mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-21 11:03:29 +01:00
commit
ac0e6bc3ca
124
INSTALL.rst
124
INSTALL.rst
@ -2,9 +2,9 @@
|
||||
Installation
|
||||
============
|
||||
|
||||
The |qp| can be downloaded on GitHub as an `archive
|
||||
<https://github.com/LCPQ/quantum_package/releases/latest>`_ or as a `git
|
||||
repository <https://github.com/LCPQ/quantum_package>`_.
|
||||
|qp| can be downloaded on GitHub as an `archive
|
||||
<https://github.com/QuantumPackage/qp2/releases>`_ or as a `git
|
||||
repository <https://github.com/QuantumPackage/qp2>`_.
|
||||
|
||||
.. code:: bash
|
||||
|
||||
@ -19,16 +19,16 @@ Before anything, go into your :file:`quantum_package` directory and run
|
||||
|
||||
|
||||
This script will create the :file:`quantum_package.rc` bash script, which
|
||||
sets all the environment variables required for the normal operation of the
|
||||
*Quantum Package*. It will also initialize the git submodules that are
|
||||
sets all the environment variables required for the normal operation of
|
||||
|qp|. It will also initialize the git submodules that are
|
||||
required, and tell you which external dependencies are missing and need to be
|
||||
installed. The required dependencies are located in the
|
||||
`external/qp2-dependencies` directory, such that once QP is configured the
|
||||
`external/qp2-dependencies` directory, such that once |qp| is configured the
|
||||
internet connection is not needed any more.
|
||||
|
||||
When all dependencies have been installed, (the :command:`configure` will
|
||||
inform you) source the :file:`quantum_package.rc` in order to load all
|
||||
environment variables and compile the |QP|.
|
||||
inform you what is missing) source the :file:`quantum_package.rc` in order to
|
||||
load all environment variables and compile |QP|.
|
||||
|
||||
Now all the requirements are met, you can compile the programs using
|
||||
|
||||
@ -37,6 +37,15 @@ Now all the requirements are met, you can compile the programs using
|
||||
make
|
||||
|
||||
|
||||
Installation of dependencies via a Conda environment
|
||||
====================================================
|
||||
|
||||
.. code:: bash
|
||||
|
||||
conda env create -f qp2.yml
|
||||

|
||||
|
||||
|
||||
Requirements
|
||||
============
|
||||
|
||||
@ -64,8 +73,8 @@ architecture. Modify it if needed, and run :command:`configure` with
|
||||
|
||||
.. code:: bash
|
||||
|
||||
cp ./config/gfortran.example config/gfortran.cfg
|
||||
./configure -c config/gfortran.cfg
|
||||
cp ./config/gfortran.example config/gfortran_avx.cfg
|
||||
./configure -c config/gfortran_avx.cfg
|
||||
|
||||
|
||||
.. note::
|
||||
@ -86,45 +95,33 @@ The command is to be used as follows:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
./configure --install=<package>
|
||||
./configure -i <package>
|
||||
|
||||
The following packages are supported by the :command:`configure` installer:
|
||||
|
||||
* ninja
|
||||
* irpf90
|
||||
* zeromq
|
||||
* f77zmq
|
||||
* gmp
|
||||
* ocaml (:math:`\approx` 5 minutes)
|
||||
* ezfio
|
||||
* docopt
|
||||
* resultsFile
|
||||
* bats
|
||||
* zlib
|
||||
|
||||
Example:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
./configure -i ezfio
|
||||
./configure -i ninja
|
||||
|
||||
.. note::
|
||||
|
||||
When installing the ocaml package, you will be asked the location of where
|
||||
it should be installed. A safe option is to enter the path proposed by the
|
||||
|QP|:
|
||||
|
||||
QP>> Please install it here: /your_quantum_package_directory/bin
|
||||
|
||||
So just enter the proposition of the |QP| and press enter.
|
||||
|
||||
|
||||
If the :command:`configure` executable fails to install a specific dependency
|
||||
-----------------------------------------------------------------------------
|
||||
|
||||
If the :command:`configure` executable does not succeed to install a specific
|
||||
dependency, there are some proposition of how to download and install the
|
||||
minimal dependencies to compile and use the |QP|.
