mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-11-09 06:53:38 +01:00
Vectorizing numerical integrals
This commit is contained in:
parent
e3a91d7823
commit
b2f79e2581
@ -22,15 +22,15 @@ subroutine overlap_gauss_xyz_r12_ao(D_center,delta,i,j,gauss_ints)
|
|||||||
power_B(1:3)= ao_power(j,1:3)
|
power_B(1:3)= ao_power(j,1:3)
|
||||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||||
do l=1,ao_prim_num(i)
|
do l=1,ao_prim_num(i)
|
||||||
alpha = ao_expo_ordered_transp(l,i)
|
alpha = ao_expo_ordered_transp(l,i)
|
||||||
do k=1,ao_prim_num(j)
|
do k=1,ao_prim_num(j)
|
||||||
beta = ao_expo_ordered_transp(k,j)
|
beta = ao_expo_ordered_transp(k,j)
|
||||||
call overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,gauss_ints_tmp)
|
call overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,gauss_ints_tmp)
|
||||||
do m = 1, 3
|
do m = 1, 3
|
||||||
gauss_ints(m) += gauss_ints_tmp(m) * ao_coef_normalized_ordered_transp(l,i) &
|
gauss_ints(m) += gauss_ints_tmp(m) * ao_coef_normalized_ordered_transp(l,i) &
|
||||||
* ao_coef_normalized_ordered_transp(k,j)
|
* ao_coef_normalized_ordered_transp(k,j)
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
end
|
end
|
||||||
|
|
||||||
@ -61,13 +61,13 @@ double precision function overlap_gauss_xyz_r12_ao_specific(D_center,delta,i,j,m
|
|||||||
power_B(1:3)= ao_power(j,1:3)
|
power_B(1:3)= ao_power(j,1:3)
|
||||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||||
do l=1,ao_prim_num(i)
|
do l=1,ao_prim_num(i)
|
||||||
alpha = ao_expo_ordered_transp(l,i)
|
alpha = ao_expo_ordered_transp(l,i)
|
||||||
do k=1,ao_prim_num(j)
|
do k=1,ao_prim_num(j)
|
||||||
beta = ao_expo_ordered_transp(k,j)
|
beta = ao_expo_ordered_transp(k,j)
|
||||||
gauss_int = overlap_gauss_xyz_r12_specific(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,mx)
|
gauss_int = overlap_gauss_xyz_r12_specific(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,mx)
|
||||||
overlap_gauss_xyz_r12_ao_specific = gauss_int * ao_coef_normalized_ordered_transp(l,i) &
|
overlap_gauss_xyz_r12_ao_specific = gauss_int * ao_coef_normalized_ordered_transp(l,i) &
|
||||||
* ao_coef_normalized_ordered_transp(k,j)
|
* ao_coef_normalized_ordered_transp(k,j)
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
end
|
end
|
||||||
|
|
||||||
@ -90,13 +90,13 @@ subroutine overlap_gauss_r12_all_ao(D_center,delta,aos_ints)
|
|||||||
power_B(1:3)= ao_power(j,1:3)
|
power_B(1:3)= ao_power(j,1:3)
|
||||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||||
do l=1,ao_prim_num(i)
|
do l=1,ao_prim_num(i)
|
||||||
alpha = ao_expo_ordered_transp(l,i)
|
alpha = ao_expo_ordered_transp(l,i)
|
||||||
do k=1,ao_prim_num(j)
|
do k=1,ao_prim_num(j)
|
||||||
beta = ao_expo_ordered_transp(k,j)
|
beta = ao_expo_ordered_transp(k,j)
|
||||||
analytical_j = overlap_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta)
|
analytical_j = overlap_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta)
|
||||||
aos_ints(j,i) += analytical_j * ao_coef_normalized_ordered_transp(l,i) &
|
aos_ints(j,i) += analytical_j * ao_coef_normalized_ordered_transp(l,i) &
|
||||||
* ao_coef_normalized_ordered_transp(k,j)
|
* ao_coef_normalized_ordered_transp(k,j)
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
@ -114,7 +114,7 @@ double precision function overlap_gauss_r12_ao(D_center, delta, i, j)
|
|||||||
implicit none
|
implicit none
|
||||||
integer, intent(in) :: i, j
|
integer, intent(in) :: i, j
|
||||||
double precision, intent(in) :: D_center(3), delta
|
double precision, intent(in) :: D_center(3), delta
|
||||||
|
|
||||||
integer :: power_A(3), power_B(3), l, k
|
integer :: power_A(3), power_B(3), l, k
|
||||||
double precision :: A_center(3), B_center(3), alpha, beta, coef, coef1, analytical_j
|
double precision :: A_center(3), B_center(3), alpha, beta, coef, coef1, analytical_j
|
||||||
|
|
||||||
@ -133,19 +133,19 @@ double precision function overlap_gauss_r12_ao(D_center, delta, i, j)
|
|||||||
B_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
B_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
||||||
|
|
||||||
do l = 1, ao_prim_num(i)
|
do l = 1, ao_prim_num(i)
|
||||||
alpha = ao_expo_ordered_transp (l,i)
|
alpha = ao_expo_ordered_transp (l,i)
|
||||||
coef1 = ao_coef_normalized_ordered_transp(l,i)
|
coef1 = ao_coef_normalized_ordered_transp(l,i)
|
||||||
|
|
||||||
do k = 1, ao_prim_num(j)
|
do k = 1, ao_prim_num(j)
|
||||||
beta = ao_expo_ordered_transp(k,j)
|
beta = ao_expo_ordered_transp(k,j)
|
||||||
coef = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
coef = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
||||||
|
|
||||||
if(dabs(coef) .lt. 1d-12) cycle
|
if(dabs(coef) .lt. 1d-12) cycle
|
||||||
|
|
||||||
analytical_j = overlap_gauss_r12(D_center, delta, A_center, B_center, power_A, power_B, alpha, beta)
|
analytical_j = overlap_gauss_r12(D_center, delta, A_center, B_center, power_A, power_B, alpha, beta)
|
||||||
|
|
||||||
overlap_gauss_r12_ao += coef * analytical_j
|
overlap_gauss_r12_ao += coef * analytical_j
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
end function overlap_gauss_r12_ao
|
end function overlap_gauss_r12_ao
|
||||||
@ -163,14 +163,13 @@ double precision function overlap_gauss_r12_ao_with1s(B_center, beta, D_center,
|
|||||||
implicit none
|
implicit none
|
||||||
integer, intent(in) :: i, j
|
integer, intent(in) :: i, j
|
||||||
double precision, intent(in) :: B_center(3), beta, D_center(3), delta
|
double precision, intent(in) :: B_center(3), beta, D_center(3), delta
|
||||||
|
|
||||||
integer :: power_A1(3), power_A2(3), l, k
|
integer :: power_A1(3), power_A2(3), l, k
|
||||||
double precision :: A1_center(3), A2_center(3), alpha1, alpha2, coef1, coef12, analytical_j
|
double precision :: A1_center(3), A2_center(3), alpha1, alpha2, coef1, coef12, analytical_j
|
||||||
double precision :: G_center(3), gama, fact_g, gama_inv
|
double precision :: G_center(3), gama, fact_g, gama_inv
|
||||||
|
|
||||||
double precision, external :: overlap_gauss_r12, overlap_gauss_r12_ao
|
double precision, external :: overlap_gauss_r12, overlap_gauss_r12_ao
|
||||||
|
|
||||||
ASSERT(beta .gt. 0.d0)
|
|
||||||
if(beta .lt. 1d-10) then
|
if(beta .lt. 1d-10) then
|
||||||
overlap_gauss_r12_ao_with1s = overlap_gauss_r12_ao(D_center, delta, i, j)
|
overlap_gauss_r12_ao_with1s = overlap_gauss_r12_ao(D_center, delta, i, j)
|
||||||
return
|
return
|
||||||
@ -204,22 +203,120 @@ double precision function overlap_gauss_r12_ao_with1s(B_center, beta, D_center,
|
|||||||
A2_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
A2_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
||||||
|
|
||||||
do l = 1, ao_prim_num(i)
|
do l = 1, ao_prim_num(i)
|
||||||
alpha1 = ao_expo_ordered_transp (l,i)
|
alpha1 = ao_expo_ordered_transp (l,i)
|
||||||
coef1 = fact_g * ao_coef_normalized_ordered_transp(l,i)
|
coef1 = fact_g * ao_coef_normalized_ordered_transp(l,i)
|
||||||
if(dabs(coef1) .lt. 1d-12) cycle
|
if(dabs(coef1) .lt. 1d-12) cycle
|
||||||
|
|
||||||
do k = 1, ao_prim_num(j)
|
do k = 1, ao_prim_num(j)
|
||||||
alpha2 = ao_expo_ordered_transp (k,j)
|
alpha2 = ao_expo_ordered_transp (k,j)
|
||||||
coef12 = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
coef12 = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
||||||
if(dabs(coef12) .lt. 1d-12) cycle
|
if(dabs(coef12) .lt. 1d-12) cycle
|
||||||
|
|
||||||
analytical_j = overlap_gauss_r12(G_center, gama, A1_center, A2_center, power_A1, power_A2, alpha1, alpha2)
|
analytical_j = overlap_gauss_r12(G_center, gama, A1_center, A2_center, power_A1, power_A2, alpha1, alpha2)
|
||||||
|
|
||||||
overlap_gauss_r12_ao_with1s += coef12 * analytical_j
|
overlap_gauss_r12_ao_with1s += coef12 * analytical_j
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
end function overlap_gauss_r12_ao_with1s
|
end function overlap_gauss_r12_ao_with1s
|
||||||
|
|
||||||
! ---
|
! ---
|
||||||
|
|
||||||
|
subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, delta, i, j, resv, n_points)
|
||||||
|
BEGIN_DOC
|
||||||
|
!
|
||||||
|
! \int dr AO_i(r) AO_j(r) e^{-beta |r-B_center^2|} e^{-delta |r-D_center|^2}
|
||||||
|
! using an array of D_centers.
|
||||||
|
!
|
||||||
|
END_DOC
|
||||||
|
|
||||||
|
implicit none
|
||||||
|
integer, intent(in) :: i, j, n_points
|
||||||
|
double precision, intent(in) :: B_center(3), beta, D_center(3,n_points), delta
|
||||||
|
double precision, intent(out) :: resv(n_points)
|
||||||
|
|
||||||
|
integer :: power_A1(3), power_A2(3), l, k
|
||||||
|
double precision :: A1_center(3), A2_center(3), alpha1, alpha2, coef1
|
||||||
|
double precision :: coef12, coef12f
|
||||||
|
double precision :: gama, gama_inv
|
||||||
|
double precision :: bg, dg, bdg
|
||||||
|
|
||||||
|
double precision, external :: overlap_gauss_r12, overlap_gauss_r12_ao
|
||||||
|
|
||||||
|
double precision, external :: overlap_gauss_r12_ao_with1s
|
||||||
|
integer :: ipoint
|
||||||
|
|
||||||
|
double precision, allocatable :: fact_g(:), G_center(:,:), analytical_j(:)
|
||||||
|
|
||||||
|
if(ao_overlap_abs(j,i) .lt. 1.d-12) then
|
||||||
|
return
|
||||||
|
endif
|
||||||
|
|
||||||
|
ASSERT(beta .gt. 0.d0)
|
||||||
|
|
||||||
|
if(beta .lt. 1d-10) then
|
||||||
|
do ipoint=1,n_points
|
||||||
|
resv(ipoint) = overlap_gauss_r12_ao(D_center(1,ipoint), delta, i, j)
|
||||||
|
enddo
|
||||||
|
return
|
||||||
|
endif
|
||||||
|
|
||||||
|
resv(:) = 0.d0
|
||||||
|
|
||||||
|
! e^{-beta |r-B_center^2|} e^{-delta |r-D_center|^2} = fact_g e^{-gama |r - G|^2}
|
||||||
|
|
||||||
|
gama = beta + delta
|
||||||
|
gama_inv = 1.d0 / gama
|
||||||
|
|
||||||
|
power_A1(1:3) = ao_power(i,1:3)
|
||||||
|
power_A2(1:3) = ao_power(j,1:3)
|
||||||
|
|
||||||
|
A1_center(1:3) = nucl_coord(ao_nucl(i),1:3)
|
||||||
|
A2_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
||||||
|
|
||||||
|
allocate (fact_g(n_points), G_center(3,n_points), analytical_j(n_points) )
|
||||||
|
|
||||||
|
bg = beta * gama_inv
|
||||||
|
dg = delta * gama_inv
|
||||||
|
bdg = bg * delta
|
||||||
|
do ipoint=1,n_points
|
||||||
|
G_center(1,ipoint) = bg * B_center(1) + dg * D_center(1,ipoint)
|
||||||
|
G_center(2,ipoint) = bg * B_center(2) + dg * D_center(2,ipoint)
|
||||||
|
G_center(3,ipoint) = bg * B_center(3) + dg * D_center(3,ipoint)
|
||||||
|
fact_g(ipoint) = bdg * ( &
|
||||||
|
(B_center(1) - D_center(1,ipoint)) * (B_center(1) - D_center(1,ipoint)) &
|
||||||
|
+ (B_center(2) - D_center(2,ipoint)) * (B_center(2) - D_center(2,ipoint)) &
|
||||||
|
+ (B_center(3) - D_center(3,ipoint)) * (B_center(3) - D_center(3,ipoint)) )
|
||||||
|
|
||||||
|
if(fact_g(ipoint) < 10d0) then
|
||||||
|
fact_g(ipoint) = dexp(-fact_g(ipoint))
|
||||||
|
else
|
||||||
|
fact_g(ipoint) = 0.d0
|
||||||
|
endif
|
||||||
|
|
||||||
|
enddo
|
||||||
|
|
||||||
|
! ---
|
||||||
|
|
||||||
|
do l = 1, ao_prim_num(i)
|
||||||
|
alpha1 = ao_expo_ordered_transp (l,i)
|
||||||
|
coef1 = ao_coef_normalized_ordered_transp(l,i)
|
||||||
|
|
||||||
|
do k = 1, ao_prim_num(j)
|
||||||
|
alpha2 = ao_expo_ordered_transp (k,j)
|
||||||
|
coef12 = coef1 * ao_coef_normalized_ordered_transp(k,j)
|
||||||
|
if(dabs(coef12) .lt. 1d-12) cycle
|
||||||
|
|
||||||
|
call overlap_gauss_r12_v(G_center, gama, A1_center,&
|
||||||
|
A2_center, power_A1, power_A2, alpha1, alpha2, analytical_j, n_points)
|
||||||
|
|
||||||
|
do ipoint=1,n_points
|
||||||
|
coef12f = coef12 * fact_g(ipoint)
|
||||||
|
resv(ipoint) += coef12f * analytical_j(ipoint)
|
||||||
|
end do
|
||||||
|
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
|
||||||
|
end
|
||||||
|
@ -16,54 +16,55 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
|
|||||||
double precision :: tmp
|
double precision :: tmp
|
||||||
double precision :: wall0, wall1
|
double precision :: wall0, wall1
|
||||||
|
|
||||||
|
double precision, allocatable :: int_fit_v(:)
|
||||||
double precision, external :: overlap_gauss_r12_ao_with1s
|
double precision, external :: overlap_gauss_r12_ao_with1s
|
||||||
|
|
||||||
provide mu_erf final_grid_points j1b_pen
|
provide mu_erf final_grid_points j1b_pen
|
||||||
call wall_time(wall0)
|
call wall_time(wall0)
|
||||||
|
|
||||||
int2_grad1u2_grad2u2_j1b2 = 0.d0
|
allocate(int_fit_v(n_points_final_grid))
|
||||||
|
int2_grad1u2_grad2u2_j1b2(:,:,:) = 0.d0
|
||||||
|
|
||||||
!$OMP PARALLEL DEFAULT (NONE) &
|
!$OMP PARALLEL DEFAULT (NONE) &
|
||||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,&
|
||||||
!$OMP coef_fit, expo_fit, int_fit, tmp) &
|
!$OMP coef_fit, expo_fit, int_fit_v, tmp) &
|
||||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size,&
|
||||||
!$OMP final_grid_points, n_max_fit_slat, &
|
!$OMP final_grid_points, n_max_fit_slat, &
|
||||||
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
|
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
|
||||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||||
!$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2)
|
!$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2,&
|
||||||
!$OMP DO
|
!$OMP ao_overlap_abs)
|
||||||
!do ipoint = 1, 10
|
!$OMP DO SCHEDULE(dynamic)
|
||||||
do ipoint = 1, n_points_final_grid
|
do i = 1, ao_num
|
||||||
r(1) = final_grid_points(1,ipoint)
|
do j = i, ao_num
|
||||||
r(2) = final_grid_points(2,ipoint)
|
|
||||||
r(3) = final_grid_points(3,ipoint)
|
|
||||||
|
|
||||||
do i = 1, ao_num
|
if(ao_overlap_abs(j,i) .lt. 1.d-12) then
|
||||||
do j = i, ao_num
|
cycle
|
||||||
|
endif
|
||||||
|
|
||||||
tmp = 0.d0
|
do i_1s = 1, List_all_comb_b3_size
|
||||||
