9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-03 00:55:38 +01:00

Merge branch 'dev-stable' into torus
Some checks failed
continuous-integration/drone/push Build is failing

This commit is contained in:
Abdallah Ammar 2024-09-23 15:16:56 +02:00
commit ad3e0d7268
67 changed files with 6778 additions and 987 deletions

View File

@ -17,12 +17,15 @@ program bi_ort_ints
! call test_3e ! call test_3e
! call test_5idx ! call test_5idx
! call test_5idx2 ! call test_5idx2
call test_4idx() ! call test_4idx()
!call test_4idx_n4() !call test_4idx_n4()
!call test_4idx2() !call test_4idx2()
!call test_5idx2 !call test_5idx2
!call test_5idx !call test_5idx
call test_mos_in_r()
call test_int2_grad1_u12_bimo_t()
end end
subroutine test_5idx2 subroutine test_5idx2
@ -472,4 +475,94 @@ subroutine test_4idx()
return return
end end
! ---
subroutine test_mos_in_r()
implicit none
integer :: i, j
double precision :: err_tot, nrm_tot, err_loc, acc_thr
PROVIDE mos_l_in_r_array_transp_old mos_r_in_r_array_transp_old
PROVIDE mos_l_in_r_array_transp mos_r_in_r_array_transp
acc_thr = 1d-13
err_tot = 0.d0
nrm_tot = 0.d0
do i = 1, mo_num
do j = 1, n_points_final_grid
err_loc = dabs(mos_l_in_r_array_transp_old(j,i) - mos_l_in_r_array_transp(j,i))
if(err_loc > acc_thr) then
print*, " error on", j, i
print*, " old res", mos_l_in_r_array_transp_old(j,i)
print*, " new res", mos_l_in_r_array_transp (j,i)
stop
endif
err_tot = err_tot + err_loc
nrm_tot = nrm_tot + dabs(mos_l_in_r_array_transp_old(j,i))
enddo
enddo
print *, ' absolute accuracy on mos_l_in_r_array_transp (%) =', 100.d0 * err_tot / nrm_tot
err_tot = 0.d0
nrm_tot = 0.d0
do i = 1, mo_num
do j = 1, n_points_final_grid
err_loc = dabs(mos_r_in_r_array_transp_old(j,i) - mos_r_in_r_array_transp(j,i))
if(err_loc > acc_thr) then
print*, " error on", j, i
print*, " old res", mos_r_in_r_array_transp_old(j,i)
print*, " new res", mos_r_in_r_array_transp (j,i)
stop
endif
err_tot = err_tot + err_loc
nrm_tot = nrm_tot + dabs(mos_r_in_r_array_transp_old(j,i))
enddo
enddo
print *, ' absolute accuracy on mos_r_in_r_array_transp (%) =', 100.d0 * err_tot / nrm_tot
return
end
! ---
subroutine test_int2_grad1_u12_bimo_t()
implicit none
integer :: i, j, ipoint, m
double precision :: err_tot, nrm_tot, err_loc, acc_thr
PROVIDE int2_grad1_u12_bimo_t_old
PROVIDE int2_grad1_u12_bimo_t
acc_thr = 1d-13
err_tot = 0.d0
nrm_tot = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do m = 1, 3
do ipoint = 1, n_points_final_grid
err_loc = dabs(int2_grad1_u12_bimo_t_old(ipoint,m,j,i) - int2_grad1_u12_bimo_t(ipoint,m,j,i))
if(err_loc > acc_thr) then
print*, " error on", ipoint, m, j, i
print*, " old res", int2_grad1_u12_bimo_t_old(ipoint,m,j,i)
print*, " new res", int2_grad1_u12_bimo_t (ipoint,m,j,i)
stop
endif
err_tot = err_tot + err_loc
nrm_tot = nrm_tot + dabs(int2_grad1_u12_bimo_t_old(ipoint,m,j,i))
enddo
enddo
enddo
enddo
print *, ' absolute accuracy on int2_grad1_u12_bimo_t (%) =', 100.d0 * err_tot / nrm_tot
return
end
! ---

View File

@ -710,6 +710,8 @@ BEGIN_PROVIDER [double precision, noL_0e]
endif endif
print*, " noL_0e =", noL_0e
END_PROVIDER END_PROVIDER
! --- ! ---

View File

@ -1,360 +1,54 @@
! --- ! ---
! TODO :: optimization : transform into a DGEMM
BEGIN_PROVIDER [ double precision, mo_v_ki_bi_ortho_erf_rk_cst_mu, (mo_num, mo_num, n_points_final_grid)]
BEGIN_DOC
!
! mo_v_ki_bi_ortho_erf_rk_cst_mu(k,i,ip) = int dr chi_k(r) phi_i(r) (erf(mu |r - R_ip|) - 1 )/(2|r - R_ip|) on the BI-ORTHO MO basis
!
! where phi_k(r) is a LEFT MOs and phi_i(r) is a RIGHT MO
!
! R_ip = the "ip"-th point of the DFT Grid
!
END_DOC
implicit none
integer :: ipoint
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint) &
!$OMP SHARED (n_points_final_grid,v_ij_erf_rk_cst_mu,mo_v_ki_bi_ortho_erf_rk_cst_mu)
!$OMP DO SCHEDULE (dynamic)
do ipoint = 1, n_points_final_grid
call ao_to_mo_bi_ortho( v_ij_erf_rk_cst_mu (1,1,ipoint), size(v_ij_erf_rk_cst_mu, 1) &
, mo_v_ki_bi_ortho_erf_rk_cst_mu(1,1,ipoint), size(mo_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
enddo
!$OMP END DO
!$OMP END PARALLEL
mo_v_ki_bi_ortho_erf_rk_cst_mu = mo_v_ki_bi_ortho_erf_rk_cst_mu * 0.5d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, mo_v_ki_bi_ortho_erf_rk_cst_mu_transp, (n_points_final_grid, mo_num, mo_num)]
BEGIN_DOC
!
! int dr phi_i(r) phi_j(r) (erf(mu(R) |r - R|) - 1)/(2|r - R|) on the BI-ORTHO MO basis
!
END_DOC
implicit none
integer :: ipoint, i, j
do i = 1, mo_num
do j = 1, mo_num
do ipoint = 1, n_points_final_grid
mo_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,j,i) = mo_v_ki_bi_ortho_erf_rk_cst_mu(j,i,ipoint)
enddo
enddo
enddo
!FREE mo_v_ki_bi_ortho_erf_rk_cst_mu
END_PROVIDER
! ---
! TODO :: optimization : transform into a DGEMM
BEGIN_PROVIDER [ double precision, mo_x_v_ki_bi_ortho_erf_rk_cst_mu, (mo_num, mo_num, 3, n_points_final_grid)]
BEGIN_DOC
!
! mo_x_v_ki_bi_ortho_erf_rk_cst_mu(k,i,m,ip) = int dr x(m) * chi_k(r) phi_i(r) (erf(mu |r - R_ip|) - 1)/2|r - R_ip| on the BI-ORTHO MO basis
!
! where chi_k(r)/phi_i(r) are left/right MOs, m=1 => x(m) = x, m=2 => x(m) = y, m=3 => x(m) = z,
!
! R_ip = the "ip"-th point of the DFT Grid
!
END_DOC
implicit none
integer :: ipoint
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint) &
!$OMP SHARED (n_points_final_grid,x_v_ij_erf_rk_cst_mu_transp,mo_x_v_ki_bi_ortho_erf_rk_cst_mu)
!$OMP DO SCHEDULE (dynamic)
do ipoint = 1, n_points_final_grid
call ao_to_mo_bi_ortho( x_v_ij_erf_rk_cst_mu_transp (1,1,1,ipoint), size(x_v_ij_erf_rk_cst_mu_transp, 1) &
, mo_x_v_ki_bi_ortho_erf_rk_cst_mu(1,1,1,ipoint), size(mo_x_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
call ao_to_mo_bi_ortho( x_v_ij_erf_rk_cst_mu_transp (1,1,2,ipoint), size(x_v_ij_erf_rk_cst_mu_transp, 1) &
, mo_x_v_ki_bi_ortho_erf_rk_cst_mu(1,1,2,ipoint), size(mo_x_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
call ao_to_mo_bi_ortho( x_v_ij_erf_rk_cst_mu_transp (1,1,3,ipoint), size(x_v_ij_erf_rk_cst_mu_transp, 1) &
, mo_x_v_ki_bi_ortho_erf_rk_cst_mu(1,1,3,ipoint), size(mo_x_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
enddo
!$OMP END DO
!$OMP END PARALLEL
mo_x_v_ki_bi_ortho_erf_rk_cst_mu = 0.5d0 * mo_x_v_ki_bi_ortho_erf_rk_cst_mu
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_transp, (ao_num, ao_num, 3, n_points_final_grid)]
implicit none
integer :: i, j, ipoint
double precision :: wall0, wall1
!print *, ' providing int2_grad1_u12_ao_transp ...'
!call wall_time(wall0)
if(test_cycle_tc) then
PROVIDE int2_grad1_u12_ao_test
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = 1, ao_num
int2_grad1_u12_ao_transp(j,i,1,ipoint) = int2_grad1_u12_ao_test(j,i,ipoint,1)
int2_grad1_u12_ao_transp(j,i,2,ipoint) = int2_grad1_u12_ao_test(j,i,ipoint,2)
int2_grad1_u12_ao_transp(j,i,3,ipoint) = int2_grad1_u12_ao_test(j,i,ipoint,3)
enddo
enddo
enddo
FREE int2_grad1_u12_ao_test
else
PROVIDE int2_grad1_u12_ao
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = 1, ao_num
int2_grad1_u12_ao_transp(j,i,1,ipoint) = int2_grad1_u12_ao(j,i,ipoint,1)
int2_grad1_u12_ao_transp(j,i,2,ipoint) = int2_grad1_u12_ao(j,i,ipoint,2)
int2_grad1_u12_ao_transp(j,i,3,ipoint) = int2_grad1_u12_ao(j,i,ipoint,3)
enddo
enddo
enddo
endif
!call wall_time(wall1)
!print *, ' wall time for int2_grad1_u12_ao_transp (min) = ', (wall1 - wall0) / 60.d0
!call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num, 3, n_points_final_grid)]
implicit none
integer :: ipoint
double precision :: wall0, wall1
PROVIDE mo_l_coef mo_r_coef
PROVIDE int2_grad1_u12_ao_transp
!print *, ' providing int2_grad1_u12_bimo_transp ...'
!call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint) &
!$OMP SHARED (n_points_final_grid,int2_grad1_u12_ao_transp,int2_grad1_u12_bimo_transp)
!$OMP DO SCHEDULE (dynamic)
do ipoint = 1, n_points_final_grid
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,1,ipoint), size(int2_grad1_u12_ao_transp , 1) &
, int2_grad1_u12_bimo_transp(1,1,1,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,2,ipoint), size(int2_grad1_u12_ao_transp , 1) &
, int2_grad1_u12_bimo_transp(1,1,2,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,3,ipoint), size(int2_grad1_u12_ao_transp , 1) &
, int2_grad1_u12_bimo_transp(1,1,3,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
enddo
!$OMP END DO
!$OMP END PARALLEL
!FREE int2_grad1_u12_ao_transp
!call wall_time(wall1)
!print *, ' wall time for int2_grad1_u12_bimo_transp (min) =', (wall1 - wall0) / 60.d0
!call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, int2_grad1_u12_bimo_t, (n_points_final_grid, 3, mo_num, mo_num)] BEGIN_PROVIDER [double precision, int2_grad1_u12_bimo_t, (n_points_final_grid, 3, mo_num, mo_num)]
implicit none implicit none
integer :: i, j, ipoint integer :: i, j, ipoint
double precision :: wall0, wall1 double precision :: tt1, tt2
double precision, allocatable :: tmp(:,:,:,:)
!call wall_time(wall0)
!print *, ' providing int2_grad1_u12_bimo_t ...'
PROVIDE mo_l_coef mo_r_coef PROVIDE mo_l_coef mo_r_coef
PROVIDE int2_grad1_u12_bimo_transp PROVIDE int2_grad1_u12_ao
call wall_time(tt1)
allocate(tmp(mo_num,mo_num,n_points_final_grid,3))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint) &
!$OMP SHARED (ao_num, mo_num, n_points_final_grid, int2_grad1_u12_ao, tmp)
!$OMP DO SCHEDULE (dynamic)
do ipoint = 1, n_points_final_grid
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,1), ao_num, tmp(1,1,ipoint,1), mo_num)
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,2), ao_num, tmp(1,1,ipoint,2), mo_num)
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,3), ao_num, tmp(1,1,ipoint,3), mo_num)
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, tmp, int2_grad1_u12_bimo_t)
!$OMP DO COLLAPSE(2) SCHEDULE (dynamic)
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
do i = 1, mo_num do i = 1, mo_num
do j = 1, mo_num do j = 1, mo_num
int2_grad1_u12_bimo_t(ipoint,1,j,i) = int2_grad1_u12_bimo_transp(j,i,1,ipoint) int2_grad1_u12_bimo_t(ipoint,1,j,i) = tmp(j,i,ipoint,1)
int2_grad1_u12_bimo_t(ipoint,2,j,i) = int2_grad1_u12_bimo_transp(j,i,2,ipoint) int2_grad1_u12_bimo_t(ipoint,2,j,i) = tmp(j,i,ipoint,2)
int2_grad1_u12_bimo_t(ipoint,3,j,i) = int2_grad1_u12_bimo_transp(j,i,3,ipoint) int2_grad1_u12_bimo_t(ipoint,3,j,i) = tmp(j,i,ipoint,3)
enddo enddo
enddo enddo
enddo enddo
!$OMP END DO
!$OMP END PARALLEL
FREE int2_grad1_u12_bimo_transp deallocate(tmp)
!call wall_time(wall1) call wall_time(tt2)
!print *, ' wall time for int2_grad1_u12_bimo_t (min) =', (wall1 - wall0) / 60.d0 write(*,"(A,2X,F15.7)") ' wall time for int2_grad1_u12_bimo_t (sec) = ', (tt2 - tt1)
!call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, int2_grad1_u12_ao_t, (n_points_final_grid, 3, ao_num, ao_num)]
implicit none
integer :: i, j, ipoint
double precision :: wall0, wall1
!call wall_time(wall0)
!print *, ' providing int2_grad1_u12_ao_t ...'
PROVIDE int2_grad1_u12_ao
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = 1, ao_num
int2_grad1_u12_ao_t(ipoint,1,j,i) = int2_grad1_u12_ao(j,i,ipoint,1)
int2_grad1_u12_ao_t(ipoint,2,j,i) = int2_grad1_u12_ao(j,i,ipoint,2)
int2_grad1_u12_ao_t(ipoint,3,j,i) = int2_grad1_u12_ao(j,i,ipoint,3)
enddo
enddo
enddo
!call wall_time(wall1)
!print *, ' wall time for int2_grad1_u12_ao_t (min) =', (wall1 - wall0) / 60.d0
!call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp, (n_points_final_grid, 3, mo_num, mo_num)]
implicit none
integer :: i, j, ipoint
do i = 1, mo_num
do j = 1, mo_num
do ipoint = 1, n_points_final_grid
mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,1,j,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu(j,i,1,ipoint)
mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,2,j,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu(j,i,2,ipoint)
mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,3,j,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu(j,i,3,ipoint)
enddo
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, x_W_ki_bi_ortho_erf_rk, (n_points_final_grid, 3, mo_num, mo_num)]
BEGIN_DOC
!
! x_W_ki_bi_ortho_erf_rk(ip,m,k,i) = \int dr chi_k(r) \frac{(1 - erf(mu |r-R_ip|))}{2|r-R_ip|} (x(m)-R_ip(m)) phi_i(r) ON THE BI-ORTHO MO BASIS
!
! where chi_k(r)/phi_i(r) are left/right MOs, m=1 => X(m) = x, m=2 => X(m) = y, m=3 => X(m) = z,
!
! R_ip = the "ip"-th point of the DFT Grid
END_DOC
implicit none
include 'constants.include.F'
integer :: ipoint, m, i, k
double precision :: xyz
double precision :: wall0, wall1
!print*, ' providing x_W_ki_bi_ortho_erf_rk ...'
!call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint,m,i,k,xyz) &
!$OMP SHARED (x_W_ki_bi_ortho_erf_rk,n_points_final_grid,mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_num,final_grid_points)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do m = 1, 3
do ipoint = 1, n_points_final_grid
xyz = final_grid_points(m,ipoint)
x_W_ki_bi_ortho_erf_rk(ipoint,m,k,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,m,k,i) - xyz * mo_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,k,i)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
! FREE mo_v_ki_bi_ortho_erf_rk_cst_mu_transp
! FREE mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp
!call wall_time(wall1)
!print *, ' time to provide x_W_ki_bi_ortho_erf_rk = ', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, x_W_ki_bi_ortho_erf_rk_diag, (n_points_final_grid, 3, mo_num)]
BEGIN_DOC
! x_W_ki_bi_ortho_erf_rk_diag(ip,m,i) = \int dr chi_i(r) (1 - erf(mu |r-R_ip|)) (x(m)-X(m)_ip) phi_i(r) ON THE BI-ORTHO MO BASIS
!
! where chi_k(r)/phi_i(r) are left/right MOs, m=1 => X(m) = x, m=2 => X(m) = y, m=3 => X(m) = z,
!
! R_ip = the "ip"-th point of the DFT Grid
END_DOC
implicit none
include 'constants.include.F'
integer :: ipoint, m, i
double precision :: xyz
double precision :: wall0, wall1
!print*,'providing x_W_ki_bi_ortho_erf_rk_diag ...'
!call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint,m,i,xyz) &
!$OMP SHARED (x_W_ki_bi_ortho_erf_rk_diag,n_points_final_grid,mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_num,final_grid_points)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do m = 1, 3
do ipoint = 1, n_points_final_grid
xyz = final_grid_points(m,ipoint)
x_W_ki_bi_ortho_erf_rk_diag(ipoint,m,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,m,i,i) - xyz * mo_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,i,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!call wall_time(wall1)
!print*,'time to provide x_W_ki_bi_ortho_erf_rk_diag = ',wall1 - wall0
END_PROVIDER END_PROVIDER

View File

@ -0,0 +1,362 @@
! ---
! TODO :: optimization : transform into a DGEMM
BEGIN_PROVIDER [ double precision, mo_v_ki_bi_ortho_erf_rk_cst_mu, (mo_num, mo_num, n_points_final_grid)]
BEGIN_DOC
!
! mo_v_ki_bi_ortho_erf_rk_cst_mu(k,i,ip) = int dr chi_k(r) phi_i(r) (erf(mu |r - R_ip|) - 1 )/(2|r - R_ip|) on the BI-ORTHO MO basis
!
! where phi_k(r) is a LEFT MOs and phi_i(r) is a RIGHT MO
!
! R_ip = the "ip"-th point of the DFT Grid
!
END_DOC
implicit none
integer :: ipoint
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint) &
!$OMP SHARED (n_points_final_grid,v_ij_erf_rk_cst_mu,mo_v_ki_bi_ortho_erf_rk_cst_mu)
!$OMP DO SCHEDULE (dynamic)
do ipoint = 1, n_points_final_grid
call ao_to_mo_bi_ortho( v_ij_erf_rk_cst_mu (1,1,ipoint), size(v_ij_erf_rk_cst_mu, 1) &
, mo_v_ki_bi_ortho_erf_rk_cst_mu(1,1,ipoint), size(mo_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
enddo
!$OMP END DO
!$OMP END PARALLEL
mo_v_ki_bi_ortho_erf_rk_cst_mu = mo_v_ki_bi_ortho_erf_rk_cst_mu * 0.5d0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, mo_v_ki_bi_ortho_erf_rk_cst_mu_transp, (n_points_final_grid, mo_num, mo_num)]
BEGIN_DOC
!
! int dr phi_i(r) phi_j(r) (erf(mu(R) |r - R|) - 1)/(2|r - R|) on the BI-ORTHO MO basis
!
END_DOC
implicit none
integer :: ipoint, i, j
do i = 1, mo_num
do j = 1, mo_num
do ipoint = 1, n_points_final_grid
mo_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,j,i) = mo_v_ki_bi_ortho_erf_rk_cst_mu(j,i,ipoint)
enddo
enddo
enddo
!FREE mo_v_ki_bi_ortho_erf_rk_cst_mu
END_PROVIDER
! ---
! TODO :: optimization : transform into a DGEMM
BEGIN_PROVIDER [ double precision, mo_x_v_ki_bi_ortho_erf_rk_cst_mu, (mo_num, mo_num, 3, n_points_final_grid)]
BEGIN_DOC
!
! mo_x_v_ki_bi_ortho_erf_rk_cst_mu(k,i,m,ip) = int dr x(m) * chi_k(r) phi_i(r) (erf(mu |r - R_ip|) - 1)/2|r - R_ip| on the BI-ORTHO MO basis
!
! where chi_k(r)/phi_i(r) are left/right MOs, m=1 => x(m) = x, m=2 => x(m) = y, m=3 => x(m) = z,
!
! R_ip = the "ip"-th point of the DFT Grid
!
END_DOC
implicit none
integer :: ipoint
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint) &
!$OMP SHARED (n_points_final_grid,x_v_ij_erf_rk_cst_mu_transp,mo_x_v_ki_bi_ortho_erf_rk_cst_mu)
!$OMP DO SCHEDULE (dynamic)
do ipoint = 1, n_points_final_grid
call ao_to_mo_bi_ortho( x_v_ij_erf_rk_cst_mu_transp (1,1,1,ipoint), size(x_v_ij_erf_rk_cst_mu_transp, 1) &
, mo_x_v_ki_bi_ortho_erf_rk_cst_mu(1,1,1,ipoint), size(mo_x_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
call ao_to_mo_bi_ortho( x_v_ij_erf_rk_cst_mu_transp (1,1,2,ipoint), size(x_v_ij_erf_rk_cst_mu_transp, 1) &
, mo_x_v_ki_bi_ortho_erf_rk_cst_mu(1,1,2,ipoint), size(mo_x_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
call ao_to_mo_bi_ortho( x_v_ij_erf_rk_cst_mu_transp (1,1,3,ipoint), size(x_v_ij_erf_rk_cst_mu_transp, 1) &
, mo_x_v_ki_bi_ortho_erf_rk_cst_mu(1,1,3,ipoint), size(mo_x_v_ki_bi_ortho_erf_rk_cst_mu, 1) )
enddo
!$OMP END DO
!$OMP END PARALLEL
mo_x_v_ki_bi_ortho_erf_rk_cst_mu = 0.5d0 * mo_x_v_ki_bi_ortho_erf_rk_cst_mu
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_transp, (ao_num, ao_num, 3, n_points_final_grid)]
implicit none
integer :: i, j, ipoint
double precision :: wall0, wall1
!print *, ' providing int2_grad1_u12_ao_transp ...'
!call wall_time(wall0)
if(test_cycle_tc) then
PROVIDE int2_grad1_u12_ao_test
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = 1, ao_num
int2_grad1_u12_ao_transp(j,i,1,ipoint) = int2_grad1_u12_ao_test(j,i,ipoint,1)
int2_grad1_u12_ao_transp(j,i,2,ipoint) = int2_grad1_u12_ao_test(j,i,ipoint,2)
int2_grad1_u12_ao_transp(j,i,3,ipoint) = int2_grad1_u12_ao_test(j,i,ipoint,3)
enddo
enddo
enddo
FREE int2_grad1_u12_ao_test
else
PROVIDE int2_grad1_u12_ao
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = 1, ao_num
int2_grad1_u12_ao_transp(j,i,1,ipoint) = int2_grad1_u12_ao(j,i,ipoint,1)
int2_grad1_u12_ao_transp(j,i,2,ipoint) = int2_grad1_u12_ao(j,i,ipoint,2)
int2_grad1_u12_ao_transp(j,i,3,ipoint) = int2_grad1_u12_ao(j,i,ipoint,3)
enddo
enddo
enddo
endif
!call wall_time(wall1)
!print *, ' wall time for int2_grad1_u12_ao_transp (min) = ', (wall1 - wall0) / 60.d0
!call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num, 3, n_points_final_grid)]
implicit none
integer :: ipoint
double precision :: wall0, wall1
PROVIDE mo_l_coef mo_r_coef
PROVIDE int2_grad1_u12_ao_transp
!print *, ' providing int2_grad1_u12_bimo_transp ...'
!call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint) &
!$OMP SHARED (n_points_final_grid,int2_grad1_u12_ao_transp,int2_grad1_u12_bimo_transp)
!$OMP DO SCHEDULE (dynamic)
do ipoint = 1, n_points_final_grid
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,1,ipoint), size(int2_grad1_u12_ao_transp , 1) &
, int2_grad1_u12_bimo_transp(1,1,1,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,2,ipoint), size(int2_grad1_u12_ao_transp , 1) &
, int2_grad1_u12_bimo_transp(1,1,2,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
call ao_to_mo_bi_ortho( int2_grad1_u12_ao_transp (1,1,3,ipoint), size(int2_grad1_u12_ao_transp , 1) &
, int2_grad1_u12_bimo_transp(1,1,3,ipoint), size(int2_grad1_u12_bimo_transp, 1) )
enddo
!$OMP END DO
!$OMP END PARALLEL
!FREE int2_grad1_u12_ao_transp
!call wall_time(wall1)
!print *, ' wall time for int2_grad1_u12_bimo_transp (min) =', (wall1 - wall0) / 60.d0
!call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, int2_grad1_u12_bimo_t_old, (n_points_final_grid, 3, mo_num, mo_num)]
implicit none
integer :: i, j, ipoint
double precision :: wall0, wall1
!call wall_time(wall0)
!print *, ' providing int2_grad1_u12_bimo_t_old ...'
PROVIDE mo_l_coef mo_r_coef
PROVIDE int2_grad1_u12_bimo_transp
do ipoint = 1, n_points_final_grid
do i = 1, mo_num
do j = 1, mo_num
int2_grad1_u12_bimo_t_old(ipoint,1,j,i) = int2_grad1_u12_bimo_transp(j,i,1,ipoint)
int2_grad1_u12_bimo_t_old(ipoint,2,j,i) = int2_grad1_u12_bimo_transp(j,i,2,ipoint)
int2_grad1_u12_bimo_t_old(ipoint,3,j,i) = int2_grad1_u12_bimo_transp(j,i,3,ipoint)
enddo
enddo
enddo
FREE int2_grad1_u12_bimo_transp
!call wall_time(wall1)
!print *, ' wall time for int2_grad1_u12_bimo_t_old (min) =', (wall1 - wall0) / 60.d0
!call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, int2_grad1_u12_ao_t, (n_points_final_grid, 3, ao_num, ao_num)]
implicit none
integer :: i, j, ipoint
double precision :: wall0, wall1
!call wall_time(wall0)
!print *, ' providing int2_grad1_u12_ao_t ...'
PROVIDE int2_grad1_u12_ao
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = 1, ao_num
int2_grad1_u12_ao_t(ipoint,1,j,i) = int2_grad1_u12_ao(j,i,ipoint,1)
int2_grad1_u12_ao_t(ipoint,2,j,i) = int2_grad1_u12_ao(j,i,ipoint,2)
int2_grad1_u12_ao_t(ipoint,3,j,i) = int2_grad1_u12_ao(j,i,ipoint,3)
enddo
enddo
enddo
!call wall_time(wall1)
!print *, ' wall time for int2_grad1_u12_ao_t (min) =', (wall1 - wall0) / 60.d0
!call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp, (n_points_final_grid, 3, mo_num, mo_num)]
implicit none
integer :: i, j, ipoint
do i = 1, mo_num
do j = 1, mo_num
do ipoint = 1, n_points_final_grid
mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,1,j,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu(j,i,1,ipoint)
mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,2,j,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu(j,i,2,ipoint)
mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,3,j,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu(j,i,3,ipoint)
enddo
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, x_W_ki_bi_ortho_erf_rk, (n_points_final_grid, 3, mo_num, mo_num)]
BEGIN_DOC
!
! x_W_ki_bi_ortho_erf_rk(ip,m,k,i) = \int dr chi_k(r) \frac{(1 - erf(mu |r-R_ip|))}{2|r-R_ip|} (x(m)-R_ip(m)) phi_i(r) ON THE BI-ORTHO MO BASIS
!
! where chi_k(r)/phi_i(r) are left/right MOs, m=1 => X(m) = x, m=2 => X(m) = y, m=3 => X(m) = z,
!
! R_ip = the "ip"-th point of the DFT Grid
END_DOC
implicit none
include 'constants.include.F'
integer :: ipoint, m, i, k
double precision :: xyz
double precision :: wall0, wall1
!print*, ' providing x_W_ki_bi_ortho_erf_rk ...'
!call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint,m,i,k,xyz) &
!$OMP SHARED (x_W_ki_bi_ortho_erf_rk,n_points_final_grid,mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_num,final_grid_points)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do m = 1, 3
do ipoint = 1, n_points_final_grid
xyz = final_grid_points(m,ipoint)
x_W_ki_bi_ortho_erf_rk(ipoint,m,k,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,m,k,i) - xyz * mo_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,k,i)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
! FREE mo_v_ki_bi_ortho_erf_rk_cst_mu_transp
! FREE mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp
!call wall_time(wall1)
!print *, ' time to provide x_W_ki_bi_ortho_erf_rk = ', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, x_W_ki_bi_ortho_erf_rk_diag, (n_points_final_grid, 3, mo_num)]
BEGIN_DOC
! x_W_ki_bi_ortho_erf_rk_diag(ip,m,i) = \int dr chi_i(r) (1 - erf(mu |r-R_ip|)) (x(m)-X(m)_ip) phi_i(r) ON THE BI-ORTHO MO BASIS
!
! where chi_k(r)/phi_i(r) are left/right MOs, m=1 => X(m) = x, m=2 => X(m) = y, m=3 => X(m) = z,
!
! R_ip = the "ip"-th point of the DFT Grid
END_DOC
implicit none
include 'constants.include.F'
integer :: ipoint, m, i
double precision :: xyz
double precision :: wall0, wall1
!print*,'providing x_W_ki_bi_ortho_erf_rk_diag ...'
!call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint,m,i,xyz) &
!$OMP SHARED (x_W_ki_bi_ortho_erf_rk_diag,n_points_final_grid,mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_v_ki_bi_ortho_erf_rk_cst_mu_transp,mo_num,final_grid_points)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do m = 1, 3
do ipoint = 1, n_points_final_grid
xyz = final_grid_points(m,ipoint)
x_W_ki_bi_ortho_erf_rk_diag(ipoint,m,i) = mo_x_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,m,i,i) - xyz * mo_v_ki_bi_ortho_erf_rk_cst_mu_transp(ipoint,i,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!call wall_time(wall1)
!print*,'time to provide x_W_ki_bi_ortho_erf_rk_diag = ',wall1 - wall0
END_PROVIDER
! ---

View File

@ -1,135 +1,70 @@
! TODO: left & right MO without duplicate AO calculation BEGIN_PROVIDER[double precision, mos_l_in_r_array_transp, (n_points_final_grid, mo_num)]
&BEGIN_PROVIDER[double precision, mos_r_in_r_array_transp, (n_points_final_grid, mo_num)]
! ---
BEGIN_PROVIDER[double precision, mos_r_in_r_array, (mo_num, n_points_final_grid)]
BEGIN_DOC BEGIN_DOC
! mos_in_r_array(i,j) = value of the ith RIGHT mo on the jth grid point !
! mos_l_in_r_array_transp(i,j) = value of the jth left-mo on the ith grid point
! mos_r_in_r_array_transp(i,j) = value of the jth right-mo on the ith grid point
!
END_DOC END_DOC
implicit none implicit none
integer :: i, j
double precision :: mos_array(mo_num), r(3)
!$OMP PARALLEL DO & integer :: i
!$OMP DEFAULT (NONE) & double precision :: tt0, tt1, tt2, tt3
!$OMP PRIVATE (i, j, r, mos_array) & double precision :: r(3)
!$OMP SHARED (mos_r_in_r_array, n_points_final_grid, mo_num, final_grid_points) double precision, allocatable :: aos_r(:,:)
call wall_time(tt0)
allocate(aos_r(ao_num,n_points_final_grid))
! provide everything required before OpenMP
r(1) = final_grid_points(1,1)
r(2) = final_grid_points(2,1)
r(3) = final_grid_points(3,1)
call give_all_aos_at_r(r, aos_r(1,1))
call wall_time(tt2)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, r) &
!$OMP SHARED(n_points_final_grid, final_grid_points, aos_r)
!$OMP DO
do i = 1, n_points_final_grid do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i) r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i) r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i) r(3) = final_grid_points(3,i)
call give_all_mos_r_at_r(r, mos_array) call give_all_aos_at_r(r, aos_r(1,i))
do j = 1, mo_num
mos_r_in_r_array(j,i) = mos_array(j)
enddo
enddo enddo
!$OMP END PARALLEL DO !$OMP END DO
!$OMP END PARALLEL
END_PROVIDER
! --- call wall_time(tt3)
write(*,"(A,2X,F15.7)") ' wall time for AOs on r (sec) = ', (tt3 - tt2)
BEGIN_PROVIDER[double precision, mos_r_in_r_array_transp, (n_points_final_grid, mo_num)]
BEGIN_DOC call dgemm("T", "N", n_points_final_grid, mo_num, ao_num, &
! mos_r_in_r_array_transp(i,j) = value of the jth mo on the ith grid point 1.d0, &
END_DOC aos_r(1,1), ao_num, &
mo_l_coef(1,1), ao_num, &
0.d0, &
mos_l_in_r_array_transp(1,1), n_points_final_grid)
implicit none call dgemm("T", "N", n_points_final_grid, mo_num, ao_num, &
integer :: i,j 1.d0, &
aos_r(1,1), ao_num, &
mo_r_coef(1,1), ao_num, &
0.d0, &
mos_r_in_r_array_transp(1,1), n_points_final_grid)
do i = 1, n_points_final_grid deallocate(aos_r)
do j = 1, mo_num
mos_r_in_r_array_transp(i,j) = mos_r_in_r_array(j,i) call wall_time(tt1)
enddo write(*,"(A,2X,F15.7)") ' wall time for mos_l_in_r_array_transp & mos_r_in_r_array_transp (sec) = ', (tt1 - tt0)
enddo
END_PROVIDER
! ---
subroutine give_all_mos_r_at_r(r, mos_r_array)
BEGIN_DOC
! mos_r_array(i) = ith RIGHT MO function evaluated at "r"
END_DOC
implicit none
double precision, intent(in) :: r(3)
double precision, intent(out) :: mos_r_array(mo_num)
double precision :: aos_array(ao_num)
call give_all_aos_at_r(r, aos_array)
call dgemv('N', mo_num, ao_num, 1.d0, mo_r_coef_transp, mo_num, aos_array, 1, 0.d0, mos_r_array, 1)
end subroutine give_all_mos_r_at_r
! ---
BEGIN_PROVIDER[double precision, mos_l_in_r_array, (mo_num, n_points_final_grid)]
BEGIN_DOC
! mos_in_r_array(i,j) = value of the ith LEFT mo on the jth grid point
END_DOC
implicit none
integer :: i, j
double precision :: mos_array(mo_num), r(3)
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,r,mos_array,j) &
!$OMP SHARED(mos_l_in_r_array,n_points_final_grid,mo_num,final_grid_points)
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
call give_all_mos_l_at_r(r, mos_array)
do j = 1, mo_num
mos_l_in_r_array(j,i) = mos_array(j)
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
! ---
subroutine give_all_mos_l_at_r(r, mos_l_array)
BEGIN_DOC
! mos_l_array(i) = ith LEFT MO function evaluated at "r"
END_DOC
implicit none
double precision, intent(in) :: r(3)
double precision, intent(out) :: mos_l_array(mo_num)
double precision :: aos_array(ao_num)
call give_all_aos_at_r(r, aos_array)
call dgemv('N', mo_num, ao_num, 1.d0, mo_l_coef_transp, mo_num, aos_array, 1, 0.d0, mos_l_array, 1)
end subroutine give_all_mos_l_at_r
! ---
BEGIN_PROVIDER[double precision, mos_l_in_r_array_transp, (n_points_final_grid,mo_num)]
BEGIN_DOC
! mos_l_in_r_array_transp(i,j) = value of the jth mo on the ith grid point
END_DOC
implicit none
integer :: i, j
do i = 1, n_points_final_grid
do j = 1, mo_num
mos_l_in_r_array_transp(i,j) = mos_l_in_r_array(j,i)
enddo
enddo
END_PROVIDER END_PROVIDER

