subroutine routine_test_env
implicit none
integer :: i,icount,j
icount = 0
do i = 1, List_all_comb_b3_size
if(dabs(List_all_comb_b3_coef(i)).gt.1.d-10)then
do i = 1, List_env1s_square_size
if(dabs(List_env1s_square_coef(i)).gt.1.d-10)then
print*,''
print*,List_all_comb_b3_expo(i),List_all_comb_b3_coef(i)
print*,List_all_comb_b3_cent(1:3,i)
print*,List_env1s_square_expo(i),List_env1s_square_coef(i)
print*,List_env1s_square_cent(1:3,i)
print*,''
icount += 1
endif
enddo
print*,'List_all_comb_b3_coef,icount = ',List_all_comb_b3_size,icount
print*,'List_env1s_square_coef,icount = ',List_env1s_square_size,icount
do i = 1, ao_num
do j = 1, ao_num
do icount = 1, List_comb_thr_b3_size(j,i)
@ -116,11 +80,11 @@ subroutine routine_test_j1b
! enddo
enddo
enddo
print*,'max_List_comb_thr_b3_size = ',max_List_comb_thr_b3_size,List_all_comb_b3_size
print*,'max_List_comb_thr_b3_size = ',max_List_comb_thr_b3_size,List_env1s_square_size
end
subroutine routine_int2_u_grad1u_j1b2
subroutine routine_int2_u_grad1u_env2
implicit none
integer :: i,j,ipoint,k,l
double precision :: weight,accu_relat, accu_abs, contrib
@ -136,8 +100,8 @@ subroutine routine_int2_u_grad1u_j1b2
do l = 1, ao_num
do i = 1, ao_num
do j = 1, ao_num
array(j,i,l,k) += int2_u_grad1u_j1b2_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += int2_u_grad1u_j1b2(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array(j,i,l,k) += int2_u_grad1u_env2_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += int2_u_grad1u_env2(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
enddo
enddo
enddo
@ -160,7 +124,7 @@ subroutine routine_int2_u_grad1u_j1b2
enddo
print*,'******'
print*,'******'
print*,'routine_int2_u_grad1u_j1b2'
print*,'routine_int2_u_grad1u_env2'
print*,'accu_abs = ',accu_abs/dble(ao_num)**4
print*,'accu_relat = ',accu_relat/dble(ao_num)**4
@ -168,7 +132,7 @@ subroutine routine_int2_u_grad1u_j1b2
end
subroutine routine_v_ij_erf_rk_cst_mu_j1b
subroutine routine_v_ij_erf_rk_cst_mu_env
implicit none
integer :: i,j,ipoint,k,l
double precision :: weight,accu_relat, accu_abs, contrib
@ -183,8 +147,8 @@ subroutine routine_v_ij_erf_rk_cst_mu_j1b
do l = 1, ao_num
do i = 1, ao_num
do j = 1, ao_num
array(j,i,l,k) += v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += v_ij_erf_rk_cst_mu_j1b(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array(j,i,l,k) += v_ij_erf_rk_cst_mu_env_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += v_ij_erf_rk_cst_mu_env(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
enddo
enddo
enddo
@ -207,7 +171,7 @@ subroutine routine_v_ij_erf_rk_cst_mu_j1b
enddo
print*,'******'
print*,'******'
print*,'routine_v_ij_erf_rk_cst_mu_j1b'
print*,'routine_v_ij_erf_rk_cst_mu_env'
print*,'accu_abs = ',accu_abs/dble(ao_num)**4
print*,'accu_relat = ',accu_relat/dble(ao_num)**4
@ -216,7 +180,7 @@ subroutine routine_v_ij_erf_rk_cst_mu_j1b
end
subroutine routine_x_v_ij_erf_rk_cst_mu_j1b
subroutine routine_x_v_ij_erf_rk_cst_mu_env
implicit none
integer :: i,j,ipoint,k,l,m
double precision :: weight,accu_relat, accu_abs, contrib
@ -232,8 +196,8 @@ subroutine routine_x_v_ij_erf_rk_cst_mu_j1b
do i = 1, ao_num
do j = 1, ao_num
do m = 1, 3
array(j,i,l,k) += x_v_ij_erf_rk_cst_mu_j1b_test(j,i,ipoint,m) * aos_grad_in_r_array_transp(m,k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += x_v_ij_erf_rk_cst_mu_j1b (j,i,ipoint,m) * aos_grad_in_r_array_transp(m,k,ipoint) * aos_in_r_array(l,ipoint) * weight
array(j,i,l,k) += x_v_ij_erf_rk_cst_mu_env_test(j,i,ipoint,m) * aos_grad_in_r_array_transp(m,k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += x_v_ij_erf_rk_cst_mu_env (j,i,ipoint,m) * aos_grad_in_r_array_transp(m,k,ipoint) * aos_in_r_array(l,ipoint) * weight
enddo
enddo
enddo
@ -258,7 +222,7 @@ subroutine routine_x_v_ij_erf_rk_cst_mu_j1b
print*,'******'
print*,'******'
print*,'routine_x_v_ij_erf_rk_cst_mu_j1b'
print*,'routine_x_v_ij_erf_rk_cst_mu_env'
print*,'accu_abs = ',accu_abs/dble(ao_num)**4
print*,'accu_relat = ',accu_relat/dble(ao_num)**4
@ -268,7 +232,7 @@ end
subroutine routine_v_ij_u_cst_mu_j1b_test
subroutine routine_v_ij_u_cst_mu_env_test
implicit none
integer :: i,j,ipoint,k,l
double precision :: weight,accu_relat, accu_abs, contrib
@ -283,8 +247,8 @@ subroutine routine_v_ij_u_cst_mu_j1b_test
do l = 1, ao_num
do i = 1, ao_num
do j = 1, ao_num