do i_1s = 1, List_all_comb_b3_size
|
|
||||||
|
|
||||||
coef = List_all_comb_b3_coef (i_1s)
|
coef = List_all_comb_b3_coef (i_1s)
|
||||||
beta = List_all_comb_b3_expo (i_1s)
|
beta = List_all_comb_b3_expo (i_1s)
|
||||||
B_center(1) = List_all_comb_b3_cent(1,i_1s)
|
B_center(1) = List_all_comb_b3_cent(1,i_1s)
|
||||||
B_center(2) = List_all_comb_b3_cent(2,i_1s)
|
B_center(2) = List_all_comb_b3_cent(2,i_1s)
|
||||||
B_center(3) = List_all_comb_b3_cent(3,i_1s)
|
B_center(3) = List_all_comb_b3_cent(3,i_1s)
|
||||||
|
|
||||||
do i_fit = 1, n_max_fit_slat
|
do i_fit = 1, n_max_fit_slat
|
||||||
|
|
||||||
expo_fit = expo_gauss_1_erf_x_2(i_fit)
|
expo_fit = expo_gauss_1_erf_x_2(i_fit)
|
||||||
coef_fit = coef_gauss_1_erf_x_2(i_fit)
|
coef_fit = -0.25d0 * coef_gauss_1_erf_x_2(i_fit) * coef
|
||||||
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
|
|
||||||
|
|
||||||
tmp += -0.25d0 * coef * coef_fit * int_fit
|
call overlap_gauss_r12_ao_with1s_v(B_center, beta, final_grid_points, expo_fit, i, j, int_fit_v, n_points_final_grid)
|
||||||
enddo
|
|
||||||
enddo
|
|
||||||
|
|
||||||
int2_grad1u2_grad2u2_j1b2(j,i,ipoint) = tmp
|
do ipoint = 1, n_points_final_grid
|
||||||
enddo
|
int2_grad1u2_grad2u2_j1b2(j,i,ipoint) += coef_fit * int_fit_v(ipoint)
|
||||||
enddo
|
enddo
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
!$OMP END DO
|
!$OMP END DO
|
||||||
!$OMP END PARALLEL
|
!$OMP END PARALLEL
|
||||||
|
|
||||||
@ -78,7 +79,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
|
|||||||
call wall_time(wall1)
|
call wall_time(wall1)
|
||||||
print*, ' wall time for int2_grad1u2_grad2u2_j1b2', wall1 - wall0
|
print*, ' wall time for int2_grad1u2_grad2u2_j1b2', wall1 - wall0
|
||||||
|
|
||||||
END_PROVIDER
|
END_PROVIDER
|
||||||
|
|
||||||
! ---
|
! ---
|
||||||
|
|
||||||
@ -105,11 +106,11 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final
|
|||||||
|
|
||||||
!$OMP PARALLEL DEFAULT (NONE) &
|
!$OMP PARALLEL DEFAULT (NONE) &
|
||||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
||||||
!$OMP coef_fit, expo_fit, int_fit, tmp) &
|
!$OMP coef_fit, expo_fit, int_fit, tmp) &
|
||||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
||||||
!$OMP final_grid_points, n_max_fit_slat, &
|
!$OMP final_grid_points, n_max_fit_slat, &
|
||||||
!$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
|
!$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
|
||||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||||
!$OMP List_all_comb_b3_cent, int2_u2_j1b2)
|
!$OMP List_all_comb_b3_cent, int2_u2_j1b2)
|
||||||
!$OMP DO
|
!$OMP DO
|
||||||
!do ipoint = 1, 10
|
!do ipoint = 1, 10
|
||||||
@ -158,7 +159,7 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final
|
|||||||
call wall_time(wall1)
|
call wall_time(wall1)
|
||||||
print*, ' wall time for int2_u2_j1b2', wall1 - wall0
|
print*, ' wall time for int2_u2_j1b2', wall1 - wall0
|
||||||
|
|
||||||
END_PROVIDER
|
END_PROVIDER
|
||||||
|
|
||||||
! ---
|
! ---
|
||||||
|
|
||||||
@ -186,12 +187,12 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_p
|
|||||||
!$OMP PARALLEL DEFAULT (NONE) &
|
!$OMP PARALLEL DEFAULT (NONE) &
|
||||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
||||||
!$OMP coef_fit, expo_fit, int_fit, alpha_1s, dist, &
|
!$OMP coef_fit, expo_fit, int_fit, alpha_1s, dist, &
|
||||||
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp, &
|
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp, &
|
||||||
!$OMP tmp_x, tmp_y, tmp_z) &
|
!$OMP tmp_x, tmp_y, tmp_z) &
|
||||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
||||||
!$OMP final_grid_points, n_max_fit_slat, &
|
!$OMP final_grid_points, n_max_fit_slat, &
|
||||||
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
|
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
|
||||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||||
!$OMP List_all_comb_b3_cent, int2_u_grad1u_x_j1b2)
|
!$OMP List_all_comb_b3_cent, int2_u_grad1u_x_j1b2)
|
||||||
!$OMP DO
|
!$OMP DO
|
||||||
do ipoint = 1, n_points_final_grid
|
do ipoint = 1, n_points_final_grid
|
||||||
@ -214,7 +215,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_p
|
|||||||
B_center(3) = List_all_comb_b3_cent(3,i_1s)
|
B_center(3) = List_all_comb_b3_cent(3,i_1s)
|
||||||
dist = (B_center(1) - r(1)) * (B_center(1) - r(1)) &
|
dist = (B_center(1) - r(1)) * (B_center(1) - r(1)) &
|
||||||
+ (B_center(2) - r(2)) * (B_center(2) - r(2)) &
|
+ (B_center(2) - r(2)) * (B_center(2) - r(2)) &
|
||||||
+ (B_center(3) - r(3)) * (B_center(3) - r(3))
|
+ (B_center(3) - r(3)) * (B_center(3) - r(3))
|
||||||
|
|
||||||
do i_fit = 1, n_max_fit_slat
|
do i_fit = 1, n_max_fit_slat
|
||||||
|
|
||||||
@ -222,17 +223,17 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_p
|
|||||||
coef_fit = coef_gauss_j_mu_1_erf(i_fit)
|
coef_fit = coef_gauss_j_mu_1_erf(i_fit)
|
||||||
|
|
||||||
alpha_1s = beta + expo_fit
|
alpha_1s = beta + expo_fit
|
||||||
alpha_1s_inv = 1.d0 / alpha_1s
|
alpha_1s_inv = 1.d0 / alpha_1s
|
||||||
|
|
||||||
centr_1s(1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * r(1))
|
centr_1s(1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * r(1))
|
||||||
centr_1s(2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * r(2))
|
centr_1s(2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * r(2))
|
||||||
centr_1s(3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3))
|
centr_1s(3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3))
|
||||||
|
|
||||||
expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist
|
expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist
|
||||||
!if(expo_coef_1s .gt. 80.d0) cycle
|
!if(expo_coef_1s .gt. 80.d0) cycle
|
||||||
coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
|
coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
|
||||||
!if(dabs(coef_tmp) .lt. 1d-10) cycle
|
!if(dabs(coef_tmp) .lt. 1d-10) cycle
|
||||||
|
|
||||||
call NAI_pol_x_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r, int_fit)
|
call NAI_pol_x_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r, int_fit)
|
||||||
|
|
||||||
tmp_x += coef_tmp * int_fit(1)
|
tmp_x += coef_tmp * int_fit(1)
|
||||||
@ -263,7 +264,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (3, ao_num, ao_num, n_p
|
|||||||
call wall_time(wall1)
|
call wall_time(wall1)
|
||||||
print*, ' wall time for int2_u_grad1u_x_j1b2', wall1 - wall0
|
print*, ' wall time for int2_u_grad1u_x_j1b2', wall1 - wall0
|
||||||
|
|
||||||
END_PROVIDER
|
END_PROVIDER
|
||||||
|
|
||||||
! ---
|
! ---
|
||||||
|
|
||||||
@ -291,11 +292,11 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
|
|||||||
!$OMP PARALLEL DEFAULT (NONE) &
|
!$OMP PARALLEL DEFAULT (NONE) &
|
||||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
|
||||||
!$OMP coef_fit, expo_fit, int_fit, tmp, alpha_1s, dist, &
|
!$OMP coef_fit, expo_fit, int_fit, tmp, alpha_1s, dist, &
|
||||||
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp) &
|
!$OMP alpha_1s_inv, centr_1s, expo_coef_1s, coef_tmp) &
|
||||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size, &
|
||||||
!$OMP final_grid_points, n_max_fit_slat, &
|
!$OMP final_grid_points, n_max_fit_slat, &
|
||||||
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
|
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
|
||||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||||
!$OMP List_all_comb_b3_cent, int2_u_grad1u_j1b2)
|
!$OMP List_all_comb_b3_cent, int2_u_grad1u_j1b2)
|
||||||
!$OMP DO
|
!$OMP DO
|
||||||
do ipoint = 1, n_points_final_grid
|
do ipoint = 1, n_points_final_grid
|
||||||
@ -323,7 +324,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
|
|||||||
coef_fit = coef_gauss_j_mu_1_erf(i_fit)
|
coef_fit = coef_gauss_j_mu_1_erf(i_fit)
|
||||||
|
|
||||||
alpha_1s = beta + expo_fit
|
alpha_1s = beta + expo_fit
|
||||||
alpha_1s_inv = 1.d0 / alpha_1s
|
alpha_1s_inv = 1.d0 / alpha_1s
|
||||||
centr_1s(1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * r(1))
|
centr_1s(1) = alpha_1s_inv * (beta * B_center(1) + expo_fit * r(1))
|
||||||
centr_1s(2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * r(2))
|
centr_1s(2) = alpha_1s_inv * (beta * B_center(2) + expo_fit * r(2))
|
||||||
centr_1s(3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3))
|
centr_1s(3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3))
|
||||||
@ -332,7 +333,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
|
|||||||
!if(expo_coef_1s .gt. 80.d0) cycle
|
!if(expo_coef_1s .gt. 80.d0) cycle
|
||||||
coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
|
coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
|
||||||
!if(dabs(coef_tmp) .lt. 1d-10) cycle
|
!if(dabs(coef_tmp) .lt. 1d-10) cycle
|
||||||
|
|
||||||
int_fit = NAI_pol_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r)
|
int_fit = NAI_pol_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r)
|
||||||
|
|
||||||
tmp += coef_tmp * int_fit
|
tmp += coef_tmp * int_fit
|
||||||
@ -357,7 +358,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
|
|||||||
call wall_time(wall1)
|
call wall_time(wall1)
|
||||||
print*, ' wall time for int2_u_grad1u_j1b2', wall1 - wall0
|
print*, ' wall time for int2_u_grad1u_j1b2', wall1 - wall0
|
||||||
|
|
||||||
END_PROVIDER
|
END_PROVIDER
|
||||||
|
|
||||||
! ---
|
! ---
|
||||||
|
|
||||||
|
@ -63,7 +63,6 @@ END_PROVIDER
|
|||||||
tmp_cent_z += tmp_alphaj * nucl_coord(j,3)
|
tmp_cent_z += tmp_alphaj * nucl_coord(j,3)
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
ASSERT(List_all_comb_b2_expo(i) .gt. 0d0)
|
|
||||||
if(List_all_comb_b2_expo(i) .lt. 1d-10) cycle
|
if(List_all_comb_b2_expo(i) .lt. 1d-10) cycle
|
||||||
|
|
||||||
List_all_comb_b2_cent(1,i) = tmp_cent_x / List_all_comb_b2_expo(i)
|
List_all_comb_b2_cent(1,i) = tmp_cent_x / List_all_comb_b2_expo(i)
|
||||||
|
@ -1,67 +1,139 @@
|
|||||||
|
|
||||||
double precision function overlap_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta)
|
double precision function overlap_gauss_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta)
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
! Computes the following integral :
|
! Computes the following integral :
|
||||||
!
|
!
|
||||||
! .. math::
|
! .. math ::
|
||||||
!
|
!
|
||||||
! \int dr exp(-delta (r - D)^2 ) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
! \int dr exp(-delta (r - D)^2 ) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||||
!
|
!
|
||||||
END_DOC
|
END_DOC
|
||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
include 'constants.include.F'
|
include 'constants.include.F'
|
||||||
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
||||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||||
integer, intent(in) :: power_A(3),power_B(3)
|
integer, intent(in) :: power_A(3),power_B(3)
|
||||||
|
|
||||||
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
||||||
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
||||||
double precision :: A_new(0:max_dim,3)! new polynom
|
double precision :: A_new(0:max_dim,3)! new polynom
|
||||||
double precision :: A_center_new(3) ! new center
|
double precision :: A_center_new(3) ! new center
|
||||||
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
||||||
double precision :: alpha_new ! new exponent
|
double precision :: alpha_new ! new exponent
|
||||||
double precision :: fact_a_new ! constant factor
|
double precision :: fact_a_new ! constant factor
|
||||||
double precision :: accu,coefx,coefy,coefz,coefxy,coefxyz,thr
|
double precision :: accu,coefx,coefy,coefz,coefxy,coefxyz,thr
|
||||||
integer :: d(3),i,lx,ly,lz,iorder_tmp(3),dim1
|
integer :: d(3),i,lx,ly,lz,iorder_tmp(3),dim1
|
||||||
dim1=100
|
dim1=100
|
||||||
thr = 1.d-10
|
thr = 1.d-10
|
||||||
d = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
d(:) = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
||||||
|
|
||||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new ,&
|
||||||
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
||||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||||
accu = 0.d0
|
accu = 0.d0
|
||||||
do lx = 0, iorder_a_new(1)
|
do lx = 0, iorder_a_new(1)
|
||||||
coefx = A_new(lx,1)
|
coefx = A_new(lx,1)
|
||||||
if(dabs(coefx).lt.thr)cycle
|
if(dabs(coefx).lt.thr)cycle
|
||||||
iorder_tmp(1) = lx
|
iorder_tmp(1) = lx
|
||||||
do ly = 0, iorder_a_new(2)
|
do ly = 0, iorder_a_new(2)
|
||||||
coefy = A_new(ly,2)
|
coefy = A_new(ly,2)
|
||||||
coefxy = coefx * coefy
|
coefxy = coefx * coefy
|
||||||
if(dabs(coefxy).lt.thr)cycle
|
if(dabs(coefxy).lt.thr)cycle
|
||||||
iorder_tmp(2) = ly
|
iorder_tmp(2) = ly
|
||||||
do lz = 0, iorder_a_new(3)
|
do lz = 0, iorder_a_new(3)
|
||||||
coefz = A_new(lz,3)
|
coefz = A_new(lz,3)
|
||||||
coefxyz = coefxy * coefz
|
coefxyz = coefxy * coefz
|
||||||
if(dabs(coefxyz).lt.thr)cycle
|
if(dabs(coefxyz).lt.thr)cycle
|
||||||
iorder_tmp(3) = lz
|
iorder_tmp(3) = lz
|
||||||
call overlap_gaussian_xyz(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
call overlap_gaussian_xyz(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
||||||
accu += coefxyz * overlap
|
accu += coefxyz * overlap
|
||||||
enddo
|
enddo
|
||||||
|
enddo
|
||||||
enddo
|
enddo
|
||||||
enddo
|
overlap_gauss_r12 = fact_a_new * accu
|
||||||
overlap_gauss_r12 = fact_a_new * accu
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
!---
|
||||||
|
|
||||||
|
subroutine overlap_gauss_r12_v(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,rvec,n_points)
|
||||||
|
BEGIN_DOC
|
||||||
|
! Computes the following integral :
|
||||||
|
!