View File

@ -0,0 +1,137 @@
! TODO: left & right MO without duplicate AO calculation
! ---
BEGIN_PROVIDER[double precision, mos_r_in_r_array, (mo_num, n_points_final_grid)]
BEGIN_DOC
! mos_in_r_array(i,j) = value of the ith RIGHT mo on the jth grid point
END_DOC
implicit none
integer :: i, j
double precision :: mos_array(mo_num), r(3)
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, r, mos_array) &
!$OMP SHARED (mos_r_in_r_array, n_points_final_grid, mo_num, final_grid_points)
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
call give_all_mos_r_at_r(r, mos_array)
do j = 1, mo_num
mos_r_in_r_array(j,i) = mos_array(j)
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
! ---
BEGIN_PROVIDER[double precision, mos_r_in_r_array_transp_old, (n_points_final_grid, mo_num)]
BEGIN_DOC
! mos_r_in_r_array_transp_old(i,j) = value of the jth mo on the ith grid point
END_DOC
implicit none
integer :: i,j
do i = 1, n_points_final_grid
do j = 1, mo_num
mos_r_in_r_array_transp_old(i,j) = mos_r_in_r_array(j,i)
enddo
enddo
END_PROVIDER
! ---
subroutine give_all_mos_r_at_r(r, mos_r_array)
BEGIN_DOC
! mos_r_array(i) = ith RIGHT MO function evaluated at "r"
END_DOC
implicit none
double precision, intent(in) :: r(3)
double precision, intent(out) :: mos_r_array(mo_num)
double precision :: aos_array(ao_num)
call give_all_aos_at_r(r, aos_array)
call dgemv('N', mo_num, ao_num, 1.d0, mo_r_coef_transp, mo_num, aos_array, 1, 0.d0, mos_r_array, 1)
end subroutine give_all_mos_r_at_r
! ---
BEGIN_PROVIDER[double precision, mos_l_in_r_array, (mo_num, n_points_final_grid)]
BEGIN_DOC
! mos_in_r_array(i,j) = value of the ith LEFT mo on the jth grid point
END_DOC
implicit none
integer :: i, j
double precision :: mos_array(mo_num), r(3)
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,r,mos_array,j) &
!$OMP SHARED(mos_l_in_r_array,n_points_final_grid,mo_num,final_grid_points)
do i = 1, n_points_final_grid
r(1) = final_grid_points(1,i)
r(2) = final_grid_points(2,i)
r(3) = final_grid_points(3,i)
call give_all_mos_l_at_r(r, mos_array)
do j = 1, mo_num
mos_l_in_r_array(j,i) = mos_array(j)
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
! ---
subroutine give_all_mos_l_at_r(r, mos_l_array)
BEGIN_DOC
! mos_l_array(i) = ith LEFT MO function evaluated at "r"
END_DOC
implicit none
double precision, intent(in) :: r(3)
double precision, intent(out) :: mos_l_array(mo_num)
double precision :: aos_array(ao_num)
call give_all_aos_at_r(r, aos_array)
call dgemv('N', mo_num, ao_num, 1.d0, mo_l_coef_transp, mo_num, aos_array, 1, 0.d0, mos_l_array, 1)
end subroutine give_all_mos_l_at_r
! ---
BEGIN_PROVIDER[double precision, mos_l_in_r_array_transp_old, (n_points_final_grid,mo_num)]
BEGIN_DOC
! mos_l_in_r_array_transp_old(i,j) = value of the jth mo on the ith grid point
END_DOC
implicit none
integer :: i, j
do i = 1, n_points_final_grid
do j = 1, mo_num
mos_l_in_r_array_transp_old(i,j) = mos_l_in_r_array(j,i)
enddo
enddo
END_PROVIDER
! ---

View File

@ -155,6 +155,7 @@ subroutine run_stochastic_cipsi
call pt2_alloc(pt2_data_err, N_states) call pt2_alloc(pt2_data_err, N_states)
call ZMQ_pt2(E_tc, pt2_data, pt2_data_err, relative_error,0) ! Stochastic PT2 and selection call ZMQ_pt2(E_tc, pt2_data, pt2_data_err, relative_error,0) ! Stochastic PT2 and selection
call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm) call diagonalize_CI_tc_bi_ortho(ndet, E_tc,norm)
call print_summary_tc(psi_energy_with_nucl_rep, pt2_data, pt2_data_err, N_det, N_configuration, N_states, psi_s2)
call pt2_dealloc(pt2_data) call pt2_dealloc(pt2_data)
call pt2_dealloc(pt2_data_err) call pt2_dealloc(pt2_data_err)

View File

@ -1,7 +1,25 @@
[log_jpsi]
type: logical
doc: If |true|, the Jpsi is taken as log(1+psi_cor)
interface: ezfio,provider,ocaml
default: False
[mu_of_r_tc]
type: character*(32)
doc: type of the mu(r): [ Standard | Erfmu | Erfmugauss ]
interface: ezfio,provider,ocaml
default: Standard
[mu_of_r_av]
type: logical
doc: If |true|, take the second formula for mu(r)
interface: ezfio,provider,ocaml
default: False
[j2e_type] [j2e_type]
type: character*(32) type: character*(32)
doc: type of the 2e-Jastrow: [ None | Mu | Mu_Nu | Mur | Boys | Boys_Handy | Qmckl ] doc: type of the 2e-Jastrow: [ None | Mu | Mugauss | Mu_Nu | Mur | Murgauss | Bump | Boys | Boys_Handy | Qmckl ]
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: Mu default: Mu

View File

@ -232,6 +232,14 @@
! --- ! ---
do i_nucl = 1, nucl_num
do p = 1, jBH_size
if(jBH_m(p,i_nucl) .eq. jBH_n(p,i_nucl)) then
jBH_c(p,i_nucl) = 0.5d0 * jBH_c(p,i_nucl)
endif
enddo
enddo
print *, ' parameters for Boys-Handy Jastrow' print *, ' parameters for Boys-Handy Jastrow'
print *, ' nb of terms per nucleus = ', jBH_size print *, ' nb of terms per nucleus = ', jBH_size

View File

@ -4,3 +4,4 @@ jastrow
ao_tc_eff_map ao_tc_eff_map
bi_ortho_mos bi_ortho_mos
trexio trexio
mu_of_r

View File

@ -0,0 +1,28 @@
program test_j_mu_of_r
implicit none
double precision :: x,mu_min,dmu,mu_max, mu, mu_p, mu_m
double precision :: j_simple,j_p, j_m,numeric_d_mu,d_dx_mu
double precision :: accu
integer :: npt,i
npt = 1000
mu_min = 0.3d0
mu_max = 10.d0
dmu = (mu_max - mu_min)/dble(npt)
x = 0.7d0
mu = mu_min
do i = 1, npt
call get_deriv_mu_j12(x,mu,d_dx_mu)
mu_p = mu + dmu
mu_m = mu - dmu
j_p = j_simple(x,mu_p)
j_m = j_simple(x,mu_m)
numeric_d_mu = 0.5d0 * (j_p - j_m)/dmu
print*,mu
print*,numeric_d_mu,d_dx_mu,dabs(d_dx_mu-numeric_d_mu)
accu += dabs(d_dx_mu-numeric_d_mu)
mu += dmu
enddo
accu *= dmu
print*,'accu = ',accu
end

View File

@ -0,0 +1,98 @@
program test_j_mu_of_r
implicit none
! call routine_test_mu_of_r
call routine_test_mu_of_r_tot
end
subroutine routine_test_mu_of_r_tot
implicit none
integer :: ipoint,k
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
double precision :: accu_grad(3)
double precision :: jast,grad_jast_mu_r1(3),j_bump
double precision :: jast_p,jast_m,num_grad_jast_mu_r1(3)
dr = 0.00001d0
r2 = 0.d0
r2(1) = 0.5d0
r2(2) = -0.1d0
r2(3) = 1.0d0
accu_grad = 0.d0
do ipoint = 1, n_points_final_grid
r1(1:3) = final_grid_points(1:3,ipoint)
weight = final_weight_at_r_vector(ipoint)
! call grad_j_sum_mu_of_r(r1,r2,jast,grad_jast_mu_r1)
call get_grad_j_bump_mu_of_r(r1,r2,grad_jast_mu_r1)
double precision :: norm,error
norm = 0.D0
do k = 1, 3
r1bis= r1
r1bis(k) += dr
jast_p = j_bump(r1bis,r2,a_boys)
r1bis= r1
r1bis(k) -= dr
jast_m = j_bump(r1bis,r2,a_boys)
num_grad_jast_mu_r1(k) = (jast_p - jast_m)/(2.d0* dr)
norm += num_grad_jast_mu_r1(k)*num_grad_jast_mu_r1(k)
enddo
error = 0.d0
do k = 1, 3
error += dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
enddo
error *= 0.33333333d0
norm = dsqrt(norm)
if(norm.gt.1.d-05)then
if(dabs(error/norm).gt.dr)then
print*,'/////'
print*,error,norm
print*,grad_jast_mu_r1
print*,num_grad_jast_mu_r1
endif
endif
do k = 1,3
accu_grad(k) += weight * dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
enddo
enddo
print*,'accu_grad = '
print*, accu_grad
end
subroutine routine_test_mu_of_r
implicit none
integer :: ipoint,k
double precision :: weight, dr, r1(3), r1bis(3),accu_grad(3),num_grad_mu_r1(3)
double precision :: mu_r1,dm_r1, mu_der_r1(3), grad_dm_r1(3)
double precision :: mu_der_rp(3), grad_dm_rp(3),mu_rp
double precision :: mu_der_rm(3), grad_dm_rm(3),mu_rm
dr = 0.0001d0
accu_grad = 0.d0
do ipoint = 1, n_points_final_grid
r1(1:3) = final_grid_points(1:3,ipoint)
weight = final_weight_at_r_vector(ipoint)
call grad_mu_of_r_mean_field(r1,mu_r1,dm_r1, mu_der_r1, grad_dm_r1)
do k = 1, 3
r1bis= r1
r1bis(k) += dr
call grad_mu_of_r_mean_field(r1bis,mu_rp, dm_r1, mu_der_rp, grad_dm_r1)
r1bis= r1
r1bis(k) -= dr
call grad_mu_of_r_mean_field(r1bis,mu_rm, dm_r1, mu_der_rm, grad_dm_r1)
num_grad_mu_r1(k) = (mu_rp - mu_rm)/(2.d0* dr)
! print*,jast_mu_r1_p,jast_mu_r1_m
enddo
print*,'/////'
print*,mu_der_r1
print*,num_grad_mu_r1
do k = 1,3
accu_grad(k) += weight * dabs(mu_der_r1(k) - num_grad_mu_r1(k))
enddo
enddo
print*,'accu_grad = '
print*, accu_grad
end

View File

@ -0,0 +1,62 @@
program test_j_mu_of_r
implicit none
! call routine_test_mu_of_r
call routine_test_mu_of_r_tot
end
subroutine routine_test_mu_of_r_tot
implicit none
integer :: ipoint,k
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
double precision :: accu_grad(3)
double precision :: jast,grad_jast(3),j_bump,j12_mu
double precision :: jast_p,jast_m,num_grad_jast(3)
dr = 0.00001d0
r2 = 0.d0
r2(1) = 0.5d0
r2(2) = -0.1d0
r2(3) = 1.0d0
accu_grad = 0.d0
do ipoint = 1, n_points_final_grid
r1(1:3) = final_grid_points(1:3,ipoint)
weight = final_weight_at_r_vector(ipoint)
call grad1_j12_mu(r1, r2, grad_jast)
grad_jast = - grad_jast
double precision :: norm,error
norm = 0.D0
do k = 1, 3
r1bis= r1
r1bis(k) += dr
jast_p = j12_mu(r1bis, r2)
r1bis= r1
r1bis(k) -= dr
jast_m = j12_mu(r1bis, r2)
num_grad_jast(k) = (jast_p - jast_m)/(2.d0* dr)
norm += num_grad_jast(k)*num_grad_jast(k)
enddo
error = 0.d0
do k = 1, 3
error += dabs(grad_jast(k) - num_grad_jast(k))
enddo
error *= 0.33333333d0
norm = dsqrt(norm)
if(norm.gt.1.d-05)then
if(dabs(error/norm).gt.dr)then
print*,'/////'
print*,error,norm
print*,grad_jast
print*,num_grad_jast
endif
endif
do k = 1,3
accu_grad(k) += weight * dabs(grad_jast(k) - num_grad_jast(k))
enddo
enddo
print*,'accu_grad = '
print*, accu_grad
end

View File

@ -0,0 +1,97 @@
program test_j_mu_of_r
implicit none
! call routine_test_mu_of_r
call routine_test_mu_of_r_tot
end
subroutine routine_test_mu_of_r_tot
implicit none
integer :: ipoint,k
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
double precision :: accu_grad(3)
double precision :: jast,grad_jast_mu_r1(3)
double precision :: jast_p,jast_m,num_grad_jast_mu_r1(3)
dr = 0.000001d0
r2 = 0.d0
r2(1) = 0.5d0
r2(2) = -0.1d0
r2(3) = 1.0d0
accu_grad = 0.d0
do ipoint = 1, n_points_final_grid
r1(1:3) = final_grid_points(1:3,ipoint)
weight = final_weight_at_r_vector(ipoint)
call grad_j_sum_mu_of_r(r1,r2,jast,grad_jast_mu_r1)
double precision :: norm,error
norm = 0.D0
do k = 1, 3
r1bis= r1
r1bis(k) += dr
call get_j_sum_mu_of_r(r1bis,r2,jast_p)
r1bis= r1
r1bis(k) -= dr
call get_j_sum_mu_of_r(r1bis,r2,jast_m)
num_grad_jast_mu_r1(k) = (jast_p - jast_m)/(2.d0* dr)
norm += num_grad_jast_mu_r1(k)*num_grad_jast_mu_r1(k)
enddo
error = 0.d0
do k = 1, 3
error += dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
enddo
error *= 0.33333333d0
norm = dsqrt(norm)
if(norm.gt.1.d-05)then
if(dabs(error/norm).gt.10.d0*dr)then
print*,'/////'
print*,error,norm,dabs(error/norm)
print*,grad_jast_mu_r1
print*,num_grad_jast_mu_r1
endif
endif
do k = 1,3
accu_grad(k) += weight * dabs(grad_jast_mu_r1(k) - num_grad_jast_mu_r1(k))
enddo
enddo
print*,'accu_grad = '
print*, accu_grad
end
subroutine routine_test_mu_of_r
implicit none
integer :: ipoint,k
double precision :: weight, dr, r1(3), r1bis(3),accu_grad(3),num_grad_mu_r1(3)
double precision :: mu_r1,dm_r1, mu_der_r1(3), grad_dm_r1(3)
double precision :: mu_der_rp(3), grad_dm_rp(3),mu_rp
double precision :: mu_der_rm(3), grad_dm_rm(3),mu_rm
dr = 0.0001d0
accu_grad = 0.d0
do ipoint = 1, n_points_final_grid
r1(1:3) = final_grid_points(1:3,ipoint)
weight = final_weight_at_r_vector(ipoint)
call grad_mu_of_r_mean_field(r1,mu_r1,dm_r1, mu_der_r1, grad_dm_r1)
do k = 1, 3
r1bis= r1
r1bis(k) += dr
call grad_mu_of_r_mean_field(r1bis,mu_rp, dm_r1, mu_der_rp, grad_dm_r1)
r1bis= r1
r1bis(k) -= dr
call grad_mu_of_r_mean_field(r1bis,mu_rm, dm_r1, mu_der_rm, grad_dm_r1)
num_grad_mu_r1(k) = (mu_rp - mu_rm)/(2.d0* dr)
! print*,jast_mu_r1_p,jast_mu_r1_m
enddo
print*,'/////'
print*,mu_der_r1
print*,num_grad_mu_r1
do k = 1,3
accu_grad(k) += weight * dabs(mu_der_r1(k) - num_grad_mu_r1(k))
enddo
enddo
print*,'accu_grad = '
print*, accu_grad
end

View File

@ -0,0 +1,131 @@
program test_j_mu_of_r
implicit none
call routine_deb_j_psi
! call routine_deb_denom
end
subroutine routine_deb_j_psi
implicit none
integer :: ipoint,k
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
double precision :: accu_grad(3)
double precision :: jast,grad_jast(3),j_bump,jastrow_psi,grad_jast_bis(3)
double precision :: jast_p,jast_m,num_grad_jast(3)
dr = 0.00001d0
r2 = 0.d0
r2(1) = 0.5d0
r2(2) = -0.1d0
r2(3) = 1.0d0
accu_grad = 0.d0
do ipoint = 1, n_points_final_grid
r1(1:3) = final_grid_points(1:3,ipoint)
weight = final_weight_at_r_vector(ipoint)
call get_grad_r1_jastrow_psi(r1,r2,grad_jast,jast)
! grad_jast = - grad_jast
double precision :: norm,error
norm = 0.D0
do k = 1, 3
r1bis= r1
r1bis(k) += dr
call get_grad_r1_jastrow_psi(r1bis,r2,grad_jast_bis,jast_p)
r1bis= r1
r1bis(k) -= dr
call get_grad_r1_jastrow_psi(r1bis,r2,grad_jast_bis,jast_m)
num_grad_jast(k) = (jast_p - jast_m)/(2.d0* dr)
norm += num_grad_jast(k)*num_grad_jast(k)
enddo
error = 0.d0
do k = 1, 3
error += dabs(grad_jast(k) - num_grad_jast(k))
enddo
error *= 0.33333333d0
norm = dsqrt(norm)
if(norm.gt.1.d-05)then
if(dabs(error/norm).gt.dr)then
print*,'/////'
print*,error,norm
print*,grad_jast
print*,num_grad_jast
endif
endif
do k = 1,3
accu_grad(k) += weight * dabs(grad_jast(k) - num_grad_jast(k))
enddo
enddo
print*,'accu_grad = '
print*, accu_grad
end
subroutine routine_deb_denom
implicit none
integer :: ipoint,k,i,j
double precision :: r2(3), weight, dr, r1(3), r1bis(3)
double precision :: accu_grad(3)
double precision :: jast,grad_jast(3),j_bump,jastrow_psi,grad_jast_bis(3)
double precision :: jast_p,jast_m,num_grad_jast(3)
dr = 0.00001d0
r2 = 0.d0
r2(1) = 0.5d0
r2(2) = -0.1d0
r2(3) = 1.0d0
double precision, allocatable :: mos_array_r1(:), mos_array_r2(:)
double precision, allocatable :: mos_grad_array_r1(:,:),mos_grad_array_r2(:,:)
allocate(mos_array_r1(mo_num), mos_array_r2(mo_num))
allocate(mos_grad_array_r1(3,mo_num), mos_grad_array_r2(3,mo_num))
do i = 1, 1
do j = 1, 1
accu_grad = 0.d0
call give_all_mos_and_grad_at_r(r2,mos_array_r2,mos_grad_array_r2)
do ipoint = 1, n_points_final_grid
r1(1:3) = final_grid_points(1:3,ipoint)
weight = final_weight_at_r_vector(ipoint)
call give_all_mos_and_grad_at_r(r1,mos_array_r1,mos_grad_array_r1)
call denom_jpsi(i,j,a_boys, mos_array_r1,mos_grad_array_r1,mos_array_r2,jast, grad_jast)
double precision :: norm,error
norm = 0.D0
do k = 1, 3
r1bis= r1
r1bis(k) += dr
call give_all_mos_and_grad_at_r(r1bis,mos_array_r1,mos_grad_array_r1)
call denom_jpsi(i,j,a_boys, mos_array_r1,mos_grad_array_r1,mos_array_r2,jast_p, grad_jast_bis)
r1bis= r1
r1bis(k) -= dr
call give_all_mos_and_grad_at_r(r1bis,mos_array_r1,mos_grad_array_r1)
call denom_jpsi(i,j,a_boys, mos_array_r1,mos_grad_array_r1,mos_array_r2,jast_m, grad_jast_bis)
num_grad_jast(k) = (jast_p - jast_m)/(2.d0* dr)
norm += num_grad_jast(k)*num_grad_jast(k)
enddo
error = 0.d0
do k = 1, 3
error += dabs(grad_jast(k) - num_grad_jast(k))
enddo
error *= 0.33333333d0
norm = dsqrt(norm)
if(norm.gt.1.d-05)then
if(dabs(error/norm).gt.dr)then
print*,'/////'
print*,error,norm
print*,grad_jast
print*,num_grad_jast
endif
endif
do k = 1,3
accu_grad(k) += weight * dabs(grad_jast(k) - num_grad_jast(k))
enddo
enddo
print*,'i,j = ',i,j
print*,'accu_grad = '
print*, accu_grad
enddo
enddo
end

View File

@ -0,0 +1,90 @@
double precision function wigner_radius(rho)
implicit none
include 'constants.include.F'
double precision, intent(in) :: rho
wigner_radius = 4.d0 * pi * rho * 0.333333333333d0
wigner_radius = wigner_radius**(-0.3333333d0)
end
double precision function j_bump(r1,r2,a)
implicit none
include 'constants.include.F'
double precision, intent(in) :: r1(3),r2(3),a
double precision :: inv_a,factor,x_scaled,scalar
double precision :: r12
r12 = (r1(1) - r2(1))*(r1(1) - r2(1))
r12 += (r1(2) - r2(2))*(r1(2) - r2(2))
r12 += (r1(3) - r2(3))*(r1(3) - r2(3))
r12 = dsqrt(r12)
inv_a = 1.d0/a
x_scaled = r12*inv_a*inv_sq_pi
x_scaled*= x_scaled
j_bump = 0.5d0 * (r12-a) * dexp(-x_scaled)
end
subroutine get_grad_j_bump(x,a,grad)
implicit none
BEGIN_DOC
! gradient of the Jastrow with a bump
!
! j(x,a) = 1/2 * (x-a)* exp[-(x/(a*sqrt(pi)))^2]
!
! d/dx j(x,a) = 1/(2 pi a^2) * exp[-(x/(a*sqrt(pi)))^2] * (pi a^2 + 2 a x - 2x^2)
END_DOC
include 'constants.include.F'
double precision, intent(in) :: x,a
double precision, intent(out) :: grad
double precision :: inv_a,factor,x_scaled,scalar
inv_a = 1.d0/a
factor = 0.5d0*inv_pi*inv_a*inv_a
x_scaled = x*inv_a*inv_sq_pi
x_scaled*= x_scaled
grad = factor * dexp(-x_scaled) * (pi*a*a + 2.d0 * a*x - 2.d0*x*x)
end
subroutine get_d_da_j_bump(x,a,d_da)
implicit none
BEGIN_DOC
! Derivative with respect by to the parameter "a" of the Jastrow with a bump
!
! j(x,a) = 1/2 * (x-a)* exp[-(x/(a*sqrt(pi)))^2]
!
! d/da j(x,a) = - 1/(pi*a^3) * exp[-(x/(a*sqrt(pi)))^2] * (-2 x^3 + 2 a x^2 + pi a^x3)
END_DOC
include 'constants.include.F'
double precision, intent(in) :: x,a
double precision, intent(out) :: d_da
double precision :: factor, inv_a,x_scaled,scalar
inv_a = 1.d0/a
factor = inv_a*inv_a*inv_a*inv_pi
x_scaled = x*inv_a*inv_sq_pi
x_scaled*= x_scaled
d_da = factor * dexp(-x_scaled) * (-2.d0 * x*x*x + 2.d0*x*x*a+pi*a*a*a)
end
subroutine get_grad_j_bump_mu_of_r(r1,r2,grad_j_bump)
implicit none
BEGIN_DOC
! d/dx1 j(x,a(r1,r2)) where j(x,a) is the Jastrow with a bump
!
! j(x,a) = 1/2 * (x-a)* exp[-(x/(a*sqrt(pi)))^2]
!
! a(r1,r2) = [rho(r1) a(r1) + rho(r2) a(r2)]/[rho(r1) + rho(r2)]
!
! d/dx1 j(x,a) = d/dx1 j(x,a(r1,r2))
END_DOC
double precision, intent(in) :: r1(3),r2(3)
double precision, intent(out):: grad_j_bump(3)
double precision :: r12,r12_vec(3),grad_scal,inv_r12
r12_vec = r1 - r2
r12 = (r1(1) - r2(1))*(r1(1) - r2(1))
r12 += (r1(2) - r2(2))*(r1(2) - r2(2))
r12 += (r1(3) - r2(3))*(r1(3) - r2(3))
r12 = dsqrt(r12)
call get_grad_j_bump(r12,a_boys,grad_scal)
if(r12.lt.1.d-10)then
grad_j_bump = 0.d0
else
grad_j_bump = grad_scal * r12_vec/r12
endif
end

View File

@ -31,7 +31,7 @@
grad1_u12_squared_num = 0.d0 grad1_u12_squared_num = 0.d0
if( ((j2e_type .eq. "Mu") .and. (env_type .eq. "None")) .or. & if( ((j2e_type .eq. "Mu") .and. (env_type .eq. "None")) .or. &
(j2e_type .eq. "Mur") ) then (j2e_type .eq. "Mur").or.(j2e_type .eq. "Mugauss") .or. (j2e_type .eq. "Murgauss")) then
!$OMP PARALLEL & !$OMP PARALLEL &
!$OMP DEFAULT (NONE) & !$OMP DEFAULT (NONE) &

View File

@ -0,0 +1,306 @@
subroutine get_j_sum_mu_of_r(r1,r2,jast)
implicit none
double precision, intent(in) :: r1(3),r2(3)
double precision, intent(out):: jast
double precision :: mu_r1, dm_r1, grad_mu_r1(3), grad_dm_r1(3), j_mu_r1
double precision :: mu_r2, dm_r2, grad_mu_r2(3), grad_dm_r2(3), j_mu_r2
double precision :: j12_mu_input,mu_tot,r12,j_simple
jast = 0.d0
if(murho_type==0)then
! J(r1,r2) = [rho(r1) * j(mu(r1),r12) + rho(r2) * j(mu(r2),r12)] / [rho(r1) + rho(r2)]
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
j_mu_r1 = j12_mu_input(r1, r2, mu_r1)
j_mu_r2 = j12_mu_input(r1, r2, mu_r2)
if(dm_r1 + dm_r2.lt.1.d-7)return
jast = (dm_r1 * j_mu_r1 + dm_r2 * j_mu_r2) / (dm_r1 + dm_r2)
else if(murho_type==1)then
! J(r1,r2) = j(0.5 * (mu(r1)+mu(r2)),r12), MU(r1,r2) = 0.5 *(mu(r1)+mu(r2))
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
mu_tot = 0.5d0 * (mu_r1 + mu_r2)
jast = j12_mu_input(r1, r2, mu_tot)
else if(murho_type==2)then
! MU(r1,r2) = (rho(1) * mu(r1)+ rho(2) * mu(r2))/(rho(1)+rho(2))
! J(r1,r2) = j(MU(r1,r2),r12)
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
double precision :: mu_tmp, dm_tot, dm_tot_inv
dm_tot = dm_r1**a_boys + dm_r2**a_boys ! rho(1)**alpha+rho(2)**alpha
if(dm_tot.lt.1.d-12)then
dm_tot_inv = 1.d+12
else
dm_tot_inv = 1.d0/dm_tot
endif
mu_tmp = dm_r1**a_boys * mu_r1 + dm_r2**a_boys * mu_r2 !rho(1)**alpha * mu(r1)+ rho(2)**alpha * mu(r2)
mu_tot = nu_erf * mu_tmp*dm_tot_inv !
r12 = (r1(1) - r2(1)) * (r1(1) - r2(1))
r12 += (r1(2) - r2(2)) * (r1(2) - r2(2))
r12 += (r1(3) - r2(3)) * (r1(3) - r2(3))
r12 = dsqrt(r12)
jast = j_simple(r12,mu_tot)
endif
end
subroutine grad_j_sum_mu_of_r(r1,r2,jast,grad_jast)
implicit none
include 'constants.include.F'
BEGIN_DOC
END_DOC
double precision, intent(in) :: r1(3),r2(3)
double precision, intent(out):: jast, grad_jast(3)
jast = 0.d0
grad_jast = 0.d0
double precision :: num, denom, grad_num(3), grad_denom(3)
double precision :: j_r1, grad_j_r1(3),j_r2, grad_j_r2(3)
double precision :: dm_r1, grad_dm_r1(3), grad_jmu_r2(3)
double precision :: dm_r2, grad_dm_r2(3),mu_r2, grad_mu_r2(3),mu_r1
double precision :: j12_mu_input,r12,grad_mu_r1(3),grad_jmu_r1(3)
double precision :: mu_tot,dx,dy,dz,r12_vec(3),d_dmu_j,d_dr12_j
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12.gt.1.d-10)then
r12_vec(1) = dx
r12_vec(2) = dy
r12_vec(3) = dz
r12_vec *= 1.d0/r12
! r12_vec = grad_r1 (r12)
else
r12 = 1.d-10
r12_vec = 0.d0
endif
if(murho_type==0)then
! J(r1,r2) = [rho(r1) * j(mu(r1),r12) + rho(r2) * j(mu(r2),r12)] / [rho(r1) + rho(r2)]
!
! = num(r1,r2) / denom(r1,r2)
!
! d/dx1 J(r1,r2) = [denom(r1,r2) X d/dx1 num(r1,r2) - num(r1,r2) X d/dx1 denom(r1,r2) ] / denom(r1,r2)^2
!
! d/dx1 num(r1,r2) = j(mu(r1),r12)*d/dx1 rho(r1) + rho(r1) * d/dx1 j(mu(r1),r12)
! + rho(r2) d/dx1 j(mu(r2),r12)
! d/dx1 denom(r1,r2) = d/dx1 rho(r1)
call grad_j_mu_of_r_1(r1,r2,j_r1, grad_j_r1,dm_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
j_r2 = j12_mu_input(r1, r2, mu_r2) ! j(mu(r2),r1,r2)
num = dm_r1 * j_r1 + dm_r2 * j_r2
denom = dm_r1 + dm_r2
if(denom.lt.1.d-7)return
jast = num / denom
grad_denom = grad_dm_r1
call grad_j12_mu_input(r1, r2, mu_r2, grad_jmu_r2,r12)
grad_num = j_r1 * grad_dm_r1 + dm_r1 * grad_j_r1 + dm_r2 * grad_jmu_r2
grad_jast = (grad_num * denom - num * grad_denom)/(denom*denom)
else if(murho_type==1)then
! J(r1,r2) = j(0.5 * (mu(r1)+mu(r2)),r12), MU(r1,r2) = 0.5 *(mu(r1)+mu(r2))
!
! d/dx1 J(r1,r2) = d/dx1 j(MU(r1,r2),r12)|MU=cst
! + d/dMU [j(MU,r12)]
! x d/d(mu(r1)) MU(r1,r2)
! x d/dx1 mu(r1)
! = 0.5 * (1 - erf(MU(r1,r2) *r12))/r12 * (x1 - x2) == grad_jmu_r1
! + e^{-(r12*MU(r1,r2))^2}/(2 sqrt(pi) * MU(r1,r2)^2)
! x 0.5
! x d/dx1 mu(r1)
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
mu_tot = 0.5d0 * (mu_r1 + mu_r2)
call grad_j12_mu_input(r1, r2, mu_tot, grad_jmu_r1,r12)
grad_jast = grad_jmu_r1
grad_jast+= dexp(-r12*mu_tot*r12*mu_tot) * inv_sq_pi_2 /(mu_tot* mu_tot) * 0.5d0 * grad_mu_r1
else if(murho_type==2)then
! MU(r1,r2) = beta * (rho(1)**alpha * mu(r1)+ rho(2)**alpha * mu(r2))/(rho(1)**alpha+rho(2)**alpha)
! J(r1,r2) = j(MU(r1,r2),r12)
!
! d/dx1 J(r1,r2) = d/dx1 j(MU(r1,r2),r12)|MU=cst
! + d/dMU [j(MU,r12)]
! x d/d(mu(r1)) MU(r1,r2)
! x d/dx1 mu(r1)
! = 0.5 * (1 - erf(MU(r1,r2) *r12))/r12 * (x1 - x2) == grad_jmu_r1
! + 0.5 e^{-(r12*MU(r1,r2))^2}/(2 sqrt(pi) * MU(r1,r2)^2)
! x d/dx1 MU(r1,r2)
! with d/dx1 MU(r1,r2) = beta * {[mu(1) d/dx1 [rho(1)**alpha] + rho(1)**alpha * d/dx1 mu(1)](rho(1)**alpha+rho(2)**alpha)
! - MU(1,2) d/dx1 [rho(1)]**alpha}/(rho(1)**alpha+rho(2)**alpha)^2
! d/dx1 [rho(1)]**alpha = alpha [rho(1)]**(alpha-1) d/dx1 rho(1)
!
call grad_mu_of_r_mean_field(r1,mu_r1, dm_r1, grad_mu_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
double precision :: dm_tot,dm_tot_inv,grad_mu_tot(3),mu_tmp,grad_dm_r1_alpha(3),d_dx_j
dm_tot = dm_r1**a_boys + dm_r2**a_boys ! rho(1)**alpha+rho(2)**alpha
grad_dm_r1_alpha = a_boys * dm_r1**(a_boys-1) * grad_dm_r1
if(dm_tot.lt.1.d-12)then
dm_tot_inv = 1.d+12
else
dm_tot_inv = 1.d0/dm_tot
endif
mu_tmp = dm_r1**a_boys * mu_r1 + dm_r2**a_boys * mu_r2 !rho(1)**alpha * mu(r1)+ rho(2)**alpha * mu(r2)
mu_tot = nu_erf * mu_tmp*dm_tot_inv !
grad_mu_tot = ( mu_r1 * grad_dm_r1_alpha + dm_r1**a_boys * grad_mu_r1 ) * dm_tot &
- mu_tmp * grad_dm_r1_alpha
grad_mu_tot *= dm_tot_inv * dm_tot_inv * nu_erf
call get_deriv_r12_j12(r12,mu_tot,d_dr12_j) ! d/dr12 j(MU(r1,r2,r12)
! d/dx1 j(MU(r1,r2),r12) | MU(r1,r2) = cst
! d/dr12 j(MU(r1,r2,r12) x d/dx1 r12
grad_jmu_r1 = d_dr12_j * r12_vec
! call grad_j12_mu_input(r1, r2, mu_tot, grad_jmu_r1,r12)
grad_jast = grad_jmu_r1
! d/dMU j(MU(r1,r2),r12)
call get_deriv_mu_j12(r12,mu_tot,d_dmu_j)
grad_jast+= d_dmu_j * grad_mu_tot
else if(murho_type==-1)then
! J(r1,r2) = 0.5 * [j(mu(r1),r12) + j(mu(r2),r12)]
!
! d/dx1 J(r1,r2) = 0.5 * (d/dx1 j(mu(r1),r12) + d/dx1 j(mu(r2),r12))
call grad_j_mu_of_r_1(r1,r2,j_r1, grad_j_r1,dm_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_r2, dm_r2, grad_mu_r2, grad_dm_r2)
j_r2 = j12_mu_input(r1, r2, mu_r2) ! j(mu(r2),r1,r2)
call grad_j12_mu_input(r1, r2, mu_r2, grad_jmu_r2,r12)
jast = 0.5d0 * (j_r1 + j_r2)
grad_jast = 0.5d0 * (grad_j_r1 + grad_jmu_r2)
endif
end
subroutine grad_j_mu_of_r_1(r1,r2,jast, grad_jast, dm_r1, grad_dm_r1)
implicit none
include 'constants.include.F'
BEGIN_DOC
! grad_r1 of j(mu(r1),r12)
!
!
! d/dx1 j(mu(r1),r12) = exp(-(mu(r1)*r12)**2) /(2 *sqrt(pi) * mu(r1)**2 ) d/dx1 mu(r1)
! + d/dx1 j(mu(r1),r12)
!
! with
!
! j(mu,r12) = 1/2 r12 (1 - erf(mu r12)) - 1/2 (sqrt(pi) * mu) e^{-(mu*r12)^2}
!
! and d/dx1 j(mu,r12) = 0.5 * (1 - erf(mu *r12))/r12 * (x1 - x2)
!
! d/d mu j(mu,r12) = e^{-(r12*mu)^2}/(2 sqrt(pi) * mu^2)
!
! here mu(r1) is obtained by MU MEAN FIELD
END_DOC
double precision, intent(in) :: r1(3),r2(3)
double precision, intent(out):: jast, grad_jast(3),dm_r1, grad_dm_r1(3)
double precision :: dx, dy, dz, r12, mu_der(3)
double precision :: mu_tmp, tmp, grad(3), mu_val
jast = 0.d0
grad = 0.d0
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
! get mu(r1) == mu_val and its gradient d/dx1 mu(r1) == mu_der
call grad_mu_of_r_mean_field(r1,mu_val, dm_r1, mu_der, grad_dm_r1)
mu_tmp = mu_val * r12
! evalulation of the jastrow j(mu(r1),r12)
jast = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_val
! tmp = exp(-(mu(r1)*r12)**2) /(2 *sqrt(pi) * mu(r1)**2 )
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
! grad =
grad(1) = tmp * mu_der(1)
grad(2) = tmp * mu_der(2)
grad(3) = tmp * mu_der(3)
if(r12 .lt. 1d-10) return
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12 ! d/dx1 j(mu(r1),r12)
grad(1) = grad(1) + tmp * dx
grad(2) = grad(2) + tmp * dy
grad(3) = grad(3) + tmp * dz
grad_jast = grad
end
! ---
double precision function j12_mu_input(r1, r2, mu)
BEGIN_DOC
! j(mu,r12) = 1/2 r12 (1 - erf(mu r12)) - 1/2 (sqrt(pi) * mu) e^{-(mu*r12)^2}
END_DOC
include 'constants.include.F'
implicit none
double precision, intent(in) :: r1(3), r2(3), mu
double precision :: mu_tmp, r12
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
mu_tmp = mu * r12
j12_mu_input = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu
end
subroutine grad_j12_mu_input(r1, r2, mu, grad_jmu,r12)
implicit none
BEGIN_DOC
! grad_jmu = d/dx1 j(mu,r12) assuming mu=cst(r1)
!
! = 0.5/r_12 * (x_1 - x_2) * [1 - erf(mu*r12)]
END_DOC
double precision, intent(in) :: r1(3), r2(3), mu
double precision, intent(out):: grad_jmu(3),r12
double precision :: mu_tmp, dx, dy, dz, grad(3), tmp
grad_jmu = 0.d0
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12 .lt. 1d-10) return
mu_tmp = mu * r12
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12 ! d/dx1 j(mu(r1),r12)
grad(1) = tmp * dx
grad(2) = tmp * dy
grad(3) = tmp * dz
grad_jmu = grad
end
subroutine j12_and_grad_j12_mu_input(r1, r2, mu, jmu, grad_jmu)
implicit none
include 'constants.include.F'
BEGIN_DOC
! jmu = j(mu,r12)
! grad_jmu = d/dx1 j(mu,r12) assuming mu=cst(r1)
!
! = 0.5/r_12 * (x_1 - x_2) * [1 - erf(mu*r12)]
END_DOC
double precision, intent(in) :: r1(3), r2(3), mu
double precision, intent(out):: grad_jmu(3), jmu
double precision :: mu_tmp, r12, dx, dy, dz, grad(3), tmp
double precision :: erfc_mur12,inv_mu
inv_mu = 1.d0/mu
grad_jmu = 0.d0 ! initialization when r12 --> 0
jmu = - inv_sq_pi_2 * inv_mu ! initialization when r12 --> 0
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12 .lt. 1d-10) return
erfc_mur12 = (1.d0 - derf(mu_tmp))
mu_tmp = mu * r12
tmp = 0.5d0 * erfc_mur12 / r12 ! d/dx1 j(mu(r1),r12)
grad(1) = tmp * dx
grad(2) = tmp * dy
grad(3) = tmp * dz
grad_jmu = grad
jmu= 0.5d0 * r12 * erfc_mur12 - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) * inv_mu
end