array(j,i,l,k) += v_ij_u_cst_mu_j1b_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += v_ij_u_cst_mu_j1b_fit (j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array(j,i,l,k) += v_ij_u_cst_mu_env_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += v_ij_u_cst_mu_env_fit (j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
enddo
enddo
enddo
@ -307,15 +271,13 @@ subroutine routine_v_ij_u_cst_mu_j1b_test
enddo
print*,'******'
print*,'******'
print*,'routine_v_ij_u_cst_mu_j1b_test'
print*,'routine_v_ij_u_cst_mu_env_test'
print*,'accu_abs = ',accu_abs/dble(ao_num)**4
print*,'accu_relat = ',accu_relat/dble(ao_num)**4
end
subroutine routine_int2_grad1u2_grad2u2_j1b2
subroutine routine_int2_grad1u2_grad2u2_env2
implicit none
integer :: i,j,ipoint,k,l
integer :: ii , jj
@ -341,17 +303,17 @@ subroutine routine_int2_grad1u2_grad2u2_j1b2
do l = 1, ao_num
do i = 1, ao_num
do j = 1, ao_num
array(j,i,l,k) += int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
! !array(j,i,l,k) += int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
! array_ref(j,i,l,k) += int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array(j,i,l,k) += int2_grad1u2_grad2u2_env2_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
! !array(j,i,l,k) += int2_grad1u2_grad2u2_env2_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
! array_ref(j,i,l,k) += int2_grad1u2_grad2u2_env2_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
! !array(j,i,l,k) += ints(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
! array_ref(j,i,l,k) += int2_grad1u2_grad2u2_j1b2(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
! array_ref(j,i,l,k) += int2_grad1u2_grad2u2_env2(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += ints(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
! if(dabs(int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint)).gt.1.d-6)then
! if(dabs(int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) - int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint)).gt.1.d-6)then
! if(dabs(int2_grad1u2_grad2u2_env2_test(j,i,ipoint)).gt.1.d-6)then
! if(dabs(int2_grad1u2_grad2u2_env2_test(j,i,ipoint) - int2_grad1u2_grad2u2_env2_test(j,i,ipoint)).gt.1.d-6)then
! print*,j,i,ipoint
! print*,int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) , int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint), dabs(int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) - int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint))
! print*,int2_grad1u2_grad2u2_j1b2_test(i,j,ipoint) , int2_grad1u2_grad2u2_j1b2_test(i,j,ipoint), dabs(int2_grad1u2_grad2u2_j1b2_test(i,j,ipoint) - int2_grad1u2_grad2u2_j1b2_test(i,j,ipoint))
! print*,int2_grad1u2_grad2u2_env2_test(j,i,ipoint) , int2_grad1u2_grad2u2_env2_test(j,i,ipoint), dabs(int2_grad1u2_grad2u2_env2_test(j,i,ipoint) - int2_grad1u2_grad2u2_env2_test(j,i,ipoint))
! print*,int2_grad1u2_grad2u2_env2_test(i,j,ipoint) , int2_grad1u2_grad2u2_env2_test(i,j,ipoint), dabs(int2_grad1u2_grad2u2_env2_test(i,j,ipoint) - int2_grad1u2_grad2u2_env2_test(i,j,ipoint))
! stop
! endif
! endif
@ -394,7 +356,7 @@ subroutine routine_int2_grad1u2_grad2u2_j1b2
end
subroutine routine_int2_u2_j1b2
subroutine routine_int2_u2_env2
implicit none
integer :: i,j,ipoint,k,l
double precision :: weight,accu_relat, accu_abs, contrib
@ -410,8 +372,8 @@ subroutine routine_int2_u2_j1b2
do l = 1, ao_num
do i = 1, ao_num
do j = 1, ao_num
array(j,i,l,k) += int2_u2_j1b2_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += int2_u2_j1b2(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array(j,i,l,k) += int2_u2_env2_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += int2_u2_env2(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
enddo
enddo
enddo
@ -434,7 +396,7 @@ subroutine routine_int2_u2_j1b2
enddo
print*,'******'
print*,'******'
print*,'routine_int2_u2_j1b2'
print*,'routine_int2_u2_env2'
print*,'accu_abs = ',accu_abs/dble(ao_num)**4
print*,'accu_relat = ',accu_relat/dble(ao_num)**4
@ -443,7 +405,7 @@ subroutine routine_int2_u2_j1b2
end
subroutine routine_int2_u_grad1u_x_j1b2
subroutine routine_int2_u_grad1u_x_env2
implicit none
integer :: i,j,ipoint,k,l,m
double precision :: weight,accu_relat, accu_abs, contrib
@ -460,8 +422,8 @@ subroutine routine_int2_u_grad1u_x_j1b2
do i = 1, ao_num
do j = 1, ao_num
do m = 1, 3
