9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-06-30 00:14:17 +02:00

Using fast 2RDM s

This commit is contained in:
Anthony Scemama 2019-06-27 23:59:21 +02:00
parent 82bbf95fea
commit ae3a4929b6
3 changed files with 46 additions and 140 deletions

View File

@ -29,7 +29,9 @@ BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
! !
END_DOC END_DOC
implicit none implicit none
integer :: t,u,v,x,mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart integer :: t,u,v,x
integer :: tt,uu,vv,xx
integer :: mu,nu,istate,ispin,jspin,ihole,ipart,jhole,jpart
integer :: ierr integer :: ierr
real*8 :: phase1,phase11,phase12,phase2,phase21,phase22 real*8 :: phase1,phase11,phase12,phase2,phase21,phase22
integer :: nu1,nu2,nu11,nu12,nu21,nu22 integer :: nu1,nu2,nu11,nu12,nu21,nu22
@ -43,125 +45,25 @@ BEGIN_PROVIDER [real*8, P0tuvx, (n_act_orb,n_act_orb,n_act_orb,n_act_orb) ]
write(6,*) ' providing density matrix P0' write(6,*) ' providing density matrix P0'
endif endif
P0tuvx = 0.d0 P0tuvx= 0.d0
do istate=1,N_states
! first loop: we apply E_tu, once for D_tu, once for -P_tvvu do x = 1, n_act_orb
do mu=1,n_det xx = list_act(x)
call det_extract(det_mu,mu,N_int) do v = 1, n_act_orb
do istate=1,n_states vv = list_act(v)
cI_mu(istate)=psi_coef(mu,istate) do u = 1, n_act_orb
end do uu = list_act(u)
do t=1,n_act_orb do t = 1, n_act_orb
ipart=list_act(t) tt = list_act(t)
do u=1,n_act_orb P0tuvx(t,u,v,x) = &
ihole=list_act(u) state_average_weight(istate) * &
! apply E_tu ( two_rdm_alpha_beta_mo (tt,uu,vv,xx,istate) + &
call det_copy(det_mu,det_mu_ex1,N_int) two_rdm_alpha_alpha_mo(tt,uu,vv,xx,istate) + &
call det_copy(det_mu,det_mu_ex2,N_int) two_rdm_beta_beta_mo (tt,uu,vv,xx,istate) )
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 & enddo
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2) enddo
! det_mu_ex1 is in the list enddo
if (nu1.ne.-1) then enddo
do istate=1,n_states enddo
term=cI_mu(istate)*psi_coef(nu1,istate)*phase1
! and we fill P0_tvvu
do v=1,n_act_orb
P0tuvx(t,v,v,u)-=term
end do
end do
end if
! det_mu_ex2 is in the list
if (nu2.ne.-1) then
do istate=1,n_states
term=cI_mu(istate)*psi_coef(nu2,istate)*phase2
do v=1,n_act_orb
P0tuvx(t,v,v,u)-=term
end do
end do
end if
end do
end do
end do
! now we do the double excitation E_tu E_vx |0>
do mu=1,n_det
call det_extract(det_mu,mu,N_int)
do istate=1,n_states
cI_mu(istate)=psi_coef(mu,istate)
end do
do v=1,n_act_orb
ipart=list_act(v)
do x=1,n_act_orb
ihole=list_act(x)
! apply E_vx
call det_copy(det_mu,det_mu_ex1,N_int)
call det_copy(det_mu,det_mu_ex2,N_int)
call do_spinfree_mono_excitation(det_mu,det_mu_ex1 &
,det_mu_ex2,nu1,nu2,ihole,ipart,phase1,phase2,ierr1,ierr2)
! we apply E_tu to the first resultant determinant, thus E_tu E_vx |0>
if (ierr1.eq.1) then
do t=1,n_act_orb
jpart=list_act(t)
do u=1,n_act_orb
jhole=list_act(u)
call det_copy(det_mu_ex1,det_mu_ex11,N_int)
call det_copy(det_mu_ex1,det_mu_ex12,N_int)
call do_spinfree_mono_excitation(det_mu_ex1,det_mu_ex11&
,det_mu_ex12,nu11,nu12,jhole,jpart,phase11,phase12,ierr11,ierr12)
if (nu11.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu11,istate)&
*phase11*phase1
end do
end if
if (nu12.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu12,istate)&
*phase12*phase1
end do
end if
end do
end do
end if
! we apply E_tu to the second resultant determinant
if (ierr2.eq.1) then
do t=1,n_act_orb
jpart=list_act(t)
do u=1,n_act_orb
jhole=list_act(u)
call det_copy(det_mu_ex2,det_mu_ex21,N_int)
call det_copy(det_mu_ex2,det_mu_ex22,N_int)
call do_spinfree_mono_excitation(det_mu_ex2,det_mu_ex21&
,det_mu_ex22,nu21,nu22,jhole,jpart,phase21,phase22,ierr21,ierr22)
if (nu21.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu21,istate)&
*phase21*phase2
end do
end if
if (nu22.ne.-1) then
do istate=1,n_states
P0tuvx(t,u,v,x)+=cI_mu(istate)*psi_coef(nu22,istate)&
*phase22*phase2
end do
end if
end do
end do
end if
end do
end do
end do
! we average by just dividing by the number of states
do x=1,n_act_orb
do v=1,n_act_orb
do u=1,n_act_orb
do t=1,n_act_orb
P0tuvx(t,u,v,x)*=0.5D0/dble(N_states)
end do
end do
end do
end do
END_PROVIDER END_PROVIDER