|
||||||
|
! .. math ::
|
||||||
|
!
|
||||||
|
! \int dr exp(-delta (r - D)^2 ) (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||||
|
! using an array of D_centers
|
||||||
|
!
|
||||||
|
END_DOC
|
||||||
|
|
||||||
|
implicit none
|
||||||
|
include 'constants.include.F'
|
||||||
|
integer, intent(in) :: n_points
|
||||||
|
double precision, intent(in) :: D_center(3,n_points), delta ! pure gaussian "D"
|
||||||
|
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||||
|
integer, intent(in) :: power_A(3),power_B(3)
|
||||||
|
double precision, intent(out) :: rvec(n_points)
|
||||||
|
|
||||||
|
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
||||||
|
|
||||||
|
integer :: maxab
|
||||||
|
integer, allocatable :: iorder_a_new(:)
|
||||||
|
double precision, allocatable :: A_new(:,:,:), A_center_new(:,:)
|
||||||
|
double precision, allocatable :: fact_a_new(:)
|
||||||
|
double precision :: alpha_new
|
||||||
|
double precision :: accu,coefx,coefy,coefz,coefxy,coefxyz,thr
|
||||||
|
integer :: d(3),i,lx,ly,lz,iorder_tmp(3),dim1, ipoint
|
||||||
|
|
||||||
|
dim1=100
|
||||||
|
thr = 1.d-10
|
||||||
|
d(:) = 0
|
||||||
|
|
||||||
|
! maxab = maxval(d(1:3))
|
||||||
|
maxab = max_dim
|
||||||
|
allocate (A_new(0:maxab, 3, n_points), A_center_new(3, n_points), &
|
||||||
|
fact_a_new(n_points), iorder_a_new(3))
|
||||||
|
|
||||||
|
call give_explicit_poly_and_gaussian_v(A_new, maxab, A_center_new, &
|
||||||
|
alpha_new, fact_a_new, iorder_a_new , delta, alpha, d, power_A, &
|
||||||
|
D_center, A_center, n_points)
|
||||||
|
|
||||||
|
do ipoint=1,n_points
|
||||||
|
|
||||||
|
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||||
|
accu = 0.d0
|
||||||
|
do lx = 0, iorder_a_new(1)
|
||||||
|
coefx = A_new(lx,1,ipoint)
|
||||||
|
if(dabs(coefx).lt.thr)cycle
|
||||||
|
iorder_tmp(1) = lx
|
||||||
|
do ly = 0, iorder_a_new(2)
|
||||||
|
coefy = A_new(ly,2,ipoint)
|
||||||
|
coefxy = coefx * coefy
|
||||||
|
if(dabs(coefxy).lt.thr)cycle
|
||||||
|
iorder_tmp(2) = ly
|
||||||
|
do lz = 0, iorder_a_new(3)
|
||||||
|
coefz = A_new(lz,3,ipoint)
|
||||||
|
coefxyz = coefxy * coefz
|
||||||
|
if(dabs(coefxyz).lt.thr)cycle
|
||||||
|
iorder_tmp(3) = lz
|
||||||
|
call overlap_gaussian_xyz(A_center_new(1,ipoint),B_center,alpha_new,beta,iorder_tmp,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
||||||
|
accu += coefxyz * overlap
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
rvec(ipoint) = fact_a_new(ipoint) * accu
|
||||||
|
end do
|
||||||
|
end
|
||||||
|
|
||||||
|
!---
|
||||||
|
!---
|
||||||
|
|
||||||
subroutine overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,gauss_ints)
|
subroutine overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,gauss_ints)
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
! Computes the following integral :
|
! Computes the following integral :
|
||||||
!
|
!
|
||||||
! .. math::
|
! .. math::
|
||||||
!
|
!
|
||||||
! gauss_ints(m) = \int dr exp(-delta (r - D)^2 ) * x/y/z (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
! gauss_ints(m) = \int dr exp(-delta (r - D)^2 ) * x/y/z (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||||
!
|
!
|
||||||
! with m == 1 ==> x, m == 2 ==> y, m == 3 ==> z
|
! with m == 1 ==> x, m == 2 ==> y, m == 3 ==> z
|
||||||
@ -69,14 +141,14 @@ subroutine overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_
|
|||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
include 'constants.include.F'
|
include 'constants.include.F'
|
||||||
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
||||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||||
integer, intent(in) :: power_A(3),power_B(3)
|
integer, intent(in) :: power_A(3),power_B(3)
|
||||||
double precision, intent(out) :: gauss_ints(3)
|
double precision, intent(out) :: gauss_ints(3)
|
||||||
|
|
||||||
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
||||||
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
||||||
double precision :: A_new(0:max_dim,3)! new polynom
|
double precision :: A_new(0:max_dim,3)! new polynom
|
||||||
double precision :: A_center_new(3) ! new center
|
double precision :: A_center_new(3) ! new center
|
||||||
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
||||||
integer :: power_B_new(3)
|
integer :: power_B_new(3)
|
||||||
@ -88,8 +160,8 @@ subroutine overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_
|
|||||||
thr = 1.d-10
|
thr = 1.d-10
|
||||||
d = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
d = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
||||||
|
|
||||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
||||||
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
||||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||||
gauss_ints = 0.d0
|
gauss_ints = 0.d0
|
||||||
@ -99,12 +171,12 @@ subroutine overlap_gauss_xyz_r12(D_center,delta,A_center,B_center,power_A,power_
|
|||||||
iorder_tmp(1) = lx
|
iorder_tmp(1) = lx
|
||||||
do ly = 0, iorder_a_new(2)
|
do ly = 0, iorder_a_new(2)
|
||||||
coefy = A_new(ly,2)
|
coefy = A_new(ly,2)
|
||||||
coefxy = coefx * coefy
|
coefxy = coefx * coefy
|
||||||
if(dabs(coefxy).lt.thr)cycle
|
if(dabs(coefxy).lt.thr)cycle
|
||||||
iorder_tmp(2) = ly
|
iorder_tmp(2) = ly
|
||||||
do lz = 0, iorder_a_new(3)
|
do lz = 0, iorder_a_new(3)
|
||||||
coefz = A_new(lz,3)
|
coefz = A_new(lz,3)
|
||||||
coefxyz = coefxy * coefz
|
coefxyz = coefxy * coefz
|
||||||
if(dabs(coefxyz).lt.thr)cycle
|
if(dabs(coefxyz).lt.thr)cycle
|
||||||
iorder_tmp(3) = lz
|
iorder_tmp(3) = lz
|
||||||
do m = 1, 3
|
do m = 1, 3
|
||||||
@ -129,7 +201,7 @@ double precision function overlap_gauss_xyz_r12_specific(D_center,delta,A_center
|
|||||||
! Computes the following integral :
|
! Computes the following integral :
|
||||||
!
|
!
|
||||||
! .. math::
|
! .. math::
|
||||||
!
|
!
|
||||||
! \int dr exp(-delta (r - D)^2 ) * x/y/z (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
! \int dr exp(-delta (r - D)^2 ) * x/y/z (x-A_x)^a (x-B_x)^b \exp(-\alpha (x-A_x)^2 - \beta (x-B_x)^2 )
|
||||||
!
|
!
|
||||||
! with mx == 1 ==> x, mx == 2 ==> y, mx == 3 ==> z
|
! with mx == 1 ==> x, mx == 2 ==> y, mx == 3 ==> z
|
||||||
@ -137,13 +209,13 @@ double precision function overlap_gauss_xyz_r12_specific(D_center,delta,A_center
|
|||||||
|
|
||||||
implicit none
|
implicit none
|
||||||
include 'constants.include.F'
|
include 'constants.include.F'
|
||||||
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
double precision, intent(in) :: D_center(3), delta ! pure gaussian "D"
|
||||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||||
integer, intent(in) :: power_A(3),power_B(3),mx
|
integer, intent(in) :: power_A(3),power_B(3),mx
|
||||||
|
|
||||||
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
||||||
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
! First you multiply the usual gaussian "A" with the gaussian exp(-delta (r - D)^2 )
|
||||||
double precision :: A_new(0:max_dim,3)! new polynom
|
double precision :: A_new(0:max_dim,3)! new polynom
|
||||||
double precision :: A_center_new(3) ! new center
|
double precision :: A_center_new(3) ! new center
|
||||||
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
integer :: iorder_a_new(3) ! i_order(i) = order of the new polynom ==> should be equal to power_A
|
||||||
integer :: power_B_new(3)
|
integer :: power_B_new(3)
|
||||||
@ -155,8 +227,8 @@ double precision function overlap_gauss_xyz_r12_specific(D_center,delta,A_center
|
|||||||
thr = 1.d-10
|
thr = 1.d-10
|
||||||
d = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
d = 0 ! order of the polynom for the gaussian exp(-delta (r - D)^2 ) == 0
|
||||||
|
|
||||||
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
! New gaussian/polynom defined by :: new pol new center new expo cst fact new order
|
||||||
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
call give_explicit_poly_and_gaussian(A_new , A_center_new , alpha_new, fact_a_new , iorder_a_new , &
|
||||||
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
delta,alpha,d,power_A,D_center,A_center,n_pt_max_integrals)
|
||||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||||
overlap_gauss_xyz_r12_specific = 0.d0
|
overlap_gauss_xyz_r12_specific = 0.d0
|
||||||
@ -166,12 +238,12 @@ double precision function overlap_gauss_xyz_r12_specific(D_center,delta,A_center
|
|||||||
iorder_tmp(1) = lx
|
iorder_tmp(1) = lx
|
||||||
do ly = 0, iorder_a_new(2)
|
do ly = 0, iorder_a_new(2)
|
||||||
coefy = A_new(ly,2)
|
coefy = A_new(ly,2)
|
||||||
coefxy = coefx * coefy
|
coefxy = coefx * coefy
|
||||||
if(dabs(coefxy).lt.thr)cycle
|
if(dabs(coefxy).lt.thr)cycle
|
||||||
iorder_tmp(2) = ly
|
iorder_tmp(2) = ly
|
||||||
do lz = 0, iorder_a_new(3)
|
do lz = 0, iorder_a_new(3)
|
||||||
coefz = A_new(lz,3)
|
coefz = A_new(lz,3)
|
||||||
coefxyz = coefxy * coefz
|
coefxyz = coefxy * coefz
|
||||||
if(dabs(coefxyz).lt.thr)cycle
|
if(dabs(coefxyz).lt.thr)cycle
|
||||||
iorder_tmp(3) = lz
|
iorder_tmp(3) = lz
|
||||||
m = mx
|
m = mx
|
||||||
|
@ -56,7 +56,7 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,
|
|||||||
! * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
|
! * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
|
||||||
! * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
|
! * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
|
||||||
!
|
!
|
||||||
! WARNING ::: IF fact_k is too smal then:
|
! WARNING ::: IF fact_k is too smal then:
|
||||||
! returns a "s" function centered in zero
|
! returns a "s" function centered in zero
|
||||||
! with an inifinite exponent and a zero polynom coef
|
! with an inifinite exponent and a zero polynom coef
|
||||||
END_DOC
|
END_DOC
|
||||||
@ -86,13 +86,11 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,
|
|||||||
!DIR$ FORCEINLINE
|
!DIR$ FORCEINLINE
|
||||||
call gaussian_product(alpha,A_center,beta,B_center,fact_k,p,P_center)
|
call gaussian_product(alpha,A_center,beta,B_center,fact_k,p,P_center)
|
||||||
if (fact_k < thresh) then
|
if (fact_k < thresh) then
|
||||||
! IF fact_k is too smal then:
|
! IF fact_k is too smal then:
|
||||||
! returns a "s" function centered in zero
|
! returns a "s" function centered in zero
|
||||||
! with an inifinite exponent and a zero polynom coef
|
! with an inifinite exponent and a zero polynom coef
|
||||||
P_center = 0.d0
|
P_center = 0.d0
|
||||||
p = 1.d+15
|
p = 1.d+15
|
||||||
P_new = 0.d0
|
|
||||||
iorder = 0
|
|
||||||
fact_k = 0.d0
|
fact_k = 0.d0
|
||||||
return
|
return
|
||||||
endif
|
endif
|
||||||
@ -129,6 +127,89 @@ subroutine give_explicit_poly_and_gaussian(P_new,P_center,p,fact_k,iorder,alpha,
|
|||||||
|
|
||||||
end
|
end
|
||||||
|
|
||||||
|
!---
|
||||||
|
|
||||||
|
subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_k,iorder,alpha,beta,a,b,A_center,B_center,n_points)
|
||||||
|
BEGIN_DOC
|
||||||
|
! Transforms the product of
|
||||||
|
! (x-x_A)^a(1) (x-x_B)^b(1) (x-x_A)^a(2) (y-y_B)^b(2) (z-z_A)^a(3) (z-z_B)^b(3) exp(-(r-A)^2 alpha) exp(-(r-B)^2 beta)
|
||||||
|
! into
|
||||||
|
! fact_k * [ sum (l_x = 0,i_order(1)) P_new(l_x,1) * (x-P_center(1))^l_x ] exp (- p (x-P_center(1))^2 )
|
||||||
|
! * [ sum (l_y = 0,i_order(2)) P_new(l_y,2) * (y-P_center(2))^l_y ] exp (- p (y-P_center(2))^2 )
|
||||||
|
! * [ sum (l_z = 0,i_order(3)) P_new(l_z,3) * (z-P_center(3))^l_z ] exp (- p (z-P_center(3))^2 )
|
||||||
|
!
|
||||||
|
! WARNING :: : IF fact_k is too smal then:
|
||||||
|
! returns a "s" function centered in zero
|
||||||
|
! with an inifinite exponent and a zero polynom coef
|
||||||
|
END_DOC
|
||||||
|
implicit none
|
||||||
|
include 'constants.include.F'
|
||||||
|
integer, intent(in) :: n_points, ldp
|
||||||
|
integer, intent(in) :: a(3),b(3) ! powers : (x-xa)**a_x = (x-A(1))**a(1)
|
||||||
|
double precision, intent(in) :: alpha, beta ! exponents
|
||||||
|
double precision, intent(in) :: A_center(3,n_points) ! A center
|
||||||
|
double precision, intent(in) :: B_center (3) ! B center
|
||||||
|
double precision, intent(out) :: P_center(3,n_points) ! new center
|
||||||
|
double precision, intent(out) :: p ! new exponent
|
||||||
|
double precision, intent(out) :: fact_k(n_points) ! constant factor
|
||||||
|
double precision, intent(out) :: P_new(0:ldp,3,n_points)! polynomial
|
||||||
|
integer, intent(out) :: iorder(3) ! i_order(i) = order of the polynomials
|
||||||
|
|
||||||
|
double precision, allocatable :: P_a(:,:,:), P_b(:,:,:)
|
||||||
|
|
||||||
|
integer :: n_new,i,j, ipoint, lda, ldb, xyz
|
||||||
|
|
||||||
|
call gaussian_product_v(alpha,A_center,beta,B_center,fact_k,p,P_center,n_points)
|
||||||
|
|
||||||
|
if ( ior(ior(b(1),b(2)),b(3)) == 0 ) then ! b == (0,0,0)
|
||||||
|
|
||||||
|
lda = maxval(a)
|
||||||
|
ldb = 0
|
||||||
|
allocate(P_a(0:lda,3,n_points),P_b(0:0,3,n_points))
|
||||||
|
|
||||||
|
call recentered_poly2_v0(P_a,lda,A_center,P_center,a,P_b,B_center,P_center,n_points)
|
||||||
|
|
||||||
|
iorder(1:3) = a(1:3)
|
||||||
|
do ipoint=1,n_points
|
||||||
|
do xyz=1,3
|
||||||
|
P_new(0,xyz,ipoint) = P_b(0,xyz,ipoint) * P_a(0,xyz,ipoint)
|
||||||
|
do i=1,a(xyz)
|
||||||
|
P_new(i,xyz,ipoint) = P_new(i,xyz,ipoint) + P_b(0,xyz,ipoint) * P_a(i,xyz,ipoint)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
return
|
||||||
|
|
||||||
|
endif
|
||||||
|
|
||||||
|
lda = maxval(a)
|
||||||
|
ldb = maxval(b)
|
||||||
|
allocate(P_a(0:lda,3,n_points),P_b(0:ldb,3,n_points))
|
||||||
|
call recentered_poly2_v(P_a,lda,A_center,P_center,a,P_b,ldb,B_center,P_center,b,n_points)
|
||||||
|
|
||||||
|
iorder(1:3) = a(1:3) + b(1:3)
|
||||||
|
do xyz=1,3
|
||||||
|
if (b(xyz) == 0) then
|
||||||
|
do ipoint=1,n_points
|
||||||
|
P_new(0,xyz,ipoint) = P_b(0,xyz,ipoint) * P_a(0,xyz,ipoint)
|
||||||
|
do i=1,a(xyz)
|
||||||
|
P_new(i,xyz,ipoint) = P_new(i,xyz,ipoint) + P_b(0,xyz,ipoint) * P_a(i,xyz,ipoint)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
else
|
||||||
|
do ipoint=1,n_points
|
||||||
|
do i=0,iorder(xyz)
|
||||||
|
P_new(i,xyz,ipoint) = 0.d0
|
||||||
|
enddo
|
||||||
|
n_new=0
|
||||||
|
call multiply_poly(P_a(0,xyz,ipoint),a(xyz),P_b(0,xyz,ipoint),b(xyz),P_new(0,xyz,ipoint),n_new)
|
||||||
|
enddo
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
|
||||||
|
end
|
||||||
|
|
||||||
|
!-
|
||||||
|
|
||||||
subroutine give_explicit_poly_and_gaussian_double(P_new,P_center,p,fact_k,iorder,alpha,beta,gama,a,b,A_center,B_center,Nucl_center,dim)
|
subroutine give_explicit_poly_and_gaussian_double(P_new,P_center,p,fact_k,iorder,alpha,beta,gama,a,b,A_center,B_center,Nucl_center,dim)
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
@ -231,6 +312,59 @@ subroutine gaussian_product(a,xa,b,xb,k,p,xp)
|
|||||||
xp(3) = (a*xa(3)+b*xb(3))*p_inv
|
xp(3) = (a*xa(3)+b*xb(3))*p_inv
|
||||||
end subroutine
|
end subroutine
|
||||||
|
|
||||||
|
!---
|
||||||
|
subroutine gaussian_product_v(a,xa,b,xb,k,p,xp,n_points)
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! Gaussian product in 1D.