|
||||
|
||||
If the :command:`configure` executable does not succeed in installing a specific
|
||||
dependency, you should try to install the dependency on your system by yourself.
|
||||
|
||||
Before doing anything below, try to install the packages with your package manager
|
||||
(:command:`apt`, :command:`yum`, etc).
|
||||
@ -149,11 +146,11 @@ IRPF90
|
||||
*IRPF90* is a Fortran code generator for programming using the Implicit Reference
|
||||
to Parameters (IRP) method.
|
||||
|
||||
If you have *pip* for Python2, you can do
|
||||
If you have *pip* for Python2, you can do
|
||||
|
||||
.. code:: bash
|
||||
|
||||
python2 -m pip install --user irpf90
|
||||
python3 -m pip install --user irpf90
|
||||
|
||||
Otherwise,
|
||||
|
||||
@ -209,7 +206,7 @@ ZeroMQ and its Fortran binding
|
||||
|
||||
.. code:: bash
|
||||
|
||||
cp f77_zmq_free.h ${QP_ROOT}/src/ZMQ/f77_zmq.h
|
||||
cp f77_zmq_free.h ${QP_ROOT}/src/zmq/f77_zmq.h
|
||||
|
||||
|
||||
Zlib
|
||||
@ -262,53 +259,6 @@ With Debian or Ubuntu, you can use
|
||||
sudo apt install libgmp-dev
|
||||
|
||||
|
||||
libcap
|
||||
------
|
||||
|
||||
Libcap is a library for getting and setting POSIX.1e draft 15 capabilities.
|
||||
|
||||
* Download the latest version of libcap here:
|
||||
`<https://git.kernel.org/pub/scm/linux/kernel/git/morgan/libcap.git/snapshot/libcap-2.25.tar.gz>`_
|
||||
and move it in the :file:`${QP_ROOT}/external` directory
|
||||
|
||||
* Extract the archive, go into the :file:`libcap-*/libcap` directory and run
|
||||
the following command
|
||||
|
||||
.. code:: bash
|
||||
|
||||
prefix=$QP_ROOT make install
|
||||
|
||||
With Debian or Ubuntu, you can use
|
||||
|
||||
.. code:: bash
|
||||
|
||||
sudo apt install libcap-dev
|
||||
|
||||
|
||||
Bubblewrap
|
||||
----------
|
||||
|
||||
Bubblewrap is an unprivileged sandboxing tool.
|
||||
|
||||
* Download Bubblewrap here:
|
||||
`<https://github.com/projectatomic/bubblewrap/releases/download/v0.3.3/bubblewrap-0.3.3.tar.xz>`_
|
||||
and move it in the :file:`${QP_ROOT}/external` directory
|
||||
|
||||
* Extract the archive, go into the :file:`bubblewrap-*` directory and run
|
||||
the following commands
|
||||
|
||||
.. code:: bash
|
||||
|
||||
./configure --prefix=$QP_ROOT && make -j 8
|
||||
make install-exec-am
|
||||
|
||||
|
||||
With Debian or Ubuntu, you can use
|
||||
|
||||
.. code:: bash
|
||||
|
||||
sudo apt install bubblewrap
|
||||
|
||||
|
||||
|
||||
OCaml
|
||||
@ -327,7 +277,7 @@ OCaml
|
||||
`<https://raw.githubusercontent.com/ocaml/opam/master/shell/install.sh>`_
|
||||
and move it in the :file:`${QP_ROOT}/external` directory
|
||||
|
||||
* If you use OCaml only with the |qp|, you can install the OPAM directory
|
||||
* If you use OCaml only with |qp|, you can install the OPAM directory
|
||||
containing the compiler and all the installed libraries in the
|
||||
:file:`${QP_ROOT}/external` directory as
|
||||
|
||||
@ -352,14 +302,14 @@ OCaml
|
||||
|
||||
.. code:: bash
|
||||
|
||||
opam init --comp=4.07.1
|
||||
opam init --comp=4.11.1
|
||||
eval `${QP_ROOT}/bin/opam env`
|
||||
|
||||
If the installation fails because of bwrap, you can initialize opam using:
|
||||
|
||||
.. code:: bash
|
||||
|
||||
opam init --disable-sandboxing --comp=4.07.1
|
||||
opam init --disable-sandboxing --comp=4.11.1
|
||||
eval `${QP_ROOT}/bin/opam env`
|
||||
|
||||
* Install the required external OCaml libraries
|
||||
@ -369,17 +319,6 @@ OCaml
|
||||
opam install ocamlbuild cryptokit zmq sexplib ppx_sexp_conv ppx_deriving getopt
|
||||
|
||||
|
||||
EZFIO
|
||||
-----
|
||||
|
||||
*EZFIO* is the Easy Fortran Input/Output library generator.