View File

@ -8,11 +8,11 @@ program print_two_rdm
double precision :: accu,twodm double precision :: accu,twodm
accu = 0.d0 accu = 0.d0
do i=1,mo_num do i=1,n_act_orb
do j=1,mo_num do j=1,n_act_orb
do k=1,mo_num do k=1,n_act_orb
do l=1,mo_num do l=1,n_act_orb
twodm = coussin_peter_two_rdm_mo(i,j,k,l,1) twodm = coussin_peter_two_rdm_mo(list_act(i),list_act(j),list_act(k),list_act(l))
if(dabs(twodm - P0tuvx(i,j,k,l)).gt.thr)then if(dabs(twodm - P0tuvx(i,j,k,l)).gt.thr)then
print*,'' print*,''
print*,'sum' print*,'sum'

View File

@ -1,23 +1,27 @@
BEGIN_PROVIDER [double precision, coussin_peter_two_rdm_mo, (mo_num,mo_num,mo_num,mo_num)]
BEGIN_PROVIDER [double precision, coussin_peter_two_rdm_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! coussin_peter_two_rdm_mo(i,j,k,l) = the two rdm that peter wants for his CASSCF ! coussin_peter_two_rdm_mo(i,j,k,l) = the two rdm that peter wants for his CASSCF
END_DOC END_DOC
integer :: i,j,k,l integer :: i,j,k,l, istate
do l = 1, mo_num coussin_peter_two_rdm_mo = 0.d0
do k = 1, mo_num do istate=1,N_states
do j = 1, mo_num do l = 1, mo_num
do i = 1, mo_num do k = 1, mo_num
coussin_peter_two_rdm_mo(i,j,k,l,:) = 0.5d0 * (two_rdm_alpha_beta_mo(i,j,k,l,:) + two_rdm_alpha_beta_mo(i,j,k,l,:)) & do j = 1, mo_num
+ two_rdm_alpha_alpha_mo(i,j,k,l,:) & do i = 1, mo_num
+ two_rdm_beta_beta_mo(i,j,k,l,:) coussin_peter_two_rdm_mo(i,j,k,l) = &
enddo state_average_weight(istate) * &
enddo ( two_rdm_alpha_beta_mo(i,j,k,l,istate) + &
two_rdm_alpha_alpha_mo(i,j,k,l,istate)+ &
two_rdm_beta_beta_mo(i,j,k,l,istate) )
enddo
enddo
enddo
enddo enddo
enddo enddo
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [double precision, two_rdm_alpha_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)] BEGIN_PROVIDER [double precision, two_rdm_alpha_beta_mo, (mo_num,mo_num,mo_num,mo_num,N_states)]