array(j,i,l,k) += int2_u_grad1u_x_j1b2_test(j,i,ipoint,m) * aos_grad_in_r_array_transp(m,k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += int2_u_grad1u_x_j1b2 (j,i,ipoint,m) * aos_grad_in_r_array_transp(m,k,ipoint) * aos_in_r_array(l,ipoint) * weight
array(j,i,l,k) += int2_u_grad1u_x_env2_test(j,i,ipoint,m) * aos_grad_in_r_array_transp(m,k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += int2_u_grad1u_x_env2 (j,i,ipoint,m) * aos_grad_in_r_array_transp(m,k,ipoint) * aos_in_r_array(l,ipoint) * weight
enddo
enddo
enddo
@ -485,7 +447,7 @@ subroutine routine_int2_u_grad1u_x_j1b2
enddo
print*,'******'
print*,'******'
print*,'routine_int2_u_grad1u_x_j1b2'
print*,'routine_int2_u_grad1u_x_env2'
print*,'accu_abs = ',accu_abs/dble(ao_num)**4
print*,'accu_relat = ',accu_relat/dble(ao_num)**4
@ -493,7 +455,7 @@ subroutine routine_int2_u_grad1u_x_j1b2
end
subroutine routine_v_ij_u_cst_mu_j1b
subroutine routine_v_ij_u_cst_mu_env
implicit none
integer :: i,j,ipoint,k,l
double precision :: weight,accu_relat, accu_abs, contrib
@ -509,8 +471,8 @@ subroutine routine_v_ij_u_cst_mu_j1b
do l = 1, ao_num
do i = 1, ao_num
do j = 1, ao_num
array(j,i,l,k) += v_ij_u_cst_mu_j1b_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += v_ij_u_cst_mu_j1b_fit (j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array(j,i,l,k) += v_ij_u_cst_mu_env_test(j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
array_ref(j,i,l,k) += v_ij_u_cst_mu_env_fit (j,i,ipoint) * aos_in_r_array(k,ipoint) * aos_in_r_array(l,ipoint) * weight
enddo
enddo
enddo
@ -533,7 +495,7 @@ subroutine routine_v_ij_u_cst_mu_j1b
enddo
print*,'******'
print*,'******'
print*,'routine_v_ij_u_cst_mu_j1b'
print*,'routine_v_ij_u_cst_mu_env'
print*,'accu_abs = ',accu_abs/dble(ao_num)**4
print*,'accu_relat = ',accu_relat/dble(ao_num)**4
@ -674,66 +636,10 @@ subroutine test_fock_3e_uhf_mo()
! ---
end subroutine test_fock_3e_uhf_mo
end
! ---
subroutine test_total_grad_lapl
implicit none
integer :: i,j,ipoint,k,l
double precision :: weight,accu_relat, accu_abs, contrib
accu_relat = 0.d0
accu_abs = 0.d0
do k = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do j = 1, ao_num
contrib = dabs(tc_grad_and_lapl_ao_test(j,i,l,k) - tc_grad_and_lapl_ao(j,i,l,k))
accu_abs += contrib
if(dabs(tc_grad_and_lapl_ao(j,i,l,k)).gt.1.d-10)then
accu_relat += contrib/dabs(tc_grad_and_lapl_ao(j,i,l,k))
endif
enddo
enddo
enddo
enddo
print*,'******'
print*,'******'
print*,' test_total_grad_lapl'
print*,'accu_abs = ',accu_abs/dble(ao_num)**4
print*,'accu_relat = ',accu_relat/dble(ao_num)**4
end
subroutine test_total_grad_square
implicit none
integer :: i,j,ipoint,k,l
double precision :: weight,accu_relat, accu_abs, contrib
accu_relat = 0.d0
accu_abs = 0.d0
do k = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do j = 1, ao_num
contrib = dabs(tc_grad_square_ao_test(j,i,l,k) - tc_grad_square_ao(j,i,l,k))
accu_abs += contrib
if(dabs(tc_grad_square_ao(j,i,l,k)).gt.1.d-10)then
accu_relat += contrib/dabs(tc_grad_square_ao(j,i,l,k))
endif
enddo
enddo
enddo
enddo
print*,'******'
print*,'******'
print*,'test_total_grad_square'
print*,'accu_abs = ',accu_abs/dble(ao_num)**4
print*,'accu_relat = ',accu_relat/dble(ao_num)**4
end
subroutine test_grid_points_ao
implicit none
integer :: i,j,ipoint,icount,icount_good, icount_bad,icount_full
@ -748,26 +654,26 @@ subroutine test_grid_points_ao
icount_bad = 0
icount_full = 0
do ipoint = 1, n_points_final_grid
! if(dabs(int2_u_grad1u_x_j1b2_test(j,i,ipoint,1)) &
! + dabs(int2_u_grad1u_x_j1b2_test(j,i,ipoint,2)) &
! + dabs(int2_u_grad1u_x_j1b2_test(j,i,ipoint,3)) )
! if(dabs(int2_u2_j1b2_test(j,i,ipoint)).gt.thr)then
! if(dabs(int2_u_grad1u_x_env2_test(j,i,ipoint,1)) &
! + dabs(int2_u_grad1u_x_env2_test(j,i,ipoint,2)) &
! + dabs(int2_u_grad1u_x_env2_test(j,i,ipoint,3)) )
! if(dabs(int2_u2_env2_test(j,i,ipoint)).gt.thr)then
! icount += 1
! endif
if(dabs(v_ij_u_cst_mu_j1b_ng_1_test(j,i,ipoint)).gt.thr*0.1d0)then
if(dabs(v_ij_u_cst_mu_env_ng_1_test(j,i,ipoint)).gt.thr*0.1d0)then
icount_full += 1
endif
if(dabs(v_ij_u_cst_mu_j1b_test(j,i,ipoint)).gt.thr)then
if(dabs(v_ij_u_cst_mu_env_test(j,i,ipoint)).gt.thr)then
icount += 1
if(dabs(v_ij_u_cst_mu_j1b_ng_1_test(j,i,ipoint)).gt.thr*0.1d0)then
if(dabs(v_ij_u_cst_mu_env_ng_1_test(j,i,ipoint)).gt.thr*0.1d0)then
icount_good += 1
else
print*,j,i,ipoint
print*,dabs(v_ij_u_cst_mu_j1b_test(j,i,ipoint)),dabs(v_ij_u_cst_mu_j1b_ng_1_test(j,i,ipoint)),dabs(v_ij_u_cst_mu_j1b_ng_1_test(j,i,ipoint))/dabs(v_ij_u_cst_mu_j1b_test(j,i,ipoint))