View File

@ -1,8 +1,73 @@
subroutine get_deriv_r12_j12(x,mu,d_dx_j)
implicit none
include 'constants.include.F'
BEGIN_DOC
! d/dr12 j(mu,r12)
END_DOC
double precision, intent(in) :: x,mu
double precision, intent(out) :: d_dx_j
d_dx_j = 0.d0
if(x .lt. 1d-10) return
if(j2e_type .eq. "Mu" .or. j2e_type .eq. "Mur") then
d_dx_j = 0.5d0 * (1.d0 - derf(mu * x))
else if(j2e_type .eq. "Mugauss" .or. j2e_type .eq. "Murgauss" ) then
double precision :: x_tmp
x_tmp = mu * x
! gradient of j(mu,x)
d_dx_j = 0.5d0 * (1.d0 - derf(x_tmp))
! gradient of gaussian additional term
x_tmp *= alpha_mu_gauss
x_tmp *= x_tmp
d_dx_j += -0.5d0 * mu * c_mu_gauss * x * dexp(-x_tmp)
else
print *, ' Error in get_deriv_r12_j12: Unknown j2e_type = ', j2e_type
stop
endif
end
subroutine get_deriv_mu_j12(x,mu,d_d_mu)
implicit none
BEGIN_DOC
! d/dmu j(mu,r12)
END_DOC
include 'constants.include.F'
double precision, intent(in) :: x,mu
double precision, intent(out) :: d_d_mu
double precision :: x_tmp,inv_mu_2,inv_alpha_2
d_d_mu = 0.d0
if(x .lt. 1d-10) return
x_tmp = x*mu
if(mu.lt.1.d-10) return
inv_mu_2 = mu*mu
inv_mu_2 = 1.d0/inv_mu_2
if(j2e_type .eq. "Mu" .or. j2e_type .eq. "Mur") then
! e^{-(r12*mu)^2}/(2 sqrt(pi) * mu^2)
d_d_mu = dexp(-x_tmp*x_tmp) * inv_sq_pi_2 * inv_mu_2
else if(j2e_type .eq. "Mugauss" .or. j2e_type .eq. "Murgauss" ) then
d_d_mu = dexp(-x_tmp*x_tmp) * inv_sq_pi_2 * inv_mu_2
inv_alpha_2 = 1.d0/alpha_mu_gauss
inv_alpha_2 *= inv_alpha_2
x_tmp *= alpha_mu_gauss
x_tmp *= x_tmp
d_d_mu += -0.25d0 * c_mu_gauss*inv_alpha_2*dexp(-x_tmp) * (1.d0 + 2.d0 * x_tmp) * inv_mu_2
else
print *, ' Error in get_deriv_r12_j12: Unknown j2e_type = ', j2e_type
stop
endif
end
! --- ! ---
double precision function j12_mu(r1, r2) double precision function j12_mu(r1, r2)
BEGIN_DOC
! j(mu,r12) = 1/2 r12 (1 - erf(mu r12)) - 1/2 (sqrt(pi) * mu) e^{-(mu*r12)^2}
END_DOC
include 'constants.include.F' include 'constants.include.F'
implicit none implicit none
@ -18,6 +83,18 @@ double precision function j12_mu(r1, r2)
j12_mu = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf j12_mu = 0.5d0 * r12 * (1.d0 - derf(mu_tmp)) - inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / mu_erf
else if(j2e_type .eq. "Mugauss") then
r12 = dsqrt( (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3)) )
double precision :: r12_tmp
r12_tmp = mu_erf * r12
j12_mu = 0.5d0 * r12 * (1.d0 - derf(r12_tmp)) - inv_sq_pi_2 * dexp(-r12_tmp*r12_tmp) / mu_erf
r12_tmp *= alpha_mu_gauss
j12_mu += 0.25d0 * c_mu_gauss / (alpha_mu_gauss*alpha_mu_gauss*mu_erf) * dexp(-r12_tmp*r12_tmp)
else else
print *, ' Error in j12_mu: Unknown j2e_type = ', j2e_type print *, ' Error in j12_mu: Unknown j2e_type = ', j2e_type
@ -57,7 +134,7 @@ subroutine grad1_j12_mu(r1, r2, grad)
grad = 0.d0 grad = 0.d0
if(j2e_type .eq. "Mu") then if(j2e_type .eq. "Mu".or.j2e_type .eq. "Mugauss") then
dx = r1(1) - r2(1) dx = r1(1) - r2(1)
dy = r1(2) - r2(2) dy = r1(2) - r2(2)
@ -66,31 +143,42 @@ subroutine grad1_j12_mu(r1, r2, grad)
r12 = dsqrt(dx * dx + dy * dy + dz * dz) r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12 .lt. 1d-10) return if(r12 .lt. 1d-10) return
tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12 call get_deriv_r12_j12(r12,mu_erf,tmp)
! tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
grad(1) = tmp * dx grad(1) = tmp * dx
grad(2) = tmp * dy grad(2) = tmp * dy
grad(3) = tmp * dz grad(3) = tmp * dz
grad *= 1.d0/r12
elseif(j2e_type .eq. "Mur") then elseif(j2e_type .eq. "Mur" .or. j2e_type .eq. "Murgauss") then
double precision :: jast
call grad_j_sum_mu_of_r(r1,r2,jast,grad)
elseif(j2e_type .eq. "Bump") then
double precision ::grad_jast(3)
call get_grad_j_bump_mu_of_r(r1,r2,grad_jast)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
dx = r1(1) - r2(1) r12 = dsqrt(dx * dx + dy * dy + dz * dz)
dy = r1(2) - r2(2) if(r12 .lt. 1d-10) then
dz = r1(3) - r2(3) grad(1) = 0.d0
r12 = dsqrt(dx * dx + dy * dy + dz * dz) grad(2) = 0.d0
grad(3) = 0.d0
return
endif
call mu_r_val_and_grad(r1, r2, mu_val, mu_der) tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
mu_tmp = mu_val * r12
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val) grad(1) = 0.5d0 * tmp * dx
grad(1) = tmp * mu_der(1) grad(2) = 0.5d0 * tmp * dy
grad(2) = tmp * mu_der(2) grad(3) = 0.5d0 * tmp * dz
grad(3) = tmp * mu_der(3) grad(1) += 0.5d0 * grad_jast(1)
grad(2) += 0.5d0 * grad_jast(2)
grad(3) += 0.5d0 * grad_jast(3)
if(r12 .lt. 1d-10) return
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12
grad(1) = grad(1) + tmp * dx
grad(2) = grad(2) + tmp * dy
grad(3) = grad(3) + tmp * dz
else else
@ -369,7 +457,18 @@ end
! --- ! ---
subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der) subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
BEGIN_DOC
! various flavours of mu(r1,r2)
! depends on essentially the density and other related quantities
!
! change the variable "murho_type" to change type
!
! murho_type == -1 :: mu(r1,r2) = (rho(r1) mu_mf(r1) + rho(r2) mu_mf(r2))/[rho(r1)+rho(r2)]
!
! == 0 :: mu(r1,r2) = (sqrt(rho(r1)) mu_mf(r1) + sqrt(rho(r2)) mu_mf(r2))/[sqrt(rho(r1))+sqrt(rho(r2))]
!
! == -2 :: mu(r1,r2) = 0.5(mu_mf(r1) + mu_mf(r2))
END_DOC
implicit none implicit none
double precision, intent(in) :: r1(3), r2(3) double precision, intent(in) :: r1(3), r2(3)
double precision, intent(out) :: mu_val, mu_der(3) double precision, intent(out) :: mu_val, mu_der(3)
@ -379,11 +478,50 @@ subroutine mu_r_val_and_grad(r1, r2, mu_val, mu_der)
double precision :: rho1, grad_rho1(3),rho2,rho_tot,inv_rho_tot double precision :: rho1, grad_rho1(3),rho2,rho_tot,inv_rho_tot
double precision :: f_rho1, f_rho2, d_drho_f_rho1 double precision :: f_rho1, f_rho2, d_drho_f_rho1
double precision :: d_dx1_f_rho1(3),d_dx_rho_f_rho(3),nume double precision :: d_dx1_f_rho1(3),d_dx_rho_f_rho(3),nume
double precision :: mu_mf_r1, dm_r1, grad_mu_mf_r1(3), grad_dm_r1(3)
double precision :: mu_mf_r2, dm_r2, grad_mu_mf_r2(3), grad_dm_r2(3)
double precision :: num, denom, grad_denom(3), grad_num(3)
double precision :: dsqrt_dm_r1
PROVIDE murho_type PROVIDE murho_type
PROVIDE mu_r_ct mu_erf PROVIDE mu_r_ct mu_erf
if(murho_type .eq. 1) then if(murho_type .eq. 0) then
call grad_mu_of_r_mean_field(r1,mu_mf_r1, dm_r1, grad_mu_mf_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_mf_r2, dm_r2, grad_mu_mf_r2, grad_dm_r2)
dsqrt_dm_r1 = dsqrt(dm_r1)
denom = (dsqrt_dm_r1 + dsqrt(dm_r2) )
if(denom.lt.1.d-7)then
mu_val = 1.d+10
mu_der = 0.d0
return
endif
num = (dsqrt(dm_r1) * mu_mf_r1 + dsqrt(dm_r2) * mu_mf_r2)
mu_val = num / denom
grad_denom = grad_dm_r1/dsqrt_dm_r1
grad_num = dsqrt(dm_r1) * grad_mu_mf_r1 + mu_mf_r1 * grad_dm_r1
mu_der = (grad_num * denom - num * grad_denom)/(denom*denom)
else if(murho_type .eq. -1) then
call grad_mu_of_r_mean_field(r1,mu_mf_r1, dm_r1, grad_mu_mf_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_mf_r2, dm_r2, grad_mu_mf_r2, grad_dm_r2)
denom = (dm_r1 + dm_r2 )
if(denom.lt.1.d-7)then
mu_val = 1.d+10
mu_der = 0.d0
return
endif
num = (dm_r1 * mu_mf_r1 + dm_r2 * mu_mf_r2)
mu_val = num / denom
grad_denom = grad_dm_r1
grad_num = dm_r1 * grad_mu_mf_r1 + mu_mf_r1 * grad_dm_r1
mu_der = (grad_num * denom - num * grad_denom)/(denom*denom)
else if(murho_type .eq. -2) then
call grad_mu_of_r_mean_field(r1,mu_mf_r1, dm_r1, grad_mu_mf_r1, grad_dm_r1)
call grad_mu_of_r_mean_field(r2,mu_mf_r2, dm_r2, grad_mu_mf_r2, grad_dm_r2)
mu_val = 0.5d0 * (mu_mf_r1 + mu_mf_r2)
mu_der = 0.5d0 * grad_mu_mf_r1
else if(murho_type .eq. 1) then
! !
! r = 0.5 (r1 + r2) ! r = 0.5 (r1 + r2)

View File

@ -33,8 +33,12 @@ subroutine get_grad1_u12_withsq_r1_seq(ipoint, n_grid2, resx, resy, resz, res)
r1(2) = final_grid_points(2,ipoint) r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint) r1(3) = final_grid_points(3,ipoint)
if( (j2e_type .eq. "Mu") .or. & if( (j2e_type .eq. "Mu") .or. &
(j2e_type .eq. "Mur") .or. & (j2e_type .eq. "Mur") .or. &
(j2e_type .eq. "Jpsi") .or. &
(j2e_type .eq. "Mugauss") .or. &
(j2e_type .eq. "Murgauss") .or. &
(j2e_type .eq. "Bump") .or. &
(j2e_type .eq. "Boys") ) then (j2e_type .eq. "Boys") ) then
if(env_type .eq. "None") then if(env_type .eq. "None") then
@ -206,7 +210,43 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
gradz(jpoint) = tmp * dz gradz(jpoint) = tmp * dz
enddo enddo
elseif(j2e_type .eq. "Mur") then else if(j2e_type .eq. "Mugauss") then
! d/dx1 j(mu,r12) = 0.5 * [(1 - erf(mu * r12)) / r12 - mu*c*r12*exp(-(mu*alpha*r12)^2] * (x1 - x2)
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz)
if(r12 .lt. 1d-10) then
gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0
gradz(jpoint) = 0.d0
cycle
endif
double precision :: r12_tmp
r12_tmp = mu_erf * r12
! gradient of j(mu,r12)
tmp = 0.5d0 * (1.d0 - derf(r12_tmp)) / r12
! gradient of gaussian additional term
r12_tmp *= alpha_mu_gauss
r12_tmp *= r12_tmp
tmp += -0.5d0 * mu_erf * c_mu_gauss * r12 * dexp(-r12_tmp)/r12
gradx(jpoint) = tmp * dx
grady(jpoint) = tmp * dy
gradz(jpoint) = tmp * dz
enddo
elseif(j2e_type .eq. "Mur".or.j2e_type .eq. "Murgauss") then
! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2) ! d/dx1 j(mu(r1,r2),r12) = exp(-(mu(r1,r2)*r12)**2) /(2 *sqrt(pi) * mu(r1,r2)**2 ) d/dx1 mu(r1,r2)
! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2) ! + 0.5 * (1 - erf(mu(r1,r2) *r12))/r12 * (x1 - x2)
@ -216,31 +256,46 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
r2(1) = final_grid_points_extra(1,jpoint) r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint) r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint) r2(3) = final_grid_points_extra(3,jpoint)
double precision :: jast, grad_jast(3)
call grad_j_sum_mu_of_r(r1,r2,jast,grad_jast)
gradx(jpoint) = grad_jast(1)
grady(jpoint) = grad_jast(2)
gradz(jpoint) = grad_jast(3)
enddo
elseif(j2e_type .eq. "Bump") then
! d/dx1 jbump(r1,r2)
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
call get_grad_j_bump_mu_of_r(r1,r2,grad_jast)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
dx = r1(1) - r2(1)
dy = r1(2) - r2(2)
dz = r1(3) - r2(3)
r12 = dsqrt(dx * dx + dy * dy + dz * dz) r12 = dsqrt(dx * dx + dy * dy + dz * dz)
call mu_r_val_and_grad(r1, r2, mu_val, mu_der)
mu_tmp = mu_val * r12
tmp = inv_sq_pi_2 * dexp(-mu_tmp*mu_tmp) / (mu_val * mu_val)
gradx(jpoint) = tmp * mu_der(1)
grady(jpoint) = tmp * mu_der(2)
gradz(jpoint) = tmp * mu_der(3)
if(r12 .lt. 1d-10) then if(r12 .lt. 1d-10) then
gradx(jpoint) = 0.d0 gradx(jpoint) = 0.d0
grady(jpoint) = 0.d0 grady(jpoint) = 0.d0
gradz(jpoint) = 0.d0 gradz(jpoint) = 0.d0
cycle cycle
endif endif
tmp = 0.5d0 * (1.d0 - derf(mu_tmp)) / r12 tmp = 0.5d0 * (1.d0 - derf(mu_erf * r12)) / r12
gradx(jpoint) = gradx(jpoint) + tmp * dx gradx(jpoint) = 0.5d0 * tmp * dx
grady(jpoint) = grady(jpoint) + tmp * dy grady(jpoint) = 0.5d0 * tmp * dy
gradz(jpoint) = gradz(jpoint) + tmp * dz gradz(jpoint) = 0.5d0 * tmp * dz
gradx(jpoint) += 0.5d0 * grad_jast(1)
grady(jpoint) += 0.5d0 * grad_jast(2)
gradz(jpoint) += 0.5d0 * grad_jast(3)
! gradx(jpoint) = grad_jast(1)
! grady(jpoint) = grad_jast(2)
! gradz(jpoint) = grad_jast(3)
enddo enddo
elseif(j2e_type .eq. "Boys") then elseif(j2e_type .eq. "Boys") then
@ -335,9 +390,6 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
npA = jBH_n(p,i_nucl) npA = jBH_n(p,i_nucl)
opA = jBH_o(p,i_nucl) opA = jBH_o(p,i_nucl)
tmp = jBH_c(p,i_nucl) tmp = jBH_c(p,i_nucl)
if(mpA .eq. npA) then
tmp = tmp * 0.5d0
endif
tmp1 = double_p(mpA) * f1A_power(mpA-1) * f2A_power(npA) + double_p(npA) * f1A_power(npA-1) * f2A_power(mpA) tmp1 = double_p(mpA) * f1A_power(mpA-1) * f2A_power(npA) + double_p(npA) * f1A_power(npA-1) * f2A_power(mpA)
tmp1 = tmp1 * g12_power(opA) * tmp tmp1 = tmp1 * g12_power(opA) * tmp
@ -366,6 +418,17 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
enddo ! i_nucl enddo ! i_nucl
enddo ! jpoint enddo ! jpoint
elseif(j2e_type .eq. "Jpsi") then
double precision :: grad_j_psi_r1(3),jast_psi
do jpoint = 1, n_points_extra_final_grid ! r2
r2(1) = final_grid_points_extra(1,jpoint)
r2(2) = final_grid_points_extra(2,jpoint)
r2(3) = final_grid_points_extra(3,jpoint)
call get_grad_r1_jastrow_psi(r1,r2,grad_j_psi_r1,jast_psi)
gradx(jpoint) = grad_j_psi_r1(1)
grady(jpoint) = grad_j_psi_r1(2)
gradz(jpoint) = grad_j_psi_r1(3)
enddo
else else
print *, ' Error in grad1_j12_r1_seq: Unknown j2e_type = ', j2e_type print *, ' Error in grad1_j12_r1_seq: Unknown j2e_type = ', j2e_type
@ -669,8 +732,12 @@ subroutine get_grad1_u12_2e_r1_seq(ipoint, n_grid2, resx, resy, resz)
r1(2) = final_grid_points(2,ipoint) r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint) r1(3) = final_grid_points(3,ipoint)
if( (j2e_type .eq. "Mu") .or. & if( (j2e_type .eq. "Mu") .or. &
(j2e_type .eq. "Mur") .or. & (j2e_type .eq. "Mugauss") .or. &
(j2e_type .eq. "Mur") .or. &
(j2e_type .eq. "Jpsi") .or. &
(j2e_type .eq. "Murgauss") .or. &
(j2e_type .eq. "Bump") .or. &
(j2e_type .eq. "Boys") ) then (j2e_type .eq. "Boys") ) then
if(env_type .eq. "None") then if(env_type .eq. "None") then
@ -787,8 +854,11 @@ subroutine get_u12_2e_r1_seq(ipoint, n_grid2, res)
r1(2) = final_grid_points(2,ipoint) r1(2) = final_grid_points(2,ipoint)
r1(3) = final_grid_points(3,ipoint) r1(3) = final_grid_points(3,ipoint)
if( (j2e_type .eq. "Mu") .or. & if( (j2e_type .eq. "Mu") .or. &
(j2e_type .eq. "Mur") .or. & (j2e_type .eq. "Mur") .or. &
(j2e_type .eq. "Mugauss") .or. &
(j2e_type .eq. "Murgauss") .or. &
(j2e_type .eq. "Mugauss") .or. &
(j2e_type .eq. "Boys") ) then (j2e_type .eq. "Boys") ) then
if(env_type .eq. "None") then if(env_type .eq. "None") then

View File

@ -0,0 +1,124 @@
BEGIN_PROVIDER [ double precision, c_ij_ab_jastrow, (mo_num, mo_num, elec_alpha_num, elec_beta_num)]
implicit none
integer :: iunit, getUnitAndOpen
c_ij_ab_jastrow = 0.d0
iunit = getUnitAndOpen(trim(ezfio_work_dir)//'c_ij_ab', 'R')
read(iunit) c_ij_ab_jastrow
close(iunit)
print*,'c_ij_ab_jastrow = '
integer :: i,j,a,b
do i = 1, elec_beta_num ! r2
do j = 1, elec_alpha_num ! r1
do a = elec_beta_num+1, mo_num ! r2
do b = elec_alpha_num+1, mo_num ! r1
! print*,b,a,j,i
print*,c_ij_ab_jastrow(b,a,j,i),b,a,j,i
if(dabs(c_ij_ab_jastrow(b,a,j,i)).lt.1.d-12)then
c_ij_ab_jastrow(b,a,j,i) = 0.d0
endif
enddo
enddo
enddo
enddo
END_PROVIDER
double precision function jastrow_psi(r1,r2)
implicit none
double precision, intent(in) :: r1(3), r2(3)
integer :: i,j,a,b
double precision, allocatable :: mos_array_r1(:), mos_array_r2(:)
allocate(mos_array_r1(mo_num), mos_array_r2(mo_num))
call give_all_mos_at_r(r1,mos_array_r1)
call give_all_mos_at_r(r2,mos_array_r2)
double precision :: eps,coef, numerator,denominator
double precision :: phi_i_phi_j
eps = a_boys
jastrow_psi= 0.d0
do i = 1, elec_beta_num ! r1
do j = 1, elec_alpha_num ! r2
phi_i_phi_j = mos_array_r1(i) * mos_array_r2(j) + eps
denominator = 1.d0/phi_i_phi_j
do a = elec_beta_num+1, mo_num ! r1
do b = elec_alpha_num+1, mo_num ! r2
coef = c_ij_ab_jastrow(b,a,j,i)
numerator = mos_array_r2(b) * mos_array_r1(a)
jastrow_psi += coef * numerator*denominator
enddo
enddo
enddo
enddo
end
subroutine get_grad_r1_jastrow_psi(r1,r2,grad_j_psi_r1,jast)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision, intent(out):: grad_j_psi_r1(3),jast
integer :: i,j,a,b
double precision, allocatable :: mos_array_r1(:), mos_array_r2(:)
double precision, allocatable :: mos_grad_array_r1(:,:),mos_grad_array_r2(:,:)
double precision :: num_j, denom_j, num_j_grad(3), denom_j_grad(3),delta,coef
double precision :: inv_denom_j
allocate(mos_array_r1(mo_num), mos_array_r2(mo_num))
allocate(mos_grad_array_r1(3,mo_num), mos_grad_array_r2(3,mo_num))
delta = a_boys
call give_all_mos_and_grad_at_r(r1,mos_array_r1,mos_grad_array_r1)
call give_all_mos_and_grad_at_r(r2,mos_array_r2,mos_grad_array_r2)
grad_j_psi_r1 = 0.d0
jast = 0.d0
do i = 1, elec_beta_num ! r1
do j = 1, elec_alpha_num ! r2
call denom_jpsi(i,j,delta,mos_array_r1,mos_grad_array_r1,mos_array_r2,denom_j, denom_j_grad)
inv_denom_j = 1.d0/denom_j
do a = elec_beta_num+1, mo_num ! r1
do b = elec_alpha_num+1, mo_num ! r2
call numerator_psi(a,b,mos_array_r1,mos_grad_array_r1,mos_array_r2,num_j, num_j_grad)
coef = c_ij_ab_jastrow(b,a,j,i)
jast += coef * num_j * inv_denom_j
grad_j_psi_r1 += coef * (num_j_grad * denom_j - num_j * denom_j_grad) * inv_denom_j * inv_denom_j
enddo
enddo
enddo
enddo
if(jast.lt.-1.d0.or.dabs(jast).gt.1.d0)then
print*,'pb ! '
print*,jast
print*,dsqrt(r1(1)**2+r1(2)**2+r1(3)**2),dsqrt(r2(1)**2+r2(2)**2+r2(3)**2)
print*,r1
! print*,mos_array_r1(1:2)
print*,r2
! print*,mos_array_r2(1:2)
stop
endif
if(log_jpsi)then
grad_j_psi_r1 = grad_j_psi_r1/(1.d0 + jast)
endif
end
subroutine denom_jpsi(i,j,delta,mos_array_r1,mos_grad_array_r1,mos_array_r2,denom, grad_denom)
implicit none
integer, intent(in) :: i,j
double precision, intent(in) :: mos_array_r1(mo_num),mos_grad_array_r1(3,mo_num),mos_array_r2(mo_num),delta
double precision, intent(out) :: denom, grad_denom(3)
double precision :: coef,phi_i_phi_j,inv_phi_i_phi_j,inv_phi_i_phi_j_2
phi_i_phi_j = mos_array_r1(i) * mos_array_r2(j)
if(phi_i_phi_j /= 0.d0)then
inv_phi_i_phi_j = 1.d0/phi_i_phi_j
inv_phi_i_phi_j_2 = 1.d0/(phi_i_phi_j * phi_i_phi_j)
else
inv_phi_i_phi_j = huge(1.0)
inv_phi_i_phi_j_2 = huge(1.d0)
endif
denom = phi_i_phi_j + delta * inv_phi_i_phi_j
grad_denom(:) = (1.d0 - delta*inv_phi_i_phi_j_2) * mos_array_r2(j) * mos_grad_array_r1(:,i)
end
subroutine numerator_psi(a,b,mos_array_r1,mos_grad_array_r1,mos_array_r2,num, grad_num)
implicit none
integer, intent(in) :: a,b
double precision, intent(in) :: mos_array_r1(mo_num),mos_grad_array_r1(3,mo_num),mos_array_r2(mo_num)
double precision, intent(out) :: num, grad_num(3)
num = mos_array_r1(a) * mos_array_r2(b)
grad_num(:) = mos_array_r2(b) * mos_grad_array_r1(:,a)
end

View File

@ -0,0 +1,43 @@
subroutine grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm)
implicit none
BEGIN_DOC
! returns the value and gradients of the mu(r) mean field, together with the HF density and its gradients.
END_DOC
include 'constants.include.F'
double precision, intent(in) :: r(3)
double precision, intent(out):: grad_mu_mf(3), grad_dm(3)
double precision, intent(out):: mu_mf, dm
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3),grad_dm_a(3), grad_dm_b(3)
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
double precision :: dist
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
dm = dm_a + dm_b
grad_dm(1:3) = grad_dm_a(1:3) + grad_dm_b(1:3)
if(dabs(two_bod_dens).lt.1.d-10)then
mu_mf = 1.d+10
grad_mu_mf = 0.d0
else
if(mu_of_r_tc=="Erfmu")then
mu_mf = 0.3333333333d0 * sqpi * (f_mf_ab/two_bod_dens + 0.25d0)
grad_mu_mf(1:3) = 0.3333333333d0 * sqpi * (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))&
/(two_bod_dens*two_bod_dens)
else if(mu_of_r_tc=="Standard")then
mu_mf = 0.5d0 * sqpi * f_mf_ab/two_bod_dens
grad_mu_mf(1:3) = 0.5d0 * sqpi * (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))&
/(two_bod_dens*two_bod_dens)
else if(mu_of_r_tc=="Erfmugauss")then
mu_mf = (f_mf_ab/two_bod_dens + 0.25d0)/c_mu_gauss_tot
grad_mu_mf(1:3) = 1.d0/c_mu_gauss_tot* (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))&
/(two_bod_dens*two_bod_dens)
else
print*,'Wrong value for mu_of_r_tc !'
stop
endif
endif
end

View File

@ -57,6 +57,9 @@ end
subroutine get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b) subroutine get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
implicit none implicit none
BEGIN_DOC
! gradient of mu(r) mean field, together with the gradient of the one- and two-body HF density.
END_DOC
double precision, intent(in) :: r(3) double precision, intent(in) :: r(3)
double precision, intent(out) :: f_mf_ab, two_bod_dens double precision, intent(out) :: f_mf_ab, two_bod_dens
double precision, intent(out) :: grad_two_bod_dens(3), grad_f_mf_ab(3) double precision, intent(out) :: grad_two_bod_dens(3), grad_f_mf_ab(3)
@ -146,26 +149,18 @@ subroutine mu_of_r_mean_field(r,mu_mf, dm)
endif endif
end end
subroutine grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm) subroutine mu_of_r_mean_field_tc(r,mu_mf, dm)
implicit none implicit none
include 'constants.include.F' include 'constants.include.F'
double precision, intent(in) :: r(3) double precision, intent(in) :: r(3)
double precision, intent(out):: grad_mu_mf(3), grad_dm(3)
double precision, intent(out):: mu_mf, dm double precision, intent(out):: mu_mf, dm
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3),grad_dm_a(3), grad_dm_b(3)
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b) call get_f_mf_ab(r,f_mf_ab,two_bod_dens, dm_a, dm_b)
dm = dm_a + dm_b dm = dm_a + dm_b
grad_dm(1:3) = grad_dm_a(1:3) + grad_dm_b(1:3)
if(dabs(two_bod_dens).lt.1.d-10)then if(dabs(two_bod_dens).lt.1.d-10)then
mu_mf = 1.d+10 mu_mf = 1.d+10
grad_mu_mf = 0.d0
else else
mu_mf = 0.5d0 * sqpi * f_mf_ab/two_bod_dens mu_mf = 0.3333333333d0 * sqpi * (f_mf_ab/two_bod_dens + 0.25d0)
grad_mu_mf(1:3) = 0.5d0 * sqpi * (grad_f_mf_ab(1:3) * two_bod_dens - f_mf_ab * grad_two_bod_dens(1:3))& endif
/(two_bod_dens*two_bod_dens)
endif
end end

View File

@ -0,0 +1,59 @@
program plot_j_gauss
implicit none
double precision :: xmin, xmax, x, dx
double precision :: mu_min, mu_max, mu, d_mu
double precision :: pot_j_gauss,j_mu_simple,j_gauss_simple,pot_j_mu
double precision, allocatable :: mu_tab(:),j_mu(:),j_mu_gauss(:)
double precision, allocatable :: w_mu(:), w_mu_gauss(:)
character*(128) :: output
integer :: getUnitAndOpen
integer :: i_unit_output_wee_gauss,i_unit_output_wee_mu
integer :: i_unit_output_j_gauss,i_unit_output_j_mu
output=trim(ezfio_filename)//'.w_ee_mu_gauss'
i_unit_output_wee_gauss = getUnitAndOpen(output,'w')
output=trim(ezfio_filename)//'.w_ee_mu'
i_unit_output_wee_mu = getUnitAndOpen(output,'w')
output=trim(ezfio_filename)//'.j_mu_gauss'
i_unit_output_j_gauss = getUnitAndOpen(output,'w')
output=trim(ezfio_filename)//'.j_mu'
i_unit_output_j_mu = getUnitAndOpen(output,'w')
integer :: npt, i, j, n_mu
n_mu = 3
allocate(mu_tab(n_mu),j_mu(n_mu),j_mu_gauss(n_mu),w_mu(n_mu), w_mu_gauss(n_mu))
mu_min = 0.5d0
mu_max = 2.d0
d_mu = (mu_max - mu_min)/dble(n_mu)
mu = mu_min
do i = 1, n_mu
mu_tab(i) = mu
print*,'mu = ',mu
mu += d_mu
enddo
mu_tab(1) = 0.9d0
mu_tab(2) = 0.95d0
mu_tab(3) = 1.d0
xmin = 0.01d0
xmax = 10.d0
npt = 1000
dx = (xmax - xmin)/dble(npt)
x = xmin
do i = 1, npt
do j = 1, n_mu
mu = mu_tab(j)
w_mu_gauss(j) = pot_j_gauss(x,mu)
w_mu(j) = pot_j_mu(x,mu)
j_mu(j) = j_mu_simple(x,mu)
j_mu_gauss(j) = j_gauss_simple(x,mu) + j_mu(j)
enddo
write(i_unit_output_wee_gauss,'(100(F16.10,X))')x,w_mu_gauss(:)
write(i_unit_output_wee_mu,'(100(F16.10,X))')x,w_mu(:)
write(i_unit_output_j_gauss,'(100(F16.10,X))')x,j_mu_gauss(:)
write(i_unit_output_j_mu,'(100(F16.10,X))')x,j_mu(:)
x += dx
enddo
end