|
||||
|
||||
* Download EZFIO here : `<https://gitlab.com/scemama/EZFIO/-/archive/master/EZFIO-master.tar.gz>`_ and move
|
||||
the downloaded archive in the :file:`${QP_ROOT}/external` directory
|
||||
|
||||
* Extract the archive, and rename it as :file:`${QP_ROOT}/external/ezfio`
|
||||
|
||||
|
||||
Docopt
|
||||
------
|
||||
|
||||
@ -406,7 +345,7 @@ resultsFile
|
||||
*resultsFile* is a Python package to extract data from output files of quantum chemistry
|
||||
codes.
|
||||
|
||||
If you have *pip* for Python3, you can do
|
||||
If you have *pip* for Python3, you can do
|
||||
|
||||
.. code:: bash
|
||||
|
||||
@ -414,3 +353,4 @@ If you have *pip* for Python3, you can do
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -30,7 +30,8 @@
|
||||
- Fixed bug in DIIS
|
||||
- Fixed bug in molden (Au -> Angs)
|
||||
- Fixed bug with non-contiguous MOs in active space and deleter MOs
|
||||
- Network-free installation
|
||||
- Complete network-free installation
|
||||
- Fixed bug in selection when computing full PT2
|
||||
- Updated version of f77-zmq
|
||||
|
||||
*** User interface
|
||||
@ -59,6 +60,7 @@
|
||||
symmetry in matrices
|
||||
- qp_export_as_tgz exports also plugin codes
|
||||
- Added a basis module containing basis set information
|
||||
- Added qp_run truncate_wf
|
||||
|
||||
*** Code
|
||||
|
||||
|
@ -195,48 +195,52 @@ def write_ezfio(res, filename):
|
||||
# P a r s i n g #
|
||||
# ~#~#~#~#~#~#~ #
|
||||
|
||||
inucl = {}
|
||||
for i, a in enumerate(res.geometry):
|
||||
inucl[a.coord] = i
|
||||
|
||||
nbasis = 0
|
||||
nucl_center = []
|
||||
nucl_index = []
|
||||
curr_center = -1
|
||||
nucl_shell_num = []
|
||||
ang_mom = []
|
||||
nshell = 0
|
||||
shell_prim_index = [1]
|
||||
nshell_tot = 0
|
||||
shell_index = []
|
||||
shell_prim_num = []
|
||||
for b in res.basis:
|
||||
s = b.sym
|
||||
if str.count(s, "y") + str.count(s, "x") == 0:
|
||||
c = b.center
|
||||
c = inucl[b.center]
|
||||
nshell += 1
|
||||
nshell_tot += 1
|
||||
if c != curr_center:
|
||||
curr_center = c
|
||||
nucl_center.append(nbasis+1)
|
||||
nucl_shell_num.append(nshell)
|
||||
nshell = 0
|
||||
nbasis += 1
|
||||
nucl_index.append(c+1)
|
||||
coefficient += b.coef[:len(b.prim)]
|
||||
exponent += [p.expo for p in b.prim]
|
||||
ang_mom.append(str.count(s, "z"))
|
||||
shell_prim_index.append(len(exponent)+1)
|
||||
shell_prim_num.append(len(b.prim))
|
||||
|
||||
nucl_shell_num.append(nshell+1)
|
||||
nucl_shell_num = nucl_shell_num[1:]
|
||||
shell_index += [nshell_tot+1] * len(b.prim)
|
||||
|
||||
# ~#~#~#~#~ #
|
||||
# W r i t e #
|
||||
# ~#~#~#~#~ #
|
||||
|
||||
ezfio.set_basis_basis("Read from ResultsFile")
|
||||
ezfio.set_basis_basis_nucleus_index(nucl_center)
|
||||
ezfio.set_basis_prim_num(len(coefficient))
|
||||
ezfio.set_basis_shell_num(len(ang_mom))
|
||||
ezfio.set_basis_basis_nucleus_index(nucl_index)
|
||||
ezfio.set_basis_prim_num(len(coefficient))
|
||||
|
||||
ezfio.set_basis_nucleus_shell_num(nucl_shell_num)
|
||||
ezfio.set_basis_prim_coef(coefficient)
|
||||
ezfio.set_basis_prim_expo(exponent)
|
||||
ezfio.set_basis_shell_ang_mom(ang_mom)
|
||||
ezfio.set_basis_shell_prim_num(shell_prim_num)
|
||||
ezfio.set_basis_shell_prim_index(shell_prim_index)
|
||||
ezfio.set_basis_shell_index(shell_index)
|
||||
|
||||
print("OK")
|
||||
|
||||
|
@ -6,6 +6,7 @@ Usage:
|
||||
qp_plugins download <url> [-n <name>]
|
||||
qp_plugins install <name>...
