9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-03 09:05:39 +01:00
This commit is contained in:
eginer 2024-12-13 17:36:19 +01:00
commit b17934d604
7 changed files with 169 additions and 94 deletions

2
configure vendored
View File

@ -9,7 +9,7 @@ echo "QP_ROOT="$QP_ROOT
unset CC unset CC
unset CCXX unset CCXX
TREXIO_VERSION=2.4.2 TREXIO_VERSION=2.5.0
# Force GCC instead of ICC for dependencies # Force GCC instead of ICC for dependencies
export CC=gcc export CC=gcc

View File

@ -160,7 +160,6 @@ def write_ezfio(trexio_filename, filename):
ezfio.set_basis_shell_ang_mom(ang_mom) ezfio.set_basis_shell_ang_mom(ang_mom)
ezfio.set_basis_basis_nucleus_index([ x+1 for x in nucl_index ]) ezfio.set_basis_basis_nucleus_index([ x+1 for x in nucl_index ])
ezfio.set_basis_prim_expo(exponent) ezfio.set_basis_prim_expo(exponent)
ezfio.set_basis_prim_coef(coefficient)
nucl_shell_num = [] nucl_shell_num = []
prev = None prev = None
@ -194,6 +193,10 @@ def write_ezfio(trexio_filename, filename):
shell_factor = trexio.read_basis_shell_factor(trexio_file) shell_factor = trexio.read_basis_shell_factor(trexio_file)
prim_factor = trexio.read_basis_prim_factor(trexio_file) prim_factor = trexio.read_basis_prim_factor(trexio_file)
for i,p in enumerate(prim_factor):
coefficient[i] *= prim_factor[i]
ezfio.set_ao_basis_primitives_normalized(False)
ezfio.set_basis_prim_coef(coefficient)
elif basis_type.lower() == "numerical": elif basis_type.lower() == "numerical":
@ -245,13 +248,12 @@ def write_ezfio(trexio_filename, filename):
ezfio.set_basis_nucleus_shell_num(nucl_shell_num) ezfio.set_basis_nucleus_shell_num(nucl_shell_num)
shell_factor = trexio.read_basis_shell_factor(trexio_file) shell_factor = trexio.read_basis_shell_factor(trexio_file)
prim_factor = [1.]*prim_num
else: else:
raise TypeError raise TypeError
print(basis_type) print(basis_type)
except: except:
raise basis_type = "None"
print("None") print("None")
ezfio.set_ao_basis_ao_cartesian(True) ezfio.set_ao_basis_ao_cartesian(True)
@ -262,9 +264,6 @@ def write_ezfio(trexio_filename, filename):
except: except:
cartesian = True cartesian = True
ao_num = trexio.read_ao_num(trexio_file)
ezfio.set_ao_basis_ao_num(ao_num)
trexio_file_cart = trexio_file trexio_file_cart = trexio_file
if basis_type.lower() == "gaussian" and not cartesian: if basis_type.lower() == "gaussian" and not cartesian:
try: try:
@ -278,8 +277,12 @@ def write_ezfio(trexio_filename, filename):
except: except:
pass pass
ao_num = trexio.read_ao_num(trexio_file_cart)
ezfio.set_ao_basis_ao_num(ao_num)
if cartesian and basis_type.lower() == "gaussian" and shell_num > 0: if cartesian and basis_type.lower() == "gaussian" and shell_num > 0:
ao_shell = trexio.read_ao_shell(trexio_file) ao_shell = trexio.read_ao_shell(trexio_file_cart)
at = [ nucl_index[i]+1 for i in ao_shell ] at = [ nucl_index[i]+1 for i in ao_shell ]
ezfio.set_ao_basis_ao_nucl(at) ezfio.set_ao_basis_ao_nucl(at)
@ -314,6 +317,7 @@ def write_ezfio(trexio_filename, filename):
exponent.append(expo[i]) exponent.append(expo[i])
num_prim.append(num_prim0[i]) num_prim.append(num_prim0[i])
print (len(coefficient), ao_num)
assert (len(coefficient) == ao_num) assert (len(coefficient) == ao_num)
ezfio.set_ao_basis_ao_power(power_x + power_y + power_z) ezfio.set_ao_basis_ao_power(power_x + power_y + power_z)
ezfio.set_ao_basis_ao_prim_num(num_prim) ezfio.set_ao_basis_ao_prim_num(num_prim)
@ -384,6 +388,14 @@ def write_ezfio(trexio_filename, filename):
# Read coefs from temporary cartesian file created in the AO section # Read coefs from temporary cartesian file created in the AO section
MoMatrix = trexio.read_mo_coefficient(trexio_file_cart) MoMatrix = trexio.read_mo_coefficient(trexio_file_cart)
# Renormalize MO coefs if needed
if trexio.has_ao_normalization(trexio_file_cart):
ezfio.set_ao_basis_ao_normalized(False)
norm = trexio.read_ao_normalization(trexio_file_cart)
# for j in range(mo_num):
# for i,f in enumerate(norm):
# MoMatrix[i,j] *= f
ezfio.set_mo_basis_mo_coef(MoMatrix) ezfio.set_mo_basis_mo_coef(MoMatrix)
mo_occ = [ 0. for i in range(mo_num) ] mo_occ = [ 0. for i in range(mo_num) ]
@ -486,10 +498,10 @@ def write_ezfio(trexio_filename, filename):
if trexio.has_mo_spin(trexio_file): if trexio.has_mo_spin(trexio_file):
spin = trexio.read_mo_spin(trexio_file) spin = trexio.read_mo_spin(trexio_file)
if max(spin) == 1: if max(spin) == 1:
alpha = [ i for i in range(len(spin)) if spin[i] == 0 ] tmp = [ i for i in range(len(spin)) if spin[i] == 0 ]
alpha = [ alpha[i] for i in range(num_alpha) ] alpha = [ tmp[i] for i in range(num_alpha) ]
beta = [ i for i in range(len(spin)) if spin[i] == 1 ] tmp = [ i for i in range(len(spin)) if spin[i] == 1 ]
beta = [ beta[i] for i in range(num_beta) ] beta = [ tmp[i] for i in range(num_beta) ]
warnings.append("UHF orbitals orbitals read", end=' ') warnings.append("UHF orbitals orbitals read", end=' ')
alpha_s = ['0']*mo_num alpha_s = ['0']*mo_num
beta_s = ['0']*mo_num beta_s = ['0']*mo_num