View File

@ -0,0 +1,19 @@
program plot_mo
implicit none
integer :: i,npt
double precision :: xmin,xmax,dx,r(3)
double precision,allocatable :: mos_array(:)
allocate(mos_array(mo_num))
npt = 10000
xmin =0.d0
xmax =10.d0
dx=(xmax-xmin)/dble(npt)
r=0.d0
r(1) = xmin
do i = 1, npt
call give_all_mos_at_r(r,mos_array)
write(33,'(100(F16.10,X))')r(1),mos_array(1),mos_array(2),mos_array(3)
r(1) += dx
enddo
end

View File

@ -16,15 +16,16 @@ subroutine routine_print
integer :: ipoint,nx,i integer :: ipoint,nx,i
double precision :: xmax,xmin,r(3),dx,sigma double precision :: xmax,xmin,r(3),dx,sigma
double precision :: mu_val, mu_der(3),dm_a,dm_b,grad,grad_dm_a(3), grad_dm_b(3) double precision :: mu_val, mu_der(3),dm_a,dm_b,grad,grad_dm_a(3), grad_dm_b(3)
xmax = 5.D0 xmax = 3.9D0
xmin = -5.D0 xmin = -3.9D0
nx = 10000 nx = 10000
dx = (xmax - xmin)/dble(nx) dx = (xmax - xmin)/dble(nx)
r = 0.d0 r = 0.d0
r(1) = xmin r(1) = xmin
do ipoint = 1, nx do ipoint = 1, nx
call mu_r_val_and_grad(r, r, mu_val, mu_der) ! call mu_r_val_and_grad(r, r, mu_val, mu_der)
call density_and_grad_alpha_beta(r,dm_a,dm_b, grad_dm_a, grad_dm_b) call grad_mu_of_r_mean_field(r,mu_val, dm_a, mu_der, grad_dm_a)
! call density_and_grad_alpha_beta(r,dm_a,dm_b, grad_dm_a, grad_dm_b)
sigma = 0.d0 sigma = 0.d0
do i = 1,3 do i = 1,3
sigma += grad_dm_a(i)**2 sigma += grad_dm_a(i)**2
@ -32,7 +33,8 @@ subroutine routine_print
sigma=dsqrt(sigma) sigma=dsqrt(sigma)
grad = mu_der(1)**2 + mu_der(2)**2 + mu_der(3)**2 grad = mu_der(1)**2 + mu_der(2)**2 + mu_der(3)**2
grad = dsqrt(grad) grad = dsqrt(grad)
write(i_unit_output,'(100(F16.7,X))')r(1),mu_val,dm_a+dm_b,grad,sigma/dm_a print*,r(1),mu_val
write(i_unit_output,'(100(F16.7,X))')r(1),mu_val,dm_a,grad,sigma/dm_a
r(1) += dx r(1) += dx
enddo enddo
end end

View File

@ -0,0 +1,146 @@
double precision function j_simple(x,mu)
implicit none
double precision, intent(in) :: x,mu
double precision :: j_mu_simple,j_gauss_simple
if(j2e_type .eq. "Mu".or.j2e_type .eq. "Mur") then
j_simple = j_mu_simple(x,mu)
else if(j2e_type .eq. "Mugauss".or.j2e_type .eq. "Murgauss") then
j_simple = j_gauss_simple(x,mu) + j_mu_simple(x,mu)
endif
end
double precision function j_mu_simple(x,mu)
implicit none
double precision, intent(in):: x,mu
include 'constants.include.F'
BEGIN_DOC
! j_mu(mu,x) = 0.5 x (1 - erf(mu x)) - 1/[2 sqrt(pi)mu] exp(-(x*mu)^2)
END_DOC
j_mu_simple = 0.5d0 * x * (1.D0 - derf(mu*x)) - 0.5d0 * inv_sq_pi/mu * dexp(-x*mu*x*mu)
end
double precision function j_gauss_simple(x,mu)
implicit none
double precision, intent(in):: x,mu
include 'constants.include.F'
BEGIN_DOC
! j_mu(mu,x) = c/[4 alpha^2 mu] exp(-(alpha * mu * x)^2)
! with c = 27/(8 sqrt(pi)), alpha=3/2
END_DOC
double precision :: x_tmp
x_tmp = alpha_mu_gauss * mu * x
j_gauss_simple = 0.25d0 * c_mu_gauss / (alpha_mu_gauss*alpha_mu_gauss*mu) * dexp(-x_tmp*x_tmp)
end
double precision function j_mu_deriv(x,mu)
implicit none
BEGIN_DOC
! d/dx j_mu(mu,x) = d/dx 0.5 x (1 - erf(mu x)) - 1/[2 sqrt(pi)mu] exp(-(x*mu)^2)
! = 0.5*(1 - erf(mu x))
END_DOC
include 'constants.include.F'
double precision, intent(in) :: x,mu
j_mu_deriv = 0.5d0 * (1.d0 - derf(mu*x))
end
double precision function j_mu_deriv_2(x,mu)
implicit none
BEGIN_DOC
! d^2/dx^2 j_mu(mu,x) = d^2/dx^2 0.5 x (1 - erf(mu x)) - 1/[2 sqrt(pi)mu] exp(-(x*mu)^2)
! = -mu/sqrt(pi) * exp(-(mu x)^2)
END_DOC
include 'constants.include.F'
double precision, intent(in) :: x,mu
j_mu_deriv_2 = - mu * inv_sq_pi * dexp(-x*mu*x*mu)
end
double precision function j_gauss_deriv(x,mu)
implicit none
include 'constants.include.F'
double precision, intent(in) :: x,mu
BEGIN_DOC
! d/dx j_gauss(mu,x) = d/dx c/[4 alpha^2 mu] exp(-(alpha * mu * x)^2)
! with c = 27/(8 sqrt(pi)), alpha=3/2
! = -0.5 * mu * c * x * exp(-(alpha * mu * x)^2)
END_DOC
double precision :: x_tmp
x_tmp = alpha_mu_gauss * mu * x
j_gauss_deriv = -0.5d0 * mu * c_mu_gauss * x * exp(-x_tmp*x_tmp)
end
double precision function j_gauss_deriv_2(x,mu)
implicit none
include 'constants.include.F'
double precision, intent(in) :: x,mu
BEGIN_DOC
! d/dx j_gauss(mu,x) = d/dx c/[4 alpha^2 mu] exp(-(alpha * mu * x)^2)
! with c = 27/(8 sqrt(pi)), alpha=3/2
! = 0.5 * mu * c * exp(-(alpha * mu * x)^2) * (2 (alpha*mu*x)^2 - 1)
END_DOC
double precision :: x_tmp
x_tmp = alpha_mu_gauss * mu * x
x_tmp = x_tmp * x_tmp
j_gauss_deriv_2 = 0.5d0 * mu * c_mu_gauss * exp(-x_tmp) * (2.d0*x_tmp - 1.d0)
end
double precision function j_erf_gauss_deriv(x,mu)
implicit none
double precision, intent(in) :: x,mu
BEGIN_DOC
! d/dx (j_gauss(mu,x)+j_mu(mu,x))
END_DOC
double precision :: j_gauss_deriv,j_mu_deriv
j_erf_gauss_deriv = j_gauss_deriv(x,mu)+j_mu_deriv(x,mu)
end
double precision function j_erf_gauss_deriv_2(x,mu)
implicit none
double precision, intent(in) :: x,mu
BEGIN_DOC
! d^2/dx^2 (j_gauss(mu,x)+j_mu(mu,x))
END_DOC
double precision :: j_gauss_deriv_2,j_mu_deriv_2
j_erf_gauss_deriv_2 = j_gauss_deriv_2(x,mu)+j_mu_deriv_2(x,mu)
end
double precision function pot_j_gauss(x,mu)
implicit none
double precision, intent(in) :: x,mu
BEGIN_DOC
! effective scalar potential associated with the erf_gauss correlation factor
!
! 1/x( 1 - 2 * d/dx j_erf_gauss(x,mu)) - d^2/dx^2 j_erf_gauss(x,mu)) - d/dx d/dx (j_erf_gauss(x,mu))^2
END_DOC
double precision :: j_erf_gauss_deriv_2,j_erf_gauss_deriv
double precision :: deriv_1, deriv_2
pot_j_gauss = 0.d0
if(x.ne.0.d0)then
deriv_1 = j_erf_gauss_deriv(x,mu)
deriv_2 = j_erf_gauss_deriv_2(x,mu)
pot_j_gauss = 1.d0/x * (1.d0 - 2.d0 * deriv_1) - deriv_1 * deriv_1 - deriv_2
endif
end
double precision function pot_j_mu(x,mu)
implicit none
double precision, intent(in) :: x,mu
BEGIN_DOC
! effective scalar potential associated with the correlation factor
!
! 1/x( 1 - 2 * d/dx j_erf(x,mu)) - d^2/dx^2 j_erf(x,mu)) - d/dx d/dx (j_erf(x,mu))^2
END_DOC
double precision :: j_mu_deriv_2,j_mu_deriv
double precision :: deriv_1, deriv_2
pot_j_mu = 0.d0
if(x.ne.0.d0)then
deriv_1 = j_mu_deriv(x,mu)
deriv_2 = j_mu_deriv_2(x,mu)
pot_j_mu= 1.d0/x * (1.d0 - 2.d0 * deriv_1) - deriv_1 * deriv_1 - deriv_2
endif
end

View File

@ -0,0 +1,15 @@
program print_j_psi
implicit none
integer :: i,j,a,b
do i = 1, elec_beta_num ! r2
do j = 1, elec_alpha_num ! r1
do a = elec_beta_num+1, mo_num ! r2
do b = elec_alpha_num+1, mo_num ! r1
print*,b,a,j,i
print*,c_ij_ab_jastrow(b,a,j,i)
enddo
enddo
enddo
enddo
end

View File

@ -127,8 +127,8 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
! TODO combine 1shot & int2_grad1_u12_ao_num ! TODO combine 1shot & int2_grad1_u12_ao_num
PROVIDE int2_grad1_u12_ao_num PROVIDE int2_grad1_u12_ao_num
int2_grad1_u12_ao = int2_grad1_u12_ao_num int2_grad1_u12_ao = int2_grad1_u12_ao_num
!PROVIDE int2_grad1_u12_ao_num_1shot ! PROVIDE int2_grad1_u12_ao_num_1shot
!int2_grad1_u12_ao = int2_grad1_u12_ao_num_1shot ! int2_grad1_u12_ao = int2_grad1_u12_ao_num_1shot
endif endif
elseif(tc_integ_type .eq. "semi-analytic") then elseif(tc_integ_type .eq. "semi-analytic") then
@ -204,7 +204,7 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
print*, ' Writing int2_grad1_u12_ao in ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao' print*, ' Writing int2_grad1_u12_ao in ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="write") open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="write")
call ezfio_set_work_empty(.False.) call ezfio_set_work_empty(.False.)
write(11) int2_grad1_u12_ao write(11) int2_grad1_u12_ao
close(11) close(11)
call ezfio_set_tc_keywords_io_tc_integ('Read') call ezfio_set_tc_keywords_io_tc_integ('Read')

View File

@ -0,0 +1,157 @@
program test_mu_of_r_tc
implicit none
BEGIN_DOC
! TODO
END_DOC
! You specify that you want to avoid any contribution from
! orbitals coming from core
call test_grad_f_mean_field
call test_grad_mu_mf
call plot_mu_of_r_mf
end
subroutine test_grad_f_mean_field
implicit none
integer :: i_point,k
double precision :: weight,r(3)
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3)
double precision :: grad_dm_a(3), grad_dm_b(3)
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
double precision :: num_grad_f_mf_ab(3), num_grad_two_bod_dens(3)
double precision :: num_grad_dm_a(3), num_grad_dm_b(3)
double precision :: f_mf_ab_p,f_mf_ab_m
double precision :: two_bod_dens_p, two_bod_dens_m
double precision :: dm_a_p, dm_a_m
double precision :: dm_b_p, dm_b_m
double precision :: rbis(3), dr
double precision :: accu_grad_f_mf_ab(3),accu_grad_two_bod_dens(3)
double precision :: accu_grad_dm_a(3),accu_grad_dm_b(3)
double precision :: accu_f_mf_ab, accu_two_bod_dens, accu_dm_a, accu_dm_b
dr = 0.00001d0
accu_f_mf_ab = 0.d0
accu_two_bod_dens = 0.d0
accu_dm_a = 0.d0
accu_dm_b = 0.d0
accu_grad_f_mf_ab = 0.d0
accu_grad_two_bod_dens = 0.d0
accu_grad_dm_a = 0.d0
accu_grad_dm_b = 0.d0
do i_point = 1, n_points_final_grid
r(1:3) = final_grid_points(1:3,i_point)
weight = final_weight_at_r_vector(i_point)
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
call get_f_mf_ab(r,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
accu_f_mf_ab += weight * dabs(f_mf_ab - f_mf_ab_p)
accu_two_bod_dens += weight * dabs(two_bod_dens - two_bod_dens_p)
accu_dm_a += weight*dabs(dm_a - dm_a_p)
accu_dm_b += weight*dabs(dm_b - dm_b_p)
do k = 1, 3
rbis = r
rbis(k) += dr
call get_f_mf_ab(rbis,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
rbis = r
rbis(k) -= dr
call get_f_mf_ab(rbis,f_mf_ab_m,two_bod_dens_m, dm_a_m, dm_b_m)
num_grad_f_mf_ab(k) = (f_mf_ab_p - f_mf_ab_m)/(2.d0*dr)
num_grad_two_bod_dens(k) = (two_bod_dens_p - two_bod_dens_m)/(2.d0*dr)
num_grad_dm_a(k) = (dm_a_p - dm_a_m)/(2.d0*dr)
num_grad_dm_b(k) = (dm_b_p - dm_b_m)/(2.d0*dr)
enddo
do k = 1, 3
accu_grad_f_mf_ab(k) += weight * dabs(grad_f_mf_ab(k) - num_grad_f_mf_ab(k))
accu_grad_two_bod_dens(k) += weight * dabs(grad_two_bod_dens(k) - num_grad_two_bod_dens(k))
accu_grad_dm_a(k) += weight * dabs(grad_dm_a(k) - num_grad_dm_a(k))
accu_grad_dm_b(k) += weight * dabs(grad_dm_b(k) - num_grad_dm_b(k))
enddo
enddo
print*,'accu_f_mf_ab = ',accu_f_mf_ab
print*,'accu_two_bod_dens = ',accu_two_bod_dens
print*,'accu_dm_a = ',accu_dm_a
print*,'accu_dm_b = ',accu_dm_b
print*,'accu_grad_f_mf_ab = '
print*,accu_grad_f_mf_ab
print*,'accu_grad_two_bod_dens = '
print*,accu_grad_two_bod_dens
print*,'accu_dm_a = '
print*,accu_grad_dm_a
print*,'accu_dm_b = '
print*,accu_grad_dm_b
end
subroutine test_grad_mu_mf
implicit none
integer :: i_point,k
double precision :: weight,r(3),rbis(3)
double precision :: mu_mf, dm,grad_mu_mf(3), grad_dm(3)
double precision :: mu_mf_p, mu_mf_m, dm_m, dm_p, num_grad_mu_mf(3),dr, num_grad_dm(3)
double precision :: accu_mu, accu_dm, accu_grad_dm(3), accu_grad_mu_mf(3)
dr = 0.00001d0
accu_grad_mu_mf = 0.d0
accu_mu = 0.d0
accu_grad_dm = 0.d0
accu_dm = 0.d0
do i_point = 1, n_points_final_grid
r(1:3) = final_grid_points(1:3,i_point)
weight = final_weight_at_r_vector(i_point)
call grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm)
call mu_of_r_mean_field(r,mu_mf_p, dm_p)
accu_mu += weight*dabs(mu_mf_p - mu_mf)
accu_dm += weight*dabs(dm_p - dm)
do k = 1, 3
rbis = r
rbis(k) += dr
call mu_of_r_mean_field(rbis,mu_mf_p, dm_p)
rbis = r
rbis(k) -= dr
call mu_of_r_mean_field(rbis,mu_mf_m, dm_m)
num_grad_mu_mf(k) = (mu_mf_p - mu_mf_m)/(2.d0*dr)
num_grad_dm(k) = (dm_p - dm_m)/(2.d0*dr)
enddo
do k = 1, 3
accu_grad_dm(k)+= weight *dabs(num_grad_dm(k) - grad_dm(k))
accu_grad_mu_mf(k)+= weight *dabs(num_grad_mu_mf(k) - grad_mu_mf(k))
enddo
enddo
print*,'accu_mu = ',accu_mu
print*,'accu_dm = ',accu_dm
print*,'accu_grad_dm = '
print*, accu_grad_dm
print*,'accu_grad_mu_mf = '
print*, accu_grad_mu_mf
end
subroutine plot_mu_of_r_mf
implicit none
include 'constants.include.F'
integer :: ipoint,npoint
double precision :: dx,r(3),xmax,xmin
double precision :: accu_mu,accu_nelec,mu_mf, dm,mu_mf_tc
character*(128) :: output
integer :: i_unit_output,getUnitAndOpen
output=trim(ezfio_filename)//'.mu_mf'
i_unit_output = getUnitAndOpen(output,'w')
xmax = 5.D0
xmin = 0.d0
npoint = 10000
dx = (xmax - xmin)/dble(npoint)
r = 0.d0
r(1) = xmin
accu_mu = 0.d0
accu_nelec = 0.d0
do ipoint = 1, npoint
call mu_of_r_mean_field(r,mu_mf, dm)
call mu_of_r_mean_field_tc(r,mu_mf_tc, dm)
write(i_unit_output,'(100(F16.10,X))')r(1),mu_mf,mu_mf_tc,dm
accu_mu += mu_mf * dm * r(1)**2*dx*4.D0*pi
accu_nelec += dm * r(1)**2*dx*4.D0*pi
r(1) += dx
enddo
print*,'nelec = ',accu_nelec
print*,'mu average = ',accu_mu/accu_nelec
end

View File

@ -118,7 +118,7 @@ BEGIN_PROVIDER [double precision, ao_two_e_tc_tot, (ao_num, ao_num, ao_num, ao_n
!$OMP END PARALLEL !$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 & call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_grad1_u12_square_ao(1,1,1), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid & , int2_grad1_u12_square_ao(1,1,1), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
, 0.d0, ao_two_e_tc_tot, ao_num*ao_num) , 0.d0, ao_two_e_tc_tot(1,1,1,1), ao_num*ao_num)
deallocate(c_mat) deallocate(c_mat)
endif endif

View File

@ -129,9 +129,9 @@ subroutine htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree,
endif endif
if(degree==0) then ! if(degree==0) then
htot += nuclear_repulsion ! htot += nuclear_repulsion
endif ! endif
end end

View File

@ -8,9 +8,13 @@ subroutine write_tc_energy()
double precision :: E_1e, E_2e, E_3e double precision :: E_1e, E_2e, E_3e
double precision, allocatable :: E_TC_tmp(:), E_1e_tmp(:), E_2e_tmp(:), E_3e_tmp(:) double precision, allocatable :: E_TC_tmp(:), E_1e_tmp(:), E_2e_tmp(:), E_3e_tmp(:)
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,1), psi_det(1,1,1), N_int, hmono, htwoe, hthree, htot)
! GS ! GS
! --- ! ---
call htilde_mu_mat_opt_bi_ortho(psi_det(1,1,1), psi_det(1,1,1), N_int, hmono, htwoe, hthree, htot)
allocate(E_TC_tmp(N_det), E_1e_tmp(N_det), E_2e_tmp(N_det), E_3e_tmp(N_det)) allocate(E_TC_tmp(N_det), E_1e_tmp(N_det), E_2e_tmp(N_det), E_3e_tmp(N_det))
!$OMP PARALLEL & !$OMP PARALLEL &

View File

@ -0,0 +1,36 @@
[nxBlocks]
type: integer
doc: nb of x blocks in the Grid
interface: ezfio,provider,ocaml
default: 10
[nyBlocks]
type: integer
doc: nb of y blocks in the Grid
interface: ezfio,provider,ocaml
default: 1
[nzBlocks]
type: integer
doc: nb of z blocks in the Grid
interface: ezfio,provider,ocaml
default: 1
[blockxSize]
type: integer
doc: size of x blocks
interface: ezfio,provider,ocaml
default: 32
[blockySize]
type: integer
doc: size of y blocks
interface: ezfio,provider,ocaml
default: 1
[blockzSize]
type: integer
doc: size of z blocks
interface: ezfio,provider,ocaml
default: 1

1
plugins/local/tc_int/LIB Normal file
View File

@ -0,0 +1 @@
-lcutcint

View File

@ -4,3 +4,4 @@ jastrow
qmckl qmckl
becke_numerical_grid becke_numerical_grid
dft_utils_in_r dft_utils_in_r
bi_ortho_mos

View File

@ -0,0 +1,233 @@
! ---
program compute_int_2e_ao_cpu
implicit none
print *, ' j2e_type = ', j2e_type
print *, ' j1e_type = ', j1e_type
print *, ' env_type = ', env_type
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
my_extra_grid_becke = .True.
PROVIDE tc_grid2_a tc_grid2_r
my_n_pt_r_extra_grid = tc_grid2_r
my_n_pt_a_extra_grid = tc_grid2_a
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
call main()
end
! ---
subroutine main()
use cutc_module
implicit none
integer :: m
integer :: i, j, k, l
integer :: ipoint, jpoint
double precision :: weight1, ao_i_r, ao_k_r
double precision :: time0, time1
double precision :: wall_time0, wall_time1
double precision :: wall_ttime0, wall_ttime1
double precision :: tt1, tt2
double precision, allocatable :: rn(:,:), aos_data1(:,:,:), aos_data2(:,:,:)
double precision, allocatable :: grad1_u12(:,:,:), int_fct_long_range(:,:,:), c_mat(:,:,:)
double precision, allocatable :: int2_grad1_u12_ao(:,:,:,:)
double precision, allocatable :: int_2e_ao(:,:,:,:)
call wall_time(time0)
print*, ' start compute_int_2e_ao_cpu'
! ---
allocate(rn(3,nucl_num))
allocate(aos_data1(n_points_final_grid,ao_num,4))
allocate(aos_data2(n_points_extra_final_grid,ao_num,4))
do k = 1, nucl_num
rn(1,k) = nucl_coord(k,1)
rn(2,k) = nucl_coord(k,2)
rn(3,k) = nucl_coord(k,3)
enddo
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
aos_data1(ipoint,k,1) = aos_in_r_array(k,ipoint)
aos_data1(ipoint,k,2) = aos_grad_in_r_array(k,ipoint,1)
aos_data1(ipoint,k,3) = aos_grad_in_r_array(k,ipoint,2)
aos_data1(ipoint,k,4) = aos_grad_in_r_array(k,ipoint,3)
enddo
enddo
do k = 1, ao_num
do ipoint = 1, n_points_extra_final_grid
aos_data2(ipoint,k,1) = aos_in_r_array_extra(k,ipoint)
aos_data2(ipoint,k,2) = aos_grad_in_r_array_extra(k,ipoint,1)
aos_data2(ipoint,k,3) = aos_grad_in_r_array_extra(k,ipoint,2)
aos_data2(ipoint,k,4) = aos_grad_in_r_array_extra(k,ipoint,3)
enddo
enddo
allocate(int_fct_long_range(n_points_extra_final_grid,ao_num,ao_num))
allocate(grad1_u12(n_points_extra_final_grid,n_points_final_grid,4))
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
allocate(int2_grad1_u12_ao(ao_num,ao_num,n_points_final_grid,4))
allocate(int_2e_ao(ao_num,ao_num,ao_num,ao_num))
call wall_time(wall_time0)
call wall_time(wall_ttime0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, i, jpoint) &
!$OMP SHARED (int_fct_long_range, ao_num, n_points_extra_final_grid, final_weight_at_r_vector_extra, aos_in_r_array_extra_transp)
!$OMP DO SCHEDULE (static)
do j = 1, ao_num
do i = 1, ao_num
do jpoint = 1, n_points_extra_final_grid
int_fct_long_range(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall_ttime1)
write(*,"(A,2X,F15.7)") ' wall time for int_long_range (sec) = ', (wall_ttime1 - wall_ttime0)
call wall_time(wall_ttime0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint) &
!$OMP SHARED (n_points_final_grid, n_points_extra_final_grid, grad1_u12)
!$OMP DO
do ipoint = 1, n_points_final_grid
call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, grad1_u12(1,ipoint,1) &
, grad1_u12(1,ipoint,2) &
, grad1_u12(1,ipoint,3) &
, grad1_u12(1,ipoint,4) )
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall_ttime1)
write(*,"(A,2X,F15.7)") ' wall time for tc_int_bh (sec) = ', (wall_ttime1 - wall_ttime0)
call wall_time(wall_ttime0)
do m = 1, 4
call dgemm("T", "N", ao_num*ao_num, n_points_final_grid, n_points_extra_final_grid, 1.d0 &
, int_fct_long_range(1,1,1), n_points_extra_final_grid, grad1_u12(1,1,m), n_points_extra_final_grid &
, 0.d0, int2_grad1_u12_ao(1,1,1,m), ao_num*ao_num)
enddo
call wall_time(wall_ttime1)
write(*,"(A,2X,F15.7)") ' wall time for DGEMM of integ over r2 (sec) = ', (wall_ttime1 - wall_ttime0)
call wall_time(wall_ttime0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) &
!$OMP SHARED (aos_in_r_array_transp, c_mat, ao_num, n_points_final_grid, final_weight_at_r_vector)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
c_mat(ipoint,k,i) = final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,k)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall_ttime1)
write(*,"(A,2X,F15.7)") ' wall time of Hermitian part (sec) = ', (wall_ttime1 - wall_ttime0)
call wall_time(wall_ttime0)
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_grad1_u12_ao(1,1,1,4), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
, 0.d0, int_2e_ao(1,1,1,1), ao_num*ao_num)
call wall_time(wall_ttime1)
write(*,"(A,2X,F15.7)") ' wall time for DGEMM of Hermitian part (sec) = ', (wall_ttime1 - wall_ttime0)
tt1 = 0.d0
tt2 = 0.d0
do m = 1, 3
call wall_time(wall_ttime0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint, weight1, ao_i_r, ao_k_r) &
!$OMP SHARED (aos_in_r_array_transp, aos_grad_in_r_array_transp_bis, c_mat, &
!$OMP ao_num, n_points_final_grid, final_weight_at_r_vector, m)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
weight1 = final_weight_at_r_vector(ipoint)
ao_i_r = aos_in_r_array_transp(ipoint,i)
ao_k_r = aos_in_r_array_transp(ipoint,k)
c_mat(ipoint,k,i) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,m) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,m))
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall_ttime1)
tt1 += wall_ttime1 - wall_ttime0
call wall_time(wall_ttime0)
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, -0.5d0 &
, int2_grad1_u12_ao(1,1,1,m), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
, 1.d0, int_2e_ao(1,1,1,1), ao_num*ao_num)
call wall_time(wall_ttime1)
tt2 += wall_ttime1 - wall_ttime0
enddo
write(*,"(A,2X,F15.7)") ' wall time of non-Hermitian part (sec) = ', tt1
write(*,"(A,2X,F15.7)") ' wall time for DGEMM of non Hermitian part (sec) = ', tt2
call wall_time(wall_ttime0)
call sum_A_At(int_2e_ao(1,1,1,1), ao_num*ao_num)
call wall_time(wall_ttime1)
write(*,"(A,2X,F15.7)") ' wall time of A + A.T (sec) = ', wall_ttime1 - wall_ttime0
call wall_time(wall_time1)
write(*,"(A,2X,F15.7)") ' wall time on cpu (sec) = ', (wall_time1 - wall_time0)
deallocate(int_fct_long_range, grad1_u12, c_mat)
deallocate(int_2e_ao, int2_grad1_u12_ao)
deallocate(rn, aos_data1, aos_data2)
call wall_time(time1)
write(*,"(A,2X,F15.7)") ' wall time for compute_int_2e_ao_cpu (sec) = ', (time1 - time0)
return
end

View File

@ -0,0 +1,117 @@
! ---
program compute_int_2e_ao_gpu
implicit none
print *, ' j2e_type = ', j2e_type
print *, ' j1e_type = ', j1e_type
print *, ' env_type = ', env_type
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
my_extra_grid_becke = .True.
PROVIDE tc_grid2_a tc_grid2_r
my_n_pt_r_extra_grid = tc_grid2_r
my_n_pt_a_extra_grid = tc_grid2_a
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
call main()
end
! ---
subroutine main()
use cutc_module
implicit none
integer :: i, j, k, l
integer :: ipoint
double precision :: time0, time1
double precision, allocatable :: rn(:,:), aos_data1(:,:,:), aos_data2(:,:,:)
double precision, allocatable :: int2_grad1_u12_ao_gpu(:,:,:,:)
double precision, allocatable :: int_2e_ao_gpu(:,:,:,:)
call wall_time(time0)
print*, ' start compute_int_2e_ao_gpu'
! ---
allocate(rn(3,nucl_num))
allocate(aos_data1(n_points_final_grid,ao_num,4))
allocate(aos_data2(n_points_extra_final_grid,ao_num,4))
do k = 1, nucl_num
rn(1,k) = nucl_coord(k,1)
rn(2,k) = nucl_coord(k,2)
rn(3,k) = nucl_coord(k,3)
enddo
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
aos_data1(ipoint,k,1) = aos_in_r_array(k,ipoint)
aos_data1(ipoint,k,2) = aos_grad_in_r_array(k,ipoint,1)
aos_data1(ipoint,k,3) = aos_grad_in_r_array(k,ipoint,2)
aos_data1(ipoint,k,4) = aos_grad_in_r_array(k,ipoint,3)
enddo
enddo
do k = 1, ao_num
do ipoint = 1, n_points_extra_final_grid
aos_data2(ipoint,k,1) = aos_in_r_array_extra(k,ipoint)
aos_data2(ipoint,k,2) = aos_grad_in_r_array_extra(k,ipoint,1)
aos_data2(ipoint,k,3) = aos_grad_in_r_array_extra(k,ipoint,2)
aos_data2(ipoint,k,4) = aos_grad_in_r_array_extra(k,ipoint,3)
enddo
enddo
! ---
integer :: nB
integer :: sB
PROVIDE nxBlocks nyBlocks nzBlocks
PROVIDE blockxSize blockySize blockzSize
sB = 32
nB = (n_points_final_grid + sB - 1) / sB
call ezfio_set_tc_int_blockxSize(sB)
call ezfio_set_tc_int_nxBlocks(nB)
allocate(int2_grad1_u12_ao_gpu(ao_num,ao_num,n_points_final_grid,3))
allocate(int_2e_ao_gpu(ao_num,ao_num,ao_num,ao_num))
call cutc_int(nxBlocks, nyBlocks, nzBlocks, blockxSize, blockySize, blockzSize, &
n_points_final_grid, n_points_extra_final_grid, ao_num, nucl_num, jBH_size, &
final_grid_points, final_weight_at_r_vector, &
final_grid_points_extra, final_weight_at_r_vector_extra, &
rn, aos_data1, aos_data2, jBH_c, jBH_m, jBH_n, jBH_o, &
int2_grad1_u12_ao_gpu, int_2e_ao_gpu)
deallocate(int_2e_ao_gpu, int2_grad1_u12_ao_gpu)
deallocate(rn, aos_data1, aos_data2)
call wall_time(time1)
write(*,"(A,2X,F15.7)") ' wall time for compute_int_2e_ao_gpu (sec) = ', (time1 - time0)
return
end

View File

@ -0,0 +1,143 @@
! ---
program compute_no_cpu
implicit none
print *, ' j2e_type = ', j2e_type
print *, ' j1e_type = ', j1e_type
print *, ' env_type = ', env_type
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
my_extra_grid_becke = .True.
PROVIDE tc_grid2_a tc_grid2_r
my_n_pt_r_extra_grid = tc_grid2_r
my_n_pt_a_extra_grid = tc_grid2_a
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
call main()
end
! ---
subroutine main()
use cutc_module
implicit none
integer :: i, j, k, l, ipoint
double precision :: time0, time1
double precision :: tt0, tt1
double precision :: acc_thr, err_tot, nrm_tot, err_loc
double precision :: noL_0e
double precision, allocatable :: int2_grad1_u12_ao(:,:,:,:)
double precision, allocatable :: tmp(:,:,:,:)
double precision, allocatable :: int2_grad1_u12_bimo_t(:,:,:,:)
double precision, allocatable :: noL_1e (:,:)
double precision, allocatable :: noL_2e (:,:,:,:)
PROVIDE mo_l_coef mo_r_coef
PROVIDE mos_l_in_r_array_transp mos_r_in_r_array_transp
call wall_time(time0)
print*, ' start compute_no_cpu'
allocate(int2_grad1_u12_ao(ao_num,ao_num,n_points_final_grid,3))
print*, ' Reading int2_grad1_u12_ao from ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
call wall_time(tt0)
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="read")
read(11) int2_grad1_u12_ao
close(11)
call wall_time(tt1)
write(*,"(A,2X,F15.7)") ' wall time for reading (sec) = ', (tt1 - tt0)
allocate(tmp(mo_num,mo_num,n_points_final_grid,3))
allocate(int2_grad1_u12_bimo_t(n_points_final_grid,3,mo_num,mo_num))
call wall_time(tt0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint) &
!$OMP SHARED (ao_num, mo_num, n_points_final_grid, int2_grad1_u12_ao, tmp)
!$OMP DO SCHEDULE (dynamic)
do ipoint = 1, n_points_final_grid
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,1), ao_num, tmp(1,1,ipoint,1), mo_num)
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,2), ao_num, tmp(1,1,ipoint,2), mo_num)
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,3), ao_num, tmp(1,1,ipoint,3), mo_num)
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(int2_grad1_u12_ao)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, tmp, int2_grad1_u12_bimo_t)
!$OMP DO COLLAPSE(2) SCHEDULE (dynamic)
do ipoint = 1, n_points_final_grid
do i = 1, mo_num
do j = 1, mo_num
int2_grad1_u12_bimo_t(ipoint,1,j,i) = tmp(j,i,ipoint,1)
int2_grad1_u12_bimo_t(ipoint,2,j,i) = tmp(j,i,ipoint,2)
int2_grad1_u12_bimo_t(ipoint,3,j,i) = tmp(j,i,ipoint,3)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(tt1)
write(*,"(A,2X,F15.7)") ' wall time for 3e-tensor (sec) = ', (tt1 - tt0)
deallocate(tmp)
allocate(noL_2e(mo_num,mo_num,mo_num,mo_num))
allocate(noL_1e(mo_num,mo_num))
call provide_no_2e(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
final_weight_at_r_vector(1), &
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
int2_grad1_u12_bimo_t(1,1,1,1), noL_2e(1,1,1,1))
call provide_no_1e(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
final_weight_at_r_vector(1), &
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
int2_grad1_u12_bimo_t(1,1,1,1), noL_1e(1,1))
call provide_no_0e(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
final_weight_at_r_vector(1), &
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
int2_grad1_u12_bimo_t(1,1,1,1), noL_0e)
deallocate(int2_grad1_u12_bimo_t)
deallocate(noL_2e)
deallocate(noL_1e)
call wall_time(time1)
write(*,"(A,2X,F15.7)") ' wall time for compute_no_cpu (sec) = ', (time1 - time0)
return
end
! ---