|
||||
qp_plugins uninstall <name>
|
||||
qp_plugins remove <name>
|
||||
qp_plugins update [-r <repo>]
|
||||
qp_plugins create -n <name> [-r <repo>] [<needed_modules>...]
|
||||
|
||||
@ -24,6 +25,8 @@ Options:
|
||||
|
||||
uninstall Uninstall a plugin
|
||||
|
||||
remove Uninstall a plugin
|
||||
|
||||
update Update the repository
|
||||
|
||||
create
|
||||
@ -274,7 +277,7 @@ def main(arguments):
|
||||
subprocess.check_call(["qp_create_ninja", "update"])
|
||||
print("[ OK ]")
|
||||
|
||||
elif arguments["uninstall"]:
|
||||
elif arguments["uninstall"] or arguments["remove"]:
|
||||
|
||||
m_instance = ModuleHandler([QP_SRC])
|
||||
d_descendant = m_instance.dict_descendant
|
||||
|
@ -7,12 +7,13 @@ setting all MOs as Active, except the n/2 first ones which are set as Core.
|
||||
If pseudo-potentials are used, all the MOs are set as Active.
|
||||
|
||||
Usage:
|
||||
qp_set_frozen_core [-q|--query] [(-l|-s|--large|--small)] EZFIO_DIR
|
||||
qp_set_frozen_core [-q|--query] [(-l|-s|-u|--large|--small|--unset)] EZFIO_DIR
|
||||
|
||||
Options:
|
||||
-q --query Prints in the standard output the number of frozen MOs
|
||||
-l --large Use a small core
|
||||
-s --small Use a large core
|
||||
-u --unset Unset frozen core
|
||||
|
||||
|
||||
Default numbers of frozen electrons:
|
||||
@ -88,7 +89,9 @@ def main(arguments):
|
||||
elif charge <= 54: n_frozen += 9
|
||||
elif charge <= 86: n_frozen += 18
|
||||
elif charge <= 118: n_frozen += 27
|
||||
elif arguments["--unset"]:
|
||||
|
||||
n_frozen = 0
|
||||
else: # default
|
||||
for charge in ezfio.nuclei_nucl_charge:
|
||||
if charge <= 4: pass
|
||||
|
@ -13,7 +13,7 @@
|
||||
FC : gfortran -g -ffree-line-length-none -I . -fPIC
|
||||
LAPACK_LIB : -lblas -llapack
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 --assert
|
||||
IRPF90_FLAGS : --ninja --align=32 --assert -DSET_NESTED
|
||||
|
||||
# Global options
|
||||
################
|
||||
@ -35,14 +35,14 @@ OPENMP : 1 ; Append OpenMP flags
|
||||
# -ffast-math and the Fortran-specific
|
||||
# -fno-protect-parens and -fstack-arrays.
|
||||
[OPT]
|
||||
FCFLAGS : -Ofast
|
||||
FCFLAGS : -Ofast
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS : -Ofast
|
||||
FCFLAGS : -Ofast
|
||||
|
||||
# Debugging flags
|
||||
#################
|
||||
@ -58,5 +58,5 @@ FCFLAGS : -g -msse4.2 -fcheck=all -Waliasing -Wampersand -Wconversion -Wsurpris
|
||||
#
|
||||
[OPENMP]
|
||||
FC : -fopenmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
|
||||
|
@ -13,7 +13,7 @@
|
||||
FC : gfortran -ffree-line-length-none -I . -mavx -g -fPIC
|
||||
LAPACK_LIB : -llapack -lblas
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32
|
||||
IRPF90_FLAGS : --ninja --align=32 -DSET_NESTED
|
||||
|
||||
# Global options
|
||||
################
|
||||
@ -42,7 +42,7 @@ FCFLAGS : -Ofast -mavx
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS : -Ofast
|
||||
FCFLAGS : -Ofast
|
||||
|
||||
# Debugging flags
|
||||
#################
|
||||
@ -51,12 +51,12 @@ FCFLAGS : -Ofast
|
||||
# -g : Extra debugging information
|
||||
#
|
||||
[DEBUG]
|
||||
FCFLAGS : -fcheck=all -g
|
||||
FCFLAGS : -fcheck=all -g
|
||||
|
||||
# OpenMP flags
|
||||
#################
|
||||
#
|
||||
[OPENMP]
|
||||
FC : -fopenmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
|
||||
|
@ -13,7 +13,7 @@
|
||||
FC : gfortran -g -ffree-line-length-none -I . -fPIC
|
||||
LAPACK_LIB : -lblas -llapack
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 --assert
|
||||
IRPF90_FLAGS : --ninja --align=32 --assert -DSET_NESTED
|
||||
|
||||
# Global options
|
||||
################
|
||||
@ -35,14 +35,14 @@ OPENMP : 1 ; Append OpenMP flags
|
||||
# -ffast-math and the Fortran-specific
|
||||
# -fno-protect-parens and -fstack-arrays.
|
||||
[OPT]
|
||||
FCFLAGS : -Ofast
|
||||
FCFLAGS : -Ofast
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS : -Ofast
|
||||
FCFLAGS : -Ofast
|
||||
|
||||
# Debugging flags
|
||||
#################
|
||||
@ -59,5 +59,5 @@ FCFLAGS : -g -msse4.2 -fcheck=all -Waliasing -Wampersand -Wconversion -Wsurpris
|
||||
#
|
||||
[OPENMP]
|
||||
FC : -fopenmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
|
||||
|
@ -13,7 +13,7 @@
|
||||
FC : mpif90 -ffree-line-length-none -I . -g -fPIC
|
||||
LAPACK_LIB : -lblas -llapack
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 -DMPI
|
||||
IRPF90_FLAGS : --ninja --align=32 -DMPI -DSET_NESTED
|
||||
|
||||
# Global options
|
||||
################
|
||||
@ -35,14 +35,14 @@ OPENMP : 1 ; Append OpenMP flags
|
||||
# -ffast-math and the Fortran-specific
|
||||
# -fno-protect-parens and -fstack-arrays.
|
||||
[OPT]
|
||||
FCFLAGS : -Ofast -msse4.2
|
||||
FCFLAGS : -Ofast -msse4.2
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS : -Ofast -msse4.2
|
||||
FCFLAGS : -Ofast -msse4.2
|
||||
|
||||
# Debugging flags
|
||||
#################
|
||||
@ -51,7 +51,7 @@ FCFLAGS : -Ofast -msse4.2
|
||||
# -g : Extra debugging information
|
||||
#
|
||||
[DEBUG]