View File

@ -55,9 +55,6 @@ END_PROVIDER
do i=1,ao_num do i=1,ao_num
! powA(1) = ao_power(i,1) + ao_power(i,2) + ao_power(i,3)
! powA(2) = 0
! powA(3) = 0
powA(1) = ao_power(i,1) powA(1) = ao_power(i,1)
powA(2) = ao_power(i,2) powA(2) = ao_power(i,2)
powA(3) = ao_power(i,3) powA(3) = ao_power(i,3)
@ -76,16 +73,19 @@ END_PROVIDER
endif endif
! Normalization of the contracted basis functions ! Normalization of the contracted basis functions
if (ao_normalized) then norm = 0.d0
norm = 0.d0 do j=1,ao_prim_num(i)
do j=1,ao_prim_num(i) do k=1,ao_prim_num(i)
do k=1,ao_prim_num(i) call overlap_gaussian_xyz(C_A,C_A,ao_expo(i,j),ao_expo(i,k),powA,powA,overlap_x,overlap_y,overlap_z,c,nz)
call overlap_gaussian_xyz(C_A,C_A,ao_expo(i,j),ao_expo(i,k),powA,powA,overlap_x,overlap_y,overlap_z,c,nz) norm = norm+c*ao_coef_normalized(i,j)*ao_coef_normalized(i,k)
norm = norm+c*ao_coef_normalized(i,j)*ao_coef_normalized(i,k) enddo
enddo enddo
ao_coef_normalization_factor(i) = 1.d0/dsqrt(norm)
if (.not.ao_normalized) then
do j=1,ao_prim_num(i)
ao_coef_normalized(i,j) = ao_coef_normalized(i,j) * ao_coef_normalization_factor(i)
enddo enddo
ao_coef_normalization_factor(i) = 1.d0/dsqrt(norm)
else
ao_coef_normalization_factor(i) = 1.d0 ao_coef_normalization_factor(i) = 1.d0
endif endif
enddo enddo
@ -339,3 +339,22 @@ BEGIN_PROVIDER [ character*(4), ao_l_char_space, (ao_num) ]
ao_l_char_space(i) = give_ao_character_space ao_l_char_space(i) = give_ao_character_space
enddo enddo
END_PROVIDER END_PROVIDER
! ---
BEGIN_PROVIDER [ logical, use_pw ]
implicit none
logical :: exist
use_pw = .false.
call ezfio_has_ao_basis_ao_expo_pw(exist)
if(exist) then
PROVIDE ao_expo_pw_ord_transp
if(maxval(dabs(ao_expo_pw_ord_transp(4,:,:))) .gt. 1d-15) use_pw = .true.
endif
END_PROVIDER