View File

@ -0,0 +1,132 @@
! ---
program compute_no_gpu
implicit none
print *, ' j2e_type = ', j2e_type
print *, ' j1e_type = ', j1e_type
print *, ' env_type = ', env_type
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
my_extra_grid_becke = .True.
PROVIDE tc_grid2_a tc_grid2_r
my_n_pt_r_extra_grid = tc_grid2_r
my_n_pt_a_extra_grid = tc_grid2_a
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
call main()
end
! ---
subroutine main()
use cutc_module
implicit none
integer :: i, j, k, l, ipoint
double precision :: time0, time1
double precision :: tt0, tt1
double precision :: acc_thr, err_tot, nrm_tot, err_loc
double precision :: noL_0e_gpu(1)
double precision, allocatable :: int2_grad1_u12_ao(:,:,:,:)
double precision, allocatable :: tmp(:,:,:,:)
double precision, allocatable :: int2_grad1_u12_bimo_t(:,:,:,:)
double precision, allocatable :: noL_1e_gpu(:,:)
double precision, allocatable :: noL_2e_gpu(:,:,:,:)
PROVIDE mo_l_coef mo_r_coef
PROVIDE mos_l_in_r_array_transp mos_r_in_r_array_transp
call wall_time(time0)
print*, ' start compute_no_gpu'
allocate(int2_grad1_u12_ao(ao_num,ao_num,n_points_final_grid,3))
print*, ' Reading int2_grad1_u12_ao from ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
call wall_time(tt0)
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="read")
read(11) int2_grad1_u12_ao
close(11)
call wall_time(tt1)
write(*,"(A,2X,F15.7)") ' wall time for reading (sec) = ', (tt1 - tt0)
allocate(tmp(mo_num,mo_num,n_points_final_grid,3))
allocate(int2_grad1_u12_bimo_t(n_points_final_grid,3,mo_num,mo_num))
call wall_time(tt0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint) &
!$OMP SHARED (ao_num, mo_num, n_points_final_grid, int2_grad1_u12_ao, tmp)
!$OMP DO SCHEDULE (dynamic)
do ipoint = 1, n_points_final_grid
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,1), ao_num, tmp(1,1,ipoint,1), mo_num)
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,2), ao_num, tmp(1,1,ipoint,2), mo_num)
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,3), ao_num, tmp(1,1,ipoint,3), mo_num)
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(int2_grad1_u12_ao)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, tmp, int2_grad1_u12_bimo_t)
!$OMP DO COLLAPSE(2) SCHEDULE (dynamic)
do ipoint = 1, n_points_final_grid
do i = 1, mo_num
do j = 1, mo_num
int2_grad1_u12_bimo_t(ipoint,1,j,i) = tmp(j,i,ipoint,1)
int2_grad1_u12_bimo_t(ipoint,2,j,i) = tmp(j,i,ipoint,2)
int2_grad1_u12_bimo_t(ipoint,3,j,i) = tmp(j,i,ipoint,3)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(tt1)
write(*,"(A,2X,F15.7)") ' wall time for 3e-tensor (sec) = ', (tt1 - tt0)
deallocate(tmp)
allocate(noL_2e_gpu(mo_num,mo_num,mo_num,mo_num))
allocate(noL_1e_gpu(mo_num,mo_num))
call cutc_no(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
final_weight_at_r_vector(1), &
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
int2_grad1_u12_bimo_t(1,1,1,1), noL_2e_gpu(1,1,1,1), noL_1e_gpu(1,1), noL_0e_gpu(1))
deallocate(int2_grad1_u12_bimo_t)
deallocate(noL_2e_gpu)
deallocate(noL_1e_gpu)
call wall_time(time1)
write(*,"(A,2X,F15.7)") ' wall time for compute_no_gpu (sec) = ', (time1 - time0)
return
end
! ---

View File

@ -2,7 +2,7 @@
! --- ! ---
subroutine provide_int2_grad1_u12_ao() subroutine provide_int2_grad1_u12_ao()
use gpu
BEGIN_DOC BEGIN_DOC
! !
! int2_grad1_u12_ao(i,j,ipoint,1) = \int dr2 [\grad1 u(r1,r2)]_x1 \chi_i(r2) \chi_j(r2) ! int2_grad1_u12_ao(i,j,ipoint,1) = \int dr2 [\grad1 u(r1,r2)]_x1 \chi_i(r2) \chi_j(r2)
@ -35,8 +35,8 @@ subroutine provide_int2_grad1_u12_ao()
double precision :: weight1, ao_k_r, ao_i_r double precision :: weight1, ao_k_r, ao_i_r
double precision :: der_envsq_x, der_envsq_y, der_envsq_z, lap_envsq double precision :: der_envsq_x, der_envsq_y, der_envsq_z, lap_envsq
double precision :: time0, time1, time2, tc1, tc2, tc double precision :: time0, time1, time2, tc1, tc2, tc
type(gpu_double4) :: int2_grad1_u12_ao double precision, allocatable :: int2_grad1_u12_ao(:,:,:,:)
type(gpu_double3) :: tmp_grad1_u12, tmp_grad1_u12p, tmp double precision, allocatable :: tmp_grad1_u12(:,:,:), tmp(:,:,:)
double precision, allocatable :: c_mat(:,:,:), tc_int_2e_ao(:,:,:,:) double precision, allocatable :: c_mat(:,:,:), tc_int_2e_ao(:,:,:,:)
double precision, external :: get_ao_two_e_integral double precision, external :: get_ao_two_e_integral
@ -52,7 +52,6 @@ subroutine provide_int2_grad1_u12_ao()
call total_memory(mem) call total_memory(mem)
mem = max(1.d0, qp_max_mem - mem) mem = max(1.d0, qp_max_mem - mem)
mem = 6
n_double = mem * 1.d8 n_double = mem * 1.d8
n_blocks = int(min(n_double / (n_points_extra_final_grid * 4.d0), 1.d0*n_points_final_grid)) n_blocks = int(min(n_double / (n_points_extra_final_grid * 4.d0), 1.d0*n_points_final_grid))
n_rest = int(mod(n_points_final_grid, n_blocks)) n_rest = int(mod(n_points_final_grid, n_blocks))
@ -66,9 +65,9 @@ subroutine provide_int2_grad1_u12_ao()
! --- ! ---
! --- ! ---
call gpu_allocate(int2_grad1_u12_ao, ao_num,ao_num,n_points_final_grid,4) allocate(int2_grad1_u12_ao(ao_num,ao_num,n_points_final_grid,4))
call gpu_allocate(tmp,n_points_extra_final_grid,ao_num,ao_num) allocate(tmp(n_points_extra_final_grid,ao_num,ao_num))
!$OMP PARALLEL & !$OMP PARALLEL &
!$OMP DEFAULT (NONE) & !$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, i, jpoint) & !$OMP PRIVATE (j, i, jpoint) &
@ -77,23 +76,17 @@ subroutine provide_int2_grad1_u12_ao()
do j = 1, ao_num do j = 1, ao_num
do i = 1, ao_num do i = 1, ao_num
do jpoint = 1, n_points_extra_final_grid do jpoint = 1, n_points_extra_final_grid
tmp%f(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j) tmp(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j)
enddo enddo
enddo enddo
enddo enddo
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
call gpu_allocate(tmp_grad1_u12,n_points_extra_final_grid,n_blocks,4) allocate(tmp_grad1_u12(n_points_extra_final_grid,n_blocks,4))
call gpu_allocate(tmp_grad1_u12p,n_points_extra_final_grid,n_blocks,4)
tc = 0.d0 tc = 0.d0
type(gpu_stream) :: stream(4)
do i=1,4
call gpu_stream_create(stream(i))
enddo
do i_pass = 1, n_pass do i_pass = 1, n_pass
ii = (i_pass-1)*n_blocks + 1 ii = (i_pass-1)*n_blocks + 1
@ -102,25 +95,22 @@ subroutine provide_int2_grad1_u12_ao()
!$OMP PARALLEL & !$OMP PARALLEL &
!$OMP DEFAULT (NONE) & !$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_blocks, ipoint) & !$OMP PRIVATE (i_blocks, ipoint) &
!$OMP SHARED (n_blocks, n_points_extra_final_grid, ii, final_grid_points, tmp_grad1_u12) !$OMP SHARED (n_blocks, n_points_extra_final_grid, ii, tmp_grad1_u12)
!$OMP DO !$OMP DO
do i_blocks = 1, n_blocks do i_blocks = 1, n_blocks
ipoint = ii - 1 + i_blocks ! r1 ipoint = ii - 1 + i_blocks ! r1
call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, tmp_grad1_u12%f(1,i_blocks,1), tmp_grad1_u12%f(1,i_blocks,2), & call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,i_blocks,1), tmp_grad1_u12(1,i_blocks,2), &
tmp_grad1_u12%f(1,i_blocks,3), tmp_grad1_u12%f(1,i_blocks,4)) tmp_grad1_u12(1,i_blocks,3), tmp_grad1_u12(1,i_blocks,4))
enddo enddo
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
call wall_time(tc2) call wall_time(tc2)
tc = tc + tc2 - tc1 tc = tc + tc2 - tc1
call gpu_synchronize()
call gpu_copy(tmp_grad1_u12,tmp_grad1_u12p)
do m = 1, 4 do m = 1, 4
call gpu_set_stream(blas_handle, stream(m)) call dgemm("T", "N", ao_num*ao_num, n_blocks, n_points_extra_final_grid, 1.d0 &
call gpu_dgemm(blas_handle, "T", "N", ao_num*ao_num, n_blocks, n_points_extra_final_grid, 1.d0 & , tmp(1,1,1), n_points_extra_final_grid, tmp_grad1_u12(1,1,m), n_points_extra_final_grid &
, tmp%f(1,1,1), n_points_extra_final_grid, tmp_grad1_u12p%f(1,1,m), n_points_extra_final_grid & , 0.d0, int2_grad1_u12_ao(1,1,ii,m), ao_num*ao_num)
, 0.d0, int2_grad1_u12_ao%f(1,1,ii,m), ao_num*ao_num)
enddo enddo
enddo enddo
@ -132,12 +122,12 @@ subroutine provide_int2_grad1_u12_ao()
!$OMP PARALLEL & !$OMP PARALLEL &
!$OMP DEFAULT (NONE) & !$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_rest, ipoint) & !$OMP PRIVATE (i_rest, ipoint) &
!$OMP SHARED (n_rest, n_points_extra_final_grid, ii, final_grid_points, tmp_grad1_u12) !$OMP SHARED (n_rest, n_points_extra_final_grid, ii, tmp_grad1_u12)
!$OMP DO !$OMP DO
do i_rest = 1, n_rest do i_rest = 1, n_rest
ipoint = ii - 1 + i_rest ! r1 ipoint = ii - 1 + i_rest ! r1
call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, tmp_grad1_u12%f(1,i_rest,1), tmp_grad1_u12%f(1,i_rest,2), & call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, tmp_grad1_u12(1,i_rest,1), tmp_grad1_u12(1,i_rest,2), &
tmp_grad1_u12%f(1,i_rest,3), tmp_grad1_u12%f(1,i_rest,4)) tmp_grad1_u12(1,i_rest,3), tmp_grad1_u12(1,i_rest,4))
enddo enddo
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
@ -145,42 +135,33 @@ subroutine provide_int2_grad1_u12_ao()
tc = tc + tc2 - tc1 tc = tc + tc2 - tc1
do m = 1, 4 do m = 1, 4
call gpu_set_stream(blas_handle, stream(m)) call dgemm("T", "N", ao_num*ao_num, n_rest, n_points_extra_final_grid, 1.d0 &
call gpu_dgemm(blas_handle, "T", "N", ao_num*ao_num, n_rest, n_points_extra_final_grid, 1.d0 & , tmp(1,1,1), n_points_extra_final_grid, tmp_grad1_u12(1,1,m), n_points_extra_final_grid &
, tmp%f(1,1,1), n_points_extra_final_grid, tmp_grad1_u12%f(1,1,m), n_points_extra_final_grid & , 0.d0, int2_grad1_u12_ao(1,1,ii,m), ao_num*ao_num)
, 0.d0, int2_grad1_u12_ao%f(1,1,ii,m), ao_num*ao_num)
enddo enddo
endif endif
call gpu_synchronize() deallocate(tmp_grad1_u12)
call gpu_deallocate(tmp_grad1_u12)
call gpu_deallocate(tmp_grad1_u12p)
do i=1,4 deallocate(tmp)
call gpu_stream_destroy(stream(i))
enddo
call gpu_deallocate(tmp)
call wall_time(time1) call wall_time(time1)
print*, ' wall time for int2_grad1_u12_ao (min) = ', (time1-time0) / 60.d0 print*, ' wall time for int2_grad1_u12_ao (min) = ', (time1-time0) / 60.d0
print*, ' wall time Jastrow derivatives (min) = ', tc / 60.d0 print*, ' wall time Jastrow derivatives (min) = ', tc / 60.d0
call print_memory_usage() call print_memory_usage()
!TODO
stop
! --- ! ---
! --- ! ---
! --- ! ---
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
allocate(tc_int_2e_ao(ao_num,ao_num,ao_num,ao_num)) allocate(tc_int_2e_ao(ao_num,ao_num,ao_num,ao_num))
call wall_time(time1) call wall_time(time1)
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
!$OMP PARALLEL & !$OMP PARALLEL &
!$OMP DEFAULT (NONE) & !$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) & !$OMP PRIVATE (i, k, ipoint) &
@ -196,19 +177,18 @@ stop
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 & call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_grad1_u12_ao%f(1,1,1,4), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid & , int2_grad1_u12_ao(1,1,1,4), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
, 0.d0, tc_int_2e_ao(1,1,1,1), ao_num*ao_num) , 0.d0, tc_int_2e_ao(1,1,1,1), ao_num*ao_num)
deallocate(c_mat)
call wall_time(time2) call wall_time(time2)
print*, ' wall time of Hermitian part of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0 print*, ' wall time of Hermitian part of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0
call print_memory_usage() call print_memory_usage()
! --- ! ---
call wall_time(time1) call wall_time(time1)
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
do m = 1, 3 do m = 1, 3
!$OMP PARALLEL & !$OMP PARALLEL &
!$OMP DEFAULT (NONE) & !$OMP DEFAULT (NONE) &
@ -220,7 +200,7 @@ stop
do k = 1, ao_num do k = 1, ao_num
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
weight1 = 0.5d0 * final_weight_at_r_vector(ipoint) weight1 = final_weight_at_r_vector(ipoint)
ao_i_r = aos_in_r_array_transp(ipoint,i) ao_i_r = aos_in_r_array_transp(ipoint,i)
ao_k_r = aos_in_r_array_transp(ipoint,k) ao_k_r = aos_in_r_array_transp(ipoint,k)
@ -231,14 +211,16 @@ stop
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, -1.d0 & call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, -0.5d0 &
, int2_grad1_u12_ao%f(1,1,1,m), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid & , int2_grad1_u12_ao(1,1,1,m), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
, 1.d0, tc_int_2e_ao(1,1,1,1), ao_num*ao_num) , 1.d0, tc_int_2e_ao(1,1,1,1), ao_num*ao_num)
enddo enddo
deallocate(c_mat)
call wall_time(time2) call wall_time(time2)
print*, ' wall time of non-Hermitian part of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0 print*, ' wall time of non-Hermitian part of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0
deallocate(c_mat)
call print_memory_usage() call print_memory_usage()
! --- ! ---
@ -249,13 +231,18 @@ stop
call wall_time(time2) call wall_time(time2)
print*, ' lower- and upper-triangle of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0 print*, ' lower- and upper-triangle of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0
call print_memory_usage() call print_memory_usage()
! --- ! ---
double precision :: tmp_omp
call wall_time(time1) call wall_time(time1)
PROVIDE ao_integrals_map PROVIDE ao_integrals_map
tmp_omp = get_ao_two_e_integral(1, 1, 1, 1, ao_integrals_map)
!$OMP PARALLEL DEFAULT(NONE) & !$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(ao_num, tc_int_2e_ao, ao_integrals_map) & !$OMP SHARED(ao_num, tc_int_2e_ao, ao_integrals_map) &
!$OMP PRIVATE(i, j, k, l) !$OMP PRIVATE(i, j, k, l)
@ -281,9 +268,10 @@ stop
print*, ' Writing int2_grad1_u12_ao in ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao' print*, ' Writing int2_grad1_u12_ao in ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="write") open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="write")
call ezfio_set_work_empty(.False.) call ezfio_set_work_empty(.False.)
write(11) int2_grad1_u12_ao%f(:,:,:,1:3) write(11) int2_grad1_u12_ao(:,:,:,1:3)
close(11) close(11)
deallocate(int2_grad1_u12_ao)
print*, ' Saving tc_int_2e_ao in ', trim(ezfio_filename) // '/work/ao_two_e_tc_tot' print*, ' Saving tc_int_2e_ao in ', trim(ezfio_filename) // '/work/ao_two_e_tc_tot'
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/ao_two_e_tc_tot', action="write") open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/ao_two_e_tc_tot', action="write")
@ -295,7 +283,6 @@ stop
! ---- ! ----
call gpu_deallocate(int2_grad1_u12_ao)
deallocate(tc_int_2e_ao) deallocate(tc_int_2e_ao)
call wall_time(time2) call wall_time(time2)

View File

@ -0,0 +1,315 @@
! ---
subroutine provide_int2_grad1_u12_ao_gpu()
use gpu
BEGIN_DOC
!
! int2_grad1_u12_ao(i,j,ipoint,1) = \int dr2 [\grad1 u(r1,r2)]_x1 \chi_i(r2) \chi_j(r2)
! int2_grad1_u12_ao(i,j,ipoint,2) = \int dr2 [\grad1 u(r1,r2)]_y1 \chi_i(r2) \chi_j(r2)
! int2_grad1_u12_ao(i,j,ipoint,3) = \int dr2 [\grad1 u(r1,r2)]_z1 \chi_i(r2) \chi_j(r2)
! int2_grad1_u12_ao(i,j,ipoint,4) = \int dr2 [-(1/2) [\grad1 u(r1,r2)]^2] \chi_i(r2) \chi_j(r2)
!
!
! tc_int_2e_ao(k,i,l,j) = (ki|V^TC(r_12)|lj)
! = <lk| V^TC(r_12) |ji> where V^TC(r_12) is the total TC operator
! = tc_grad_and_lapl_ao(k,i,l,j) + tc_grad_square_ao(k,i,l,j) + ao_two_e_coul(k,i,l,j)
! where:
!
! tc_grad_and_lapl_ao(k,i,l,j) = < k l | -1/2 \Delta_1 u(r1,r2) - \grad_1 u(r1,r2) . \grad_1 | ij >
! = -1/2 \int dr1 (phi_k(r1) \grad_r1 phi_i(r1) - phi_i(r1) \grad_r1 phi_k(r1)) . \int dr2 \grad_r1 u(r1,r2) \phi_l(r2) \phi_j(r2)
! = 1/2 \int dr1 (phi_k(r1) \grad_r1 phi_i(r1) - phi_i(r1) \grad_r1 phi_k(r1)) . \int dr2 (-1) \grad_r1 u(r1,r2) \phi_l(r2) \phi_j(r2)
!
! tc_grad_square_ao(k,i,l,j) = -1/2 <kl | |\grad_1 u(r1,r2)|^2 + |\grad_2 u(r1,r2)|^2 | ij>
!
! ao_two_e_coul(k,i,l,j) = < l k | 1/r12 | j i > = ( k i | 1/r12 | l j )
!
END_DOC
implicit none
integer :: i, j, k, l, m, ipoint, jpoint
integer :: n_blocks, n_rest, n_pass
integer :: i_blocks, i_rest, i_pass, ii
double precision :: mem, n_double
double precision :: weight1, ao_k_r, ao_i_r
double precision :: der_envsq_x, der_envsq_y, der_envsq_z, lap_envsq
double precision :: time0, time1, time2, tc1, tc2, tc
type(gpu_double4) :: int2_grad1_u12_ao
type(gpu_double3) :: tmp_grad1_u12, tmp_grad1_u12p, tmp
double precision, allocatable :: c_mat(:,:,:), tc_int_2e_ao(:,:,:,:)
double precision, external :: get_ao_two_e_integral
PROVIDE final_weight_at_r_vector_extra aos_in_r_array_extra
PROVIDE final_weight_at_r_vector aos_grad_in_r_array_transp_bis final_weight_at_r_vector aos_in_r_array_transp
print*, ' start provide_int2_grad1_u12_ao ...'
call wall_time(time0)
call total_memory(mem)
mem = max(1.d0, qp_max_mem - mem)
mem = 6
n_double = mem * 1.d8
n_blocks = int(min(n_double / (n_points_extra_final_grid * 4.d0), 1.d0*n_points_final_grid))
n_rest = int(mod(n_points_final_grid, n_blocks))
n_pass = int((n_points_final_grid - n_rest) / n_blocks)
call write_int(6, n_pass, 'Number of passes')
call write_int(6, n_blocks, 'Size of the blocks')
call write_int(6, n_rest, 'Size of the last block')
! ---
! ---
! ---
call gpu_allocate(int2_grad1_u12_ao, ao_num,ao_num,n_points_final_grid,4)
call gpu_allocate(tmp,n_points_extra_final_grid,ao_num,ao_num)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, i, jpoint) &
!$OMP SHARED (tmp, ao_num, n_points_extra_final_grid, final_weight_at_r_vector_extra, aos_in_r_array_extra_transp)
!$OMP DO SCHEDULE (static)
do j = 1, ao_num
do i = 1, ao_num
do jpoint = 1, n_points_extra_final_grid
tmp%f(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call gpu_allocate(tmp_grad1_u12,n_points_extra_final_grid,n_blocks,4)
call gpu_allocate(tmp_grad1_u12p,n_points_extra_final_grid,n_blocks,4)
tc = 0.d0
type(gpu_stream) :: stream(4)
do i=1,4
call gpu_stream_create(stream(i))
enddo
do i_pass = 1, n_pass
ii = (i_pass-1)*n_blocks + 1
call wall_time(tc1)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_blocks, ipoint) &
!$OMP SHARED (n_blocks, n_points_extra_final_grid, ii, final_grid_points, tmp_grad1_u12)
!$OMP DO
do i_blocks = 1, n_blocks
ipoint = ii - 1 + i_blocks ! r1
call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, tmp_grad1_u12%f(1,i_blocks,1), tmp_grad1_u12%f(1,i_blocks,2), &
tmp_grad1_u12%f(1,i_blocks,3), tmp_grad1_u12%f(1,i_blocks,4))
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(tc2)
tc = tc + tc2 - tc1
call gpu_synchronize()
call gpu_copy(tmp_grad1_u12,tmp_grad1_u12p)
do m = 1, 4
call gpu_set_stream(blas_handle, stream(m))
call gpu_dgemm(blas_handle, "T", "N", ao_num*ao_num, n_blocks, n_points_extra_final_grid, 1.d0 &
, tmp%f(1,1,1), n_points_extra_final_grid, tmp_grad1_u12p%f(1,1,m), n_points_extra_final_grid &
, 0.d0, int2_grad1_u12_ao%f(1,1,ii,m), ao_num*ao_num)
enddo
enddo
if(n_rest .gt. 0) then
ii = n_pass*n_blocks + 1
call wall_time(tc1)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i_rest, ipoint) &
!$OMP SHARED (n_rest, n_points_extra_final_grid, ii, final_grid_points, tmp_grad1_u12)
!$OMP DO
do i_rest = 1, n_rest
ipoint = ii - 1 + i_rest ! r1
call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, tmp_grad1_u12%f(1,i_rest,1), tmp_grad1_u12%f(1,i_rest,2), &
tmp_grad1_u12%f(1,i_rest,3), tmp_grad1_u12%f(1,i_rest,4))
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(tc2)
tc = tc + tc2 - tc1
do m = 1, 4
call gpu_set_stream(blas_handle, stream(m))
call gpu_dgemm(blas_handle, "T", "N", ao_num*ao_num, n_rest, n_points_extra_final_grid, 1.d0 &
, tmp%f(1,1,1), n_points_extra_final_grid, tmp_grad1_u12%f(1,1,m), n_points_extra_final_grid &
, 0.d0, int2_grad1_u12_ao%f(1,1,ii,m), ao_num*ao_num)
enddo
endif
call gpu_synchronize()
call gpu_deallocate(tmp_grad1_u12)
call gpu_deallocate(tmp_grad1_u12p)
do i=1,4
call gpu_stream_destroy(stream(i))
enddo
call gpu_deallocate(tmp)
call wall_time(time1)
print*, ' wall time for int2_grad1_u12_ao (min) = ', (time1-time0) / 60.d0
print*, ' wall time Jastrow derivatives (min) = ', tc / 60.d0
call print_memory_usage()
!TODO
stop
! ---
! ---
! ---
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
allocate(tc_int_2e_ao(ao_num,ao_num,ao_num,ao_num))
call wall_time(time1)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) &
!$OMP SHARED (aos_in_r_array_transp, c_mat, ao_num, n_points_final_grid, final_weight_at_r_vector)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
c_mat(ipoint,k,i) = final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,k)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_grad1_u12_ao%f(1,1,1,4), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
, 0.d0, tc_int_2e_ao(1,1,1,1), ao_num*ao_num)
call wall_time(time2)
print*, ' wall time of Hermitian part of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0
call print_memory_usage()
! ---
call wall_time(time1)
do m = 1, 3
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint, weight1, ao_i_r, ao_k_r) &
!$OMP SHARED (aos_in_r_array_transp, aos_grad_in_r_array_transp_bis, c_mat, &
!$OMP ao_num, n_points_final_grid, final_weight_at_r_vector, m)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
weight1 = 0.5d0 * final_weight_at_r_vector(ipoint)
ao_i_r = aos_in_r_array_transp(ipoint,i)
ao_k_r = aos_in_r_array_transp(ipoint,k)
c_mat(ipoint,k,i) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,m) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,m))
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, -1.d0 &
, int2_grad1_u12_ao%f(1,1,1,m), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
, 1.d0, tc_int_2e_ao(1,1,1,1), ao_num*ao_num)
enddo
call wall_time(time2)
print*, ' wall time of non-Hermitian part of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0
call print_memory_usage()
deallocate(c_mat)
! ---
call wall_time(time1)
call sum_A_At(tc_int_2e_ao(1,1,1,1), ao_num*ao_num)
call wall_time(time2)
print*, ' lower- and upper-triangle of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0
call print_memory_usage()
! ---
call wall_time(time1)
PROVIDE ao_integrals_map
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(ao_num, tc_int_2e_ao, ao_integrals_map) &
!$OMP PRIVATE(i, j, k, l)
!$OMP DO COLLAPSE(3)
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
! < 1:i, 2:j | 1:k, 2:l >
tc_int_2e_ao(k,i,l,j) = tc_int_2e_ao(k,i,l,j) + get_ao_two_e_integral(i, j, k, l, ao_integrals_map)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(time2)
print*, ' wall time of Coulomb part of tc_int_2e_ao (min) ', (time2 - time1) / 60.d0
call print_memory_usage()
! ---
print*, ' Writing int2_grad1_u12_ao in ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="write")
call ezfio_set_work_empty(.False.)
write(11) int2_grad1_u12_ao%f(:,:,:,1:3)
close(11)
print*, ' Saving tc_int_2e_ao in ', trim(ezfio_filename) // '/work/ao_two_e_tc_tot'
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/ao_two_e_tc_tot', action="write")
call ezfio_set_work_empty(.False.)
do i = 1, ao_num
write(11) tc_int_2e_ao(:,:,:,i)
enddo
close(11)
! ----
call gpu_deallocate(int2_grad1_u12_ao)
deallocate(tc_int_2e_ao)
call wall_time(time2)
print*, ' wall time for tc_int_2e_ao (min) = ', (time2-time1) / 60.d0
call print_memory_usage()
! ---
call wall_time(time1)
print*, ' wall time for TC-integrals (min) = ', (time1-time0) / 60.d0
return
end
! ---

View File

@ -0,0 +1,70 @@
module cutc_module
use, intrinsic :: iso_c_binding
implicit none
interface
! ---
subroutine cutc_int(nxBlocks, nyBlocks, nzBlocks, &
blockxSize, blockySize, blockzSize, &
n_grid1, n_grid2, n_ao, n_nuc, size_bh, &
r1, wr1, r2, wr2, rn, &
aos_data1, aos_data2, &
c_bh, m_bh, n_bh, o_bh, &
int2_grad1_u12_ao, int_2e_ao) bind(C, name = "cutc_int")
import c_int, c_double, c_ptr
integer(c_int), intent(in), value :: nxBlocks, blockxSize
integer(c_int), intent(in), value :: nyBlocks, blockySize
integer(c_int), intent(in), value :: nzBlocks, blockzSize
integer(c_int), intent(in), value :: n_grid1, n_grid2
integer(c_int), intent(in), value :: n_ao
integer(c_int), intent(in), value :: n_nuc
integer(c_int), intent(in), value :: size_bh
real(c_double), intent(in) :: r1(3,n_grid1), wr1(n_grid1)
real(c_double), intent(in) :: r2(3,n_grid2), wr2(n_grid2)
real(c_double), intent(in) :: rn(3,n_nuc)
real(c_double), intent(in) :: aos_data1(n_grid1,n_ao,4)
real(c_double), intent(in) :: aos_data2(n_grid2,n_ao,4)
real(c_double), intent(in) :: c_bh(size_bh,n_nuc)
integer(c_int), intent(in) :: m_bh(size_bh,n_nuc)
integer(c_int), intent(in) :: n_bh(size_bh,n_nuc)
integer(c_int), intent(in) :: o_bh(size_bh,n_nuc)
real(c_double), intent(out) :: int2_grad1_u12_ao(n_ao,n_ao,n_grid1,3)
real(c_double), intent(out) :: int_2e_ao(n_ao,n_ao,n_ao,n_ao)
end subroutine cutc_int
! ---
subroutine cutc_no(n_grid1, n_mo, ne_a, ne_b, &
wr1, mos_l_in_r, mos_r_in_r, int2_grad1_u12, &
no_2e, no_1e, no_0e) bind(C, name = "cutc_no")
import c_int, c_double, c_ptr
integer(c_int), intent(in), value :: n_grid1
integer(c_int), intent(in), value :: n_mo
integer(c_int), intent(in), value :: ne_a
integer(c_int), intent(in), value :: ne_b
real(c_double), intent(in) :: wr1(n_grid1)
real(c_double), intent(in) :: mos_l_in_r(n_grid1,n_mo)
real(c_double), intent(in) :: mos_r_in_r(n_grid1,n_mo)
real(c_double), intent(in) :: int2_grad1_u12(n_grid1,3,n_mo,n_mo)
real(c_double), intent(out) :: no_2e(n_mo,n_mo,n_mo,n_mo)
real(c_double), intent(out) :: no_1e(n_mo,n_mo)
real(c_double), intent(out) :: no_0e(1)
end subroutine cutc_no
! ---
end interface
end module cutc_module

View File

@ -0,0 +1,311 @@
! ---
program deb_int_2e_ao_gpu
implicit none
print *, ' j2e_type = ', j2e_type
print *, ' j1e_type = ', j1e_type
print *, ' env_type = ', env_type
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
my_extra_grid_becke = .True.
PROVIDE tc_grid2_a tc_grid2_r
my_n_pt_r_extra_grid = tc_grid2_r
my_n_pt_a_extra_grid = tc_grid2_a
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
call main()
end
! ---
subroutine main()
use cutc_module
implicit none
integer :: m
integer :: i, j, k, l
integer :: ipoint, jpoint
double precision :: weight1, ao_i_r, ao_k_r
double precision :: acc_thr, err_tot, nrm_tot, err_loc
double precision :: time0, time1
double precision :: wall_time0, wall_time1
double precision :: wall_ttime0, wall_ttime1
double precision :: tt1, tt2
double precision, allocatable :: rn(:,:), aos_data1(:,:,:), aos_data2(:,:,:)
double precision, allocatable :: grad1_u12(:,:,:), int_fct_long_range(:,:,:), c_mat(:,:,:)
double precision, allocatable :: int2_grad1_u12_ao(:,:,:,:)
double precision, allocatable :: int2_grad1_u12_ao_gpu(:,:,:,:)
double precision, allocatable :: int_2e_ao(:,:,:,:)
double precision, allocatable :: int_2e_ao_gpu(:,:,:,:)
call wall_time(time0)
print*, ' start deb_int_2e_ao_gpu'
! ---
allocate(rn(3,nucl_num))
allocate(aos_data1(n_points_final_grid,ao_num,4))
allocate(aos_data2(n_points_extra_final_grid,ao_num,4))
do k = 1, nucl_num
rn(1,k) = nucl_coord(k,1)
rn(2,k) = nucl_coord(k,2)
rn(3,k) = nucl_coord(k,3)
enddo
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
aos_data1(ipoint,k,1) = aos_in_r_array(k,ipoint)
aos_data1(ipoint,k,2) = aos_grad_in_r_array(k,ipoint,1)
aos_data1(ipoint,k,3) = aos_grad_in_r_array(k,ipoint,2)
aos_data1(ipoint,k,4) = aos_grad_in_r_array(k,ipoint,3)
enddo
enddo
do k = 1, ao_num
do ipoint = 1, n_points_extra_final_grid
aos_data2(ipoint,k,1) = aos_in_r_array_extra(k,ipoint)
aos_data2(ipoint,k,2) = aos_grad_in_r_array_extra(k,ipoint,1)
aos_data2(ipoint,k,3) = aos_grad_in_r_array_extra(k,ipoint,2)
aos_data2(ipoint,k,4) = aos_grad_in_r_array_extra(k,ipoint,3)
enddo
enddo
! ---
integer :: nB
integer :: sB
PROVIDE nxBlocks nyBlocks nzBlocks
PROVIDE blockxSize blockySize blockzSize
sB = 32
nB = (n_points_final_grid + sB - 1) / sB
call ezfio_set_tc_int_blockxSize(sB)
call ezfio_set_tc_int_nxBlocks(nB)
allocate(int2_grad1_u12_ao_gpu(ao_num,ao_num,n_points_final_grid,3))
allocate(int_2e_ao_gpu(ao_num,ao_num,ao_num,ao_num))
call cutc_int(nxBlocks, nyBlocks, nzBlocks, blockxSize, blockySize, blockzSize, &
n_points_final_grid, n_points_extra_final_grid, ao_num, nucl_num, jBH_size, &
final_grid_points, final_weight_at_r_vector, &
final_grid_points_extra, final_weight_at_r_vector_extra, &
rn, aos_data1, aos_data2, jBH_c, jBH_m, jBH_n, jBH_o, &
int2_grad1_u12_ao_gpu, int_2e_ao_gpu)
! ---
allocate(int_fct_long_range(n_points_extra_final_grid,ao_num,ao_num))
allocate(grad1_u12(n_points_extra_final_grid,n_points_final_grid,4))
allocate(c_mat(n_points_final_grid,ao_num,ao_num))
allocate(int2_grad1_u12_ao(ao_num,ao_num,n_points_final_grid,4))
allocate(int_2e_ao(ao_num,ao_num,ao_num,ao_num))
call wall_time(wall_time0)
call wall_time(wall_ttime0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, i, jpoint) &
!$OMP SHARED (int_fct_long_range, ao_num, n_points_extra_final_grid, final_weight_at_r_vector_extra, aos_in_r_array_extra_transp)
!$OMP DO SCHEDULE (static)
do j = 1, ao_num
do i = 1, ao_num
do jpoint = 1, n_points_extra_final_grid
int_fct_long_range(jpoint,i,j) = final_weight_at_r_vector_extra(jpoint) * aos_in_r_array_extra_transp(jpoint,i) * aos_in_r_array_extra_transp(jpoint,j)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall_ttime1)
write(*,"(A,2X,F15.7)") ' wall time for int_long_range (sec) = ', (wall_ttime1 - wall_ttime0)
call wall_time(wall_ttime0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint) &
!$OMP SHARED (n_points_final_grid, n_points_extra_final_grid, grad1_u12)
!$OMP DO
do ipoint = 1, n_points_final_grid
call get_grad1_u12_for_tc(ipoint, n_points_extra_final_grid, grad1_u12(1,ipoint,1) &
, grad1_u12(1,ipoint,2) &
, grad1_u12(1,ipoint,3) &
, grad1_u12(1,ipoint,4) )
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall_ttime1)
write(*,"(A,2X,F15.7)") ' wall time for tc_int_bh (sec) = ', (wall_ttime1 - wall_ttime0)
call wall_time(wall_ttime0)
do m = 1, 4
call dgemm("T", "N", ao_num*ao_num, n_points_final_grid, n_points_extra_final_grid, 1.d0 &
, int_fct_long_range(1,1,1), n_points_extra_final_grid, grad1_u12(1,1,m), n_points_extra_final_grid &
, 0.d0, int2_grad1_u12_ao(1,1,1,m), ao_num*ao_num)
enddo
call wall_time(wall_ttime1)
write(*,"(A,2X,F15.7)") ' wall time for DGEMM of integ over r2 (sec) = ', (wall_ttime1 - wall_ttime0)
call wall_time(wall_ttime0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) &
!$OMP SHARED (aos_in_r_array_transp, c_mat, ao_num, n_points_final_grid, final_weight_at_r_vector)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
c_mat(ipoint,k,i) = final_weight_at_r_vector(ipoint) * aos_in_r_array_transp(ipoint,i) * aos_in_r_array_transp(ipoint,k)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall_ttime1)
write(*,"(A,2X,F15.7)") ' wall time of Hermitian part (sec) = ', (wall_ttime1 - wall_ttime0)
call wall_time(wall_ttime0)
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, 1.d0 &
, int2_grad1_u12_ao(1,1,1,4), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
, 0.d0, int_2e_ao(1,1,1,1), ao_num*ao_num)
call wall_time(wall_ttime1)
write(*,"(A,2X,F15.7)") ' wall time for DGEMM of Hermitian part (sec) = ', (wall_ttime1 - wall_ttime0)
tt1 = 0.d0
tt2 = 0.d0
do m = 1, 3
call wall_time(wall_ttime0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint, weight1, ao_i_r, ao_k_r) &
!$OMP SHARED (aos_in_r_array_transp, aos_grad_in_r_array_transp_bis, c_mat, &
!$OMP ao_num, n_points_final_grid, final_weight_at_r_vector, m)
!$OMP DO SCHEDULE (static)
do i = 1, ao_num
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
weight1 = final_weight_at_r_vector(ipoint)
ao_i_r = aos_in_r_array_transp(ipoint,i)
ao_k_r = aos_in_r_array_transp(ipoint,k)
c_mat(ipoint,k,i) = weight1 * (ao_k_r * aos_grad_in_r_array_transp_bis(ipoint,i,m) - ao_i_r * aos_grad_in_r_array_transp_bis(ipoint,k,m))
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall_ttime1)
tt1 += wall_ttime1 - wall_ttime0
call wall_time(wall_ttime0)
call dgemm( "N", "N", ao_num*ao_num, ao_num*ao_num, n_points_final_grid, -0.5d0 &
, int2_grad1_u12_ao(1,1,1,m), ao_num*ao_num, c_mat(1,1,1), n_points_final_grid &
, 1.d0, int_2e_ao(1,1,1,1), ao_num*ao_num)
call wall_time(wall_ttime1)
tt2 += wall_ttime1 - wall_ttime0
enddo
write(*,"(A,2X,F15.7)") ' wall time of non-Hermitian part (sec) = ', tt1
write(*,"(A,2X,F15.7)") ' wall time for DGEMM of non Hermitian part (sec) = ', tt2
call wall_time(wall_ttime0)
call sum_A_At(int_2e_ao(1,1,1,1), ao_num*ao_num)
call wall_time(wall_ttime1)
write(*,"(A,2X,F15.7)") ' wall time of A + A.T (sec) = ', wall_ttime1 - wall_ttime0
call wall_time(wall_time1)
write(*,"(A,2X,F15.7)") ' wall time on cpu (sec) = ', (wall_time1 - wall_time0)
! ---
acc_thr = 1d-12
err_tot = 0.d0
nrm_tot = 0.d0
do m = 1, 3
do ipoint = 1, n_points_final_grid
do j = 1, ao_num
do i = 1, ao_num
err_loc = dabs(int2_grad1_u12_ao(i,j,ipoint,m) - int2_grad1_u12_ao_gpu(i,j,ipoint,m))
if(err_loc > acc_thr) then
print*, " error on", i, j, ipoint, m
print*, " CPU res", int2_grad1_u12_ao (i,j,ipoint,m)
print*, " GPU res", int2_grad1_u12_ao_gpu(i,j,ipoint,m)
stop
endif
err_tot = err_tot + err_loc
nrm_tot = nrm_tot + dabs(int2_grad1_u12_ao(i,j,ipoint,m))
enddo
enddo
enddo
enddo
print *, ' absolute accuracy on int2_grad1_u12_ao (%) =', 100.d0 * err_tot / nrm_tot
err_tot = 0.d0
nrm_tot = 0.d0
do i = 1, ao_num
do j = 1, ao_num
do k = 1, ao_num
do l = 1, ao_num
err_loc = dabs(int_2e_ao(l,k,j,i) - int_2e_ao_gpu(l,k,j,i))
if(err_loc > acc_thr) then
print*, " error on", l, k, j, i
print*, " CPU res", int_2e_ao (l,k,j,i)
print*, " GPU res", int_2e_ao_gpu(l,k,j,i)
stop
endif
err_tot = err_tot + err_loc
nrm_tot = nrm_tot + dabs(int_2e_ao(l,k,j,i))
enddo
enddo
enddo
enddo
print *, ' absolute accuracy on int_2e_ao (%) =', 100.d0 * err_tot / nrm_tot
! ---
deallocate(int_fct_long_range, grad1_u12, c_mat)
deallocate(int_2e_ao, int2_grad1_u12_ao)
deallocate(int_2e_ao_gpu, int2_grad1_u12_ao_gpu)
deallocate(rn, aos_data1, aos_data2)
call wall_time(time1)
write(*,"(A,2X,F15.7)") ' wall time for deb_int_2e_ao_gpu (sec) = ', (time1 - time0)
return
end