|
||||||
|
! e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
|
||||||
|
! Using multiple A centers
|
||||||
|
END_DOC
|
||||||
|
|
||||||
|
integer, intent(in) :: n_points
|
||||||
|
double precision, intent(in) :: a,b ! Exponents
|
||||||
|
double precision, intent(in) :: xa(3,n_points),xb(3) ! Centers
|
||||||
|
double precision, intent(out) :: p ! New exponent
|
||||||
|
double precision, intent(out) :: xp(3,n_points) ! New center
|
||||||
|
double precision, intent(out) :: k(n_points) ! Constant
|
||||||
|
|
||||||
|
double precision :: p_inv
|
||||||
|
|
||||||
|
integer :: ipoint
|
||||||
|
ASSERT (a>0.)
|
||||||
|
ASSERT (b>0.)
|
||||||
|
|
||||||
|
double precision :: xab(3), ab, ap, bp, bpxb(3)
|
||||||
|
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: xab
|
||||||
|
|
||||||
|
p = a+b
|
||||||
|
p_inv = 1.d0/(a+b)
|
||||||
|
ab = a*b*p_inv
|
||||||
|
ap = a*p_inv
|
||||||
|
bp = b*p_inv
|
||||||
|
bpxb(1) = bp*xb(1)
|
||||||
|
bpxb(2) = bp*xb(2)
|
||||||
|
bpxb(3) = bp*xb(3)
|
||||||
|
|
||||||
|
do ipoint=1,n_points
|
||||||
|
xab(1) = xa(1,ipoint)-xb(1)
|
||||||
|
xab(2) = xa(2,ipoint)-xb(2)
|
||||||
|
xab(3) = xa(3,ipoint)-xb(3)
|
||||||
|
k(ipoint) = ab*(xab(1)*xab(1)+xab(2)*xab(2)+xab(3)*xab(3))
|
||||||
|
if (k(ipoint) > 40.d0) then
|
||||||
|
k(ipoint)=0.d0
|
||||||
|
xp(1,ipoint) = 0.d0
|
||||||
|
xp(2,ipoint) = 0.d0
|
||||||
|
xp(3,ipoint) = 0.d0
|
||||||
|
else
|
||||||
|
k(ipoint) = dexp(-k(ipoint))
|
||||||
|
xp(1,ipoint) = ap*xa(1,ipoint)+bpxb(1)
|
||||||
|
xp(2,ipoint) = ap*xa(2,ipoint)+bpxb(2)
|
||||||
|
xp(3,ipoint) = ap*xa(3,ipoint)+bpxb(3)
|
||||||
|
endif
|
||||||
|
enddo
|
||||||
|
end subroutine
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
@ -404,22 +538,152 @@ subroutine recentered_poly2(P_new,x_A,x_P,a,P_new2,x_B,x_Q,b)
|
|||||||
do i = minab+1,min(b,20)
|
do i = minab+1,min(b,20)
|
||||||
P_new2(i) = binom_transp(b-i,b) * pows_b(b-i)
|
P_new2(i) = binom_transp(b-i,b) * pows_b(b-i)
|
||||||
enddo
|
enddo
|
||||||
do i = 101,a
|
do i = 21,a
|
||||||
P_new(i) = binom_func(a,a-i) * pows_a(a-i)
|
P_new(i) = binom_func(a,a-i) * pows_a(a-i)
|
||||||
enddo
|
enddo
|
||||||
do i = 101,b
|
do i = 21,b
|
||||||
P_new2(i) = binom_func(b,b-i) * pows_b(b-i)
|
P_new2(i) = binom_func(b,b-i) * pows_b(b-i)
|
||||||
enddo
|
enddo
|
||||||
end
|
end
|
||||||
|
|
||||||
subroutine pol_modif_center(A_center, B_center, iorder, A_pol, B_pol)
|
!-
|
||||||
|
subroutine recentered_poly2_v(P_new,lda,x_A,x_P,a,P_new2,ldb,x_B,x_Q,b,n_points)
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! Recenter two polynomials
|
||||||
|
END_DOC
|
||||||
|
integer, intent(in) :: a(3),b(3), n_points, lda, ldb
|
||||||
|
double precision, intent(in) :: x_A(3,n_points),x_P(3,n_points),x_B(3),x_Q(3,n_points)
|
||||||
|
double precision, intent(out) :: P_new(0:lda,3,n_points),P_new2(0:ldb,3,n_points)
|
||||||
|
double precision :: binom_func
|
||||||
|
integer :: i,j,k,l, minab(3), maxab(3),ipoint, xyz
|
||||||
|
double precision, allocatable :: pows_a(:,:), pows_b(:,:)
|
||||||
|
double precision :: fa, fb
|
||||||
|
|
||||||
|
maxab(1:3) = max(a(1:3),b(1:3))
|
||||||
|
minab(1:3) = max(min(a(1:3),b(1:3)),(/0,0,0/))
|
||||||
|
|
||||||
|
allocate( pows_a(n_points,-2:maxval(maxab)+4), pows_b(n_points,-2:maxval(maxab)+4) )
|
||||||
|
|
||||||
|
|
||||||
|
do xyz=1,3
|
||||||
|
if ((a(xyz)<0).or.(b(xyz)<0) ) cycle
|
||||||
|
do ipoint=1,n_points
|
||||||
|
pows_a(ipoint,0) = 1.d0
|
||||||
|
pows_a(ipoint,1) = (x_P(xyz,ipoint) - x_A(xyz,ipoint))
|
||||||
|
pows_b(ipoint,0) = 1.d0
|
||||||
|
pows_b(ipoint,1) = (x_Q(xyz,ipoint) - x_B(xyz))
|
||||||
|
enddo
|
||||||
|
do i = 2,maxab(xyz)
|
||||||
|
do ipoint=1,n_points
|
||||||
|
pows_a(ipoint,i) = pows_a(ipoint,i-1)*pows_a(ipoint,1)
|
||||||
|
pows_b(ipoint,i) = pows_b(ipoint,i-1)*pows_b(ipoint,1)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
do ipoint=1,n_points
|
||||||
|
P_new (0,xyz,ipoint) = pows_a(ipoint,a(xyz))
|
||||||
|
P_new2(0,xyz,ipoint) = pows_b(ipoint,b(xyz))
|
||||||
|
enddo
|
||||||
|
do i = 1,min(minab(xyz),20)
|
||||||
|
fa = binom_transp(a(xyz)-i,a(xyz))
|
||||||
|
fb = binom_transp(b(xyz)-i,b(xyz))
|
||||||
|
do ipoint=1,n_points
|
||||||
|
P_new (i,xyz,ipoint) = fa * pows_a(ipoint,a(xyz)-i)
|
||||||
|
P_new2(i,xyz,ipoint) = fb * pows_b(ipoint,b(xyz)-i)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
do i = minab(xyz)+1,min(a(xyz),20)
|
||||||
|
fa = binom_transp(a(xyz)-i,a(xyz))
|
||||||
|
do ipoint=1,n_points
|
||||||
|
P_new (i,xyz,ipoint) = fa * pows_a(ipoint,a(xyz)-i)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
do i = minab(xyz)+1,min(b(xyz),20)
|
||||||
|
fb = binom_transp(b(xyz)-i,b(xyz))
|
||||||
|
do ipoint=1,n_points
|
||||||
|
P_new2(i,xyz,ipoint) = fb * pows_b(ipoint,b(xyz)-i)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
do i = 21,a(xyz)
|
||||||
|
fa = binom_func(a(xyz),a(xyz)-i)
|
||||||
|
do ipoint=1,n_points
|
||||||
|
P_new (i,xyz,ipoint) = fa * pows_a(ipoint,a(xyz)-i)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
do i = 21,b(xyz)
|
||||||
|
fb = binom_func(b(xyz),b(xyz)-i)
|
||||||
|
do ipoint=1,n_points
|
||||||
|
P_new2(i,xyz,ipoint) = fb * pows_b(ipoint,b(xyz)-i)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
end
|
||||||
|
|
||||||
|
|
||||||
|
subroutine recentered_poly2_v0(P_new,lda,x_A,x_P,a,P_new2,x_B,x_Q,n_points)
|
||||||
|
implicit none
|
||||||
|
BEGIN_DOC
|
||||||
|
! Recenter two polynomials. Special case for b=(0,0,0)
|
||||||
|
END_DOC
|
||||||
|
integer, intent(in) :: a(3), n_points, lda
|
||||||
|
double precision, intent(in) :: x_A(3,n_points),x_P(3,n_points),x_B(3),x_Q(3,n_points)
|
||||||
|
double precision, intent(out) :: P_new(0:lda,3,n_points),P_new2(3,n_points)
|
||||||
|
double precision :: binom_func
|
||||||
|
integer :: i,j,k,l, xyz, ipoint, maxab(3)
|
||||||
|
double precision, allocatable :: pows_a(:,:), pows_b(:,:)
|
||||||
|
double precision :: fa
|
||||||
|
|
||||||
|
maxab(1:3) = max(a(1:3),(/0,0,0/))
|
||||||
|
|
||||||
|
allocate( pows_a(n_points,-2:maxval(maxab)+4), pows_b(n_points,-2:maxval(maxab)+4) )
|
||||||
|
|
||||||
|
do xyz=1,3
|
||||||
|
if (a(xyz)<0) cycle
|
||||||
|
do ipoint=1,n_points
|
||||||
|
pows_a(ipoint,0) = 1.d0
|
||||||
|
pows_a(ipoint,1) = (x_P(xyz,ipoint) - x_A(xyz,ipoint))
|
||||||
|
pows_b(ipoint,0) = 1.d0
|
||||||
|
pows_b(ipoint,1) = (x_Q(xyz,ipoint) - x_B(xyz))
|
||||||
|
enddo
|
||||||
|
do i = 2,maxab(xyz)
|
||||||
|
do ipoint=1,n_points
|
||||||
|
pows_a(ipoint,i) = pows_a(ipoint,i-1)*pows_a(ipoint,1)
|
||||||
|
pows_b(ipoint,i) = pows_b(ipoint,i-1)*pows_b(ipoint,1)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
do ipoint=1,n_points
|
||||||
|
P_new (0,xyz,ipoint) = pows_a(ipoint,a(xyz))
|
||||||
|
P_new2(xyz,ipoint) = pows_b(ipoint,0)
|
||||||
|
enddo
|
||||||
|
do i = 1,min(a(xyz),20)
|
||||||
|
fa = binom_transp(a(xyz)-i,a(xyz))
|
||||||
|
do ipoint=1,n_points
|
||||||
|
P_new (i,xyz,ipoint) = fa * pows_a(ipoint,a(xyz)-i)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
do i = 21,a(xyz)
|
||||||
|
fa = binom_func(a(xyz),a(xyz)-i)
|
||||||
|
do ipoint=1,n_points
|
||||||
|
P_new (i,xyz,ipoint) = fa * pows_a(ipoint,a(xyz)-i)
|
||||||
|
enddo
|
||||||
|
enddo
|
||||||
|
|
||||||
|
enddo !xyz
|
||||||
|
|
||||||
|
deallocate(pows_a, pows_b)
|
||||||
|
end
|
||||||
|
|
||||||
|
!--
|
||||||
|
!--
|
||||||
|
|
||||||
|
subroutine pol_modif_center(A_center, B_center, iorder, A_pol, B_pol)
|
||||||
|
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
!
|
!
|
||||||
! Transform the pol centerd on A:
|
! Transform the pol centerd on A:
|
||||||
! [ \sum_i ax_i (x-x_A)^i ] [ \sum_j ay_j (y-y_A)^j ] [ \sum_k az_k (z-z_A)^k ]
|
! [ \sum_i ax_i (x-x_A)^i ] [ \sum_j ay_j (y-y_A)^j ] [ \sum_k az_k (z-z_A)^k ]
|
||||||
! to a pol centered on B
|
! to a pol centered on B
|
||||||
! [ \sum_i bx_i (x-x_B)^i ] [ \sum_j by_j (y-y_B)^j ] [ \sum_k bz_k (z-z_B)^k ]
|
! [ \sum_i bx_i (x-x_B)^i ] [ \sum_j by_j (y-y_B)^j ] [ \sum_k bz_k (z-z_B)^k ]
|
||||||
!
|
!
|
||||||
END_DOC
|
END_DOC
|
||||||
|
|
||||||
@ -437,7 +701,7 @@ subroutine pol_modif_center(A_center, B_center, iorder, A_pol, B_pol)
|
|||||||
|
|
||||||
do i = 1, 3
|
do i = 1, 3
|
||||||
Lmax = iorder(i)
|
Lmax = iorder(i)
|
||||||
call pol_modif_center_x( A_center(i), B_center(i), Lmax, A_pol(0:Lmax, i), B_pol(0:Lmax, i) )
|
call pol_modif_center_x( A_center(i), B_center(i), Lmax, A_pol(0:Lmax, i), B_pol(0:Lmax, i) )
|
||||||
enddo
|
enddo
|
||||||
|
|
||||||
return
|
return
|
||||||
@ -445,14 +709,14 @@ end subroutine pol_modif_center
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
subroutine pol_modif_center_x(A_center, B_center, iorder, A_pol, B_pol)
|
subroutine pol_modif_center_x(A_center, B_center, iorder, A_pol, B_pol)
|
||||||
|
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
!
|
!
|
||||||
! Transform the pol centerd on A:
|
! Transform the pol centerd on A:
|
||||||
! [ \sum_i ax_i (x-x_A)^i ]
|
! [ \sum_i ax_i (x-x_A)^i ]
|
||||||
! to a pol centered on B
|
! to a pol centered on B
|
||||||
! [ \sum_i bx_i (x-x_B)^i ]
|
! [ \sum_i bx_i (x-x_B)^i ]
|
||||||
!
|
!