View File

@ -45,4 +45,3 @@ BEGIN_PROVIDER [ double precision, ao_one_e_integrals_imag,(ao_num,ao_num)]
END_PROVIDER END_PROVIDER

View File

@ -314,7 +314,7 @@ END_PROVIDER
do j=1,nq do j=1,nq
if ( (Qmax < Dmin).or.(N+j*1_8 > ndim8) ) exit if ( (Qmax <= Dmin).or.(N+j*1_8 > ndim8) ) exit
! i. ! i.
rank = N+j rank = N+j

View File

@ -40,8 +40,11 @@ double precision function ao_two_e_integral(i, j, k, l)
double precision, external :: ao_two_e_integral_erf double precision, external :: ao_two_e_integral_erf
double precision, external :: ao_two_e_integral_cgtos double precision, external :: ao_two_e_integral_cgtos
double precision, external :: ao_two_e_integral_schwartz_accel double precision, external :: ao_two_e_integral_schwartz_accel
double precision, external :: ao_two_e_integral_general
double precision, external :: general_primitive_integral
logical, external :: do_schwartz_accel logical, external :: do_schwartz_accel
double precision :: coef1, coef2, coef3, coef4
if(use_cgtos) then if(use_cgtos) then
@ -58,83 +61,44 @@ double precision function ao_two_e_integral(i, j, k, l)
else else
dim1 = n_pt_max_integrals
num_i = ao_nucl(i) num_i = ao_nucl(i)
num_j = ao_nucl(j) num_j = ao_nucl(j)
num_k = ao_nucl(k) num_k = ao_nucl(k)
num_l = ao_nucl(l) num_l = ao_nucl(l)
ao_two_e_integral = 0.d0 ao_two_e_integral = 0.d0
if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k) then
do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
K_power(p) = ao_power(k,p)
L_power(p) = ao_power(l,p)
I_center(p) = nucl_coord(num_i,p)
J_center(p) = nucl_coord(num_j,p)
K_center(p) = nucl_coord(num_k,p)
L_center(p) = nucl_coord(num_l,p)
enddo
double precision :: coef1, coef2, coef3, coef4 ao_two_e_integral = ao_two_e_integral_general(i,j,k,l,general_primitive_integral)
double precision :: p_inv,q_inv
double precision :: general_primitive_integral
do p = 1, ao_prim_num(i) else
coef1 = ao_coef_normalized_ordered_transp(p,i)
do q = 1, ao_prim_num(j)
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), &
I_power,J_power,I_center,J_center,dim1)
p_inv = 1.d0/pp
do r = 1, ao_prim_num(k)
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
do s = 1, ao_prim_num(l)
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
K_power,L_power,K_center,L_center,dim1)
q_inv = 1.d0/qq
integral = general_primitive_integral(dim1, &
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
ao_two_e_integral = ao_two_e_integral + coef4 * integral
enddo ! s
enddo ! r
enddo ! q
enddo ! p
else do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
K_power(p) = ao_power(k,p)
L_power(p) = ao_power(l,p)
enddo
double precision :: ERI
do p = 1, 3 do p = 1, ao_prim_num(i)
I_power(p) = ao_power(i,p) coef1 = ao_coef_normalized_ordered_transp(p,i)
J_power(p) = ao_power(j,p) do q = 1, ao_prim_num(j)
K_power(p) = ao_power(k,p) coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
L_power(p) = ao_power(l,p) do r = 1, ao_prim_num(k)
enddo coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
double precision :: ERI do s = 1, ao_prim_num(l)
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
do p = 1, ao_prim_num(i) integral = ERI( &
coef1 = ao_coef_normalized_ordered_transp(p,i) ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),&
do q = 1, ao_prim_num(j) I_power(1),J_power(1),K_power(1),L_power(1), &
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j) I_power(2),J_power(2),K_power(2),L_power(2), &
do r = 1, ao_prim_num(k) I_power(3),J_power(3),K_power(3),L_power(3))
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k) ao_two_e_integral = ao_two_e_integral + coef4 * integral
do s = 1, ao_prim_num(l) enddo ! s
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l) enddo ! r
integral = ERI( & enddo ! q
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),& enddo ! p