View File

@ -0,0 +1,218 @@
! ---
program deb_no_gpu
implicit none
print *, ' j2e_type = ', j2e_type
print *, ' j1e_type = ', j1e_type
print *, ' env_type = ', env_type
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
my_extra_grid_becke = .True.
PROVIDE tc_grid2_a tc_grid2_r
my_n_pt_r_extra_grid = tc_grid2_r
my_n_pt_a_extra_grid = tc_grid2_a
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
call main()
end
! ---
subroutine main()
use cutc_module
implicit none
integer :: i, j, k, l, ipoint
double precision :: time0, time1
double precision :: tt0, tt1
double precision :: acc_thr, err_tot, nrm_tot, err_loc
double precision :: noL_0e
double precision :: noL_0e_gpu(1)
double precision, allocatable :: int2_grad1_u12_ao(:,:,:,:)
double precision, allocatable :: tmp(:,:,:,:)
double precision, allocatable :: int2_grad1_u12_bimo_t(:,:,:,:)
double precision, allocatable :: noL_1e (:,:)
double precision, allocatable :: noL_1e_gpu(:,:)
double precision, allocatable :: noL_2e (:,:,:,:)
double precision, allocatable :: noL_2e_gpu(:,:,:,:)
PROVIDE mo_l_coef mo_r_coef
PROVIDE mos_l_in_r_array_transp mos_r_in_r_array_transp
call wall_time(time0)
print*, ' start deb_no_gpu'
allocate(int2_grad1_u12_ao(ao_num,ao_num,n_points_final_grid,3))
print*, ' Reading int2_grad1_u12_ao from ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
call wall_time(tt0)
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="read")
read(11) int2_grad1_u12_ao
close(11)
call wall_time(tt1)
write(*,"(A,2X,F15.7)") ' wall time for reading (sec) = ', (tt1 - tt0)
allocate(tmp(mo_num,mo_num,n_points_final_grid,3))
allocate(int2_grad1_u12_bimo_t(n_points_final_grid,3,mo_num,mo_num))
call wall_time(tt0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint) &
!$OMP SHARED (ao_num, mo_num, n_points_final_grid, int2_grad1_u12_ao, tmp)
!$OMP DO SCHEDULE (dynamic)
do ipoint = 1, n_points_final_grid
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,1), ao_num, tmp(1,1,ipoint,1), mo_num)
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,2), ao_num, tmp(1,1,ipoint,2), mo_num)
call ao_to_mo_bi_ortho(int2_grad1_u12_ao(1,1,ipoint,3), ao_num, tmp(1,1,ipoint,3), mo_num)
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(int2_grad1_u12_ao)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, j, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, tmp, int2_grad1_u12_bimo_t)
!$OMP DO COLLAPSE(2) SCHEDULE (dynamic)
do ipoint = 1, n_points_final_grid
do i = 1, mo_num
do j = 1, mo_num
int2_grad1_u12_bimo_t(ipoint,1,j,i) = tmp(j,i,ipoint,1)
int2_grad1_u12_bimo_t(ipoint,2,j,i) = tmp(j,i,ipoint,2)
int2_grad1_u12_bimo_t(ipoint,3,j,i) = tmp(j,i,ipoint,3)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(tt1)
write(*,"(A,2X,F15.7)") ' wall time for 3e-tensor (sec) = ', (tt1 - tt0)
deallocate(tmp)
! ---
allocate(noL_2e_gpu(mo_num,mo_num,mo_num,mo_num))
allocate(noL_1e_gpu(mo_num,mo_num))
call cutc_no(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
final_weight_at_r_vector(1), &
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
int2_grad1_u12_bimo_t(1,1,1,1), noL_2e_gpu(1,1,1,1), noL_1e_gpu(1,1), noL_0e_gpu(1))
! ---
allocate(noL_2e(mo_num,mo_num,mo_num,mo_num))
allocate(noL_1e(mo_num,mo_num))
call provide_no_2e(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
final_weight_at_r_vector(1), &
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
int2_grad1_u12_bimo_t(1,1,1,1), noL_2e(1,1,1,1))
call provide_no_1e(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
final_weight_at_r_vector(1), &
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
int2_grad1_u12_bimo_t(1,1,1,1), noL_1e(1,1))
call provide_no_0e(n_points_final_grid, mo_num, elec_alpha_num, elec_beta_num, &
final_weight_at_r_vector(1), &
mos_l_in_r_array_transp(1,1), mos_r_in_r_array_transp(1,1), &
int2_grad1_u12_bimo_t(1,1,1,1), noL_0e)
! ---
deallocate(int2_grad1_u12_bimo_t)
acc_thr = 1d-12
! ---
err_tot = 0.d0
nrm_tot = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
err_loc = dabs(noL_2e(l,k,j,i) - noL_2e_gpu(l,k,j,i))
if(err_loc > acc_thr) then
print*, " error on", l, k, j, i
print*, " CPU res", noL_2e (l,k,j,i)
print*, " GPU res", noL_2e_gpu(l,k,j,i)
stop
endif
err_tot = err_tot + err_loc
nrm_tot = nrm_tot + dabs(noL_2e(l,k,j,i))
enddo
enddo
enddo
enddo
print *, ' absolute accuracy on noL_2e (%) =', 100.d0 * err_tot / nrm_tot
deallocate(noL_2e)
deallocate(noL_2e_gpu)
! ---
err_tot = 0.d0
nrm_tot = 0.d0
do k = 1, mo_num
do l = 1, mo_num
err_loc = dabs(noL_1e(l,k) - noL_1e_gpu(l,k))
if(err_loc > acc_thr) then
print*, " error on", l, k
print*, " CPU res", noL_1e (l,k)
print*, " GPU res", noL_1e_gpu(l,k)
stop
endif
err_tot = err_tot + err_loc
nrm_tot = nrm_tot + dabs(noL_1e(l,k))
enddo
enddo
print *, ' absolute accuracy on noL_1e (%) =', 100.d0 * err_tot / nrm_tot
deallocate(noL_1e)
deallocate(noL_1e_gpu)
! ---
print *, 'noL_0e CPU = ', noL_0e
print *, 'noL_0e GPU = ', noL_0e_gpu(1)
err_tot = dabs(noL_0e - noL_0e_gpu(1))
nrm_tot = dabs(noL_0e)
print *, ' absolute accuracy on noL_0e (%) =', 100.d0 * err_tot / nrm_tot
call wall_time(time1)
write(*,"(A,2X,F15.7)") ' wall time for deb_no_gpu (sec) = ', (time1 - time0)
return
end
! ---

18
plugins/local/tc_int/install Executable file
View File

@ -0,0 +1,18 @@
#!/bin/bash
# Check if the QP_ROOT environment variable is set.
if [[ -z ${QP_ROOT} ]]
then
print "The QP_ROOT environment variable is not set."
print "Please reload the quantum_package.rc file."
exit -1
fi
git clone https://github.com/AbdAmmar/CuTC
cd CuTC
source config/env.rc
make
cd ..
ln -s ${PWD}/CuTC/build/libcutcint.so ${QP_ROOT}/lib

View File

@ -58,7 +58,7 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
integer :: jpoint, i_nucl, p, mpA, npA, opA integer :: jpoint, i_nucl, p, mpA, npA, opA
double precision :: r2(3) double precision :: r2(3)
double precision :: dx, dy, dz, r12, tmp double precision :: dx, dy, dz, r12, tmp
double precision :: rn(3), f1A, grad1_f1A(3), f2A, grad2_f2A(3), g12, grad1_g12(3) double precision :: rn(3), f1A, grad1_f1A(3), f2A, g12, grad1_g12(3)
double precision :: tmp1, tmp2, dist double precision :: tmp1, tmp2, dist
integer :: powmax1, powmax, powmax2 integer :: powmax1, powmax, powmax2
double precision, allocatable :: f1A_power(:), f2A_power(:), double_p(:), g12_power(:) double precision, allocatable :: f1A_power(:), f2A_power(:), double_p(:), g12_power(:)
@ -91,35 +91,29 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
grady(jpoint) = 0.d0 grady(jpoint) = 0.d0
gradz(jpoint) = 0.d0 gradz(jpoint) = 0.d0
call jBH_elem_fct_grad_alpha1(r1, r2, g12, grad1_g12) dist = (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
! dist = (r1(1) - r2(1)) * (r1(1) - r2(1)) & + (r1(3) - r2(3)) * (r1(3) - r2(3))
! + (r1(2) - r2(2)) * (r1(2) - r2(2)) & if(dist .ge. 1d-15) then
! + (r1(3) - r2(3)) * (r1(3) - r2(3)) dist = dsqrt(dist)
! tmp1 = 1.d0 / (1.d0 + dist)
! if(dist .ge. 1d-15) then g12 = dist * tmp1
! dist = dsqrt( dist ) tmp2 = tmp1 * tmp1 / dist
! grad1_g12(1) = tmp2 * (r1(1) - r2(1))
! tmp1 = 1.d0 / (1.d0 + dist) grad1_g12(2) = tmp2 * (r1(2) - r2(2))
! grad1_g12(3) = tmp2 * (r1(3) - r2(3))
! g12 = dist * tmp1 do p = 1, powmax2
! tmp2 = tmp1 * tmp1 / dist g12_power(p) = g12_power(p-1) * g12
! grad1_g12(1) = tmp2 * (r1(1) - r2(1)) enddo
! grad1_g12(2) = tmp2 * (r1(2) - r2(2)) else
! grad1_g12(3) = tmp2 * (r1(3) - r2(3)) grad1_g12(1) = 0.d0
! grad1_g12(2) = 0.d0
! else grad1_g12(3) = 0.d0
! g12 = 0.d0
! grad1_g12(1) = 0.d0 do p = 1, powmax2
! grad1_g12(2) = 0.d0 g12_power(p) = 0.d0
! grad1_g12(3) = 0.d0 enddo
! g12 = 0.d0 endif
!
! endif
!
do p = 1, powmax2
g12_power(p) = g12_power(p-1) * g12
enddo
do i_nucl = 1, nucl_num do i_nucl = 1, nucl_num
@ -127,71 +121,54 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
rn(2) = nucl_coord(i_nucl,2) rn(2) = nucl_coord(i_nucl,2)
rn(3) = nucl_coord(i_nucl,3) rn(3) = nucl_coord(i_nucl,3)
call jBH_elem_fct_grad_alpha1(r1, rn, f1A, grad1_f1A) dist = (r1(1) - rn(1)) * (r1(1) - rn(1)) &
! dist = (r1(1) - rn(1)) * (r1(1) - rn(1)) & + (r1(2) - rn(2)) * (r1(2) - rn(2)) &
! + (r1(2) - rn(2)) * (r1(2) - rn(2)) & + (r1(3) - rn(3)) * (r1(3) - rn(3))
! + (r1(3) - rn(3)) * (r1(3) - rn(3)) if (dist > 1.d-15) then
! if (dist > 1.d-15) then dist = dsqrt(dist)
! dist = dsqrt( dist ) tmp1 = 1.d0 / (1.d0 + dist)
! f1A = dist * tmp1
! tmp1 = 1.d0 / (1.d0 + dist) tmp2 = tmp1 * tmp1 / dist
! grad1_f1A(1) = tmp2 * (r1(1) - rn(1))
! f1A = dist * tmp1 grad1_f1A(2) = tmp2 * (r1(2) - rn(2))
! tmp2 = tmp1 * tmp1 / dist grad1_f1A(3) = tmp2 * (r1(3) - rn(3))
! grad1_f1A(1) = tmp2 * (r1(1) - rn(1)) do p = 1, powmax1
! grad1_f1A(2) = tmp2 * (r1(2) - rn(2)) f1A_power(p) = f1A_power(p-1) * f1A
! grad1_f1A(3) = tmp2 * (r1(3) - rn(3)) enddo
! else
! else grad1_f1A(1) = 0.d0
! grad1_f1A(2) = 0.d0
! grad1_f1A(1) = 0.d0 grad1_f1A(3) = 0.d0
! grad1_f1A(2) = 0.d0 f1A = 0.d0
! grad1_f1A(3) = 0.d0 do p = 1, powmax1
! f1A = 0.d0 f1A_power(p) = 0.d0
! enddo
! endif endif
call jBH_elem_fct_grad_alpha1(r2, rn, f2A, grad2_f2A) dist = (r2(1) - rn(1)) * (r2(1) - rn(1)) &
! dist = (r2(1) - rn(1)) * (r2(1) - rn(1)) & + (r2(2) - rn(2)) * (r2(2) - rn(2)) &
! + (r2(2) - rn(2)) * (r2(2) - rn(2)) & + (r2(3) - rn(3)) * (r2(3) - rn(3))
! + (r2(3) - rn(3)) * (r2(3) - rn(3)) if (dist > 1.d-15) then
! dist = dsqrt(dist)
! if (dist > 1.d-15) then f2A = dist / (1.d0 + dist)
! dist = dsqrt( dist ) do p = 1, powmax1
! f2A_power(p) = f2A_power(p-1) * f2A
! tmp1 = 1.d0 / (1.d0 + dist) enddo
! else
! f2A = dist * tmp1 f2A = 0.d0
! tmp2 = tmp1 * tmp1 / dist do p = 1, powmax1
! grad2_f2A(1) = tmp2 * (r2(1) - rn(1)) f2A_power(p) = 0.d0
! grad2_f2A(2) = tmp2 * (r2(2) - rn(2)) enddo
! grad2_f2A(3) = tmp2 * (r2(3) - rn(3)) endif
!
! else
!
! grad2_f2A(1) = 0.d0
! grad2_f2A(2) = 0.d0
! grad2_f2A(3) = 0.d0
! f2A = 0.d0
!
! endif
! Compute powers of f1A and f2A
do p = 1, powmax1
f1A_power(p) = f1A_power(p-1) * f1A
f2A_power(p) = f2A_power(p-1) * f2A
enddo
do p = 1, jBH_size do p = 1, jBH_size
tmp = jBH_c(p,i_nucl)
if (dabs(tmp) <= 1.d-10) cycle
mpA = jBH_m(p,i_nucl) mpA = jBH_m(p,i_nucl)
npA = jBH_n(p,i_nucl) npA = jBH_n(p,i_nucl)
opA = jBH_o(p,i_nucl) opA = jBH_o(p,i_nucl)
tmp = jBH_c(p,i_nucl)
! if (dabs(tmp) <= 1.d-10) cycle
!
if(mpA .eq. npA) then
tmp = tmp * 0.5d0
endif
tmp1 = double_p(mpA) * f1A_power(mpA-1) * f2A_power(npA) + double_p(npA) * f1A_power(npA-1) * f2A_power(mpA) tmp1 = double_p(mpA) * f1A_power(mpA-1) * f2A_power(npA) + double_p(npA) * f1A_power(npA-1) * f2A_power(mpA)
tmp1 = tmp1 * g12_power(opA) * tmp tmp1 = tmp1 * g12_power(opA) * tmp
@ -207,39 +184,5 @@ subroutine grad1_j12_r1_seq(r1, n_grid2, gradx, grady, gradz)
return return
end end
subroutine jBH_elem_fct_grad_alpha1(r1, r2, fct, grad1_fct)
implicit none
double precision, intent(in) :: r1(3), r2(3)
double precision, intent(out) :: fct, grad1_fct(3)
double precision :: dist, tmp1, tmp2
dist = (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3))
if(dist .ge. 1d-15) then
dist = dsqrt( dist )
tmp1 = 1.d0 / (1.d0 + dist)
fct = dist * tmp1
tmp2 = tmp1 * tmp1 / dist
grad1_fct(1) = tmp2 * (r1(1) - r2(1))
grad1_fct(2) = tmp2 * (r1(2) - r2(2))
grad1_fct(3) = tmp2 * (r1(3) - r2(3))
else
grad1_fct(1) = 0.d0
grad1_fct(2) = 0.d0
grad1_fct(3) = 0.d0
fct = 0.d0
endif
return
end
! --- ! ---

View File

@ -1,43 +0,0 @@
! ---
subroutine jBH_elem_fct_grad(alpha, r1, r2, fct, grad1_fct)
implicit none
double precision, intent(in) :: alpha, r1(3), r2(3)
double precision, intent(out) :: fct, grad1_fct(3)
double precision :: dist, tmp1, tmp2, dist_inv
dist = (r1(1) - r2(1)) * (r1(1) - r2(1)) &
+ (r1(2) - r2(2)) * (r1(2) - r2(2)) &
+ (r1(3) - r2(3)) * (r1(3) - r2(3))
if(dist .ge. 1d-15) then
dist_inv = 1.d0/dsqrt( dist )
dist = dist_inv * dist
tmp1 = 1.d0 / (1.d0 + alpha * dist)
fct = alpha * dist * tmp1
tmp2 = alpha * tmp1 * tmp1 * dist_inv
grad1_fct(1) = tmp2 * (r1(1) - r2(1))
grad1_fct(2) = tmp2 * (r1(2) - r2(2))
grad1_fct(3) = tmp2 * (r1(3) - r2(3))
else
grad1_fct(1) = 0.d0
grad1_fct(2) = 0.d0
grad1_fct(3) = 0.d0
fct = 0.d0
endif
return
end
! ---

View File

@ -0,0 +1,407 @@
! ---
subroutine provide_no_0e(n_grid, n_mo, ne_a, ne_b, wr1, mos_l_in_r, mos_r_in_r, int2_grad1_u12, noL_0e)
implicit none
integer, intent(in) :: n_grid, n_mo
integer, intent(in) :: ne_a, ne_b
double precision, intent(in) :: wr1(n_grid)
double precision, intent(in) :: mos_l_in_r(n_grid,n_mo)
double precision, intent(in) :: mos_r_in_r(n_grid,n_mo)
double precision, intent(in) :: int2_grad1_u12(n_grid,3,n_mo,n_mo)
double precision, intent(out) :: noL_0e
integer :: i, j, k, ipoint
double precision :: t0, t1
double precision, allocatable :: tmp(:)
double precision, allocatable :: tmpL(:,:), tmpR(:,:)
double precision, allocatable :: tmpM(:,:), tmpS(:), tmpO(:), tmpJ(:,:)
double precision, allocatable :: tmpM_priv(:,:), tmpS_priv(:), tmpO_priv(:), tmpJ_priv(:,:)
call wall_time(t0)
if(ne_a .eq. ne_b) then
allocate(tmp(ne_b))
allocate(tmpL(n_grid,3), tmpR(n_grid,3))
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(j, i, ipoint, tmpL, tmpR) &
!$OMP SHARED(ne_b, n_grid, &
!$OMP mos_l_in_r, mos_r_in_r, wr1, &
!$OMP int2_grad1_u12, tmp)
!$OMP DO
do j = 1, ne_b
tmpL = 0.d0
tmpR = 0.d0
do i = 1, ne_b
do ipoint = 1, n_grid
tmpL(ipoint,1) = tmpL(ipoint,1) + int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i)
tmpL(ipoint,2) = tmpL(ipoint,2) + int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i)
tmpL(ipoint,3) = tmpL(ipoint,3) + int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i)
tmpR(ipoint,1) = tmpR(ipoint,1) + int2_grad1_u12(ipoint,1,i,j) * mos_r_in_r(ipoint,i)
tmpR(ipoint,2) = tmpR(ipoint,2) + int2_grad1_u12(ipoint,2,i,j) * mos_r_in_r(ipoint,i)
tmpR(ipoint,3) = tmpR(ipoint,3) + int2_grad1_u12(ipoint,3,i,j) * mos_r_in_r(ipoint,i)
enddo
enddo
tmp(j) = 0.d0
do ipoint = 1, n_grid
tmp(j) = tmp(j) + wr1(ipoint) * (tmpL(ipoint,1)*tmpR(ipoint,1) + tmpL(ipoint,2)*tmpR(ipoint,2) + tmpL(ipoint,3)*tmpR(ipoint,3))
enddo
enddo ! j
!$OMP END DO
!$OMP END PARALLEL
noL_0e = -2.d0 * sum(tmp)
deallocate(tmp)
deallocate(tmpL, tmpR)
! ---
allocate(tmpO(n_grid), tmpJ(n_grid,3))
tmpO = 0.d0
tmpJ = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(i, ipoint, tmpO_priv, tmpJ_priv) &
!$OMP SHARED(ne_b, n_grid, &
!$OMP mos_l_in_r, mos_r_in_r, &
!$OMP int2_grad1_u12, tmpO, tmpJ)
allocate(tmpO_priv(n_grid), tmpJ_priv(n_grid,3))
tmpO_priv = 0.d0
tmpJ_priv = 0.d0
!$OMP DO
do i = 1, ne_b
do ipoint = 1, n_grid
tmpO_priv(ipoint) = tmpO_priv(ipoint) + mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
tmpJ_priv(ipoint,1) = tmpJ_priv(ipoint,1) + int2_grad1_u12(ipoint,1,i,i)
tmpJ_priv(ipoint,2) = tmpJ_priv(ipoint,2) + int2_grad1_u12(ipoint,2,i,i)
tmpJ_priv(ipoint,3) = tmpJ_priv(ipoint,3) + int2_grad1_u12(ipoint,3,i,i)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
tmpO = tmpO + tmpO_priv
tmpJ = tmpJ + tmpJ_priv
!$OMP END CRITICAL
deallocate(tmpO_priv, tmpJ_priv)
!$OMP END PARALLEL
allocate(tmpM(n_grid,3), tmpS(n_grid))
tmpM = 0.d0
tmpS = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(i, j, ipoint, tmpM_priv, tmpS_priv) &
!$OMP SHARED(ne_b, n_grid, &
!$OMP mos_l_in_r, mos_r_in_r, &
!$OMP int2_grad1_u12, tmpM, tmpS)
allocate(tmpM_priv(n_grid,3), tmpS_priv(n_grid))
tmpM_priv = 0.d0
tmpS_priv = 0.d0
!$OMP DO COLLAPSE(2)
do i = 1, ne_b
do j = 1, ne_b
do ipoint = 1, n_grid
tmpM_priv(ipoint,1) = tmpM_priv(ipoint,1) + int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
tmpM_priv(ipoint,2) = tmpM_priv(ipoint,2) + int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
tmpM_priv(ipoint,3) = tmpM_priv(ipoint,3) + int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
tmpS_priv(ipoint) = tmpS_priv(ipoint) + int2_grad1_u12(ipoint,1,i,j) * int2_grad1_u12(ipoint,1,j,i) &
+ int2_grad1_u12(ipoint,2,i,j) * int2_grad1_u12(ipoint,2,j,i) &
+ int2_grad1_u12(ipoint,3,i,j) * int2_grad1_u12(ipoint,3,j,i)
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
tmpM = tmpM + tmpM_priv
tmpS = tmpS + tmpS_priv
!$OMP END CRITICAL
deallocate(tmpM_priv, tmpS_priv)
!$OMP END PARALLEL
allocate(tmp(n_grid))
do ipoint = 1, n_grid
tmpS(ipoint) = 2.d0 * (tmpJ(ipoint,1)*tmpJ(ipoint,1) + tmpJ(ipoint,2)*tmpJ(ipoint,2) + tmpJ(ipoint,3)*tmpJ(ipoint,3)) - tmpS(ipoint)
tmp(ipoint) = wr1(ipoint) * ( tmpO(ipoint) * tmpS(ipoint) - 2.d0 * ( tmpJ(ipoint,1) * tmpM(ipoint,1) &
+ tmpJ(ipoint,2) * tmpM(ipoint,2) &
+ tmpJ(ipoint,3) * tmpM(ipoint,3) ) )
enddo
noL_0e = noL_0e - 2.d0 * (sum(tmp))
deallocate(tmp)
else
allocate(tmp(ne_a))
allocate(tmpL(n_grid,3), tmpR(n_grid,3))
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(j, i, ipoint, tmpL, tmpR) &
!$OMP SHARED(ne_b, ne_a, n_grid, &
!$OMP mos_l_in_r, mos_r_in_r, &
!$OMP int2_grad1_u12, tmp, wr1)
!$OMP DO
do j = 1, ne_b
tmpL = 0.d0
tmpR = 0.d0
do i = ne_b+1, ne_a
do ipoint = 1, n_grid
tmpL(ipoint,1) = tmpL(ipoint,1) + 0.5d0 * int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i)
tmpL(ipoint,2) = tmpL(ipoint,2) + 0.5d0 * int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i)
tmpL(ipoint,3) = tmpL(ipoint,3) + 0.5d0 * int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i)
tmpR(ipoint,1) = tmpR(ipoint,1) + 0.5d0 * int2_grad1_u12(ipoint,1,i,j) * mos_r_in_r(ipoint,i)
tmpR(ipoint,2) = tmpR(ipoint,2) + 0.5d0 * int2_grad1_u12(ipoint,2,i,j) * mos_r_in_r(ipoint,i)
tmpR(ipoint,3) = tmpR(ipoint,3) + 0.5d0 * int2_grad1_u12(ipoint,3,i,j) * mos_r_in_r(ipoint,i)
enddo
enddo
tmp(j) = 0.d0
do ipoint = 1, n_grid
tmp(j) = tmp(j) + wr1(ipoint) * (tmpL(ipoint,1)*tmpR(ipoint,1) + tmpL(ipoint,2)*tmpR(ipoint,2) + tmpL(ipoint,3)*tmpR(ipoint,3))
enddo
do i = 1, ne_b
do ipoint = 1, n_grid
tmpL(ipoint,1) = tmpL(ipoint,1) + int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i)
tmpL(ipoint,2) = tmpL(ipoint,2) + int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i)
tmpL(ipoint,3) = tmpL(ipoint,3) + int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i)
tmpR(ipoint,1) = tmpR(ipoint,1) + int2_grad1_u12(ipoint,1,i,j) * mos_r_in_r(ipoint,i)
tmpR(ipoint,2) = tmpR(ipoint,2) + int2_grad1_u12(ipoint,2,i,j) * mos_r_in_r(ipoint,i)
tmpR(ipoint,3) = tmpR(ipoint,3) + int2_grad1_u12(ipoint,3,i,j) * mos_r_in_r(ipoint,i)
enddo
enddo
do ipoint = 1, n_grid
tmp(j) = tmp(j) + wr1(ipoint) * (tmpL(ipoint,1)*tmpR(ipoint,1) + tmpL(ipoint,2)*tmpR(ipoint,2) + tmpL(ipoint,3)*tmpR(ipoint,3))
enddo
enddo ! j
!$OMP END DO
!$OMP END PARALLEL
! ---
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(j, i, ipoint, tmpL, tmpR) &
!$OMP SHARED(ne_b, ne_a, n_grid, &
!$OMP mos_l_in_r, mos_r_in_r, &
!$OMP int2_grad1_u12, tmp, wr1)
!$OMP DO
do j = ne_b+1, ne_a
tmpL = 0.d0
tmpR = 0.d0
do i = 1, ne_a
do ipoint = 1, n_grid
tmpL(ipoint,1) = tmpL(ipoint,1) + int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i)
tmpL(ipoint,2) = tmpL(ipoint,2) + int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i)
tmpL(ipoint,3) = tmpL(ipoint,3) + int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i)
tmpR(ipoint,1) = tmpR(ipoint,1) + int2_grad1_u12(ipoint,1,i,j) * mos_r_in_r(ipoint,i)
tmpR(ipoint,2) = tmpR(ipoint,2) + int2_grad1_u12(ipoint,2,i,j) * mos_r_in_r(ipoint,i)
tmpR(ipoint,3) = tmpR(ipoint,3) + int2_grad1_u12(ipoint,3,i,j) * mos_r_in_r(ipoint,i)
enddo
enddo
tmp(j) = 0.d0
do ipoint = 1, n_grid
tmp(j) = tmp(j) + 0.5d0 * wr1(ipoint) * (tmpL(ipoint,1)*tmpR(ipoint,1) + tmpL(ipoint,2)*tmpR(ipoint,2) + tmpL(ipoint,3)*tmpR(ipoint,3))
enddo
enddo ! j
!$OMP END DO
!$OMP END PARALLEL
noL_0e = -2.d0 * sum(tmp)
deallocate(tmp)
deallocate(tmpL, tmpR)
! ---
allocate(tmpO(n_grid), tmpJ(n_grid,3))
tmpO = 0.d0
tmpJ = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(i, ipoint, tmpO_priv, tmpJ_priv) &
!$OMP SHARED(ne_b, ne_a, n_grid, &
!$OMP mos_l_in_r, mos_r_in_r, &
!$OMP int2_grad1_u12, tmpO, tmpJ)
allocate(tmpO_priv(n_grid), tmpJ_priv(n_grid,3))
tmpO_priv = 0.d0
tmpJ_priv = 0.d0
!$OMP DO
do i = 1, ne_b
do ipoint = 1, n_grid
tmpO_priv(ipoint) = tmpO_priv(ipoint) + mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
tmpJ_priv(ipoint,1) = tmpJ_priv(ipoint,1) + int2_grad1_u12(ipoint,1,i,i)
tmpJ_priv(ipoint,2) = tmpJ_priv(ipoint,2) + int2_grad1_u12(ipoint,2,i,i)
tmpJ_priv(ipoint,3) = tmpJ_priv(ipoint,3) + int2_grad1_u12(ipoint,3,i,i)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP DO
do i = ne_b+1, ne_a
do ipoint = 1, n_grid
tmpO_priv(ipoint) = tmpO_priv(ipoint) + 0.5d0 * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
tmpJ_priv(ipoint,1) = tmpJ_priv(ipoint,1) + 0.5d0 * int2_grad1_u12(ipoint,1,i,i)
tmpJ_priv(ipoint,2) = tmpJ_priv(ipoint,2) + 0.5d0 * int2_grad1_u12(ipoint,2,i,i)
tmpJ_priv(ipoint,3) = tmpJ_priv(ipoint,3) + 0.5d0 * int2_grad1_u12(ipoint,3,i,i)
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
tmpO = tmpO + tmpO_priv
tmpJ = tmpJ + tmpJ_priv
!$OMP END CRITICAL
deallocate(tmpO_priv, tmpJ_priv)
!$OMP END PARALLEL
! ---
allocate(tmpM(n_grid,3), tmpS(n_grid))
tmpM = 0.d0
tmpS = 0.d0
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(i, j, ipoint, tmpM_priv, tmpS_priv) &
!$OMP SHARED(ne_b, ne_a, n_grid, &
!$OMP mos_l_in_r, mos_r_in_r, &
!$OMP int2_grad1_u12, tmpM, tmpS)
allocate(tmpM_priv(n_grid,3), tmpS_priv(n_grid))
tmpM_priv = 0.d0
tmpS_priv = 0.d0
!$OMP DO COLLAPSE(2)
do i = 1, ne_b
do j = 1, ne_b
do ipoint = 1, n_grid
tmpM_priv(ipoint,1) = tmpM_priv(ipoint,1) + int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
tmpM_priv(ipoint,2) = tmpM_priv(ipoint,2) + int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
tmpM_priv(ipoint,3) = tmpM_priv(ipoint,3) + int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
tmpS_priv(ipoint) = tmpS_priv(ipoint) + int2_grad1_u12(ipoint,1,i,j) * int2_grad1_u12(ipoint,1,j,i) &
+ int2_grad1_u12(ipoint,2,i,j) * int2_grad1_u12(ipoint,2,j,i) &
+ int2_grad1_u12(ipoint,3,i,j) * int2_grad1_u12(ipoint,3,j,i)
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP DO COLLAPSE(2)
do i = ne_b+1, ne_a
do j = 1, ne_b
do ipoint = 1, n_grid
tmpM_priv(ipoint,1) = tmpM_priv(ipoint,1) + 0.5d0 * int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
tmpM_priv(ipoint,2) = tmpM_priv(ipoint,2) + 0.5d0 * int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
tmpM_priv(ipoint,3) = tmpM_priv(ipoint,3) + 0.5d0 * int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
tmpM_priv(ipoint,1) = tmpM_priv(ipoint,1) + 0.5d0 * int2_grad1_u12(ipoint,1,i,j) * mos_l_in_r(ipoint,j) * mos_r_in_r(ipoint,i)
tmpM_priv(ipoint,2) = tmpM_priv(ipoint,2) + 0.5d0 * int2_grad1_u12(ipoint,2,i,j) * mos_l_in_r(ipoint,j) * mos_r_in_r(ipoint,i)
tmpM_priv(ipoint,3) = tmpM_priv(ipoint,3) + 0.5d0 * int2_grad1_u12(ipoint,3,i,j) * mos_l_in_r(ipoint,j) * mos_r_in_r(ipoint,i)
tmpS_priv(ipoint) = tmpS_priv(ipoint) + int2_grad1_u12(ipoint,1,i,j) * int2_grad1_u12(ipoint,1,j,i) &
+ int2_grad1_u12(ipoint,2,i,j) * int2_grad1_u12(ipoint,2,j,i) &
+ int2_grad1_u12(ipoint,3,i,j) * int2_grad1_u12(ipoint,3,j,i)
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP DO COLLAPSE(2)
do i = ne_b+1, ne_a
do j = ne_b+1, ne_a
do ipoint = 1, n_grid
tmpM_priv(ipoint,1) = tmpM_priv(ipoint,1) + 0.5d0 * int2_grad1_u12(ipoint,1,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
tmpM_priv(ipoint,2) = tmpM_priv(ipoint,2) + 0.5d0 * int2_grad1_u12(ipoint,2,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
tmpM_priv(ipoint,3) = tmpM_priv(ipoint,3) + 0.5d0 * int2_grad1_u12(ipoint,3,j,i) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,j)
tmpS_priv(ipoint) = tmpS_priv(ipoint) + 0.5d0 * int2_grad1_u12(ipoint,1,i,j) * int2_grad1_u12(ipoint,1,j,i) &
+ 0.5d0 * int2_grad1_u12(ipoint,2,i,j) * int2_grad1_u12(ipoint,2,j,i) &
+ 0.5d0 * int2_grad1_u12(ipoint,3,i,j) * int2_grad1_u12(ipoint,3,j,i)
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
tmpM = tmpM + tmpM_priv
tmpS = tmpS + tmpS_priv
!$OMP END CRITICAL
deallocate(tmpM_priv, tmpS_priv)
!$OMP END PARALLEL
allocate(tmp(n_grid))
do ipoint = 1, n_grid
tmpS(ipoint) = 2.d0 * (tmpJ(ipoint,1)*tmpJ(ipoint,1) + tmpJ(ipoint,2)*tmpJ(ipoint,2) + tmpJ(ipoint,3)*tmpJ(ipoint,3)) - tmpS(ipoint)
tmp(ipoint) = wr1(ipoint) * ( tmpO(ipoint) * tmpS(ipoint) - 2.d0 * ( tmpJ(ipoint,1) * tmpM(ipoint,1) &
+ tmpJ(ipoint,2) * tmpM(ipoint,2) &
+ tmpJ(ipoint,3) * tmpM(ipoint,3) ) )
enddo
noL_0e = noL_0e - 2.d0 * (sum(tmp))
deallocate(tmp)
endif
call wall_time(t1)
write(*,"(A,2X,F15.7)") ' wall time for noL_0e (sec) = ', (t1 - t0)
return
end
! ---