|
||||||
! bx_i = \sum_{j=i}^{iorder} ax_j (x_B - x_A)^(j-i) j! / [ i! (j-i)! ]
|
! bx_i = \sum_{j=i}^{iorder} ax_j (x_B - x_A)^(j-i) j! / [ i! (j-i)! ]
|
||||||
! = \sum_{j=i}^{iorder} ax_j (x_B - x_A)^(j-i) binom_func(j,i)
|
! = \sum_{j=i}^{iorder} ax_j (x_B - x_A)^(j-i) binom_func(j,i)
|
||||||
@ -591,7 +855,7 @@ double precision function rint_sum(n_pt_out,rho,d1)
|
|||||||
u_inv=1.d0/dsqrt(rho)
|
u_inv=1.d0/dsqrt(rho)
|
||||||
u=rho*u_inv
|
u=rho*u_inv
|
||||||
rint_sum=0.5d0*u_inv*sqpi*derf(u) *d1(0)
|
rint_sum=0.5d0*u_inv*sqpi*derf(u) *d1(0)
|
||||||
! print *, 0, d1(0), 0.5d0*u_inv*sqpi*derf(u)
|
! print *, 0, d1(0), 0.5d0*u_inv*sqpi*derf(u)
|
||||||
endif
|
endif
|
||||||
|
|
||||||
do i=2,n_pt_out,2
|
do i=2,n_pt_out,2
|
||||||
|
@ -238,11 +238,11 @@ subroutine cache_map_sort(map)
|
|||||||
iorder(i) = i
|
iorder(i) = i
|
||||||
enddo
|
enddo
|
||||||
if (cache_key_kind == 2) then
|
if (cache_key_kind == 2) then
|
||||||
call i2radix_sort(map%key,iorder,map%n_elements,-1)
|
call i2sort(map%key,iorder,map%n_elements,-1)
|
||||||
else if (cache_key_kind == 4) then
|
else if (cache_key_kind == 4) then
|
||||||
call iradix_sort(map%key,iorder,map%n_elements,-1)
|
call isort(map%key,iorder,map%n_elements,-1)
|
||||||
else if (cache_key_kind == 8) then
|
else if (cache_key_kind == 8) then
|
||||||
call i8radix_sort(map%key,iorder,map%n_elements,-1)
|
call i8sort(map%key,iorder,map%n_elements,-1)
|
||||||
endif
|
endif
|
||||||
if (integral_kind == 4) then
|
if (integral_kind == 4) then
|
||||||
call set_order(map%value,iorder,map%n_elements)
|
call set_order(map%value,iorder,map%n_elements)
|
||||||
|
373
src/utils/qsort.c
Normal file
373
src/utils/qsort.c
Normal file
@ -0,0 +1,373 @@
|
|||||||
|
/* [[file:~/qp2/src/utils/qsort.org::*Generated%20C%20file][Generated C file:1]] */
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <stdint.h>
|
||||||
|
|
||||||
|
struct int16_t_comp {
|
||||||
|
int16_t x;
|
||||||
|
int32_t i;
|
||||||
|
};
|
||||||
|
|
||||||
|
int compare_int16_t( const void * l, const void * r )
|
||||||
|
{
|
||||||
|
const int16_t * restrict _l= l;
|
||||||
|
const int16_t * restrict _r= r;
|
||||||
|
if( *_l > *_r ) return 1;
|
||||||
|
if( *_l < *_r ) return -1;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_int16_t(int16_t* restrict A_in, int32_t* restrict iorder, int32_t isize) {
|
||||||
|
struct int16_t_comp* A = malloc(isize * sizeof(struct int16_t_comp));
|
||||||
|
if (A == NULL) return;
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A[i].x = A_in[i];
|
||||||
|
A[i].i = iorder[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(struct int16_t_comp), compare_int16_t);
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A_in[i] = A[i].x;
|
||||||
|
iorder[i] = A[i].i;
|
||||||
|
}
|
||||||
|
free(A);
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_int16_t_noidx(int16_t* A, int32_t isize) {
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(int16_t), compare_int16_t);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
struct int16_t_comp_big {
|
||||||
|
int16_t x;
|
||||||
|
int64_t i;
|
||||||
|
};
|
||||||
|
|
||||||
|
int compare_int16_t_big( const void * l, const void * r )
|
||||||
|
{
|
||||||
|
const int16_t * restrict _l= l;
|
||||||
|
const int16_t * restrict _r= r;
|
||||||
|
if( *_l > *_r ) return 1;
|
||||||
|
if( *_l < *_r ) return -1;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_int16_t_big(int16_t* restrict A_in, int64_t* restrict iorder, int64_t isize) {
|
||||||
|
struct int16_t_comp_big* A = malloc(isize * sizeof(struct int16_t_comp_big));
|
||||||
|
if (A == NULL) return;
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A[i].x = A_in[i];
|
||||||
|
A[i].i = iorder[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(struct int16_t_comp_big), compare_int16_t_big);
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A_in[i] = A[i].x;
|
||||||
|
iorder[i] = A[i].i;
|
||||||
|
}
|
||||||
|
free(A);
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_int16_t_noidx_big(int16_t* A, int64_t isize) {
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(int16_t), compare_int16_t_big);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
struct int32_t_comp {
|
||||||
|
int32_t x;
|
||||||
|
int32_t i;
|
||||||
|
};
|
||||||
|
|
||||||
|
int compare_int32_t( const void * l, const void * r )
|
||||||
|
{
|
||||||
|
const int32_t * restrict _l= l;
|
||||||
|
const int32_t * restrict _r= r;
|
||||||
|
if( *_l > *_r ) return 1;
|
||||||
|
if( *_l < *_r ) return -1;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_int32_t(int32_t* restrict A_in, int32_t* restrict iorder, int32_t isize) {
|
||||||
|
struct int32_t_comp* A = malloc(isize * sizeof(struct int32_t_comp));
|
||||||
|
if (A == NULL) return;
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A[i].x = A_in[i];
|
||||||
|
A[i].i = iorder[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(struct int32_t_comp), compare_int32_t);
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A_in[i] = A[i].x;
|
||||||
|
iorder[i] = A[i].i;
|
||||||
|
}
|
||||||
|
free(A);
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_int32_t_noidx(int32_t* A, int32_t isize) {
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(int32_t), compare_int32_t);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
struct int32_t_comp_big {
|
||||||
|
int32_t x;
|
||||||
|
int64_t i;
|
||||||
|
};
|
||||||
|
|
||||||
|
int compare_int32_t_big( const void * l, const void * r )
|
||||||
|
{
|
||||||
|
const int32_t * restrict _l= l;
|
||||||
|
const int32_t * restrict _r= r;
|
||||||
|
if( *_l > *_r ) return 1;
|
||||||
|
if( *_l < *_r ) return -1;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_int32_t_big(int32_t* restrict A_in, int64_t* restrict iorder, int64_t isize) {
|
||||||
|
struct int32_t_comp_big* A = malloc(isize * sizeof(struct int32_t_comp_big));
|
||||||
|
if (A == NULL) return;
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A[i].x = A_in[i];
|
||||||
|
A[i].i = iorder[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(struct int32_t_comp_big), compare_int32_t_big);
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A_in[i] = A[i].x;
|
||||||
|
iorder[i] = A[i].i;
|
||||||
|
}
|
||||||
|
free(A);
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_int32_t_noidx_big(int32_t* A, int64_t isize) {
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(int32_t), compare_int32_t_big);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
struct int64_t_comp {
|
||||||
|
int64_t x;
|
||||||
|
int32_t i;
|
||||||
|
};
|
||||||
|
|
||||||
|
int compare_int64_t( const void * l, const void * r )
|
||||||
|
{
|
||||||
|
const int64_t * restrict _l= l;
|
||||||
|
const int64_t * restrict _r= r;
|
||||||
|
if( *_l > *_r ) return 1;
|
||||||
|
if( *_l < *_r ) return -1;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_int64_t(int64_t* restrict A_in, int32_t* restrict iorder, int32_t isize) {
|
||||||
|
struct int64_t_comp* A = malloc(isize * sizeof(struct int64_t_comp));
|
||||||
|
if (A == NULL) return;
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A[i].x = A_in[i];
|
||||||
|
A[i].i = iorder[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(struct int64_t_comp), compare_int64_t);
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A_in[i] = A[i].x;
|
||||||
|
iorder[i] = A[i].i;
|
||||||
|
}
|
||||||
|
free(A);
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_int64_t_noidx(int64_t* A, int32_t isize) {
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(int64_t), compare_int64_t);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
struct int64_t_comp_big {
|
||||||
|
int64_t x;
|
||||||
|
int64_t i;
|
||||||
|
};
|
||||||
|
|
||||||
|
int compare_int64_t_big( const void * l, const void * r )
|
||||||
|
{
|
||||||
|
const int64_t * restrict _l= l;
|
||||||
|
const int64_t * restrict _r= r;
|
||||||
|
if( *_l > *_r ) return 1;
|
||||||
|
if( *_l < *_r ) return -1;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_int64_t_big(int64_t* restrict A_in, int64_t* restrict iorder, int64_t isize) {
|
||||||
|
struct int64_t_comp_big* A = malloc(isize * sizeof(struct int64_t_comp_big));
|
||||||
|
if (A == NULL) return;
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A[i].x = A_in[i];
|
||||||
|
A[i].i = iorder[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(struct int64_t_comp_big), compare_int64_t_big);
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A_in[i] = A[i].x;
|
||||||
|
iorder[i] = A[i].i;
|
||||||
|
}
|
||||||
|
free(A);
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_int64_t_noidx_big(int64_t* A, int64_t isize) {
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(int64_t), compare_int64_t_big);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
struct double_comp {
|
||||||
|
double x;
|
||||||
|
int32_t i;
|
||||||
|
};
|
||||||
|
|
||||||
|
int compare_double( const void * l, const void * r )
|
||||||
|
{
|
||||||
|
const double * restrict _l= l;
|
||||||
|
const double * restrict _r= r;
|
||||||
|
if( *_l > *_r ) return 1;
|
||||||
|
if( *_l < *_r ) return -1;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_double(double* restrict A_in, int32_t* restrict iorder, int32_t isize) {
|
||||||
|
struct double_comp* A = malloc(isize * sizeof(struct double_comp));
|
||||||
|
if (A == NULL) return;
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A[i].x = A_in[i];
|
||||||
|
A[i].i = iorder[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(struct double_comp), compare_double);
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A_in[i] = A[i].x;
|
||||||
|
iorder[i] = A[i].i;
|
||||||
|
}
|
||||||
|
free(A);
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_double_noidx(double* A, int32_t isize) {
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(double), compare_double);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
struct double_comp_big {
|
||||||
|
double x;
|
||||||
|
int64_t i;
|
||||||
|
};
|
||||||
|
|
||||||
|
int compare_double_big( const void * l, const void * r )
|
||||||
|
{
|
||||||
|
const double * restrict _l= l;
|
||||||
|
const double * restrict _r= r;
|
||||||
|
if( *_l > *_r ) return 1;
|
||||||
|
if( *_l < *_r ) return -1;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_double_big(double* restrict A_in, int64_t* restrict iorder, int64_t isize) {
|
||||||
|
struct double_comp_big* A = malloc(isize * sizeof(struct double_comp_big));
|
||||||
|
if (A == NULL) return;
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A[i].x = A_in[i];
|
||||||
|
A[i].i = iorder[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(struct double_comp_big), compare_double_big);
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A_in[i] = A[i].x;
|
||||||
|
iorder[i] = A[i].i;
|
||||||
|
}
|
||||||
|
free(A);
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_double_noidx_big(double* A, int64_t isize) {
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(double), compare_double_big);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
struct float_comp {
|
||||||
|
float x;
|
||||||
|
int32_t i;
|
||||||
|
};
|
||||||
|
|
||||||
|
int compare_float( const void * l, const void * r )
|
||||||
|
{
|
||||||
|
const float * restrict _l= l;
|
||||||
|
const float * restrict _r= r;
|
||||||
|
if( *_l > *_r ) return 1;
|
||||||
|
if( *_l < *_r ) return -1;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_float(float* restrict A_in, int32_t* restrict iorder, int32_t isize) {
|
||||||
|
struct float_comp* A = malloc(isize * sizeof(struct float_comp));
|
||||||
|
if (A == NULL) return;
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A[i].x = A_in[i];
|
||||||
|
A[i].i = iorder[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(struct float_comp), compare_float);
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A_in[i] = A[i].x;
|
||||||
|
iorder[i] = A[i].i;
|
||||||
|
}
|
||||||
|
free(A);
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_float_noidx(float* A, int32_t isize) {
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(float), compare_float);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
struct float_comp_big {
|
||||||
|
float x;
|
||||||
|
int64_t i;
|
||||||
|
};
|
||||||
|
|
||||||
|
int compare_float_big( const void * l, const void * r )
|
||||||
|
{
|
||||||
|
const float * restrict _l= l;
|
||||||
|
const float * restrict _r= r;
|
||||||
|
if( *_l > *_r ) return 1;
|
||||||
|
if( *_l < *_r ) return -1;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_float_big(float* restrict A_in, int64_t* restrict iorder, int64_t isize) {
|
||||||
|
struct float_comp_big* A = malloc(isize * sizeof(struct float_comp_big));
|
||||||
|
if (A == NULL) return;
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A[i].x = A_in[i];
|
||||||
|
A[i].i = iorder[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(struct float_comp_big), compare_float_big);
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A_in[i] = A[i].x;
|
||||||
|
iorder[i] = A[i].i;
|
||||||
|
}
|
||||||
|
free(A);
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_float_noidx_big(float* A, int64_t isize) {
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(float), compare_float_big);
|
||||||
|
}
|
||||||
|
/* Generated C file:1 ends here */
|
169
src/utils/qsort.org
Normal file
169
src/utils/qsort.org
Normal file
@ -0,0 +1,169 @@
|
|||||||
|
#+TITLE: Quick sort binding for Fortran
|
||||||
|
|
||||||
|
* C template
|
||||||
|
|
||||||
|
#+NAME: c_template
|
||||||
|
#+BEGIN_SRC c
|
||||||
|
struct TYPE_comp_big {
|
||||||
|
TYPE x;
|
||||||
|
int32_t i;
|
||||||
|
};
|
||||||
|
|
||||||
|
int compare_TYPE_big( const void * l, const void * r )
|
||||||
|
{
|
||||||
|
const TYPE * restrict _l= l;
|
||||||
|
const TYPE * restrict _r= r;
|
||||||
|
if( *_l > *_r ) return 1;
|
||||||
|
if( *_l < *_r ) return -1;
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_TYPE_big(TYPE* restrict A_in, int32_t* restrict iorder, int32_t isize) {
|
||||||
|
struct TYPE_comp_big* A = malloc(isize * sizeof(struct TYPE_comp_big));
|
||||||
|
if (A == NULL) return;
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A[i].x = A_in[i];
|
||||||
|
A[i].i = iorder[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(struct TYPE_comp_big), compare_TYPE_big);
|
||||||
|
|
||||||
|
for (int i=0 ; i<isize ; ++i) {
|
||||||
|
A_in[i] = A[i].x;
|
||||||
|
iorder[i] = A[i].i;
|
||||||
|
}
|
||||||
|
free(A);
|
||||||
|
}
|
||||||
|
|
||||||
|
void qsort_TYPE_noidx_big(TYPE* A, int32_t isize) {
|
||||||
|
qsort( (void*) A, (size_t) isize, sizeof(TYPE), compare_TYPE_big);
|
||||||
|
}
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
* Fortran template
|
||||||
|
|
||||||
|
#+NAME:f_template
|
||||||
|
#+BEGIN_SRC f90
|
||||||
|
subroutine Lsort_big_c(A, iorder, isize) bind(C, name="qsort_TYPE_big")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t), value :: isize
|
||||||
|
integer(c_int32_t) :: iorder(isize)
|
||||||
|
real (c_TYPE) :: A(isize)
|
||||||
|
end subroutine Lsort_big_c
|
||||||
|
|
||||||
|
subroutine Lsort_noidx_big_c(A, isize) bind(C, name="qsort_TYPE_noidx_big")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t), value :: isize
|
||||||
|
real (c_TYPE) :: A(isize)
|
||||||
|
end subroutine Lsort_noidx_big_c
|
||||||
|
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
#+NAME:f_template2
|
||||||
|
#+BEGIN_SRC f90
|
||||||
|
subroutine Lsort_big(A, iorder, isize)
|
||||||
|
use qsort_module
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t) :: isize
|
||||||
|
integer(c_int32_t) :: iorder(isize)