print*,dabs(v_ij_u_cst_mu_env_test(j,i,ipoint)), dabs(v_ij_u_cst_mu_env_ng_1_test(j,i,ipoint)),dabs(v_ij_u_cst_mu_env_ng_1_test(j,i,ipoint))/dabs(v_ij_u_cst_mu_env_test(j,i,ipoint))
icount_bad += 1
endif
endif
! if(dabs(v_ij_u_cst_mu_j1b_ng_1_test(j,i,ipoint)).gt.thr)then
! if(dabs(v_ij_u_cst_mu_env_ng_1_test(j,i,ipoint)).gt.thr)then
! endif
enddo
print*,''
@ -822,90 +728,6 @@ end
! ---
subroutine test_tc_grad_and_lapl_ao()
implicit none
integer :: i, j, k, l
double precision :: diff_tot, diff, thr_ih, norm
thr_ih = 1d-10
PROVIDE tc_grad_and_lapl_ao tc_grad_and_lapl_ao_loop
norm = 0.d0
diff_tot = 0.d0
do i = 1, ao_num
do j = 1, ao_num
do k = 1, ao_num
do l = 1, ao_num
diff = dabs(tc_grad_and_lapl_ao_loop(l,k,j,i) - tc_grad_and_lapl_ao(l,k,j,i))
if(diff .gt. thr_ih) then
print *, ' difference on ', l, k, j, i
print *, ' loops : ', tc_grad_and_lapl_ao_loop(l,k,j,i)
print *, ' lapack: ', tc_grad_and_lapl_ao (l,k,j,i)
!stop
endif
norm += dabs(tc_grad_and_lapl_ao_loop(l,k,j,i))
diff_tot += diff
enddo
enddo
enddo
enddo
print *, ' diff tot = ', diff_tot / norm
print *, ' norm = ', norm
print *, ' '
return
end
! ---
subroutine test_tc_grad_square_ao()
implicit none
integer :: i, j, k, l
double precision :: diff_tot, diff, thr_ih, norm
thr_ih = 1d-10
PROVIDE tc_grad_square_ao tc_grad_square_ao_loop
norm = 0.d0
diff_tot = 0.d0
do i = 1, ao_num
do j = 1, ao_num
do k = 1, ao_num
do l = 1, ao_num
diff = dabs(tc_grad_square_ao_loop(l,k,j,i) - tc_grad_square_ao(l,k,j,i))
if(diff .gt. thr_ih) then
print *, ' difference on ', l, k, j, i
print *, ' loops : ', tc_grad_square_ao_loop(l,k,j,i)
print *, ' lapack: ', tc_grad_square_ao (l,k,j,i)
!stop
endif
norm += dabs(tc_grad_square_ao_loop(l,k,j,i))
diff_tot += diff
enddo
enddo
enddo
enddo
print *, ' diff tot = ', diff_tot / norm
print *, ' norm = ', norm
print *, ' '
return
end
! ---
subroutine test_two_e_tc_non_hermit_integral()
implicit none
@ -973,88 +795,6 @@ end
! ---
subroutine test_tc_grad_square_ao_test()
implicit none
integer :: i, j, k, l
double precision :: diff_tot, diff, thr_ih, norm
print*, ' test_tc_grad_square_ao_test '
thr_ih = 1d-7
PROVIDE tc_grad_square_ao_test tc_grad_square_ao_test_ref
norm = 0.d0
diff_tot = 0.d0
do i = 1, ao_num
do j = 1, ao_num
do k = 1, ao_num
do l = 1, ao_num
diff = dabs(tc_grad_square_ao_test(l,k,j,i) - tc_grad_square_ao_test_ref(l,k,j,i))
if(diff .gt. thr_ih) then
print *, ' difference on ', l, k, j, i
print *, ' new : ', tc_grad_square_ao_test (l,k,j,i)
print *, ' ref : ', tc_grad_square_ao_test_ref(l,k,j,i)
!stop
endif
norm += dabs(tc_grad_square_ao_test_ref(l,k,j,i))
diff_tot += diff
enddo
enddo
enddo
enddo
print *, ' diff tot = ', diff_tot / norm
print *, ' norm = ', norm
print *, ' '
return
end
! ---
subroutine test_old_ints
implicit none
integer :: i,j,k,l
double precision :: old, new, contrib, get_ao_tc_sym_two_e_pot
double precision :: integral_sym , integral_nsym,accu
PROVIDE ao_tc_sym_two_e_pot_in_map
accu = 0.d0
do j = 1, ao_num
do l= 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
! integral_sym = get_ao_tc_sym_two_e_pot(i, j, k, l, ao_tc_sym_two_e_pot_map)
! ao_non_hermit_term_chemist(k,i,l,j) = < k l | [erf( mu r12) - 1] d/d_r12 | i j > on the AO basis
! integral_nsym = ao_non_hermit_term_chemist(k,i,l,j)
! old = integral_sym + integral_nsym
! old = tc_grad_square_ao(k,i,l,j) + tc_grad_and_lapl_ao(k,i,l,j) + ao_two_e_coul(k,i,l,j)
new = ao_tc_int_chemist_test(k,i,l,j)
old = ao_tc_int_chemist_no_cycle(k,i,l,j)
contrib = dabs(old - new)
if(contrib.gt.1.d-6)then
print*,'problem !!'
print*,i,j,k,l
print*,old, new, contrib
endif
accu += contrib
enddo
enddo
enddo
enddo
print*,'******'
print*,'******'
print*,'in test_old_ints'
print*,'accu = ',accu/dble(ao_num**4)
end
subroutine test_int2_grad1_u12_ao_test
implicit none
integer :: i,j,ipoint,m,k,l
@ -1146,7 +886,7 @@ subroutine test_fock_3e_uhf_mo_cs()
print *, ' diff tot (%) = ', 100.d0 * diff_tot / norm
return
end subroutine test_fock_3e_uhf_mo_cs
end
! ---
@ -1185,7 +925,7 @@ subroutine test_fock_3e_uhf_mo_a()
print *, ' diff tot (%) = ', 100.d0 * diff_tot / norm
return
end subroutine test_fock_3e_uhf_mo_a
end
! ---
@ -1224,7 +964,7 @@ subroutine test_fock_3e_uhf_mo_b()
print *, ' diff tot (%) = ', 100.d0 * diff_tot / norm
return
end subroutine test_fock_3e_uhf_mo_b
end
! ---