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,605 @@
! ---
subroutine provide_no_2e(n_grid, n_mo, ne_a, ne_b, wr1, mos_l_in_r, mos_r_in_r, int2_grad1_u12, noL_2e)
implicit none
integer, intent(in) :: n_grid, n_mo
integer, intent(in) :: ne_a, ne_b
double precision, intent(in) :: wr1(n_grid)
double precision, intent(in) :: mos_l_in_r(n_grid,n_mo)
double precision, intent(in) :: mos_r_in_r(n_grid,n_mo)
double precision, intent(in) :: int2_grad1_u12(n_grid,3,n_mo,n_mo)
double precision, intent(out) :: noL_2e(n_mo,n_mo,n_mo,n_mo)
integer :: p, q, s, t, i, ipoint
double precision :: t0, t1
double precision, allocatable :: tmpO(:), tmpJ(:,:)
double precision, allocatable :: tmpA(:,:,:), tmpB(:,:,:)
double precision, allocatable :: tmpC(:,:,:,:), tmpD(:,:,:,:)
double precision, allocatable :: tmpE(:,:,:,:)
call wall_time(t0)
if(ne_a .eq. ne_b) then
allocate(tmpO(n_grid), tmpJ(n_grid,3))
allocate(tmpA(n_grid,3,n_mo), tmpB(n_grid,3,n_mo))
allocate(tmpC(n_grid,4,n_mo,n_mo), tmpD(n_grid,4,n_mo,n_mo))
allocate(tmpE(n_mo,n_mo,n_mo,n_mo))
tmpO = 0.d0
tmpJ = 0.d0
do i = 1, ne_b
do ipoint = 1, n_grid
tmpO(ipoint) = tmpO(ipoint) + wr1(ipoint) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
tmpJ(ipoint,1) = tmpJ(ipoint,1) + wr1(ipoint) * int2_grad1_u12(ipoint,1,i,i)
tmpJ(ipoint,2) = tmpJ(ipoint,2) + wr1(ipoint) * int2_grad1_u12(ipoint,2,i,i)
tmpJ(ipoint,3) = tmpJ(ipoint,3) + wr1(ipoint) * int2_grad1_u12(ipoint,3,i,i)
enddo
enddo
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(p, i, ipoint) &
!$OMP SHARED(n_mo, ne_b, n_grid, &
!$OMP wr1, &
!$OMP mos_l_in_r, mos_r_in_r, &
!$OMP int2_grad1_u12, &
!$OMP tmpA, tmpB)
!$OMP DO
do p = 1, n_mo
tmpA(:,:,p) = 0.d0
tmpB(:,:,p) = 0.d0
do i = 1, ne_b
do ipoint = 1, n_grid
tmpA(ipoint,1,p) = tmpA(ipoint,1,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,p,i)
tmpA(ipoint,2,p) = tmpA(ipoint,2,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,p,i)
tmpA(ipoint,3,p) = tmpA(ipoint,3,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,p,i)
tmpB(ipoint,1,p) = tmpB(ipoint,1,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,i,p)
tmpB(ipoint,2,p) = tmpB(ipoint,2,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,i,p)
tmpB(ipoint,3,p) = tmpB(ipoint,3,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,i,p)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(p, s, i, ipoint) &
!$OMP SHARED(n_mo, ne_b, n_grid, &
!$OMP wr1, &
!$OMP mos_l_in_r, mos_r_in_r, &
!$OMP int2_grad1_u12, &
!$OMP tmpA, tmpB, tmpO, tmpJ, tmpC, tmpD)
!$OMP DO COLLAPSE(2)
do s = 1, n_mo
do p = 1, n_mo
do ipoint = 1, n_grid
tmpC(ipoint,1,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,1,p) &
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,1,s) &
- tmpO(ipoint) * int2_grad1_u12(ipoint,1,p,s) &
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,1)
tmpC(ipoint,2,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,2,p) &
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,2,s) &
- tmpO(ipoint) * int2_grad1_u12(ipoint,2,p,s) &
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,2)
tmpC(ipoint,3,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,3,p) &
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,3,s) &
- tmpO(ipoint) * int2_grad1_u12(ipoint,3,p,s) &
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,3)
tmpD(ipoint,1,p,s) = int2_grad1_u12(ipoint,1,p,s)
tmpD(ipoint,2,p,s) = int2_grad1_u12(ipoint,2,p,s)
tmpD(ipoint,3,p,s) = int2_grad1_u12(ipoint,3,p,s)
tmpD(ipoint,4,p,s) = wr1(ipoint) * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s)
enddo ! ipoint
tmpC(:,4,p,s) = 0.d0
do i = 1, ne_b
do ipoint = 1, n_grid
tmpC(ipoint,4,p,s) += int2_grad1_u12(ipoint,1,p,i) * int2_grad1_u12(ipoint,1,i,s) &
+ int2_grad1_u12(ipoint,2,p,i) * int2_grad1_u12(ipoint,2,i,s) &
+ int2_grad1_u12(ipoint,3,p,i) * int2_grad1_u12(ipoint,3,i,s)
enddo ! ipoint
enddo ! i
enddo ! p
enddo ! s
!$OMP END DO
!$OMP END PARALLEL
deallocate(tmpO, tmpJ, tmpA, tmpB)
call dgemm( 'T', 'N', n_mo*n_mo, n_mo*n_mo, 4*n_grid, 0.5d0 &
, tmpC(1,1,1,1), 4*n_grid, tmpD(1,1,1,1), 4*n_grid &
, 0.d0, tmpE(1,1,1,1), n_mo*n_mo)
deallocate(tmpC, tmpD)
call sum_a_at(tmpE, n_mo*n_mo)
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(t, s, q, p) &
!$OMP SHARED(n_mo, tmpE, noL_2e)
!$OMP DO COLLAPSE(3)
do t = 1, n_mo
do s = 1, n_mo
do q = 1, n_mo
do p = 1, n_mo
noL_2e(p,q,s,t) = tmpE(p,s,q,t)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(tmpE)
else
allocate(tmpO(n_grid), tmpJ(n_grid,3))
allocate(tmpA(n_grid,3,n_mo), tmpB(n_grid,3,n_mo))
allocate(tmpC(n_grid,4,n_mo,n_mo), tmpD(n_grid,4,n_mo,n_mo))
allocate(tmpE(n_mo,n_mo,n_mo,n_mo))
tmpO = 0.d0
tmpJ = 0.d0
do i = 1, ne_b
do ipoint = 1, n_grid
tmpO(ipoint) = tmpO(ipoint) + wr1(ipoint) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
tmpJ(ipoint,1) = tmpJ(ipoint,1) + wr1(ipoint) * int2_grad1_u12(ipoint,1,i,i)
tmpJ(ipoint,2) = tmpJ(ipoint,2) + wr1(ipoint) * int2_grad1_u12(ipoint,2,i,i)
tmpJ(ipoint,3) = tmpJ(ipoint,3) + wr1(ipoint) * int2_grad1_u12(ipoint,3,i,i)
enddo
enddo
do i = ne_b+1, ne_a
do ipoint = 1, n_grid
tmpO(ipoint) = tmpO(ipoint) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
tmpJ(ipoint,1) = tmpJ(ipoint,1) + 0.5d0 * wr1(ipoint) * int2_grad1_u12(ipoint,1,i,i)
tmpJ(ipoint,2) = tmpJ(ipoint,2) + 0.5d0 * wr1(ipoint) * int2_grad1_u12(ipoint,2,i,i)
tmpJ(ipoint,3) = tmpJ(ipoint,3) + 0.5d0 * wr1(ipoint) * int2_grad1_u12(ipoint,3,i,i)
enddo
enddo
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(p, i, ipoint) &
!$OMP SHARED(n_mo, ne_a, ne_b, n_grid, &
!$OMP wr1, &
!$OMP mos_l_in_r, mos_r_in_r, &
!$OMP int2_grad1_u12, &
!$OMP tmpA, tmpB)
!$OMP DO
do p = 1, n_mo
tmpA(:,:,p) = 0.d0
tmpB(:,:,p) = 0.d0
do i = 1, ne_b
do ipoint = 1, n_grid
tmpA(ipoint,1,p) = tmpA(ipoint,1,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,p,i)
tmpA(ipoint,2,p) = tmpA(ipoint,2,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,p,i)
tmpA(ipoint,3,p) = tmpA(ipoint,3,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,p,i)
tmpB(ipoint,1,p) = tmpB(ipoint,1,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,i,p)
tmpB(ipoint,2,p) = tmpB(ipoint,2,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,i,p)
tmpB(ipoint,3,p) = tmpB(ipoint,3,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,i,p)
enddo
enddo
do i = ne_b+1, ne_a
do ipoint = 1, n_grid
tmpA(ipoint,1,p) = tmpA(ipoint,1,p) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,p,i)
tmpA(ipoint,2,p) = tmpA(ipoint,2,p) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,p,i)
tmpA(ipoint,3,p) = tmpA(ipoint,3,p) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,p,i)
tmpB(ipoint,1,p) = tmpB(ipoint,1,p) + 0.5d0 * wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,i,p)
tmpB(ipoint,2,p) = tmpB(ipoint,2,p) + 0.5d0 * wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,i,p)
tmpB(ipoint,3,p) = tmpB(ipoint,3,p) + 0.5d0 * wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,i,p)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(p, s, i, ipoint) &
!$OMP SHARED(n_mo, ne_a, ne_b, n_grid, &
!$OMP wr1, &
!$OMP mos_l_in_r, mos_r_in_r, &
!$OMP int2_grad1_u12, &
!$OMP tmpA, tmpB, tmpO, tmpJ, tmpC, tmpD)
!$OMP DO COLLAPSE(2)
do s = 1, n_mo
do p = 1, n_mo
do ipoint = 1, n_grid
tmpC(ipoint,1,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,1,p) &
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,1,s) &
- tmpO(ipoint) * int2_grad1_u12(ipoint,1,p,s) &
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,1)
tmpC(ipoint,2,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,2,p) &
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,2,s) &
- tmpO(ipoint) * int2_grad1_u12(ipoint,2,p,s) &
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,2)
tmpC(ipoint,3,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,3,p) &
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,3,s) &
- tmpO(ipoint) * int2_grad1_u12(ipoint,3,p,s) &
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,3)
tmpD(ipoint,1,p,s) = int2_grad1_u12(ipoint,1,p,s)
tmpD(ipoint,2,p,s) = int2_grad1_u12(ipoint,2,p,s)
tmpD(ipoint,3,p,s) = int2_grad1_u12(ipoint,3,p,s)
tmpD(ipoint,4,p,s) = wr1(ipoint) * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s)
enddo ! ipoint
tmpC(:,4,p,s) = 0.d0
do i = 1, ne_b
do ipoint = 1, n_grid
tmpC(ipoint,4,p,s) += int2_grad1_u12(ipoint,1,p,i) * int2_grad1_u12(ipoint,1,i,s) &
+ int2_grad1_u12(ipoint,2,p,i) * int2_grad1_u12(ipoint,2,i,s) &
+ int2_grad1_u12(ipoint,3,p,i) * int2_grad1_u12(ipoint,3,i,s)
enddo ! ipoint
enddo ! i
do i = ne_b+1, ne_a
do ipoint = 1, n_grid
tmpC(ipoint,4,p,s) += 0.5d0 * int2_grad1_u12(ipoint,1,p,i) * int2_grad1_u12(ipoint,1,i,s) &
+ 0.5d0 * int2_grad1_u12(ipoint,2,p,i) * int2_grad1_u12(ipoint,2,i,s) &
+ 0.5d0 * int2_grad1_u12(ipoint,3,p,i) * int2_grad1_u12(ipoint,3,i,s)
enddo ! ipoint
enddo ! i
enddo ! p
enddo ! s
!$OMP END DO
!$OMP END PARALLEL
deallocate(tmpO, tmpJ, tmpA, tmpB)
call dgemm( 'T', 'N', n_mo*n_mo, n_mo*n_mo, 4*n_grid, 0.5d0 &
, tmpC(1,1,1,1), 4*n_grid, tmpD(1,1,1,1), 4*n_grid &
, 0.d0, tmpE(1,1,1,1), n_mo*n_mo)
deallocate(tmpC, tmpD)
call sum_a_at(tmpE, n_mo*n_mo)
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(t, s, q, p) &
!$OMP SHARED(n_mo, tmpE, noL_2e)
!$OMP DO COLLAPSE(3)
do t = 1, n_mo
do s = 1, n_mo
do q = 1, n_mo
do p = 1, n_mo
noL_2e(p,q,s,t) = tmpE(p,s,q,t)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
deallocate(tmpE)
endif
call wall_time(t1)
write(*,"(A,2X,F15.7)") ' wall time for noL_2e (sec) = ', (t1 - t0)
return
end
! ---
subroutine provide_no_2e_tmp(n_grid, n_mo, ne_a, ne_b, wr1, mos_l_in_r, mos_r_in_r, int2_grad1_u12, &
tmpO, tmpJ, tmpA, tmpB, tmpC, tmpD, tmpE, noL_2e)
implicit none
integer, intent(in) :: n_grid, n_mo
integer, intent(in) :: ne_a, ne_b
double precision, intent(in) :: wr1(n_grid)
double precision, intent(in) :: mos_l_in_r(n_grid,n_mo)
double precision, intent(in) :: mos_r_in_r(n_grid,n_mo)
double precision, intent(in) :: int2_grad1_u12(n_grid,3,n_mo,n_mo)
double precision, intent(out) :: tmpO(n_grid), tmpJ(n_grid,3)
double precision, intent(out) :: tmpA(n_grid,3,n_mo), tmpB(n_grid,3,n_mo)
double precision, intent(out) :: tmpC(n_grid,4,n_mo,n_mo), tmpD(n_grid,4,n_mo,n_mo)
double precision, intent(out) :: tmpE(n_mo,n_mo,n_mo,n_mo)
double precision, intent(out) :: noL_2e(n_mo,n_mo,n_mo,n_mo)
integer :: p, q, s, t, i, ipoint
double precision :: t0, t1
call wall_time(t0)
if(ne_a .eq. ne_b) then
tmpO = 0.d0
tmpJ = 0.d0
do i = 1, ne_b
do ipoint = 1, n_grid
tmpO(ipoint) = tmpO(ipoint) + wr1(ipoint) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
tmpJ(ipoint,1) = tmpJ(ipoint,1) + wr1(ipoint) * int2_grad1_u12(ipoint,1,i,i)
tmpJ(ipoint,2) = tmpJ(ipoint,2) + wr1(ipoint) * int2_grad1_u12(ipoint,2,i,i)
tmpJ(ipoint,3) = tmpJ(ipoint,3) + wr1(ipoint) * int2_grad1_u12(ipoint,3,i,i)
enddo
enddo
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(p, i, ipoint) &
!$OMP SHARED(n_mo, ne_b, n_grid, &
!$OMP wr1, &
!$OMP mos_l_in_r, mos_r_in_r, &
!$OMP int2_grad1_u12, &
!$OMP tmpA, tmpB)
!$OMP DO
do p = 1, n_mo
tmpA(:,:,p) = 0.d0
tmpB(:,:,p) = 0.d0
do i = 1, ne_b
do ipoint = 1, n_grid
tmpA(ipoint,1,p) = tmpA(ipoint,1,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,p,i)
tmpA(ipoint,2,p) = tmpA(ipoint,2,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,p,i)
tmpA(ipoint,3,p) = tmpA(ipoint,3,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,p,i)
tmpB(ipoint,1,p) = tmpB(ipoint,1,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,i,p)
tmpB(ipoint,2,p) = tmpB(ipoint,2,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,i,p)
tmpB(ipoint,3,p) = tmpB(ipoint,3,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,i,p)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(p, s, i, ipoint) &
!$OMP SHARED(n_mo, ne_b, n_grid, &
!$OMP wr1, &
!$OMP mos_l_in_r, mos_r_in_r, &
!$OMP int2_grad1_u12, &
!$OMP tmpA, tmpB, tmpO, tmpJ, tmpC, tmpD)
!$OMP DO COLLAPSE(2)
do s = 1, n_mo
do p = 1, n_mo
do ipoint = 1, n_grid
tmpC(ipoint,1,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,1,p) &
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,1,s) &
- tmpO(ipoint) * int2_grad1_u12(ipoint,1,p,s) &
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,1)
tmpC(ipoint,2,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,2,p) &
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,2,s) &
- tmpO(ipoint) * int2_grad1_u12(ipoint,2,p,s) &
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,2)
tmpC(ipoint,3,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,3,p) &
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,3,s) &
- tmpO(ipoint) * int2_grad1_u12(ipoint,3,p,s) &
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,3)
tmpD(ipoint,1,p,s) = int2_grad1_u12(ipoint,1,p,s)
tmpD(ipoint,2,p,s) = int2_grad1_u12(ipoint,2,p,s)
tmpD(ipoint,3,p,s) = int2_grad1_u12(ipoint,3,p,s)
tmpD(ipoint,4,p,s) = wr1(ipoint) * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s)
enddo ! ipoint
tmpC(:,4,p,s) = 0.d0
do i = 1, ne_b
do ipoint = 1, n_grid
tmpC(ipoint,4,p,s) += int2_grad1_u12(ipoint,1,p,i) * int2_grad1_u12(ipoint,1,i,s) &
+ int2_grad1_u12(ipoint,2,p,i) * int2_grad1_u12(ipoint,2,i,s) &
+ int2_grad1_u12(ipoint,3,p,i) * int2_grad1_u12(ipoint,3,i,s)
enddo ! ipoint
enddo ! i
enddo ! p
enddo ! s
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', n_mo*n_mo, n_mo*n_mo, 4*n_grid, 0.5d0 &
, tmpC(1,1,1,1), 4*n_grid, tmpD(1,1,1,1), 4*n_grid &
, 0.d0, tmpE(1,1,1,1), n_mo*n_mo)
call sum_a_at(tmpE, n_mo*n_mo)
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(t, s, q, p) &
!$OMP SHARED(n_mo, tmpE, noL_2e)
!$OMP DO COLLAPSE(3)
do t = 1, n_mo
do s = 1, n_mo
do q = 1, n_mo
do p = 1, n_mo
noL_2e(p,q,s,t) = tmpE(p,s,q,t)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
else
tmpO = 0.d0
tmpJ = 0.d0
do i = 1, ne_b
do ipoint = 1, n_grid
tmpO(ipoint) = tmpO(ipoint) + wr1(ipoint) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
tmpJ(ipoint,1) = tmpJ(ipoint,1) + wr1(ipoint) * int2_grad1_u12(ipoint,1,i,i)
tmpJ(ipoint,2) = tmpJ(ipoint,2) + wr1(ipoint) * int2_grad1_u12(ipoint,2,i,i)
tmpJ(ipoint,3) = tmpJ(ipoint,3) + wr1(ipoint) * int2_grad1_u12(ipoint,3,i,i)
enddo
enddo
do i = ne_b+1, ne_a
do ipoint = 1, n_grid
tmpO(ipoint) = tmpO(ipoint) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * mos_r_in_r(ipoint,i)
tmpJ(ipoint,1) = tmpJ(ipoint,1) + 0.5d0 * wr1(ipoint) * int2_grad1_u12(ipoint,1,i,i)
tmpJ(ipoint,2) = tmpJ(ipoint,2) + 0.5d0 * wr1(ipoint) * int2_grad1_u12(ipoint,2,i,i)
tmpJ(ipoint,3) = tmpJ(ipoint,3) + 0.5d0 * wr1(ipoint) * int2_grad1_u12(ipoint,3,i,i)
enddo
enddo
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(p, i, ipoint) &
!$OMP SHARED(n_mo, ne_a, ne_b, n_grid, &
!$OMP wr1, &
!$OMP mos_l_in_r, mos_r_in_r, &
!$OMP int2_grad1_u12, &
!$OMP tmpA, tmpB)
!$OMP DO
do p = 1, n_mo
tmpA(:,:,p) = 0.d0
tmpB(:,:,p) = 0.d0
do i = 1, ne_b
do ipoint = 1, n_grid
tmpA(ipoint,1,p) = tmpA(ipoint,1,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,p,i)
tmpA(ipoint,2,p) = tmpA(ipoint,2,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,p,i)
tmpA(ipoint,3,p) = tmpA(ipoint,3,p) + wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,p,i)
tmpB(ipoint,1,p) = tmpB(ipoint,1,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,i,p)
tmpB(ipoint,2,p) = tmpB(ipoint,2,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,i,p)
tmpB(ipoint,3,p) = tmpB(ipoint,3,p) + wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,i,p)
enddo
enddo
do i = ne_b+1, ne_a
do ipoint = 1, n_grid
tmpA(ipoint,1,p) = tmpA(ipoint,1,p) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,p,i)
tmpA(ipoint,2,p) = tmpA(ipoint,2,p) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,p,i)
tmpA(ipoint,3,p) = tmpA(ipoint,3,p) + 0.5d0 * wr1(ipoint) * mos_l_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,p,i)
tmpB(ipoint,1,p) = tmpB(ipoint,1,p) + 0.5d0 * wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,1,i,p)
tmpB(ipoint,2,p) = tmpB(ipoint,2,p) + 0.5d0 * wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,2,i,p)
tmpB(ipoint,3,p) = tmpB(ipoint,3,p) + 0.5d0 * wr1(ipoint) * mos_r_in_r(ipoint,i) * int2_grad1_u12(ipoint,3,i,p)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(p, s, i, ipoint) &
!$OMP SHARED(n_mo, ne_a, ne_b, n_grid, &
!$OMP wr1, &
!$OMP mos_l_in_r, mos_r_in_r, &
!$OMP int2_grad1_u12, &
!$OMP tmpA, tmpB, tmpO, tmpJ, tmpC, tmpD)
!$OMP DO COLLAPSE(2)
do s = 1, n_mo
do p = 1, n_mo
do ipoint = 1, n_grid
tmpC(ipoint,1,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,1,p) &
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,1,s) &
- tmpO(ipoint) * int2_grad1_u12(ipoint,1,p,s) &
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,1)
tmpC(ipoint,2,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,2,p) &
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,2,s) &
- tmpO(ipoint) * int2_grad1_u12(ipoint,2,p,s) &
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,2)
tmpC(ipoint,3,p,s) = mos_r_in_r(ipoint,s) * tmpA(ipoint,3,p) &
+ mos_l_in_r(ipoint,p) * tmpB(ipoint,3,s) &
- tmpO(ipoint) * int2_grad1_u12(ipoint,3,p,s) &
- 2.d0 * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s) * tmpJ(ipoint,3)
tmpD(ipoint,1,p,s) = int2_grad1_u12(ipoint,1,p,s)
tmpD(ipoint,2,p,s) = int2_grad1_u12(ipoint,2,p,s)
tmpD(ipoint,3,p,s) = int2_grad1_u12(ipoint,3,p,s)
tmpD(ipoint,4,p,s) = wr1(ipoint) * mos_l_in_r(ipoint,p) * mos_r_in_r(ipoint,s)
enddo ! ipoint
tmpC(:,4,p,s) = 0.d0
do i = 1, ne_b
do ipoint = 1, n_grid
tmpC(ipoint,4,p,s) += int2_grad1_u12(ipoint,1,p,i) * int2_grad1_u12(ipoint,1,i,s) &
+ int2_grad1_u12(ipoint,2,p,i) * int2_grad1_u12(ipoint,2,i,s) &
+ int2_grad1_u12(ipoint,3,p,i) * int2_grad1_u12(ipoint,3,i,s)
enddo ! ipoint
enddo ! i
do i = ne_b+1, ne_a
do ipoint = 1, n_grid
tmpC(ipoint,4,p,s) += 0.5d0 * int2_grad1_u12(ipoint,1,p,i) * int2_grad1_u12(ipoint,1,i,s) &
+ 0.5d0 * int2_grad1_u12(ipoint,2,p,i) * int2_grad1_u12(ipoint,2,i,s) &
+ 0.5d0 * int2_grad1_u12(ipoint,3,p,i) * int2_grad1_u12(ipoint,3,i,s)
enddo ! ipoint
enddo ! i
enddo ! p
enddo ! s
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', n_mo*n_mo, n_mo*n_mo, 4*n_grid, 0.5d0 &
, tmpC(1,1,1,1), 4*n_grid, tmpD(1,1,1,1), 4*n_grid &
, 0.d0, tmpE(1,1,1,1), n_mo*n_mo)
call sum_a_at(tmpE, n_mo*n_mo)
!$OMP PARALLEL &
!$OMP DEFAULT(NONE) &
!$OMP PRIVATE(t, s, q, p) &
!$OMP SHARED(n_mo, tmpE, noL_2e)
!$OMP DO COLLAPSE(3)
do t = 1, n_mo
do s = 1, n_mo
do q = 1, n_mo
do p = 1, n_mo
noL_2e(p,q,s,t) = tmpE(p,s,q,t)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
endif
call wall_time(t1)
write(*,"(A,2X,F15.7)") ' wall time for noL_2e & tmp tensors (sec) = ', (t1 - t0)
return
end
! ---

13
plugins/local/tc_int/uninstall Executable file
View File

@ -0,0 +1,13 @@
#!/bin/bash
# Check if the QP_ROOT environment variable is set.
if [[ -z ${QP_ROOT} ]]
then
print "The QP_ROOT environment variable is not set."
print "Please reload the quantum_package.rc file."
exit -1
fi
rm -rf ${PWD}/CuTC
rm -f ${QP_ROOT}/lib/libcutcint.so

View File

@ -0,0 +1,194 @@
! ---
program write_tc_int_cuda
implicit none
print *, ' j2e_type = ', j2e_type
print *, ' j1e_type = ', j1e_type
print *, ' env_type = ', env_type
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
my_extra_grid_becke = .True.
PROVIDE tc_grid2_a tc_grid2_r
my_n_pt_r_extra_grid = tc_grid2_r
my_n_pt_a_extra_grid = tc_grid2_a
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
call main()
end
! ---
subroutine main()
implicit none
PROVIDE io_tc_integ
print*, 'io_tc_integ = ', io_tc_integ
if(io_tc_integ .ne. "Write") then
print*, 'io_tc_integ != Write'
print*, io_tc_integ
stop
endif
call do_work_on_gpu()
call ezfio_set_tc_keywords_io_tc_integ('Read')
end
! ---
subroutine do_work_on_gpu()
use cutc_module
implicit none
integer :: k, ipoint
double precision, allocatable :: rn(:,:), aos_data1(:,:,:), aos_data2(:,:,:)
double precision, allocatable :: int2_grad1_u12_ao(:,:,:,:)
double precision, allocatable :: int_2e_ao(:,:,:,:)
double precision :: time0, time1
double precision :: cuda_time0, cuda_time1
call wall_time(time0)
print*, ' start calculation of TC-integrals'
allocate(rn(3,nucl_num))
allocate(aos_data1(n_points_final_grid,ao_num,4))
allocate(aos_data2(n_points_extra_final_grid,ao_num,4))
allocate(int2_grad1_u12_ao(ao_num,ao_num,n_points_final_grid,3))
allocate(int_2e_ao(ao_num,ao_num,ao_num,ao_num))
do k = 1, nucl_num
rn(1,k) = nucl_coord(k,1)
rn(2,k) = nucl_coord(k,2)
rn(3,k) = nucl_coord(k,3)
enddo
do k = 1, ao_num
do ipoint = 1, n_points_final_grid
aos_data1(ipoint,k,1) = aos_in_r_array(k,ipoint)
aos_data1(ipoint,k,2) = aos_grad_in_r_array(k,ipoint,1)
aos_data1(ipoint,k,3) = aos_grad_in_r_array(k,ipoint,2)
aos_data1(ipoint,k,4) = aos_grad_in_r_array(k,ipoint,3)
enddo
do ipoint = 1, n_points_extra_final_grid
aos_data2(ipoint,k,1) = aos_in_r_array_extra(k,ipoint)
aos_data2(ipoint,k,2) = aos_grad_in_r_array_extra(k,ipoint,1)
aos_data2(ipoint,k,3) = aos_grad_in_r_array_extra(k,ipoint,2)
aos_data2(ipoint,k,4) = aos_grad_in_r_array_extra(k,ipoint,3)
enddo
enddo
! ---
integer :: nB
integer :: sB
PROVIDE nxBlocks nyBlocks nzBlocks
PROVIDE blockxSize blockySize blockzSize
sB = 32
nB = (n_points_final_grid + sB - 1) / sB
call ezfio_set_tc_int_blockxSize(sB)
call ezfio_set_tc_int_nxBlocks(nB)
call wall_time(cuda_time0)
print*, ' start CUDA kernel'
call cutc_int(nxBlocks, nyBlocks, nzBlocks, blockxSize, blockySize, blockzSize, &
n_points_final_grid, n_points_extra_final_grid, ao_num, nucl_num, jBH_size, &
final_grid_points, final_weight_at_r_vector, &
final_grid_points_extra, final_weight_at_r_vector_extra, &
rn, aos_data1, aos_data2, jBH_c, jBH_m, jBH_n, jBH_o, &
int2_grad1_u12_ao, int_2e_ao)
call wall_time(cuda_time1)
print*, ' wall time for CUDA kernel (min) = ', (cuda_time1-cuda_time0) / 60.d0
deallocate(aos_data1, aos_data2)
! ---
integer :: i, j, l
double precision :: t1, t2
double precision :: tmp
double precision, external :: get_ao_two_e_integral
call wall_time(t1)
PROVIDE ao_integrals_map
tmp = get_ao_two_e_integral(1, 1, 1, 1, ao_integrals_map)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(ao_num, int_2e_ao, ao_integrals_map) &
!$OMP PRIVATE(i, j, k, l)
!$OMP DO COLLAPSE(3)
do j = 1, ao_num
do l = 1, ao_num
do i = 1, ao_num
do k = 1, ao_num
! < 1:i, 2:j | 1:k, 2:l >
int_2e_ao(k,i,l,j) = int_2e_ao(k,i,l,j) + get_ao_two_e_integral(i, j, k, l, ao_integrals_map)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(t2)
print*, ' wall time of Coulomb part of tc_int_2e_ao (min) ', (t2 - t1) / 60.d0
! ---
print*, ' Writing int2_grad1_u12_ao in ', trim(ezfio_filename) // '/work/int2_grad1_u12_ao'
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/int2_grad1_u12_ao', action="write")
call ezfio_set_work_empty(.False.)
write(11) int2_grad1_u12_ao
close(11)
deallocate(int2_grad1_u12_ao)
print*, ' Saving tc_int_2e_ao in ', trim(ezfio_filename) // '/work/ao_two_e_tc_tot'
open(unit=11, form="unformatted", file=trim(ezfio_filename)//'/work/ao_two_e_tc_tot', action="write")
call ezfio_set_work_empty(.False.)
do k = 1, ao_num
write(11) int_2e_ao(:,:,:,k)
enddo
close(11)
deallocate(int_2e_ao)
! ----
call wall_time(time1)
print*, ' wall time for TC-integrals (min) = ', (time1-time0) / 60.d0
return
end
! ---