|
||||||
|
real (c_TYPE) :: A(isize)
|
||||||
|
call Lsort_big_c(A, iorder, isize)
|
||||||
|
end subroutine Lsort_big
|
||||||
|
|
||||||
|
subroutine Lsort_noidx_big(A, isize)
|
||||||
|
use iso_c_binding
|
||||||
|
use qsort_module
|
||||||
|
integer(c_int32_t) :: isize
|
||||||
|
real (c_TYPE) :: A(isize)
|
||||||
|
call Lsort_noidx_big_c(A, isize)
|
||||||
|
end subroutine Lsort_noidx_big
|
||||||
|
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
* Python scripts for type replacements
|
||||||
|
|
||||||
|
#+NAME: replaced
|
||||||
|
#+begin_src python :results output :noweb yes
|
||||||
|
data = """
|
||||||
|
<<c_template>>
|
||||||
|
"""
|
||||||
|
for typ in ["int16_t", "int32_t", "int64_t", "double", "float"]:
|
||||||
|
print( data.replace("TYPE", typ).replace("_big", "") )
|
||||||
|
print( data.replace("int32_t", "int64_t").replace("TYPE", typ) )
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: replaced_f
|
||||||
|
#+begin_src python :results output :noweb yes
|
||||||
|
data = """
|
||||||
|
<<f_template>>
|
||||||
|
"""
|
||||||
|
c1 = {
|
||||||
|
"int16_t": "i2",
|
||||||
|
"int32_t": "i",
|
||||||
|
"int64_t": "i8",
|
||||||
|
"double": "d",
|
||||||
|
"float": ""
|
||||||
|
}
|
||||||
|
c2 = {
|
||||||
|
"int16_t": "integer",
|
||||||
|
"int32_t": "integer",
|
||||||
|
"int64_t": "integer",
|
||||||
|
"double": "real",
|
||||||
|
"float": "real"
|
||||||
|
}
|
||||||
|
|
||||||
|
for typ in ["int16_t", "int32_t", "int64_t", "double", "float"]:
|
||||||
|
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("TYPE", typ).replace("_big", "") )
|
||||||
|
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("int32_t", "int64_t").replace("TYPE", typ) )
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
#+NAME: replaced_f2
|
||||||
|
#+begin_src python :results output :noweb yes
|
||||||
|
data = """
|
||||||
|
<<f_template2>>
|
||||||
|
"""
|
||||||
|
c1 = {
|
||||||
|
"int16_t": "i2",
|
||||||
|
"int32_t": "i",
|
||||||
|
"int64_t": "i8",
|
||||||
|
"double": "d",
|
||||||
|
"float": ""
|
||||||
|
}
|
||||||
|
c2 = {
|
||||||
|
"int16_t": "integer",
|
||||||
|
"int32_t": "integer",
|
||||||
|
"int64_t": "integer",
|
||||||
|
"double": "real",
|
||||||
|
"float": "real"
|
||||||
|
}
|
||||||
|
|
||||||
|
for typ in ["int16_t", "int32_t", "int64_t", "double", "float"]:
|
||||||
|
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("TYPE", typ).replace("_big", "") )
|
||||||
|
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("int32_t", "int64_t").replace("TYPE", typ) )
|
||||||
|
#+end_src
|
||||||
|
|
||||||
|
* Generated C file
|
||||||
|
|
||||||
|
#+BEGIN_SRC c :comments link :tangle qsort.c :noweb yes
|
||||||
|
#include <stdlib.h>
|
||||||
|
#include <stdint.h>
|
||||||
|
<<replaced()>>
|
||||||
|
#+END_SRC
|
||||||
|
|
||||||
|
* Generated Fortran file
|
||||||
|
|
||||||
|
#+BEGIN_SRC f90 :tangle qsort_module.f90 :noweb yes
|
||||||
|
module qsort_module
|
||||||
|
use iso_c_binding
|
||||||
|
|
||||||
|
interface
|
||||||
|
<<replaced_f()>>
|
||||||
|
end interface
|
||||||
|
|
||||||
|
end module qsort_module
|
||||||
|
|
||||||
|
<<replaced_f2()>>
|
||||||
|
|
||||||
|
#+END_SRC
|
||||||
|
|
347
src/utils/qsort_module.f90
Normal file
347
src/utils/qsort_module.f90
Normal file
@ -0,0 +1,347 @@
|
|||||||
|
module qsort_module
|
||||||
|
use iso_c_binding
|
||||||
|
|
||||||
|
interface
|
||||||
|
|
||||||
|
subroutine i2sort_c(A, iorder, isize) bind(C, name="qsort_int16_t")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t), value :: isize
|
||||||
|
integer(c_int32_t) :: iorder(isize)
|
||||||
|
integer (c_int16_t) :: A(isize)
|
||||||
|
end subroutine i2sort_c
|
||||||
|
|
||||||
|
subroutine i2sort_noidx_c(A, isize) bind(C, name="qsort_int16_t_noidx")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t), value :: isize
|
||||||
|
integer (c_int16_t) :: A(isize)
|
||||||
|
end subroutine i2sort_noidx_c
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine i2sort_big_c(A, iorder, isize) bind(C, name="qsort_int16_t_big")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int64_t), value :: isize
|
||||||
|
integer(c_int64_t) :: iorder(isize)
|
||||||
|
integer (c_int16_t) :: A(isize)
|
||||||
|
end subroutine i2sort_big_c
|
||||||
|
|
||||||
|
subroutine i2sort_noidx_big_c(A, isize) bind(C, name="qsort_int16_t_noidx_big")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int64_t), value :: isize
|
||||||
|
integer (c_int16_t) :: A(isize)
|
||||||
|
end subroutine i2sort_noidx_big_c
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine isort_c(A, iorder, isize) bind(C, name="qsort_int32_t")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t), value :: isize
|
||||||
|
integer(c_int32_t) :: iorder(isize)
|
||||||
|
integer (c_int32_t) :: A(isize)
|
||||||
|
end subroutine isort_c
|
||||||
|
|
||||||
|
subroutine isort_noidx_c(A, isize) bind(C, name="qsort_int32_t_noidx")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t), value :: isize
|
||||||
|
integer (c_int32_t) :: A(isize)
|
||||||
|
end subroutine isort_noidx_c
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine isort_big_c(A, iorder, isize) bind(C, name="qsort_int32_t_big")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int64_t), value :: isize
|
||||||
|
integer(c_int64_t) :: iorder(isize)
|
||||||
|
integer (c_int32_t) :: A(isize)
|
||||||
|
end subroutine isort_big_c
|
||||||
|
|
||||||
|
subroutine isort_noidx_big_c(A, isize) bind(C, name="qsort_int32_t_noidx_big")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int64_t), value :: isize
|
||||||
|
integer (c_int32_t) :: A(isize)
|
||||||
|
end subroutine isort_noidx_big_c
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine i8sort_c(A, iorder, isize) bind(C, name="qsort_int64_t")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t), value :: isize
|
||||||
|
integer(c_int32_t) :: iorder(isize)
|
||||||
|
integer (c_int64_t) :: A(isize)
|
||||||
|
end subroutine i8sort_c
|
||||||
|
|
||||||
|
subroutine i8sort_noidx_c(A, isize) bind(C, name="qsort_int64_t_noidx")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t), value :: isize
|
||||||
|
integer (c_int64_t) :: A(isize)
|
||||||
|
end subroutine i8sort_noidx_c
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine i8sort_big_c(A, iorder, isize) bind(C, name="qsort_int64_t_big")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int64_t), value :: isize
|
||||||
|
integer(c_int64_t) :: iorder(isize)
|
||||||
|
integer (c_int64_t) :: A(isize)
|
||||||
|
end subroutine i8sort_big_c
|
||||||
|
|
||||||
|
subroutine i8sort_noidx_big_c(A, isize) bind(C, name="qsort_int64_t_noidx_big")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int64_t), value :: isize
|
||||||
|
integer (c_int64_t) :: A(isize)
|
||||||
|
end subroutine i8sort_noidx_big_c
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine dsort_c(A, iorder, isize) bind(C, name="qsort_double")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t), value :: isize
|
||||||
|
integer(c_int32_t) :: iorder(isize)
|
||||||
|
real (c_double) :: A(isize)
|
||||||
|
end subroutine dsort_c
|
||||||
|
|
||||||
|
subroutine dsort_noidx_c(A, isize) bind(C, name="qsort_double_noidx")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t), value :: isize
|
||||||
|
real (c_double) :: A(isize)
|
||||||
|
end subroutine dsort_noidx_c
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine dsort_big_c(A, iorder, isize) bind(C, name="qsort_double_big")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int64_t), value :: isize
|
||||||
|
integer(c_int64_t) :: iorder(isize)
|
||||||
|
real (c_double) :: A(isize)
|
||||||
|
end subroutine dsort_big_c
|
||||||
|
|
||||||
|
subroutine dsort_noidx_big_c(A, isize) bind(C, name="qsort_double_noidx_big")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int64_t), value :: isize
|
||||||
|
real (c_double) :: A(isize)
|
||||||
|
end subroutine dsort_noidx_big_c
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine sort_c(A, iorder, isize) bind(C, name="qsort_float")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t), value :: isize
|
||||||
|
integer(c_int32_t) :: iorder(isize)
|
||||||
|
real (c_float) :: A(isize)
|
||||||
|
end subroutine sort_c
|
||||||
|
|
||||||
|
subroutine sort_noidx_c(A, isize) bind(C, name="qsort_float_noidx")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t), value :: isize
|
||||||
|
real (c_float) :: A(isize)
|
||||||
|
end subroutine sort_noidx_c
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine sort_big_c(A, iorder, isize) bind(C, name="qsort_float_big")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int64_t), value :: isize
|
||||||
|
integer(c_int64_t) :: iorder(isize)
|
||||||
|
real (c_float) :: A(isize)
|
||||||
|
end subroutine sort_big_c
|
||||||
|
|
||||||
|
subroutine sort_noidx_big_c(A, isize) bind(C, name="qsort_float_noidx_big")
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int64_t), value :: isize
|
||||||
|
real (c_float) :: A(isize)
|
||||||
|
end subroutine sort_noidx_big_c
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
end interface
|
||||||
|
|
||||||
|
end module qsort_module
|
||||||
|
|
||||||
|
|
||||||
|
subroutine i2sort(A, iorder, isize)
|
||||||
|
use qsort_module
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t) :: isize
|
||||||
|
integer(c_int32_t) :: iorder(isize)
|
||||||
|
integer (c_int16_t) :: A(isize)
|
||||||
|
call i2sort_c(A, iorder, isize)
|
||||||
|
end subroutine i2sort
|
||||||
|
|
||||||
|
subroutine i2sort_noidx(A, isize)
|
||||||
|
use iso_c_binding
|
||||||
|
use qsort_module
|
||||||
|
integer(c_int32_t) :: isize
|
||||||
|
integer (c_int16_t) :: A(isize)
|
||||||
|
call i2sort_noidx_c(A, isize)
|
||||||
|
end subroutine i2sort_noidx
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine i2sort_big(A, iorder, isize)
|
||||||
|
use qsort_module
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int64_t) :: isize
|
||||||
|
integer(c_int64_t) :: iorder(isize)
|
||||||
|
integer (c_int16_t) :: A(isize)
|
||||||
|
call i2sort_big_c(A, iorder, isize)
|
||||||
|
end subroutine i2sort_big
|
||||||
|
|
||||||
|
subroutine i2sort_noidx_big(A, isize)
|
||||||
|
use iso_c_binding
|
||||||
|
use qsort_module
|
||||||
|
integer(c_int64_t) :: isize
|
||||||
|
integer (c_int16_t) :: A(isize)
|
||||||
|
call i2sort_noidx_big_c(A, isize)
|
||||||
|
end subroutine i2sort_noidx_big
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine isort(A, iorder, isize)
|
||||||
|
use qsort_module
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t) :: isize
|
||||||
|
integer(c_int32_t) :: iorder(isize)
|
||||||
|
integer (c_int32_t) :: A(isize)
|
||||||
|
call isort_c(A, iorder, isize)
|
||||||
|
end subroutine isort
|
||||||
|
|
||||||
|
subroutine isort_noidx(A, isize)
|
||||||
|
use iso_c_binding
|
||||||
|
use qsort_module
|
||||||
|
integer(c_int32_t) :: isize
|
||||||
|
integer (c_int32_t) :: A(isize)
|
||||||
|
call isort_noidx_c(A, isize)
|
||||||
|
end subroutine isort_noidx
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine isort_big(A, iorder, isize)
|
||||||
|
use qsort_module
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int64_t) :: isize
|
||||||
|
integer(c_int64_t) :: iorder(isize)
|
||||||
|
integer (c_int32_t) :: A(isize)
|
||||||
|
call isort_big_c(A, iorder, isize)
|
||||||
|
end subroutine isort_big
|
||||||
|
|
||||||
|
subroutine isort_noidx_big(A, isize)
|
||||||
|
use iso_c_binding
|
||||||
|
use qsort_module
|
||||||
|
integer(c_int64_t) :: isize
|
||||||
|
integer (c_int32_t) :: A(isize)
|
||||||
|
call isort_noidx_big_c(A, isize)
|
||||||
|
end subroutine isort_noidx_big
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine i8sort(A, iorder, isize)
|
||||||
|
use qsort_module
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t) :: isize
|
||||||
|
integer(c_int32_t) :: iorder(isize)
|
||||||
|
integer (c_int64_t) :: A(isize)
|
||||||
|
call i8sort_c(A, iorder, isize)
|
||||||
|
end subroutine i8sort
|
||||||
|
|
||||||
|
subroutine i8sort_noidx(A, isize)
|
||||||
|
use iso_c_binding
|
||||||
|
use qsort_module
|
||||||
|
integer(c_int32_t) :: isize
|
||||||
|
integer (c_int64_t) :: A(isize)
|
||||||
|
call i8sort_noidx_c(A, isize)
|
||||||
|
end subroutine i8sort_noidx
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine i8sort_big(A, iorder, isize)
|
||||||
|
use qsort_module
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int64_t) :: isize
|
||||||
|
integer(c_int64_t) :: iorder(isize)
|
||||||
|
integer (c_int64_t) :: A(isize)
|
||||||
|
call i8sort_big_c(A, iorder, isize)
|
||||||
|
end subroutine i8sort_big
|
||||||
|
|
||||||
|
subroutine i8sort_noidx_big(A, isize)
|
||||||
|
use iso_c_binding
|
||||||
|
use qsort_module
|
||||||
|
integer(c_int64_t) :: isize
|
||||||
|
integer (c_int64_t) :: A(isize)
|
||||||
|
call i8sort_noidx_big_c(A, isize)
|
||||||
|
end subroutine i8sort_noidx_big
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine dsort(A, iorder, isize)
|
||||||
|
use qsort_module
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t) :: isize
|
||||||
|
integer(c_int32_t) :: iorder(isize)
|
||||||
|
real (c_double) :: A(isize)
|
||||||
|
call dsort_c(A, iorder, isize)
|
||||||
|
end subroutine dsort
|
||||||
|
|
||||||
|
subroutine dsort_noidx(A, isize)
|
||||||
|
use iso_c_binding
|
||||||
|
use qsort_module
|
||||||
|
integer(c_int32_t) :: isize
|
||||||
|
real (c_double) :: A(isize)
|
||||||
|
call dsort_noidx_c(A, isize)
|
||||||
|
end subroutine dsort_noidx
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine dsort_big(A, iorder, isize)
|
||||||
|
use qsort_module
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int64_t) :: isize
|
||||||
|
integer(c_int64_t) :: iorder(isize)
|
||||||
|
real (c_double) :: A(isize)
|
||||||
|
call dsort_big_c(A, iorder, isize)
|
||||||
|
end subroutine dsort_big
|
||||||
|
|
||||||
|
subroutine dsort_noidx_big(A, isize)
|
||||||
|
use iso_c_binding
|
||||||
|
use qsort_module
|
||||||
|
integer(c_int64_t) :: isize
|
||||||
|
real (c_double) :: A(isize)
|
||||||
|
call dsort_noidx_big_c(A, isize)
|
||||||
|
end subroutine dsort_noidx_big
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine sort(A, iorder, isize)
|
||||||
|
use qsort_module
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int32_t) :: isize
|
||||||
|
integer(c_int32_t) :: iorder(isize)
|
||||||
|
real (c_float) :: A(isize)
|
||||||
|
call sort_c(A, iorder, isize)
|
||||||
|
end subroutine sort
|
||||||
|
|
||||||
|
subroutine sort_noidx(A, isize)
|
||||||
|
use iso_c_binding
|
||||||
|
use qsort_module
|
||||||
|
integer(c_int32_t) :: isize
|
||||||
|
real (c_float) :: A(isize)
|
||||||
|
call sort_noidx_c(A, isize)
|
||||||
|
end subroutine sort_noidx
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
subroutine sort_big(A, iorder, isize)
|
||||||
|
use qsort_module
|
||||||
|
use iso_c_binding
|
||||||
|
integer(c_int64_t) :: isize
|
||||||
|
integer(c_int64_t) :: iorder(isize)
|
||||||
|
real (c_float) :: A(isize)
|
||||||
|
call sort_big_c(A, iorder, isize)
|
||||||
|
end subroutine sort_big
|
||||||
|
|
||||||
|
subroutine sort_noidx_big(A, isize)
|
||||||
|
use iso_c_binding
|
||||||
|
use qsort_module
|
||||||
|
integer(c_int64_t) :: isize
|
||||||
|
real (c_float) :: A(isize)
|
||||||
|
call sort_noidx_big_c(A, isize)
|
||||||
|
end subroutine sort_noidx_big
|
@ -1,222 +1,4 @@
|
|||||||
BEGIN_TEMPLATE
|
BEGIN_TEMPLATE
|
||||||
subroutine insertion_$Xsort (x,iorder,isize)
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! Sort array x(isize) using the insertion sort algorithm.