View File

@ -224,7 +224,7 @@
subroutine overlap_bourrin_spread(A_center,B_center,alpha,beta,power_A,power_B,overlap_x,lower_exp_val,dx,nx)
BEGIN_DOC
! Computes the following integral :
! int [-infty ; +infty] of [(x-A_center)^(power_A) * (x-B_center)^power_B * exp(-alpha(x-A_center)^2) * exp(-beta(x-B_center)^2) * x ]
! int [-infty ; +infty] of [(x-A_center)^(power_A) * (x-B_center)^power_B * exp(-alpha(x-A_center)^2) * exp(-beta(x-B_center)^2) * x^2 ]
! needed for the dipole and those things
END_DOC
implicit none

View File

@ -67,6 +67,13 @@ END_PROVIDER
index_final_points(2,i_count) = i
index_final_points(3,i_count) = j
index_final_points_reverse(k,i,j) = i_count
if(final_weight_at_r_vector(i_count) .lt. 0.d0) then
print *, ' !!! WARNING !!!'
print *, ' negative weight !!!!'
print *, i_count, final_weight_at_r_vector(i_count)
stop
endif
enddo
enddo
enddo

View File

@ -4,13 +4,15 @@ casscf
|CASSCF| program with the CIPSI algorithm.
Example of inputs
-----------------
Example of inputs for GROUND STATE calculations
-----------------------------------------------
NOTICE :: FOR EXCITED STATES CALCULATIONS SEE THE FILE "example_casscf_multistate.sh"
a) Small active space : standard CASSCF
---------------------------------------
Let's do O2 (triplet) in aug-cc-pvdz with the following geometry (xyz format, Bohr units)
3
2
O 0.0000000000 0.0000000000 -1.1408000000
O 0.0000000000 0.0000000000 1.1408000000
@ -45,3 +47,4 @@ qp set casscf_cipsi small_active_space False
qp run casscf | tee ${EZFIO_FILE}.casscf_large.out
# you should find around -149.9046

View File

@ -54,14 +54,24 @@ subroutine run
call write_time(6)
call write_int(6,iteration,'CAS-SCF iteration = ')
call write_double(6,energy,'CAS-SCF energy = ')
call write_double(6,energy,'State-average CAS-SCF energy = ')
! if(n_states == 1)then
! call ezfio_get_casscf_cipsi_energy_pt2(E_PT2)
! call ezfio_get_casscf_cipsi_energy(PT2)
double precision :: delta_E_istate, e_av
e_av = 0.d0
do istate=1,N_states
call write_double(6,E_PT2(istate),'E + PT2 energy = ')
call write_double(6,PT2(istate),' PT2 = ')
e_av += state_average_weight(istate) * Ev(istate)
if(istate.gt.1)then
delta_E_istate = E_PT2(istate) - E_PT2(1)
write(*,'(A6,I2,A18,F16.10)')'state ',istate,' Delta E+PT2 = ',delta_E_istate
endif
write(*,'(A6,I2,A18,F16.10)')'state ',istate,' E + PT2 energy = ',E_PT2(istate)
write(*,'(A6,I2,A18,F16.10)')'state ',istate,' PT2 energy = ',PT2(istate)
! call write_double(6,E_PT2(istate),'E + PT2 energy = ')
! call write_double(6,PT2(istate),' PT2 = ')
enddo
call write_double(6,e_av,'State-average CAS-SCF energy bis = ')
call write_double(6,pt2_max,' PT2_MAX = ')
! endif
@ -99,8 +109,8 @@ subroutine run
mo_coef = NewOrbs
mo_occ = occnum
call save_mos
if(.not.converged)then
call save_mos
iteration += 1
if(norm_grad_vec2.gt.0.01d0)then
N_det = N_states

View File

@ -0,0 +1,66 @@
# This is an example for MULTI STATE CALCULATION STATE AVERAGE CASSCF
# We will compute 3 states on the O2 molecule
# The Ground state and 2 degenerate excited states
# Please follow carefully the tuto :)
##### PREPARING THE EZFIO
# Set the path to your QP2 directory
QP_ROOT=my_fancy_path
source ${QP_ROOT}/quantum_package.rc
# Create the EZFIO folder
qp create_ezfio -b aug-cc-pvdz O2.xyz -m 3 -a -o O2_avdz_multi_state
# Start with ROHF orbitals
qp run scf # ROHF energy : -149.619992871398
# Freeze the 1s orbitals of the two oxygen
qp set_frozen_core
##### PREPARING THE ORBITALS WITH NATURAL ORBITALS OF A CIS
# Tell that you want 3 states in your WF
qp set determinants n_states 3
# Run a CIS wave function to start your calculation
qp run cis | tee ${EZFIO_FILE}.cis_3_states.out # -149.6652601409258 -149.4714726176746 -149.4686165431939
# Save the STATE AVERAGE natural orbitals for having a balanced description
# This will also order the orbitals according to their occupation number
# Which makes the active space selection easyer !
qp run save_natorb | tee ${EZFIO_FILE}.natorb_3states.out
##### PREPARING A CIS GUESS WITHIN THE ACTIVE SPACE
# Set an active space which has the most of important excitations
# and that maintains symmetry : the ACTIVE ORBITALS are from """6 to 13"""
# YOU FIRST FREEZE THE VIRTUALS THAT ARE NOT IN THE ACTIVE SPACE
# !!!!! WE SET TO "-D" for DELETED !!!!
qp set_mo_class -c "[1-5]" -a "[6-13]" -d "[14-46]"
# You create a guess of CIS type WITHIN THE ACTIVE SPACE
qp run cis | tee ${EZFIO_FILE}.cis_3_states_active_space.out # -149.6515472533511 -149.4622878024821 -149.4622878024817
# You tell to read the WFT stored (i.e. the guess we just created)
qp set determinants read_wf True
##### DOING THE CASSCF
### SETTING PROPERLY THE ACTIVE SPACE FOR CASSCF
# You set the active space WITH THE VIRTUAL ORBITALS !!!
# !!!!! NOW WE SET TO "-v" for VIRTUALS !!!!!
qp set_mo_class -c "[1-5]" -a "[6-13]" -v "[14-46]"
# You tell that it is a small actice space so the CIPSI can take all Slater determinants
qp set casscf_cipsi small_active_space True
# You specify the output file
output=${EZFIO_FILE}.casscf_3states.out
# You run the CASSCF calculation
qp run casscf | tee ${output} # -149.7175867510 -149.5059010227 -149.5059010226
# Some grep in order to get some numbers useful to check convergence
# State average energy
grep "State-average CAS-SCF energy =" $output | cut -d "=" -f 2 > data_e_average
# Delta E anticipated for State-average energy, only usefull to check convergence
grep "Predicted energy improvement =" $output | cut -d "=" -f 2 > data_improve
# Ground state energy
grep "state 1 E + PT2 energy" $output | cut -d "=" -f 2 > data_1
# First excited state energy
grep "state 2 E + PT2 energy" $output | cut -d "=" -f 2 > data_2
# First excitation energy
grep "state 2 Delta E+PT2" $output | cut -d "=" -f 2 > data_delta_E2
# Second excited state energy
grep "state 3 E + PT2 energy" $output | cut -d "=" -f 2 > data_3
# Second excitation energy
grep "state 3 Delta E+PT2" $output | cut -d "=" -f 2 > data_delta_E3