View File

@ -0,0 +1,56 @@
! ---
program write_tc_int_gpu
implicit none
print *, ' j2e_type = ', j2e_type
print *, ' j1e_type = ', j1e_type
print *, ' env_type = ', env_type
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
my_extra_grid_becke = .True.
PROVIDE tc_grid2_a tc_grid2_r
my_n_pt_r_extra_grid = tc_grid2_r
my_n_pt_a_extra_grid = tc_grid2_a
touch my_extra_grid_becke my_n_pt_r_extra_grid my_n_pt_a_extra_grid
call write_int(6, my_n_pt_r_grid, 'radial external grid over')
call write_int(6, my_n_pt_a_grid, 'angular external grid over')
call write_int(6, my_n_pt_r_extra_grid, 'radial internal grid over')
call write_int(6, my_n_pt_a_extra_grid, 'angular internal grid over')
call main()
end
! ---
subroutine main()
implicit none
PROVIDE io_tc_integ
print*, 'io_tc_integ = ', io_tc_integ
if(io_tc_integ .ne. "Write") then
print*, 'io_tc_integ != Write'
print*, io_tc_integ
stop
endif
call provide_int2_grad1_u12_ao_gpu()
call ezfio_set_tc_keywords_io_tc_integ('Read')
end
! ---

View File

@ -230,7 +230,7 @@ default: 70
type: character*(32) type: character*(32)
doc: approach used to evaluate TC integrals [ analytic | numeric | semi-analytic ] doc: approach used to evaluate TC integrals [ analytic | numeric | semi-analytic ]
interface: ezfio,ocaml,provider interface: ezfio,ocaml,provider
default: semi-analytic default: numeric
[minimize_lr_angles] [minimize_lr_angles]
type: logical type: logical

View File

@ -28,7 +28,7 @@
enddo enddo
enddo enddo
if((three_body_h_tc .eq. .False.) .and. (.not. noL_standard)) then if((three_body_h_tc .eqv. .False.) .and. (.not. noL_standard)) then
TC_HF_three_e_energy = 0.d0 TC_HF_three_e_energy = 0.d0
else else
TC_HF_three_e_energy = noL_0e TC_HF_three_e_energy = noL_0e

View File

@ -261,13 +261,10 @@ def write_ezfio(trexio_filename, filename):
except: except:
cartesian = True cartesian = True
if not cartesian:
raise TypeError('Only cartesian TREXIO files can be converted')
ao_num = trexio.read_ao_num(trexio_file) ao_num = trexio.read_ao_num(trexio_file)
ezfio.set_ao_basis_ao_num(ao_num) ezfio.set_ao_basis_ao_num(ao_num)
if shell_num > 0: if cartesian and shell_num > 0:
ao_shell = trexio.read_ao_shell(trexio_file) ao_shell = trexio.read_ao_shell(trexio_file)
at = [ nucl_index[i]+1 for i in ao_shell ] at = [ nucl_index[i]+1 for i in ao_shell ]
ezfio.set_ao_basis_ao_nucl(at) ezfio.set_ao_basis_ao_nucl(at)
@ -330,7 +327,7 @@ def write_ezfio(trexio_filename, filename):
print("OK") print("OK")
else: else:
print("None") print("None: integrals should be also imported using qp run import_trexio_integrals")
# _ # _

View File

@ -73,7 +73,7 @@ END_PROVIDER
integer, external :: getUnitAndOpen integer, external :: getUnitAndOpen
integer :: iunit, ierr integer :: iunit, ierr
ndim8 = ao_num*ao_num*1_8 ndim8 = ao_num*ao_num*1_8+1
double precision :: wall0,wall1 double precision :: wall0,wall1
type(c_ptr) :: c_pointer(2) type(c_ptr) :: c_pointer(2)
@ -143,19 +143,21 @@ END_PROVIDER
if (do_direct_integrals) then if (do_direct_integrals) then
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i8) SCHEDULE(dynamic,21) !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i8) SCHEDULE(dynamic,21)
do i8=ndim8,1,-1 do i8=ndim8-1,1,-1
D(i8) = ao_two_e_integral(addr1(i8), addr2(i8), & D(i8) = ao_two_e_integral(addr1(i8), addr2(i8), &
addr1(i8), addr2(i8)) addr1(i8), addr2(i8))
enddo enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
else else
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i8) SCHEDULE(dynamic,21) !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i8) SCHEDULE(dynamic,21)
do i8=ndim8,1,-1 do i8=ndim8-1,1,-1
D(i8) = get_ao_two_e_integral(addr1(i8), addr1(i8), & D(i8) = get_ao_two_e_integral(addr1(i8), addr1(i8), &
addr2(i8), addr2(i8), ao_integrals_map) addr2(i8), addr2(i8), ao_integrals_map)
enddo enddo
!$OMP END PARALLEL DO !$OMP END PARALLEL DO
endif endif
! Just to guarentee termination
D(ndim8) = 0.d0
D_sorted(:) = -D(:) D_sorted(:) = -D(:)
call dsort_noidx_big(D_sorted,ndim8) call dsort_noidx_big(D_sorted,ndim8)
@ -203,6 +205,7 @@ END_PROVIDER
do while ( (Dmax > tau).and.(np > 0) ) do while ( (Dmax > tau).and.(np > 0) )
! a. ! a.
i = i+1 i = i+1
block_size = max(N,24) block_size = max(N,24)
@ -314,9 +317,10 @@ END_PROVIDER
! g. ! g.
iblock = 0 iblock = 0
do j=1,nq do j=1,nq
if ( (Qmax <= Dmin).or.(N+j*1_8 > ndim8) ) exit if ( (Qmax < Dmin).or.(N+j*1_8 > ndim8) ) exit
! i. ! i.
rank = N+j rank = N+j

View File

@ -33,7 +33,7 @@ subroutine generate_cas_space
print *, 'CAS(', n_alpha_act+n_beta_act, ', ', n_act_orb, ')' print *, 'CAS(', n_alpha_act+n_beta_act, ', ', n_act_orb, ')'
print *, '' print *, ''
n_det_alpha_unique = binom_int(n_act_orb, n_alpha_act) n_det_alpha_unique = int(binom_int(n_act_orb, n_alpha_act),4)
TOUCH n_det_alpha_unique TOUCH n_det_alpha_unique
n = n_alpha_act n = n_alpha_act
@ -56,7 +56,7 @@ subroutine generate_cas_space
u = ior(t1,t2) u = ior(t1,t2)
enddo enddo
n_det_beta_unique = binom_int(n_act_orb, n_beta_act) n_det_beta_unique = int(binom_int(n_act_orb, n_beta_act),4)
TOUCH n_det_beta_unique TOUCH n_det_beta_unique
n = n_beta_act n = n_beta_act

View File

@ -52,35 +52,39 @@ END_PROVIDER
BEGIN_PROVIDER[double precision, aos_grad_in_r_array, (ao_num,n_points_final_grid,3)] BEGIN_PROVIDER[double precision, aos_grad_in_r_array, (ao_num,n_points_final_grid,3)]
BEGIN_DOC BEGIN_DOC
! aos_grad_in_r_array(i,j,k) = value of the kth component of the gradient of ith ao on the jth grid point !
! ! aos_grad_in_r_array(i,j,k) = value of the kth component of the gradient of ith ao on the jth grid point
! k = 1 : x, k= 2, y, k 3, z !
END_DOC ! k = 1 : x, k= 2, y, k 3, z
!
END_DOC
implicit none implicit none
integer :: i,j,m integer :: i, j, m
double precision :: aos_array(ao_num), r(3) double precision :: aos_array(ao_num), r(3)
double precision :: aos_grad_array(3,ao_num) double precision :: aos_grad_array(3,ao_num)
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) & !$OMP PARALLEL DO &
!$OMP PRIVATE (i,r,aos_array,aos_grad_array,j,m) & !$OMP DEFAULT (NONE) &
!$OMP SHARED(aos_grad_in_r_array,n_points_final_grid,ao_num,final_grid_points) !$OMP PRIVATE (i,j,m,r,aos_array,aos_grad_array) &
do i = 1, n_points_final_grid !$OMP SHARED(aos_grad_in_r_array,n_points_final_grid,ao_num,final_grid_points)
r(1) = final_grid_points(1,i) do i = 1, n_points_final_grid
r(2) = final_grid_points(2,i) r(1) = final_grid_points(1,i)
r(3) = final_grid_points(3,i) r(2) = final_grid_points(2,i)
call give_all_aos_and_grad_at_r(r,aos_array,aos_grad_array) r(3) = final_grid_points(3,i)
do m = 1, 3 call give_all_aos_and_grad_at_r(r,aos_array,aos_grad_array)
do j = 1, ao_num do m = 1, 3
aos_grad_in_r_array(j,i,m) = aos_grad_array(m,j) do j = 1, ao_num
enddo aos_grad_in_r_array(j,i,m) = aos_grad_array(m,j)
enddo
enddo
enddo enddo
enddo !$OMP END PARALLEL DO
!$OMP END PARALLEL DO
END_PROVIDER
END_PROVIDER ! ---
BEGIN_PROVIDER[double precision, aos_grad_in_r_array_transp, (3,ao_num,n_points_final_grid)] BEGIN_PROVIDER[double precision, aos_grad_in_r_array_transp, (3,ao_num,n_points_final_grid)]
@ -205,18 +209,53 @@ BEGIN_PROVIDER[double precision, aos_grad_in_r_array, (ao_num,n_points_final_gri
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER[double precision, aos_in_r_array_extra_transp, (n_points_extra_final_grid,ao_num)] ! ---
implicit none
BEGIN_DOC BEGIN_PROVIDER[double precision, aos_in_r_array_extra_transp, (n_points_extra_final_grid,ao_num)]
! aos_in_r_array_extra_transp(i,j) = value of the jth ao on the ith grid point
END_DOC BEGIN_DOC
integer :: i,j ! aos_in_r_array_extra_transp(i,j) = value of the jth ao on the ith grid point
double precision :: aos_array(ao_num), r(3) END_DOC
do i = 1, n_points_extra_final_grid
do j = 1, ao_num implicit none
aos_in_r_array_extra_transp(i,j) = aos_in_r_array_extra(j,i) integer :: i, j
double precision :: aos_array(ao_num), r(3)
do i = 1, n_points_extra_final_grid
do j = 1, ao_num
aos_in_r_array_extra_transp(i,j) = aos_in_r_array_extra(j,i)
enddo
enddo enddo
enddo
END_PROVIDER END_PROVIDER
! ---
BEGIN_PROVIDER[double precision, aos_grad_in_r_array_extra, (ao_num,n_points_extra_final_grid,3)]
implicit none
integer :: i, j, m
double precision :: aos_array(ao_num), r(3)
double precision :: aos_grad_array(3,ao_num)
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,r,aos_array,aos_grad_array) &
!$OMP SHARED(aos_grad_in_r_array_extra,n_points_extra_final_grid,ao_num,final_grid_points_extra)
do i = 1, n_points_extra_final_grid
r(1) = final_grid_points_extra(1,i)
r(2) = final_grid_points_extra(2,i)
r(3) = final_grid_points_extra(3,i)
call give_all_aos_and_grad_at_r(r, aos_array, aos_grad_array)
do m = 1, 3
do j = 1, ao_num
aos_grad_in_r_array_extra(j,i,m) = aos_grad_array(m,j)
enddo
enddo
enddo
!$OMP END PARALLEL DO
END_PROVIDER
! ---

View File

@ -143,7 +143,7 @@ module gpu
b, ldb, c, ldc) bind(C, name='gpu_dgeam') b, ldb, c, ldc) bind(C, name='gpu_dgeam')
import import
type(c_ptr), value, intent(in) :: handle type(c_ptr), value, intent(in) :: handle
character(c_char), intent(in), value :: transa, transb character(c_char), intent(in) :: transa, transb
integer(c_int64_t), intent(in), value :: m, n, lda, ldb, ldc integer(c_int64_t), intent(in), value :: m, n, lda, ldb, ldc
real(c_double), intent(in) :: alpha, beta real(c_double), intent(in) :: alpha, beta
type(c_ptr), value :: a, b, c type(c_ptr), value :: a, b, c
@ -153,7 +153,7 @@ module gpu
b, ldb, c, ldc) bind(C, name='gpu_sgeam') b, ldb, c, ldc) bind(C, name='gpu_sgeam')
import import
type(c_ptr), value, intent(in) :: handle type(c_ptr), value, intent(in) :: handle
character(c_char), intent(in), value :: transa, transb character(c_char), intent(in) :: transa, transb
integer(c_int64_t), intent(in), value :: m, n, lda, ldb, ldc integer(c_int64_t), intent(in), value :: m, n, lda, ldb, ldc
real(c_float), intent(in) :: alpha, beta real(c_float), intent(in) :: alpha, beta
real(c_float) :: a, b, c real(c_float) :: a, b, c
@ -194,7 +194,7 @@ module gpu
b, ldb, beta, c, ldc) bind(C, name='gpu_sgemm') b, ldb, beta, c, ldc) bind(C, name='gpu_sgemm')
import import
type(c_ptr), value, intent(in) :: handle type(c_ptr), value, intent(in) :: handle
character(c_char), intent(in), value :: transa, transb character(c_char), intent(in) :: transa, transb
integer(c_int64_t), intent(in), value :: m, n, k, lda, ldb, ldc integer(c_int64_t), intent(in), value :: m, n, k, lda, ldb, ldc
real(c_float), intent(in) :: alpha, beta real(c_float), intent(in) :: alpha, beta
real(c_float) :: a, b, c real(c_float) :: a, b, c

View File

@ -100,7 +100,7 @@ subroutine print_transition_dipole_moment
dip_str = d_x**2 + d_y**2 + d_z**2 dip_str = d_x**2 + d_y**2 + d_z**2
d = multi_s_dipole_moment(istate,jstate) d = multi_s_dipole_moment(istate,jstate)
f = 2d0/3d0 * d * d * dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)) f = 2d0/3d0 * d * d * dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate))
write(*,'(I4,I4,A4,I3,6(F12.6))') (istate-1), (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f write(*,'(I4,I4,A4,I3,6(F12.6))') (jstate -1) * (2*N_states-jstate)/2 + istate - jstate, (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f
enddo enddo
enddo enddo
@ -117,7 +117,7 @@ subroutine print_transition_dipole_moment
dip_str = d_x**2 + d_y**2 + d_z**2 dip_str = d_x**2 + d_y**2 + d_z**2
f = 2d0/3d0 * d * d * dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)) f = 2d0/3d0 * d * d * dabs(ci_energy_no_diag(istate) - ci_energy_no_diag(jstate))
d = multi_s_dipole_moment(istate,jstate) * au_to_D d = multi_s_dipole_moment(istate,jstate) * au_to_D
write(*,'(I4,I4,A4,I3,6(F12.6))') (istate-1), (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f write(*,'(I4,I4,A4,I3,6(F12.6))') (jstate -1) * (2*N_states-jstate)/2 + istate - jstate, (jstate-1), ' ->', (istate-1), d_x, d_y, d_z, d, dip_str, f
enddo enddo
enddo enddo
print*,'==============================================' print*,'=============================================='
@ -181,10 +181,9 @@ subroutine print_oscillator_strength
! Mixed gauge ! Mixed gauge
f_m = 2d0/3d0 * d * v f_m = 2d0/3d0 * d * v
write(*,'(A19,I3,A9,F10.6,A5,F7.1,A10,F9.6,A6,F9.6,A6,F9.6,A8,F7.3)') ' # Transition n.', (istate-1), ': Excit.=', dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*ha_to_ev, & write(*,'(A19,I3,A9,F10.6,A5,F7.1,A10,F9.6,A6,F9.6,A6,F9.6,A8,F7.3)') ' # Transition n.', (jstate -1) * (2*N_states-jstate)/2 + istate - jstate, ': Excit.=', dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*ha_to_ev, &
' eV ( ',dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*Ha_to_nm,' nm), f_l=',f_l, ', f_v=', f_v, ', f_m=', f_m, ', <S^2>=', s2_values(istate) ' eV ( ',dabs((ci_energy_no_diag(istate) - ci_energy_no_diag(jstate)))*Ha_to_nm,' nm), f_l=',f_l, ', f_v=', f_v, ', f_m=', f_m, ', <S^2>=', s2_values(istate)
!write(*,'(I4,I4,A4,I3,A6,F6.1,A6,F6.1)') (istate-1), (jstate-1), ' ->', (istate-1), ', %T1=', percent_exc(2,istate), ', %T2=',percent_exc(3,istate) !write(*,'(I4,I4,A4,I3,A6,F6.1,A6,F6.1)') (istate-1), (jstate-1), ' ->', (istate-1), ', %T1=', percent_exc(2,istate), ', %T2=',percent_exc(3,istate)
enddo enddo
enddo enddo

View File

@ -12,15 +12,12 @@ program projected_operators
mu_of_r_potential = "cas_full" mu_of_r_potential = "cas_full"
touch mu_of_r_potential touch mu_of_r_potential
print*,'Using Valence Only functions' print*,'Using Valence Only functions'
! call test_f_HF_valence_ab call test_f_HF_valence_ab
! call routine_full_mos call routine_full_mos
! call test_f_ii_valence_ab call test_f_ii_valence_ab
! call test_f_ia_valence_ab call test_f_ia_valence_ab
! call test_f_ii_ia_aa_valence_ab call test_f_ii_ia_aa_valence_ab
! call test call test
! call test_f_mean_field
! call test_grad_f_mean_field
call test_grad_mu_mf
end end
@ -39,138 +36,3 @@ subroutine test
end end
subroutine test_f_mean_field
implicit none
integer :: i_point
double precision :: weight,r(3)
double precision :: ref_f, new_f, accu_f
double precision :: ref_two_dens, new_two_dens, accu_two_dens, dm_a, dm_b
accu_f = 0.d0
accu_two_dens = 0.d0
do i_point = 1, n_points_final_grid
r(1:3) = final_grid_points(1:3,i_point)
weight = final_weight_at_r_vector(i_point)
call get_f_mf_ab(r,new_f,new_two_dens, dm_a, dm_b)
call f_HF_valence_ab(r,r,ref_f,ref_two_dens)
accu_f += weight * dabs(new_f- ref_f)
accu_two_dens += weight * dabs(new_two_dens - ref_two_dens)
enddo
print*,'accu_f = ',accu_f
print*,'accu_two_dens = ',accu_two_dens
end
subroutine test_grad_f_mean_field
implicit none
integer :: i_point,k
double precision :: weight,r(3)
double precision :: grad_f_mf_ab(3), grad_two_bod_dens(3)
double precision :: grad_dm_a(3), grad_dm_b(3)
double precision :: f_mf_ab,two_bod_dens, dm_a, dm_b
double precision :: num_grad_f_mf_ab(3), num_grad_two_bod_dens(3)
double precision :: num_grad_dm_a(3), num_grad_dm_b(3)
double precision :: f_mf_ab_p,f_mf_ab_m
double precision :: two_bod_dens_p, two_bod_dens_m
double precision :: dm_a_p, dm_a_m
double precision :: dm_b_p, dm_b_m
double precision :: rbis(3), dr
double precision :: accu_grad_f_mf_ab(3),accu_grad_two_bod_dens(3)
double precision :: accu_grad_dm_a(3),accu_grad_dm_b(3)
double precision :: accu_f_mf_ab, accu_two_bod_dens, accu_dm_a, accu_dm_b
dr = 0.00001d0
accu_f_mf_ab = 0.d0
accu_two_bod_dens = 0.d0
accu_dm_a = 0.d0
accu_dm_b = 0.d0
accu_grad_f_mf_ab = 0.d0
accu_grad_two_bod_dens = 0.d0
accu_grad_dm_a = 0.d0
accu_grad_dm_b = 0.d0
do i_point = 1, n_points_final_grid
r(1:3) = final_grid_points(1:3,i_point)
weight = final_weight_at_r_vector(i_point)
call get_grad_f_mf_ab(r,grad_f_mf_ab, grad_two_bod_dens,f_mf_ab,two_bod_dens, dm_a, dm_b,grad_dm_a, grad_dm_b)
call get_f_mf_ab(r,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
accu_f_mf_ab += weight * dabs(f_mf_ab - f_mf_ab_p)
accu_two_bod_dens += weight * dabs(two_bod_dens - two_bod_dens_p)
accu_dm_a += weight*dabs(dm_a - dm_a_p)
accu_dm_b += weight*dabs(dm_b - dm_b_p)
do k = 1, 3
rbis = r
rbis(k) += dr
call get_f_mf_ab(rbis,f_mf_ab_p,two_bod_dens_p, dm_a_p, dm_b_p)
rbis = r
rbis(k) -= dr
call get_f_mf_ab(rbis,f_mf_ab_m,two_bod_dens_m, dm_a_m, dm_b_m)
num_grad_f_mf_ab(k) = (f_mf_ab_p - f_mf_ab_m)/(2.d0*dr)
num_grad_two_bod_dens(k) = (two_bod_dens_p - two_bod_dens_m)/(2.d0*dr)
num_grad_dm_a(k) = (dm_a_p - dm_a_m)/(2.d0*dr)
num_grad_dm_b(k) = (dm_b_p - dm_b_m)/(2.d0*dr)
enddo
do k = 1, 3
accu_grad_f_mf_ab(k) += weight * dabs(grad_f_mf_ab(k) - num_grad_f_mf_ab(k))
accu_grad_two_bod_dens(k) += weight * dabs(grad_two_bod_dens(k) - num_grad_two_bod_dens(k))
accu_grad_dm_a(k) += weight * dabs(grad_dm_a(k) - num_grad_dm_a(k))
accu_grad_dm_b(k) += weight * dabs(grad_dm_b(k) - num_grad_dm_b(k))
enddo
enddo
print*,'accu_f_mf_ab = ',accu_f_mf_ab
print*,'accu_two_bod_dens = ',accu_two_bod_dens
print*,'accu_dm_a = ',accu_dm_a
print*,'accu_dm_b = ',accu_dm_b
print*,'accu_grad_f_mf_ab = '
print*,accu_grad_f_mf_ab
print*,'accu_grad_two_bod_dens = '
print*,accu_grad_two_bod_dens
print*,'accu_dm_a = '
print*,accu_grad_dm_a
print*,'accu_dm_b = '
print*,accu_grad_dm_b
end
subroutine test_grad_mu_mf
implicit none
integer :: i_point,k
double precision :: weight,r(3),rbis(3)
double precision :: mu_mf, dm,grad_mu_mf(3), grad_dm(3)
double precision :: mu_mf_p, mu_mf_m, dm_m, dm_p, num_grad_mu_mf(3),dr, num_grad_dm(3)
double precision :: accu_mu, accu_dm, accu_grad_dm(3), accu_grad_mu_mf(3)
dr = 0.00001d0
accu_grad_mu_mf = 0.d0
accu_mu = 0.d0
accu_grad_dm = 0.d0
accu_dm = 0.d0
do i_point = 1, n_points_final_grid
r(1:3) = final_grid_points(1:3,i_point)
weight = final_weight_at_r_vector(i_point)
call grad_mu_of_r_mean_field(r,mu_mf, dm, grad_mu_mf, grad_dm)
call mu_of_r_mean_field(r,mu_mf_p, dm_p)
accu_mu += weight*dabs(mu_mf_p - mu_mf)
accu_dm += weight*dabs(dm_p - dm)
do k = 1, 3
rbis = r
rbis(k) += dr
call mu_of_r_mean_field(rbis,mu_mf_p, dm_p)
rbis = r
rbis(k) -= dr
call mu_of_r_mean_field(rbis,mu_mf_m, dm_m)
num_grad_mu_mf(k) = (mu_mf_p - mu_mf_m)/(2.d0*dr)
num_grad_dm(k) = (dm_p - dm_m)/(2.d0*dr)
enddo
do k = 1, 3
accu_grad_dm(k)+= weight *dabs(num_grad_dm(k) - grad_dm(k))
accu_grad_mu_mf(k)+= weight *dabs(num_grad_mu_mf(k) - grad_mu_mf(k))
enddo
enddo
print*,'accu_mu = ',accu_mu
print*,'accu_dm = ',accu_dm
print*,'accu_grad_dm = '
print*, accu_grad_dm
print*,'accu_grad_mu_mf = '
print*, accu_grad_mu_mf
end

View File

@ -45,6 +45,12 @@ type: double precision
doc: Calculated HF energy doc: Calculated HF energy
interface: ezfio interface: ezfio
[do_mom]
type: logical
doc: If true, this will run a MOM calculation. The overlap will be computed at each step with respect to the initial MOs. After an initial Hartree-Fock calculation, the guess can be created by swapping molecular orbitals through the qp run swap_mos command.
interface: ezfio,provider,ocaml
default: False
[frozen_orb_scf] [frozen_orb_scf]
type: logical type: logical
doc: If true, leave untouched all the orbitals defined as core and optimize all the orbitals defined as active with qp_set_mo_class doc: If true, leave untouched all the orbitals defined as core and optimize all the orbitals defined as active with qp_set_mo_class

View File

@ -0,0 +1,96 @@
subroutine reorder_mo_max_overlap
implicit none
BEGIN_DOC
! routines that compute the projection of each MO of the current `mo_coef` on the space spanned by the occupied orbitals of `mo_coef_begin_iteration`
END_DOC
integer :: i,j,k,l
double precision, allocatable :: overlap(:,:)
double precision, allocatable :: proj(:)
integer, allocatable :: iorder(:)
double precision, allocatable :: mo_coef_tmp(:,:)
double precision, allocatable :: tmp(:,:)
allocate(overlap(mo_num,mo_num),proj(mo_num),iorder(mo_num),mo_coef_tmp(ao_num,mo_num),tmp(mo_num,ao_num))
overlap(:,:) = 0d0
mo_coef_tmp(:,:) = 0d0
proj(:) = 0d0
iorder(:) = 0d0
tmp(:,:) = 0d0
! These matrix products compute the overlap bewteen the initial and the current MOs
call dgemm('T','N', mo_num, ao_num, ao_num, 1.d0, &
mo_coef_begin_iteration, size(mo_coef_begin_iteration,1), &
ao_overlap, size(ao_overlap,1), 0.d0, &
tmp, size(tmp,1))
call dgemm('N','N', mo_num, mo_num, ao_num, 1.d0, &
tmp, size(tmp,1), &
mo_coef, size(mo_coef, 1), 0.d0, &
overlap, size(overlap,1) )
! for each orbital compute the best overlap
do i = 1, mo_num
iorder(i) = i ! initialize the iorder list as we need it to sort later
do j = 1, elec_alpha_num
proj(i) += overlap(j,i)*overlap(j,i) ! compute the projection of current orbital i on the occupied space of the initial orbitals
enddo
proj(i) = dsqrt(proj(i))
enddo
! sort the list of projection to find the mos with the largest overlap
call dsort(proj(:),iorder(:),mo_num)
! reorder orbitals according to projection
do i=1,mo_num
mo_coef_tmp(:,i) = mo_coef(:,iorder(mo_num+1-i))
enddo
! update the orbitals
mo_coef(:,:) = mo_coef_tmp(:,:)
! if the determinant is open-shell we need to make sure that the singly occupied orbital correspond to the initial ones
if (elec_alpha_num > elec_beta_num) then
double precision, allocatable :: overlap_alpha(:,:)
double precision, allocatable :: proj_alpha(:)
integer, allocatable :: iorder_alpha(:)
allocate(overlap_alpha(mo_num,elec_alpha_num),proj_alpha(elec_alpha_num),iorder_alpha(elec_alpha_num))
overlap_alpha(:,:) = 0d0
mo_coef_tmp(:,:) = 0d0
proj_alpha(:) = 0d0
iorder_alpha(:) = 0d0
tmp(:,:) = 0d0
! These matrix products compute the overlap bewteen the initial and the current MOs
call dgemm('T','N', mo_num, ao_num, ao_num, 1.d0, &
mo_coef_begin_iteration, size(mo_coef_begin_iteration,1), &
ao_overlap, size(ao_overlap,1), 0.d0, &
tmp, size(tmp,1))
call dgemm('N','N', mo_num, elec_alpha_num, ao_num, 1.d0, &
tmp, size(tmp,1), &
mo_coef, size(mo_coef, 1), 0.d0, &
overlap_alpha, size(overlap_alpha,1) )
do i = 1, elec_alpha_num
iorder_alpha(i) = i ! initialize the iorder list as we need it to sort later
do j = 1, elec_beta_num
proj_alpha(i) += overlap_alpha(j,i)*overlap_alpha(j,i) ! compute the projection of current orbital i on the beta occupied space of the initial orbitals
enddo
proj_alpha(i) = dsqrt(proj_alpha(i))
enddo
! sort the list of projection to find the mos with the largest overlap
call dsort(proj_alpha(:),iorder_alpha(:),elec_alpha_num)
! reorder orbitals according to projection
do i=1,elec_alpha_num
mo_coef_tmp(:,i) = mo_coef(:,iorder_alpha(elec_alpha_num+1-i))
enddo
do i=1,elec_alpha_num
mo_coef(:,i) = mo_coef_tmp(:,i)
enddo
deallocate(overlap_alpha, proj_alpha, iorder_alpha)
endif
deallocate(overlap, proj, iorder, mo_coef_tmp, tmp)
end

View File

@ -51,6 +51,11 @@ END_DOC
! !
PROVIDE FPS_SPF_matrix_AO Fock_matrix_AO PROVIDE FPS_SPF_matrix_AO Fock_matrix_AO
! Initialize MO to run IMOM
if(do_mom)then
call initialize_mo_coef_begin_iteration
endif
converged = .False. converged = .False.
do while ( .not.converged .and. (iteration_SCF < n_it_SCF_max) ) do while ( .not.converged .and. (iteration_SCF < n_it_SCF_max) )
@ -88,16 +93,17 @@ END_DOC
Fock_matrix_AO_beta = Fock_matrix_AO*0.5d0 Fock_matrix_AO_beta = Fock_matrix_AO*0.5d0
TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta
endif endif
MO_coef = eigenvectors_Fock_matrix_MO MO_coef = eigenvectors_Fock_matrix_MO
if(do_mom)then
call reorder_mo_max_overlap
endif
if(frozen_orb_scf)then if(frozen_orb_scf)then
call reorder_core_orb call reorder_core_orb
call initialize_mo_coef_begin_iteration call initialize_mo_coef_begin_iteration
endif endif
TOUCH MO_coef TOUCH MO_coef
! Calculate error vectors ! Calculate error vectors
max_error_DIIS = maxval(Abs(FPS_SPF_Matrix_MO)) max_error_DIIS = maxval(Abs(FPS_SPF_Matrix_MO))
@ -106,41 +112,46 @@ END_DOC
energy_SCF = SCF_energy energy_SCF = SCF_energy
Delta_Energy_SCF = energy_SCF - energy_SCF_previous Delta_Energy_SCF = energy_SCF - energy_SCF_previous
if ( (SCF_algorithm == 'DIIS').and.(Delta_Energy_SCF > 0.d0) ) then if ( (SCF_algorithm == 'DIIS').and.(Delta_Energy_SCF > 0.d0).and.(.not.do_mom) ) then
Fock_matrix_AO(1:ao_num,1:ao_num) = Fock_matrix_DIIS (1:ao_num,1:ao_num,index_dim_DIIS) Fock_matrix_AO(1:ao_num,1:ao_num) = Fock_matrix_DIIS (1:ao_num,1:ao_num,index_dim_DIIS)
Fock_matrix_AO_alpha = Fock_matrix_AO*0.5d0 Fock_matrix_AO_alpha = Fock_matrix_AO*0.5d0
Fock_matrix_AO_beta = Fock_matrix_AO*0.5d0 Fock_matrix_AO_beta = Fock_matrix_AO*0.5d0
TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta TOUCH Fock_matrix_AO_alpha Fock_matrix_AO_beta
endif endif
double precision :: level_shift_save if (.not.do_mom) then
level_shift_save = level_shift double precision :: level_shift_save
mo_coef_save(1:ao_num,1:mo_num) = mo_coef(1:ao_num,1:mo_num) level_shift_save = level_shift
do while (Delta_energy_SCF > 0.d0) mo_coef_save(1:ao_num,1:mo_num) = mo_coef(1:ao_num,1:mo_num)
mo_coef(1:ao_num,1:mo_num) = mo_coef_save do while (Delta_energy_SCF > 0.d0)
if (level_shift <= .1d0) then mo_coef(1:ao_num,1:mo_num) = mo_coef_save
level_shift = 1.d0 if (level_shift <= .1d0) then
else level_shift = 1.d0
level_shift = level_shift * 3.0d0 else
endif level_shift = level_shift * 3.0d0
TOUCH mo_coef level_shift endif
mo_coef(1:ao_num,1:mo_num) = eigenvectors_Fock_matrix_MO(1:ao_num,1:mo_num) TOUCH mo_coef level_shift
if(frozen_orb_scf)then mo_coef(1:ao_num,1:mo_num) = eigenvectors_Fock_matrix_MO(1:ao_num,1:mo_num)
call reorder_core_orb if(do_mom)then
call initialize_mo_coef_begin_iteration call reorder_mo_max_overlap
endif endif
TOUCH mo_coef if(frozen_orb_scf)then
Delta_Energy_SCF = SCF_energy - energy_SCF_previous call reorder_core_orb
energy_SCF = SCF_energy call initialize_mo_coef_begin_iteration
if (level_shift-level_shift_save > 40.d0) then endif
level_shift = level_shift_save * 4.d0 TOUCH mo_coef
SOFT_TOUCH level_shift Delta_Energy_SCF = SCF_energy - energy_SCF_previous
exit energy_SCF = SCF_energy
endif if (level_shift-level_shift_save > 40.d0) then
dim_DIIS=0 level_shift = level_shift_save * 4.d0
enddo SOFT_TOUCH level_shift
level_shift = level_shift * 0.5d0 exit
SOFT_TOUCH level_shift endif
dim_DIIS=0
enddo
level_shift = level_shift * 0.5d0
SOFT_TOUCH level_shift
endif
energy_SCF_previous = energy_SCF energy_SCF_previous = energy_SCF
converged = ( (max_error_DIIS <= threshold_DIIS_nonzero) .and. & converged = ( (max_error_DIIS <= threshold_DIIS_nonzero) .and. &
@ -205,7 +216,7 @@ END_DOC
if(.not.frozen_orb_scf)then if(.not.frozen_orb_scf)then
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo,size(Fock_matrix_mo,1), & call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo,size(Fock_matrix_mo,1), &
size(Fock_matrix_mo,2),mo_label,1,.true.) size(Fock_matrix_mo,2),mo_label,1,.true.)
call restore_symmetry(ao_num, mo_num, mo_coef, size(mo_coef,1), 1.d-10) call restore_symmetry(ao_num, mo_num, mo_coef, size(mo_coef,1), 1.d-10)
call orthonormalize_mos call orthonormalize_mos
endif endif
@ -228,6 +239,9 @@ END_DOC
i = j+1 i = j+1
enddo enddo
if(do_mom)then
call reorder_mo_max_overlap
endif
call save_mos call save_mos

View File

@ -9,6 +9,9 @@ double precision, parameter :: pi_5_2 = 34.9868366552d0
double precision, parameter :: dfour_pi = 4.d0*dacos(-1.d0) double precision, parameter :: dfour_pi = 4.d0*dacos(-1.d0)
double precision, parameter :: dtwo_pi = 2.d0*dacos(-1.d0) double precision, parameter :: dtwo_pi = 2.d0*dacos(-1.d0)
double precision, parameter :: inv_sq_pi = 1.d0/dsqrt(dacos(-1.d0)) double precision, parameter :: inv_sq_pi = 1.d0/dsqrt(dacos(-1.d0))
double precision, parameter :: c_mu_gauss = 27.d0/(8.d0*dsqrt(dacos(-1.d0)))
double precision, parameter :: c_mu_gauss_tot = 1.5d0*27.d0/(8.d0*dsqrt(dacos(-1.d0)))+3.d0/dsqrt(dacos(-1.d0))
double precision, parameter :: alpha_mu_gauss = 1.5d0
double precision, parameter :: inv_sq_pi_2 = 0.5d0/dsqrt(dacos(-1.d0)) double precision, parameter :: inv_sq_pi_2 = 0.5d0/dsqrt(dacos(-1.d0))
double precision, parameter :: thresh = 1.d-15 double precision, parameter :: thresh = 1.d-15
double precision, parameter :: cx_lda = -0.73855876638202234d0 double precision, parameter :: cx_lda = -0.73855876638202234d0