|
|
||||||
! iorder in input should be (1,2,3,...,isize), and in output
|
|
||||||
! contains the new order of the elements.
|
|
||||||
END_DOC
|
|
||||||
integer,intent(in) :: isize
|
|
||||||
$type,intent(inout) :: x(isize)
|
|
||||||
integer,intent(inout) :: iorder(isize)
|
|
||||||
$type :: xtmp
|
|
||||||
integer :: i, i0, j, jmax
|
|
||||||
|
|
||||||
do i=2,isize
|
|
||||||
xtmp = x(i)
|
|
||||||
i0 = iorder(i)
|
|
||||||
j=i-1
|
|
||||||
do while (j>0)
|
|
||||||
if ((x(j) <= xtmp)) exit
|
|
||||||
x(j+1) = x(j)
|
|
||||||
iorder(j+1) = iorder(j)
|
|
||||||
j=j-1
|
|
||||||
enddo
|
|
||||||
x(j+1) = xtmp
|
|
||||||
iorder(j+1) = i0
|
|
||||||
enddo
|
|
||||||
end subroutine insertion_$Xsort
|
|
||||||
|
|
||||||
subroutine quick_$Xsort(x, iorder, isize)
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! Sort array x(isize) using the quicksort algorithm.
|
|
||||||
! iorder in input should be (1,2,3,...,isize), and in output
|
|
||||||
! contains the new order of the elements.
|
|
||||||
END_DOC
|
|
||||||
integer,intent(in) :: isize
|
|
||||||
$type,intent(inout) :: x(isize)
|
|
||||||
integer,intent(inout) :: iorder(isize)
|
|
||||||
integer, external :: omp_get_num_threads
|
|
||||||
call rec_$X_quicksort(x,iorder,isize,1,isize,nproc)
|
|
||||||
end
|
|
||||||
|
|
||||||
recursive subroutine rec_$X_quicksort(x, iorder, isize, first, last, level)
|
|
||||||
implicit none
|
|
||||||
integer, intent(in) :: isize, first, last, level
|
|
||||||
integer,intent(inout) :: iorder(isize)
|
|
||||||
$type, intent(inout) :: x(isize)
|
|
||||||
$type :: c, tmp
|
|
||||||
integer :: itmp
|
|
||||||
integer :: i, j
|
|
||||||
|
|
||||||
if(isize<2)return
|
|
||||||
|
|
||||||
c = x( shiftr(first+last,1) )
|
|
||||||
i = first
|
|
||||||
j = last
|
|
||||||
do
|
|
||||||
do while (x(i) < c)
|
|
||||||
i=i+1
|
|
||||||
end do
|
|
||||||
do while (c < x(j))
|
|
||||||
j=j-1
|
|
||||||
end do
|
|
||||||
if (i >= j) exit
|
|
||||||
tmp = x(i)
|
|
||||||
x(i) = x(j)
|
|
||||||
x(j) = tmp
|
|
||||||
itmp = iorder(i)
|
|
||||||
iorder(i) = iorder(j)
|
|
||||||
iorder(j) = itmp
|
|
||||||
i=i+1
|
|
||||||
j=j-1
|
|
||||||
enddo
|
|
||||||
if ( ((i-first <= 10000).and.(last-j <= 10000)).or.(level<=0) ) then
|
|
||||||
if (first < i-1) then
|
|
||||||
call rec_$X_quicksort(x, iorder, isize, first, i-1,level/2)
|
|
||||||
endif
|
|
||||||
if (j+1 < last) then
|
|
||||||
call rec_$X_quicksort(x, iorder, isize, j+1, last,level/2)
|
|
||||||
endif
|
|
||||||
else
|
|
||||||
if (first < i-1) then
|
|
||||||
call rec_$X_quicksort(x, iorder, isize, first, i-1,level/2)
|
|
||||||
endif
|
|
||||||
if (j+1 < last) then
|
|
||||||
call rec_$X_quicksort(x, iorder, isize, j+1, last,level/2)
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
end
|
|
||||||
|
|
||||||
subroutine heap_$Xsort(x,iorder,isize)
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! Sort array x(isize) using the heap sort algorithm.
|
|
||||||
! iorder in input should be (1,2,3,...,isize), and in output
|
|
||||||
! contains the new order of the elements.
|
|
||||||
END_DOC
|
|
||||||
integer,intent(in) :: isize
|
|
||||||
$type,intent(inout) :: x(isize)
|
|
||||||
integer,intent(inout) :: iorder(isize)
|
|
||||||
|
|
||||||
integer :: i, k, j, l, i0
|
|
||||||
$type :: xtemp
|
|
||||||
|
|
||||||
l = isize/2+1
|
|
||||||
k = isize
|
|
||||||
do while (.True.)
|
|
||||||
if (l>1) then
|
|
||||||
l=l-1
|
|
||||||
xtemp = x(l)
|
|
||||||
i0 = iorder(l)
|
|
||||||
else
|
|
||||||
xtemp = x(k)
|
|
||||||
i0 = iorder(k)
|
|
||||||
x(k) = x(1)
|
|
||||||
iorder(k) = iorder(1)
|
|
||||||
k = k-1
|
|
||||||
if (k == 1) then
|
|
||||||
x(1) = xtemp
|
|
||||||
iorder(1) = i0
|
|
||||||
exit
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
i=l
|
|
||||||
j = shiftl(l,1)
|
|
||||||
do while (j<k)
|
|
||||||
if ( x(j) < x(j+1) ) then
|
|
||||||
j=j+1
|
|
||||||
endif
|
|
||||||
if (xtemp < x(j)) then
|
|
||||||
x(i) = x(j)
|
|
||||||
iorder(i) = iorder(j)
|
|
||||||
i = j
|
|
||||||
j = shiftl(j,1)
|
|
||||||
else
|
|
||||||
j = k+1
|
|
||||||
endif
|
|
||||||
enddo
|
|
||||||
if (j==k) then
|
|
||||||
if (xtemp < x(j)) then
|
|
||||||
x(i) = x(j)
|
|
||||||
iorder(i) = iorder(j)
|
|
||||||
i = j
|
|
||||||
j = shiftl(j,1)
|
|
||||||
else
|
|
||||||
j = k+1
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
x(i) = xtemp
|
|
||||||
iorder(i) = i0
|
|
||||||
enddo
|
|
||||||
end subroutine heap_$Xsort
|
|
||||||
|
|
||||||
subroutine heap_$Xsort_big(x,iorder,isize)
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! Sort array x(isize) using the heap sort algorithm.
|
|
||||||
! iorder in input should be (1,2,3,...,isize), and in output
|
|
||||||
! contains the new order of the elements.
|
|
||||||
! This is a version for very large arrays where the indices need
|
|
||||||
! to be in integer*8 format
|
|
||||||
END_DOC
|
|
||||||
integer*8,intent(in) :: isize
|
|
||||||
$type,intent(inout) :: x(isize)
|
|
||||||
integer*8,intent(inout) :: iorder(isize)
|
|
||||||
|
|
||||||
integer*8 :: i, k, j, l, i0
|
|
||||||
$type :: xtemp
|
|
||||||
|
|
||||||
l = isize/2+1
|
|
||||||
k = isize
|
|
||||||
do while (.True.)
|
|
||||||
if (l>1) then
|
|
||||||
l=l-1
|
|
||||||
xtemp = x(l)
|
|
||||||
i0 = iorder(l)
|
|
||||||
else
|
|
||||||
xtemp = x(k)
|
|
||||||
i0 = iorder(k)
|
|
||||||
x(k) = x(1)
|
|
||||||
iorder(k) = iorder(1)
|
|
||||||
k = k-1
|
|
||||||
if (k == 1) then
|
|
||||||
x(1) = xtemp
|
|
||||||
iorder(1) = i0
|
|
||||||
exit
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
i=l
|
|
||||||
j = shiftl(l,1)
|
|
||||||
do while (j<k)
|
|
||||||
if ( x(j) < x(j+1) ) then
|
|
||||||
j=j+1
|
|
||||||
endif
|
|
||||||
if (xtemp < x(j)) then
|
|
||||||
x(i) = x(j)
|
|
||||||
iorder(i) = iorder(j)
|
|
||||||
i = j
|
|
||||||
j = shiftl(j,1)
|
|
||||||
else
|
|
||||||
j = k+1
|
|
||||||
endif
|
|
||||||
enddo
|
|
||||||
if (j==k) then
|
|
||||||
if (xtemp < x(j)) then
|
|
||||||
x(i) = x(j)
|
|
||||||
iorder(i) = iorder(j)
|
|
||||||
i = j
|
|
||||||
j = shiftl(j,1)
|
|
||||||
else
|
|
||||||
j = k+1
|
|
||||||
endif
|
|
||||||
endif
|
|
||||||
x(i) = xtemp
|
|
||||||
iorder(i) = i0
|
|
||||||
enddo
|
|
||||||
|
|
||||||
end subroutine heap_$Xsort_big
|
|
||||||
|
|
||||||
subroutine sorted_$Xnumber(x,isize,n)
|
subroutine sorted_$Xnumber(x,isize,n)
|
||||||
implicit none
|
implicit none
|
||||||
@ -250,220 +32,6 @@ SUBST [ X, type ]
|
|||||||
END_TEMPLATE
|
END_TEMPLATE
|
||||||
|
|
||||||
|
|
||||||
!---------------------- INTEL
|
|
||||||
IRP_IF INTEL
|
|
||||||
|
|
||||||
BEGIN_TEMPLATE
|
|
||||||
subroutine $Xsort(x,iorder,isize)
|
|
||||||
use intel
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! Sort array x(isize).
|
|
||||||
! iorder in input should be (1,2,3,...,isize), and in output
|
|
||||||
! contains the new order of the elements.
|
|
||||||
END_DOC
|
|
||||||
integer,intent(in) :: isize
|
|
||||||
$type,intent(inout) :: x(isize)
|
|
||||||
integer,intent(inout) :: iorder(isize)
|
|
||||||
integer :: n
|
|
||||||
character, allocatable :: tmp(:)
|
|
||||||
if (isize < 2) return
|
|
||||||
call ippsSortRadixIndexGetBufferSize(isize, $ippsz, n)
|
|
||||||
allocate(tmp(n))
|
|
||||||
call ippsSortRadixIndexAscend_$ityp(x, $n, iorder, isize, tmp)
|
|
||||||
deallocate(tmp)
|
|
||||||
iorder(1:isize) = iorder(1:isize)+1
|
|
||||||
call $Xset_order(x,iorder,isize)
|
|
||||||
end
|
|
||||||
|
|
||||||
subroutine $Xsort_noidx(x,isize)
|
|
||||||
use intel
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! Sort array x(isize).
|
|
||||||
! iorder in input should be (1,2,3,...,isize), and in output
|
|
||||||
! contains the new order of the elements.
|
|
||||||
END_DOC
|
|
||||||
integer,intent(in) :: isize
|
|
||||||
$type,intent(inout) :: x(isize)
|
|
||||||
integer :: n
|
|
||||||
character, allocatable :: tmp(:)
|
|
||||||
if (isize < 2) return
|
|
||||||
call ippsSortRadixIndexGetBufferSize(isize, $ippsz, n)
|
|
||||||
allocate(tmp(n))
|
|
||||||
call ippsSortRadixAscend_$ityp_I(x, isize, tmp)
|
|
||||||
deallocate(tmp)
|
|
||||||
end
|
|
||||||
|
|
||||||
SUBST [ X, type, ityp, n, ippsz ]
|
|
||||||
; real ; 32f ; 4 ; 13 ;;
|
|
||||||
i ; integer ; 32s ; 4 ; 11 ;;
|
|
||||||
i2 ; integer*2 ; 16s ; 2 ; 7 ;;
|
|
||||||
END_TEMPLATE
|
|
||||||
|
|
||||||
BEGIN_TEMPLATE
|
|
||||||
|
|
||||||
subroutine $Xsort(x,iorder,isize)
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! Sort array x(isize).
|
|
||||||
! iorder in input should be (1,2,3,...,isize), and in output
|
|
||||||
! contains the new order of the elements.
|
|
||||||
END_DOC
|
|
||||||
integer,intent(in) :: isize
|
|
||||||
$type,intent(inout) :: x(isize)
|
|
||||||
integer,intent(inout) :: iorder(isize)
|
|
||||||
integer :: n
|
|
||||||
if (isize < 2) then
|
|
||||||
return
|
|
||||||
endif
|
|
||||||
! call sorted_$Xnumber(x,isize,n)
|
|
||||||
! if (isize == n) then
|
|
||||||
! return
|
|
||||||
! endif
|
|
||||||
if ( isize < 32) then
|
|
||||||
call insertion_$Xsort(x,iorder,isize)
|
|
||||||
else
|
|
||||||
! call heap_$Xsort(x,iorder,isize)
|
|
||||||
call quick_$Xsort(x,iorder,isize)
|
|
||||||
endif
|
|
||||||
end subroutine $Xsort
|
|
||||||
|
|
||||||
SUBST [ X, type ]
|
|
||||||
d ; double precision ;;
|
|
||||||
END_TEMPLATE
|
|
||||||
|
|
||||||
BEGIN_TEMPLATE
|
|
||||||
|
|
||||||
subroutine $Xsort(x,iorder,isize)
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! Sort array x(isize).
|
|
||||||
! iorder in input should be (1,2,3,...,isize), and in output
|
|
||||||
! contains the new order of the elements.
|
|
||||||
END_DOC
|
|
||||||
integer,intent(in) :: isize
|
|
||||||
$type,intent(inout) :: x(isize)
|
|
||||||
integer,intent(inout) :: iorder(isize)
|
|
||||||
integer :: n
|
|
||||||
if (isize < 2) then
|
|
||||||
return
|
|
||||||
endif
|
|
||||||
call sorted_$Xnumber(x,isize,n)
|
|
||||||
if (isize == n) then
|
|
||||||
return
|
|
||||||
endif
|
|
||||||
if ( isize < 32) then
|
|
||||||
call insertion_$Xsort(x,iorder,isize)
|
|
||||||
else
|
|
||||||
call $Xradix_sort(x,iorder,isize,-1)
|
|
||||||
endif
|
|
||||||
end subroutine $Xsort
|
|
||||||
|
|
||||||
SUBST [ X, type ]
|
|
||||||
i8 ; integer*8 ;;
|
|
||||||
END_TEMPLATE
|
|
||||||
|
|
||||||
!---------------------- END INTEL
|
|
||||||
IRP_ELSE
|
|
||||||
!---------------------- NON-INTEL
|
|
||||||
BEGIN_TEMPLATE
|
|
||||||
|
|
||||||
subroutine $Xsort_noidx(x,isize)
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! Sort array x(isize).