View File

@ -226,27 +226,28 @@ BEGIN_PROVIDER [real*8, Umat, (mo_num,mo_num) ]
end do
! Form the exponential
call exp_matrix_taylor(Tmat,mo_num,Umat,converged)
Tpotmat(:,:)=0.D0
Umat(:,:) =0.D0
do i=1,mo_num
Tpotmat(i,i)=1.D0
Umat(i,i) =1.d0
end do
iter=0
converged=.false.
do while (.not.converged)
iter+=1
f = 1.d0 / dble(iter)
Tpotmat2(:,:) = Tpotmat(:,:) * f
call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, &
Tpotmat2, size(Tpotmat2,1), &
Tmat, size(Tmat,1), 0.d0, &
Tpotmat, size(Tpotmat,1))
Umat(:,:) = Umat(:,:) + Tpotmat(:,:)
converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
end do
! Tpotmat(:,:)=0.D0
! Umat(:,:) =0.D0
! do i=1,mo_num
! Tpotmat(i,i)=1.D0
! Umat(i,i) =1.d0
! end do
! iter=0
! converged=.false.
! do while (.not.converged)
! iter+=1
! f = 1.d0 / dble(iter)
! Tpotmat2(:,:) = Tpotmat(:,:) * f
! call dgemm('N','N', mo_num,mo_num,mo_num,1.d0, &
! Tpotmat2, size(Tpotmat2,1), &
! Tmat, size(Tmat,1), 0.d0, &
! Tpotmat, size(Tpotmat,1))
! Umat(:,:) = Umat(:,:) + Tpotmat(:,:)
!
! converged = ( sum(abs(Tpotmat(:,:))) < 1.d-6).or.(iter>30)
! end do
END_PROVIDER

View File

@ -346,7 +346,7 @@ subroutine davidson_general_ext_rout_nonsym_b1space(u_in, H_jj, energies, sze, N
endif
if(i_omax(l) .ne. l) then
print *, ' !!! WARNONG !!!'
print *, ' !!! WARNING !!!'
print *, ' index of state', l, i_omax(l)
endif
enddo

View File

@ -492,3 +492,25 @@ subroutine u_0_H_u_0_two_e(e_0,u_0,n,keys_tmp,Nint,N_st,sze)
deallocate (s_0, v_0)
end
BEGIN_PROVIDER [double precision, psi_energy_two_e_trans, (N_states, N_states)]
implicit none
BEGIN_DOC
! psi_energy_two_e_trans(istate,jstate) = <Psi_istate|W_ee |Psi_jstate>
END_dOC
integer :: i,j,istate,jstate
double precision :: hij, coef_i, coef_j
psi_energy_two_e_trans = 0.d0
do i = 1, N_det
do j = 1, N_det
call i_H_j_two_e(psi_det(1,1,i),psi_det(1,1,j),N_int,hij)
do istate = 1, N_states
coef_i = psi_coef(i,istate)
do jstate = 1, N_states
coef_j = psi_coef(j,jstate)
psi_energy_two_e_trans(jstate,istate) += coef_i * coef_j * hij
enddo
enddo
enddo
enddo
END_PROVIDER