|
||||
FCFLAGS : -fcheck=all -g
|
||||
FCFLAGS : -fcheck=all -g
|
||||
|
||||
# OpenMP flags
|
||||
#################
|
||||
|
63
config/ifort_2019_avx.cfg
Normal file
63
config/ifort_2019_avx.cfg
Normal file
@ -0,0 +1,63 @@
|
||||
# Common flags
|
||||
##############
|
||||
#
|
||||
# -mkl=[parallel|sequential] : Use the MKL library
|
||||
# --ninja : Allow the utilisation of ninja. It is mandatory !
|
||||
# --align=32 : Align all provided arrays on a 32-byte boundary
|
||||
#
|
||||
[COMMON]
|
||||
FC : ifort -fpic
|
||||
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 -DINTEL -DSET_NESTED
|
||||
|
||||
# Global options
|
||||
################
|
||||
#
|
||||
# 1 : Activate
|
||||
# 0 : Deactivate
|
||||
#
|
||||
[OPTION]
|
||||
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
|
||||
CACHE : 0 ; Enable cache_compile.py
|
||||
OPENMP : 1 ; Append OpenMP flags
|
||||
|
||||
# Optimization flags
|
||||
####################
|
||||
#
|
||||
# -xHost : Compile a binary optimized for the current architecture
|
||||
# -O2 : O3 not better than O2.
|
||||
# -ip : Inter-procedural optimizations
|
||||
# -ftz : Flushes denormal results to zero
|
||||
#
|
||||
[OPT]
|
||||
FC : -traceback
|
||||
FCFLAGS : -xAVX -O2 -ip -ftz -g
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
|
||||
|
||||
# Debugging flags
|
||||
#################
|
||||
#
|
||||
# -traceback : Activate backtrace on runtime
|
||||
# -fpe0 : All floating point exaceptions
|
||||
# -C : Checks uninitialized variables, array subscripts, etc...
|
||||
# -g : Extra debugging information
|
||||
# -xSSE2 : Valgrind needs a very simple x86 executable
|
||||
#
|
||||
[DEBUG]
|
||||
FC : -g -traceback
|
||||
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
|
||||
|
||||
# OpenMP flags
|
||||
#################
|
||||
#
|
||||
[OPENMP]
|
||||
FC : -qopenmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
|
64
config/ifort_2019_avx_mpi.cfg
Normal file
64
config/ifort_2019_avx_mpi.cfg
Normal file
@ -0,0 +1,64 @@
|
||||
# Common flags
|
||||
##############
|
||||
#
|
||||
# -mkl=[parallel|sequential] : Use the MKL library
|
||||
# --ninja : Allow the utilisation of ninja. It is mandatory !
|
||||
# --align=32 : Align all provided arrays on a 32-byte boundary
|
||||
#
|
||||
[COMMON]
|
||||
FC : mpiifort -fpic
|
||||
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 -DMPI -DINTEL -DSET_NESTED
|
||||
|
||||
# Global options
|
||||
################
|
||||
#
|
||||
# 1 : Activate
|
||||
# 0 : Deactivate
|
||||
#
|
||||
[OPTION]
|
||||
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
|
||||
CACHE : 0 ; Enable cache_compile.py
|
||||
OPENMP : 1 ; Append OpenMP flags
|
||||
|
||||
# Optimization flags
|
||||
####################
|
||||
#
|
||||
# -xHost : Compile a binary optimized for the current architecture
|
||||
# -O2 : O3 not better than O2.
|
||||
# -ip : Inter-procedural optimizations
|
||||
# -ftz : Flushes denormal results to zero
|
||||
#
|
||||
[OPT]
|
||||
FCFLAGS : -mavx -axAVX -O2 -ip -ftz -g -traceback
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS : -march=corei7 -O2 -ip -ftz
|
||||
|
||||
|
||||
# Debugging flags
|
||||
#################
|
||||
#
|
||||
# -traceback : Activate backtrace on runtime
|
||||
# -fpe0 : All floating point exaceptions
|
||||
# -C : Checks uninitialized variables, array subscripts, etc...
|
||||
# -g : Extra debugging information
|
||||
# -xSSE2 : Valgrind needs a very simple x86 executable
|
||||
#
|
||||
[DEBUG]
|
||||
FC : -g -traceback
|
||||
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
|
||||
|
||||
|
||||
# OpenMP flags
|
||||
#################
|
||||
#
|
||||
[OPENMP]