|
|
||||||
END_DOC
|
|
||||||
integer,intent(in) :: isize
|
|
||||||
$type,intent(inout) :: x(isize)
|
|
||||||
integer, allocatable :: iorder(:)
|
|
||||||
integer :: i
|
|
||||||
allocate(iorder(isize))
|
|
||||||
do i=1,isize
|
|
||||||
iorder(i)=i
|
|
||||||
enddo
|
|
||||||
call $Xsort(x,iorder,isize)
|
|
||||||
deallocate(iorder)
|
|
||||||
end subroutine $Xsort_noidx
|
|
||||||
|
|
||||||
SUBST [ X, type ]
|
|
||||||
; real ;;
|
|
||||||
d ; double precision ;;
|
|
||||||
i ; integer ;;
|
|
||||||
i8 ; integer*8 ;;
|
|
||||||
i2 ; integer*2 ;;
|
|
||||||
END_TEMPLATE
|
|
||||||
|
|
||||||
BEGIN_TEMPLATE
|
|
||||||
|
|
||||||
subroutine $Xsort(x,iorder,isize)
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! Sort array x(isize).
|
|
||||||
! iorder in input should be (1,2,3,...,isize), and in output
|
|
||||||
! contains the new order of the elements.
|
|
||||||
END_DOC
|
|
||||||
integer,intent(in) :: isize
|
|
||||||
$type,intent(inout) :: x(isize)
|
|
||||||
integer,intent(inout) :: iorder(isize)
|
|
||||||
integer :: n
|
|
||||||
if (isize < 2) then
|
|
||||||
return
|
|
||||||
endif
|
|
||||||
! call sorted_$Xnumber(x,isize,n)
|
|
||||||
! if (isize == n) then
|
|
||||||
! return
|
|
||||||
! endif
|
|
||||||
if ( isize < 32) then
|
|
||||||
call insertion_$Xsort(x,iorder,isize)
|
|
||||||
else
|
|
||||||
! call heap_$Xsort(x,iorder,isize)
|
|
||||||
call quick_$Xsort(x,iorder,isize)
|
|
||||||
endif
|
|
||||||
end subroutine $Xsort
|
|
||||||
|
|
||||||
SUBST [ X, type ]
|
|
||||||
; real ;;
|
|
||||||
d ; double precision ;;
|
|
||||||
END_TEMPLATE
|
|
||||||
|
|
||||||
BEGIN_TEMPLATE
|
|
||||||
|
|
||||||
subroutine $Xsort(x,iorder,isize)
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! Sort array x(isize).
|
|
||||||
! iorder in input should be (1,2,3,...,isize), and in output
|
|
||||||
! contains the new order of the elements.
|
|
||||||
END_DOC
|
|
||||||
integer,intent(in) :: isize
|
|
||||||
$type,intent(inout) :: x(isize)
|
|
||||||
integer,intent(inout) :: iorder(isize)
|
|
||||||
integer :: n
|
|
||||||
if (isize < 2) then
|
|
||||||
return
|
|
||||||
endif
|
|
||||||
call sorted_$Xnumber(x,isize,n)
|
|
||||||
if (isize == n) then
|
|
||||||
return
|
|
||||||
endif
|
|
||||||
if ( isize < 32) then
|
|
||||||
call insertion_$Xsort(x,iorder,isize)
|
|
||||||
else
|
|
||||||
call $Xradix_sort(x,iorder,isize,-1)
|
|
||||||
endif
|
|
||||||
end subroutine $Xsort
|
|
||||||
|
|
||||||
SUBST [ X, type ]
|
|
||||||
i ; integer ;;
|
|
||||||
i8 ; integer*8 ;;
|
|
||||||
i2 ; integer*2 ;;
|
|
||||||
END_TEMPLATE
|
|
||||||
|
|
||||||
IRP_ENDIF
|
|
||||||
!---------------------- END NON-INTEL
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
BEGIN_TEMPLATE
|
BEGIN_TEMPLATE
|
||||||
subroutine $Xset_order(x,iorder,isize)
|
subroutine $Xset_order(x,iorder,isize)
|
||||||
@ -489,47 +57,6 @@ BEGIN_TEMPLATE
|
|||||||
deallocate(xtmp)
|
deallocate(xtmp)
|
||||||
end
|
end
|
||||||
|
|
||||||
SUBST [ X, type ]
|
|
||||||
; real ;;
|
|
||||||
d ; double precision ;;
|
|
||||||
i ; integer ;;
|
|
||||||
i8; integer*8 ;;
|
|
||||||
i2; integer*2 ;;
|
|
||||||
END_TEMPLATE
|
|
||||||
|
|
||||||
|
|
||||||
BEGIN_TEMPLATE
|
|
||||||
subroutine insertion_$Xsort_big (x,iorder,isize)
|
|
||||||
implicit none
|
|
||||||
BEGIN_DOC
|
|
||||||
! Sort array x(isize) using the insertion sort algorithm.
|
|
||||||
! iorder in input should be (1,2,3,...,isize), and in output
|
|
||||||
! contains the new order of the elements.
|
|
||||||
! This is a version for very large arrays where the indices need
|
|
||||||
! to be in integer*8 format
|
|
||||||
END_DOC
|
|
||||||
integer*8,intent(in) :: isize
|
|
||||||
$type,intent(inout) :: x(isize)
|
|
||||||
integer*8,intent(inout) :: iorder(isize)
|
|
||||||
$type :: xtmp
|
|
||||||
integer*8 :: i, i0, j, jmax
|
|
||||||
|
|
||||||
do i=2_8,isize
|
|
||||||
xtmp = x(i)
|
|
||||||
i0 = iorder(i)
|
|
||||||
j = i-1_8
|
|
||||||
do while (j>0_8)
|
|
||||||
if (x(j)<=xtmp) exit
|
|
||||||
x(j+1_8) = x(j)
|
|
||||||
iorder(j+1_8) = iorder(j)
|
|
||||||
j = j-1_8
|
|
||||||
enddo
|
|
||||||
x(j+1_8) = xtmp
|
|
||||||
iorder(j+1_8) = i0
|
|
||||||
enddo
|
|
||||||
|
|
||||||
end subroutine insertion_$Xsort_big
|
|
||||||
|
|
||||||
subroutine $Xset_order_big(x,iorder,isize)
|
subroutine $Xset_order_big(x,iorder,isize)
|
||||||
implicit none
|
implicit none
|
||||||
BEGIN_DOC
|
BEGIN_DOC
|
||||||
@ -563,223 +90,3 @@ SUBST [ X, type ]
|
|||||||
END_TEMPLATE
|
END_TEMPLATE
|
||||||
|
|
||||||
|
|
||||||
BEGIN_TEMPLATE
|
|
||||||
|
|
||||||
recursive subroutine $Xradix_sort$big(x,iorder,isize,iradix)
|
|
||||||
implicit none
|
|
||||||
|
|
||||||
BEGIN_DOC
|
|
||||||
! Sort integer array x(isize) using the radix sort algorithm.
|
|
||||||
! iorder in input should be (1,2,3,...,isize), and in output
|
|
||||||
! contains the new order of the elements.
|
|
||||||
! iradix should be -1 in input.
|
|
||||||
END_DOC
|
|
||||||
integer*$int_type, intent(in) :: isize
|
|
||||||
integer*$int_type, intent(inout) :: iorder(isize)
|
|
||||||
integer*$type, intent(inout) :: x(isize)
|
|
||||||
integer, intent(in) :: iradix
|
|
||||||
integer :: iradix_new
|
|
||||||
integer*$type, allocatable :: x2(:), x1(:)
|
|
||||||
integer*$type :: i4 ! data type
|
|
||||||
integer*$int_type, allocatable :: iorder1(:),iorder2(:)
|
|
||||||
integer*$int_type :: i0, i1, i2, i3, i ! index type
|
|
||||||
integer*$type :: mask
|
|
||||||
integer :: err
|
|
||||||
!DIR$ ATTRIBUTES ALIGN : 128 :: iorder1,iorder2, x2, x1
|
|
||||||
|
|
||||||
if (isize < 2) then
|
|
||||||
return
|
|
||||||
endif
|
|
||||||
|
|
||||||
if (iradix == -1) then ! Sort Positive and negative
|
|
||||||
|
|
||||||
allocate(x1(isize),iorder1(isize), x2(isize),iorder2(isize),stat=err)
|
|
||||||
if (err /= 0) then
|
|
||||||
print *, irp_here, ': Unable to allocate arrays'
|
|
||||||
stop
|
|
||||||
endif
|
|
||||||
|
|
||||||
i1=1_$int_type
|
|
||||||
i2=1_$int_type
|
|
||||||
do i=1_$int_type,isize
|
|
||||||
if (x(i) < 0_$type) then
|
|
||||||
iorder1(i1) = iorder(i)
|
|
||||||
x1(i1) = -x(i)
|
|
||||||
i1 = i1+1_$int_type
|
|
||||||
else
|
|
||||||
iorder2(i2) = iorder(i)
|
|
||||||
x2(i2) = x(i)
|
|
||||||
i2 = i2+1_$int_type
|
|
||||||
endif
|
|
||||||
enddo
|
|
||||||
i1=i1-1_$int_type
|
|
||||||
i2=i2-1_$int_type
|
|
||||||
|
|
||||||
do i=1_$int_type,i2
|
|
||||||
iorder(i1+i) = iorder2(i)
|
|
||||||
x(i1+i) = x2(i)
|
|
||||||
enddo
|
|
||||||
deallocate(x2,iorder2,stat=err)
|
|
||||||
if (err /= 0) then
|
|
||||||
print *, irp_here, ': Unable to deallocate arrays x2, iorder2'
|
|
||||||
stop
|
|
||||||
endif
|
|
||||||
|
|
||||||
|
|
||||||
if (i1 > 1_$int_type) then
|
|
||||||
call $Xradix_sort$big(x1,iorder1,i1,-2)
|
|
||||||
do i=1_$int_type,i1
|
|
||||||
x(i) = -x1(1_$int_type+i1-i)
|
|
||||||
iorder(i) = iorder1(1_$int_type+i1-i)
|
|
||||||
enddo
|
|
||||||
endif
|
|
||||||
|
|
||||||
if (i2>1_$int_type) then
|
|
||||||
call $Xradix_sort$big(x(i1+1_$int_type),iorder(i1+1_$int_type),i2,-2)
|
|
||||||
endif
|
|
||||||
|
|
||||||
deallocate(x1,iorder1,stat=err)
|
|
||||||
if (err /= 0) then
|
|
||||||
print *, irp_here, ': Unable to deallocate arrays x1, iorder1'
|
|
||||||
stop
|
|
||||||
endif
|
|
||||||
return
|
|
||||||
|
|
||||||
else if (iradix == -2) then ! Positive
|
|
||||||
|
|
||||||
! Find most significant bit
|
|
||||||
|
|
||||||
i0 = 0_$int_type
|
|
||||||
i4 = maxval(x)
|
|
||||||
|
|
||||||
iradix_new = max($integer_size-1-leadz(i4),1)
|
|
||||||
mask = ibset(0_$type,iradix_new)
|
|
||||||
|
|
||||||
allocate(x1(isize),iorder1(isize), x2(isize),iorder2(isize),stat=err)
|
|
||||||
if (err /= 0) then
|
|
||||||
print *, irp_here, ': Unable to allocate arrays'
|
|
||||||
stop
|
|
||||||
endif
|
|
||||||
|
|
||||||
i1=1_$int_type
|
|
||||||
i2=1_$int_type
|
|
||||||
|
|
||||||
do i=1_$int_type,isize
|
|
||||||
if (iand(mask,x(i)) == 0_$type) then
|
|
||||||
iorder1(i1) = iorder(i)
|
|
||||||
x1(i1) = x(i)
|
|
||||||
i1 = i1+1_$int_type
|
|
||||||
else
|
|
||||||
iorder2(i2) = iorder(i)
|
|
||||||
x2(i2) = x(i)
|
|
||||||
i2 = i2+1_$int_type
|
|
||||||
endif
|
|
||||||
enddo
|
|
||||||
i1=i1-1_$int_type
|
|
||||||
i2=i2-1_$int_type
|
|
||||||
|
|
||||||
do i=1_$int_type,i1
|
|
||||||
iorder(i0+i) = iorder1(i)
|
|
||||||
x(i0+i) = x1(i)
|
|
||||||
enddo
|
|
||||||
i0 = i0+i1
|
|
||||||
i3 = i0
|
|
||||||
deallocate(x1,iorder1,stat=err)
|
|
||||||
if (err /= 0) then
|
|
||||||
print *, irp_here, ': Unable to deallocate arrays x1, iorder1'
|
|
||||||
stop
|
|
||||||
endif
|
|
||||||
|
|
||||||
|
|
||||||
do i=1_$int_type,i2
|
|
||||||
iorder(i0+i) = iorder2(i)
|
|
||||||
x(i0+i) = x2(i)
|
|
||||||
enddo
|
|
||||||
i0 = i0+i2
|
|
||||||
deallocate(x2,iorder2,stat=err)
|
|
||||||
if (err /= 0) then
|
|
||||||
print *, irp_here, ': Unable to deallocate arrays x2, iorder2'
|
|
||||||
stop
|
|
||||||
endif
|
|
||||||
|
|
||||||
|
|
||||||
if (i3>1_$int_type) then
|
|
||||||
call $Xradix_sort$big(x,iorder,i3,iradix_new-1)
|
|
||||||
endif
|
|
||||||
|
|
||||||
if (isize-i3>1_$int_type) then
|
|
||||||
call $Xradix_sort$big(x(i3+1_$int_type),iorder(i3+1_$int_type),isize-i3,iradix_new-1)
|
|
||||||
endif
|
|
||||||
|
|
||||||
return
|
|
||||||
endif
|
|
||||||
|
|
||||||
ASSERT (iradix >= 0)
|
|
||||||
|
|
||||||
if (isize < 48) then
|
|
||||||
call insertion_$Xsort$big(x,iorder,isize)
|
|
||||||
return
|
|
||||||
endif
|
|
||||||
|
|
||||||
|
|
||||||
allocate(x2(isize),iorder2(isize),stat=err)
|
|
||||||
if (err /= 0) then
|
|
||||||
print *, irp_here, ': Unable to allocate arrays x1, iorder1'
|
|
||||||
stop
|
|
||||||
endif
|
|
||||||
|
|
||||||
|
|
||||||
mask = ibset(0_$type,iradix)
|
|
||||||
i0=1_$int_type
|
|
||||||
i1=1_$int_type
|
|
||||||
|
|
||||||
do i=1_$int_type,isize
|
|
||||||
if (iand(mask,x(i)) == 0_$type) then
|
|
||||||
iorder(i0) = iorder(i)
|
|
||||||
x(i0) = x(i)
|
|
||||||
i0 = i0+1_$int_type
|
|
||||||
else
|
|
||||||
iorder2(i1) = iorder(i)
|
|
||||||
x2(i1) = x(i)
|
|
||||||
i1 = i1+1_$int_type
|
|
||||||
endif
|
|
||||||
enddo
|
|
||||||
i0=i0-1_$int_type
|
|
||||||
i1=i1-1_$int_type
|
|
||||||
|
|
||||||
do i=1_$int_type,i1
|
|
||||||
iorder(i0+i) = iorder2(i)
|
|
||||||
x(i0+i) = x2(i)
|
|
||||||
enddo
|
|
||||||
|
|
||||||
deallocate(x2,iorder2,stat=err)
|
|
||||||
if (err /= 0) then
|
|
||||||
print *, irp_here, ': Unable to allocate arrays x2, iorder2'
|
|
||||||
stop
|
|
||||||
endif
|
|
||||||
|
|
||||||
|
|
||||||
if (iradix == 0) then
|
|
||||||
return
|
|
||||||
endif
|
|
||||||
|
|
||||||
|
|
||||||
if (i1>1_$int_type) then
|
|
||||||
call $Xradix_sort$big(x(i0+1_$int_type),iorder(i0+1_$int_type),i1,iradix-1)
|
|
||||||
endif
|
|
||||||
if (i0>1) then
|
|
||||||
call $Xradix_sort$big(x,iorder,i0,iradix-1)
|
|
||||||
endif
|
|
||||||
|
|
||||||
end
|
|
||||||
|
|
||||||
SUBST [ X, type, integer_size, is_big, big, int_type ]
|
|
||||||
i ; 4 ; 32 ; .False. ; ; 4 ;;
|
|
||||||
i8 ; 8 ; 64 ; .False. ; ; 4 ;;
|
|
||||||
i2 ; 2 ; 16 ; .False. ; ; 4 ;;
|
|
||||||
i ; 4 ; 32 ; .True. ; _big ; 8 ;;
|
|
||||||
i8 ; 8 ; 64 ; .True. ; _big ; 8 ;;
|
|
||||||
END_TEMPLATE
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user