View File

@ -0,0 +1,87 @@
subroutine generate_cas_space
use bitmasks
implicit none
BEGIN_DOC
! Generates the CAS space
END_DOC
integer :: i, sze, ncore, n_alpha_act, n_beta_act
integer(bit_kind) :: o(N_int)
integer(bit_kind) :: u
integer :: mo_list(elec_alpha_num)
integer :: k,n,m
integer(bit_kind) :: t, t1, t2
call list_to_bitstring(o, list_core_inact, n_core_inact_orb, N_int)
! Count number of active electrons
n_alpha_act = 0
n_beta_act = 0
do i=1, n_act_orb
if (list_act(i) <= elec_alpha_num) then
n_alpha_act += 1
endif
if (list_act(i) <= elec_beta_num) then
n_beta_act += 1
endif
enddo
if (n_act_orb > 64) then
stop 'More than 64 active MOs'
endif
print *, ''
print *, 'CAS(', n_alpha_act+n_beta_act, ', ', n_act_orb, ')'
print *, ''
n_det_alpha_unique = binom_int(n_act_orb, n_alpha_act)
TOUCH n_det_alpha_unique
n = n_alpha_act
u = shiftl(1_bit_kind,n) - 1_bit_kind
k=0
do while (u < shiftl(1_bit_kind,n_act_orb))
k = k+1
call bitstring_to_list(u, mo_list, m, 1)
do i=1,m
mo_list(i) = list_act( mo_list(i) )
enddo
call list_to_bitstring(psi_det_alpha_unique(1,k), mo_list, m, N_int)
do i=1,N_int
psi_det_alpha_unique(i,k) = ior(psi_det_alpha_unique(i,k), o(i))
enddo
t = ior(u,u-1)
t1 = t+1
t2 = shiftr((iand(not(t),t1)-1), trailz(u)+1)
u = ior(t1,t2)
enddo
n_det_beta_unique = binom_int(n_act_orb, n_beta_act)
TOUCH n_det_beta_unique
n = n_beta_act
u = shiftl(1_bit_kind,n) -1_bit_kind
k=0
do while (u < shiftl(1_bit_kind,n_act_orb))
k = k+1
call bitstring_to_list(u, mo_list, m, 1)
do i=1,m
mo_list(i) = list_act( mo_list(i) )
enddo
call list_to_bitstring(psi_det_beta_unique(1,k), mo_list, m, N_int)
do i=1,N_int
psi_det_beta_unique(i,k) = ior(psi_det_beta_unique(i,k), o(i))
enddo
t = ior(u,u-1)
t1 = t+1
t2 = shiftr((iand(not(t),t1)-1), trailz(u)+1)
u = ior(t1,t2)
enddo
call generate_all_alpha_beta_det_products
print *, 'Ndet = ', N_det
end

View File

@ -149,7 +149,3 @@ BEGIN_PROVIDER [ double precision, ao_prod_dist_grid, (ao_num, ao_num, n_points_
END_PROVIDER
!BEGIN_PROVIDER [ double precision, ao_abs_prod_j1b, (ao_num, ao_num)]
! implicit none
!
!END_PROVIDER

View File

@ -5,4 +5,3 @@ interface: ezfio,provider,ocaml
default: 0.5
ezfio_name: mu_erf

View File

@ -0,0 +1,2 @@
ezfio_files
nuclei

View File

@ -0,0 +1,114 @@
program print_scf_int
call main()
end
subroutine main()
implicit none
integer :: i, j, k, l
print *, " Hcore:"
do j = 1, ao_num
do i = 1, ao_num
print *, i, j, ao_one_e_integrals(i,j)
enddo
enddo
print *, " P:"
do j = 1, ao_num
do i = 1, ao_num
print *, i, j, SCF_density_matrix_ao_alpha(i,j)
enddo
enddo
double precision :: integ, density_a, density_b, density
double precision :: J_scf(ao_num, ao_num)
double precision :: K_scf(ao_num, ao_num)
double precision, external :: get_ao_two_e_integral
PROVIDE ao_integrals_map
print *, " J:"
!do j = 1, ao_num
! do l = 1, ao_num
! do i = 1, ao_num
! do k = 1, ao_num
! ! < 1:k, 2:l | 1:i, 2:j >
! print *, '< k l | i j >', k, l, i, j
! print *, get_ao_two_e_integral(i, j, k, l, ao_integrals_map)
! enddo
! enddo
! enddo
!enddo
!do k = 1, ao_num
! do i = 1, ao_num
! do j = 1, ao_num
! do l = 1, ao_num
! ! ( 1:k, 1:i | 2:l, 2:j )
! print *, '(k i | l j)', k, i, l, j
! print *, get_ao_two_e_integral(l, j, k, i, ao_integrals_map)
! enddo
! enddo
! print *, ''
! enddo
!enddo
J_scf = 0.d0
K_scf = 0.d0
do i = 1, ao_num
do k = 1, ao_num
do j = 1, ao_num
do l = 1, ao_num
density_a = SCF_density_matrix_ao_alpha(l,j)
density_b = SCF_density_matrix_ao_beta (l,j)
density = density_a + density_b
integ = get_ao_two_e_integral(l, j, k, i, ao_integrals_map)
J_scf(k,i) += density * integ
integ = get_ao_two_e_integral(l, i, k, j, ao_integrals_map)
K_scf(k,i) -= density_a * integ
enddo
enddo
enddo
enddo
print *, 'J x P'
do i = 1, ao_num
do k = 1, ao_num
print *, k, i, J_scf(k,i)
enddo
enddo
print *, ''
print *, 'K x P'
do i = 1, ao_num
do k = 1, ao_num
print *, k, i, K_scf(k,i)
enddo
enddo
print *, ''
print *, 'F in AO'
do i = 1, ao_num
do k = 1, ao_num
print *, k, i, Fock_matrix_ao(k,i)
enddo
enddo
print *, ''
print *, 'F in MO'
do i = 1, ao_num
do k = 1, ao_num
print *, k, i, 2.d0 * Fock_matrix_mo_alpha(k,i)
enddo
enddo
end

View File

@ -21,3 +21,10 @@ type: logical
doc: If true and N_states > 1, the oscillator strength will be computed
interface: ezfio,provider,ocaml
default: false
[calc_energy_components]
type: logical
doc: If true, the components of the energy (1e, 2e, kinetic) will be computed
interface: ezfio,provider,ocaml
default: false

View File

@ -6,6 +6,11 @@ subroutine print_mol_properties()
! Run the propertie calculations
END_DOC
! Energy components
if (calc_energy_components) then
call print_energy_components
endif
! Electric dipole moment
if (calc_dipole_moment) then
call print_dipole_moment

View File

@ -0,0 +1,13 @@
program cas_complete
implicit none
BEGIN_DOC
! Diagonalizes the Hamiltonian in the complete active space
END_DOC
call generate_cas_space
call diagonalize_ci
call save_wavefunction
end