I_power(1),J_power(1),K_power(1),L_power(1), &
I_power(2),J_power(2),K_power(2),L_power(2), &
I_power(3),J_power(3),K_power(3),L_power(3))
ao_two_e_integral = ao_two_e_integral + coef4 * integral
enddo ! s
enddo ! r
enddo ! q
enddo ! p
endif endif
@ -144,6 +108,76 @@ end
! --- ! ---
double precision function ao_two_e_integral_general(i, j, k, l, op)
BEGIN_DOC
! integral of the AO basis <ik|jl> or (ij|kl)
! i(r1) j(r1) 1/r12 k(r2) l(r2)
END_DOC
implicit none
include 'utils/constants.include.F'
integer, intent(in) :: i, j, k, l
double precision, external :: op ! Operator function
integer :: p, q, r, s
integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3)
integer :: iorder_p(3), iorder_q(3)
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
double precision :: integral
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp
double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq
dim1 = n_pt_max_integrals
num_i = ao_nucl(i)
num_j = ao_nucl(j)
num_k = ao_nucl(k)
num_l = ao_nucl(l)
ao_two_e_integral_general = 0.d0
do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
K_power(p) = ao_power(k,p)
L_power(p) = ao_power(l,p)
I_center(p) = nucl_coord(num_i,p)
J_center(p) = nucl_coord(num_j,p)
K_center(p) = nucl_coord(num_k,p)
L_center(p) = nucl_coord(num_l,p)
enddo
double precision :: coef1, coef2, coef3, coef4
double precision :: p_inv,q_inv
do p = 1, ao_prim_num(i)
coef1 = ao_coef_normalized_ordered_transp(p,i)
do q = 1, ao_prim_num(j)
coef2 = coef1*ao_coef_normalized_ordered_transp(q,j)
call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,&
ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), &
I_power,J_power,I_center,J_center,dim1)
p_inv = 1.d0/pp
do r = 1, ao_prim_num(k)
coef3 = coef2*ao_coef_normalized_ordered_transp(r,k)
do s = 1, ao_prim_num(l)
coef4 = coef3*ao_coef_normalized_ordered_transp(s,l)
call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,&
ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), &
K_power,L_power,K_center,L_center,dim1)
q_inv = 1.d0/qq
integral = op(dim1, &
P_new,P_center,fact_p,pp,p_inv,iorder_p, &
Q_new,Q_center,fact_q,qq,q_inv,iorder_q)
ao_two_e_integral_general = ao_two_e_integral_general + coef4 * integral
enddo ! s
enddo ! r
enddo ! q
enddo ! p
end
double precision function ao_two_e_integral_schwartz_accel(i,j,k,l) double precision function ao_two_e_integral_schwartz_accel(i,j,k,l)
implicit none implicit none
BEGIN_DOC BEGIN_DOC
@ -512,7 +546,7 @@ double precision function general_primitive_integral(dim, &
double precision :: a,b,c,d,e,f,accu,pq,const double precision :: a,b,c,d,e,f,accu,pq,const
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2,pq_inv_2 double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2,pq_inv_2
integer :: n_pt_tmp,n_pt_out, iorder integer :: n_pt_tmp,n_pt_out, iorder
double precision :: d1(0:max_dim),d_poly(0:max_dim),rint,d1_screened(0:max_dim) double precision :: d1(0:max_dim),d_poly(0:max_dim),d1_screened(0:max_dim)
general_primitive_integral = 0.d0 general_primitive_integral = 0.d0

View File

@ -21,3 +21,14 @@ BEGIN_PROVIDER [ double precision, mo_one_e_integrals,(mo_num,mo_num)]
call nullify_small_elements(mo_num,mo_num,mo_one_e_integrals,size(mo_one_e_integrals,1),1.d-15) call nullify_small_elements(mo_num,mo_num,mo_one_e_integrals,size(mo_one_e_integrals,1),1.d-15)
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_one_e_integrals_from_mo, (ao_num, ao_num)]
implicit none
BEGIN_DOC
! Integrals of the one e hamiltonian obtained from the integrals on the MO basis
!
! WARNING : this is equal to ao_one_e_integrals only if the AO and MO basis have the same number of functions
END_DOC
call mo_to_ao(mo_one_e_integrals,mo_num,ao_one_e_integrals_from_mo,ao_num)
END_PROVIDER