View File

@ -0,0 +1,39 @@
BEGIN_PROVIDER [double precision, act_2_rdm_trans_spin_trace_mo, (n_act_orb,n_act_orb,n_act_orb,n_act_orb,N_states,N_states)]
implicit none
BEGIN_DOC
! act_2_rdm_trans_spin_trace_mo(i,j,k,l,istate,jstate) = STATE SPECIFIC physicist notation for 2rdm_trans
!
! \sum_{\sigma,\sigma'}<Psi_{istate}| a^{\dagger}_{i \sigma} a^{\dagger}_{j \sigma'} a_{l \sigma'} a_{k \sigma} |Psi_{jstate}>
!
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{elec}^{act} * (N_{elec}^{act} - 1)
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
END_DOC
integer :: ispin
double precision :: wall_1, wall_2
! condition for beta/beta spin
print*,''
print*,'Providing act_2_rdm_trans_spin_trace_mo '
character*(128) :: name_file
name_file = 'act_2_rdm_trans_spin_trace_mo'
ispin = 4
act_2_rdm_trans_spin_trace_mo = 0.d0
call wall_time(wall_1)
! if(read_two_body_rdm_trans_spin_trace)then
! print*,'Reading act_2_rdm_trans_spin_trace_mo from disk ...'
! call read_array_two_rdm_trans(n_act_orb,N_states,act_2_rdm_trans_spin_trace_mo,name_file)
! else
call orb_range_2_trans_rdm_openmp(act_2_rdm_trans_spin_trace_mo,n_act_orb,n_act_orb,list_act,ispin,psi_coef,size(psi_coef,2),size(psi_coef,1))
! endif
! if(write_two_body_rdm_trans_spin_trace)then
! print*,'Writing act_2_rdm_trans_spin_trace_mo on disk ...'
! call write_array_two_rdm_trans(n_act_orb,n_states,act_2_rdm_trans_spin_trace_mo,name_file)
! call ezfio_set_two_body_rdm_trans_io_two_body_rdm_trans_spin_trace("Read")
! endif
act_2_rdm_trans_spin_trace_mo *= 2.d0
call wall_time(wall_2)
print*,'Wall time to provide act_2_rdm_trans_spin_trace_mo',wall_2 - wall_1
END_PROVIDER

View File

@ -365,3 +365,91 @@ subroutine routine_full_mos
end
subroutine routine_active_only_trans
implicit none
integer :: i,j,k,l,iorb,jorb,korb,lorb,istate,jstate
BEGIN_DOC
! This routine computes the two electron repulsion within the active space using various providers
!
END_DOC
double precision :: vijkl,get_two_e_integral
double precision :: wee_tot(N_states,N_states),rdm_transtot
double precision :: spin_trace
double precision :: accu_tot
wee_tot = 0.d0
iorb = 1
jorb = 1
korb = 1
lorb = 1
vijkl = get_two_e_integral(lorb,korb,jorb,iorb,mo_integrals_map)
provide act_2_rdm_trans_spin_trace_mo
i = 1
j = 2
print*,'**************************'
print*,'**************************'
do jstate = 1, N_states
do istate = 1, N_states
!! PURE ACTIVE PART
!!
accu_tot = 0.d0
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
do k = 1, n_act_orb
korb = list_act(k)
do l = 1, n_act_orb
lorb = list_act(l)
! 1 2 1 2 2 1 2 1
! if(dabs(act_2_rdm_trans_spin_trace_mo(i,j,k,l,istate,jstate) - act_2_rdm_trans_spin_trace_mo(j,i,l,k,istate,jstate)).gt.1.d-10)then
! print*,'Error in act_2_rdm_trans_spin_trace_mo'
! print*,"dabs(act_2_rdm_trans_spin_trace_mo(i,j,k,l) - act_2_rdm_trans_spin_trace_mo(j,i,l,k)).gt.1.d-10"
! print*,i,j,k,l
! print*,act_2_rdm_trans_spin_trace_mo(i,j,k,l,istate,jstate),act_2_rdm_trans_spin_trace_mo(j,i,l,k,istate,jstate),dabs(act_2_rdm_trans_spin_trace_mo(i,j,k,l,istate,jstate) - act_2_rdm_trans_spin_trace_mo(j,i,l,k,istate,jstate))
! endif
! 1 2 1 2 1 2 1 2
! if(dabs(act_2_rdm_trans_spin_trace_mo(i,j,k,l,istate,jstate) - act_2_rdm_trans_spin_trace_mo(k,l,i,j,istate,jstate)).gt.1.d-10)then
! print*,'Error in act_2_rdm_trans_spin_trace_mo'
! print*,"dabs(act_2_rdm_trans_spin_trace_mo(i,j,k,l,istate,jstate) - act_2_rdm_trans_spin_trace_mo(k,l,i,j,istate,jstate)).gt.1.d-10"
! print*,i,j,k,l
! print*,act_2_rdm_trans_spin_trace_mo(i,j,k,l,istate,jstate),act_2_rdm_trans_spin_trace_mo(k,l,i,j,istate,jstate),dabs(act_2_rdm_trans_spin_trace_mo(i,j,k,l,istate,jstate) - act_2_rdm_trans_spin_trace_mo(k,l,i,j,istate,jstate))
! endif
vijkl = get_two_e_integral(lorb,korb,jorb,iorb,mo_integrals_map)
rdm_transtot = act_2_rdm_trans_spin_trace_mo(l,k,j,i,istate,jstate)
wee_tot(istate,jstate) += 0.5d0 * vijkl * rdm_transtot
enddo
enddo
enddo
enddo
print*,''
print*,''
print*,'Active space only energy for state ',istate,jstate
print*,'wee_tot = ',wee_tot(istate,jstate)
print*,'Full energy '
print*,'psi_energy_two_e(istate,jstate)= ',psi_energy_two_e_trans(istate,jstate)
print*,'--------------------------'
enddo
enddo
print*,'Wee from DM '
do istate = 1,N_states
write(*,'(100(F16.10,X))')wee_tot(1:N_states,istate)
enddo
print*,'Wee from Psi det'
do istate = 1,N_states
write(*,'(100(F16.10,X))')psi_energy_two_e_trans(1:N_states,istate)
enddo
end

Some files were not shown because too many files have changed in this diff Show More