|
||||
FC : -qopenmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
|
63
config/ifort_2019_mpi_rome.cfg
Normal file
63
config/ifort_2019_mpi_rome.cfg
Normal file
@ -0,0 +1,63 @@
|
||||
# Common flags
|
||||
##############
|
||||
#
|
||||
# -mkl=[parallel|sequential] : Use the MKL library
|
||||
# --ninja : Allow the utilisation of ninja. It is mandatory !
|
||||
# --align=32 : Align all provided arrays on a 32-byte boundary
|
||||
#
|
||||
[COMMON]
|
||||
FC : mpiifort -fpic
|
||||
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 -DINTEL -DSET_NESTED
|
||||
|
||||
# Global options
|
||||
################
|
||||
#
|
||||
# 1 : Activate
|
||||
# 0 : Deactivate
|
||||
#
|
||||
[OPTION]
|
||||
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
|
||||
CACHE : 0 ; Enable cache_compile.py
|
||||
OPENMP : 1 ; Append OpenMP flags
|
||||
|
||||
# Optimization flags
|
||||
####################
|
||||
#
|
||||
# -xHost : Compile a binary optimized for the current architecture
|
||||
# -O2 : O3 not better than O2.
|
||||
# -ip : Inter-procedural optimizations
|
||||
# -ftz : Flushes denormal results to zero
|
||||
#
|
||||
[OPT]
|
||||
FC : -traceback -shared-intel
|
||||
FCFLAGS : -O2 -ip -g -march=core-avx2 -align array64byte -fma -ftz -fomit-frame-pointer
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
|
||||
|
||||
# Debugging flags
|
||||
#################
|
||||
#
|
||||
# -traceback : Activate backtrace on runtime
|
||||
# -fpe0 : All floating point exaceptions
|
||||
# -C : Checks uninitialized variables, array subscripts, etc...
|
||||
# -g : Extra debugging information
|
||||
# -xSSE2 : Valgrind needs a very simple x86 executable
|
||||
#
|
||||
[DEBUG]
|
||||
FC : -g -traceback
|
||||
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
|
||||
|
||||
# OpenMP flags
|
||||
#################
|
||||
#
|
||||
[OPENMP]
|
||||
FC : -qopenmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
|
63
config/ifort_2019_rome.cfg
Normal file
63
config/ifort_2019_rome.cfg
Normal file
@ -0,0 +1,63 @@
|
||||
# Common flags
|
||||
##############
|
||||
#
|
||||
# -mkl=[parallel|sequential] : Use the MKL library
|
||||
# --ninja : Allow the utilisation of ninja. It is mandatory !
|
||||
# --align=32 : Align all provided arrays on a 32-byte boundary
|
||||
#
|
||||
[COMMON]
|
||||
FC : ifort -fpic
|
||||
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 -DINTEL -DSET_NESTED
|
||||
|
||||
# Global options
|
||||
################
|
||||
#
|
||||
# 1 : Activate
|
||||
# 0 : Deactivate
|
||||
#
|
||||
[OPTION]
|
||||
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
|
||||
CACHE : 0 ; Enable cache_compile.py
|
||||
OPENMP : 1 ; Append OpenMP flags
|
||||
|
||||
# Optimization flags
|
||||
####################
|
||||
#
|
||||
# -xHost : Compile a binary optimized for the current architecture
|
||||
# -O2 : O3 not better than O2.
|
||||
# -ip : Inter-procedural optimizations
|
||||
# -ftz : Flushes denormal results to zero
|
||||
#
|
||||
[OPT]
|
||||
FC : -traceback -shared-intel
|
||||
FCFLAGS : -O2 -ip -g -march=core-avx2 -align array64byte -fma -ftz -fomit-frame-pointer
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
|
||||
|
||||
# Debugging flags
|
||||
#################
|
||||
#
|
||||
# -traceback : Activate backtrace on runtime
|
||||
# -fpe0 : All floating point exaceptions
|
||||
# -C : Checks uninitialized variables, array subscripts, etc...
|
||||
# -g : Extra debugging information
|
||||
# -xSSE2 : Valgrind needs a very simple x86 executable
|
||||
#
|
||||
[DEBUG]
|
||||
FC : -g -traceback
|
||||
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
|
||||
|
||||
# OpenMP flags
|
||||
#################
|
||||
#
|
||||
[OPENMP]
|
||||
FC : -qopenmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
|
63
config/ifort_2019_sse4.cfg
Normal file
63
config/ifort_2019_sse4.cfg
Normal file
@ -0,0 +1,63 @@
|
||||
# Common flags
|
||||
##############
|
||||
#
|
||||
# -mkl=[parallel|sequential] : Use the MKL library
|
||||
# --ninja : Allow the utilisation of ninja. It is mandatory !
|
||||
# --align=32 : Align all provided arrays on a 32-byte boundary
|
||||
#
|
||||
[COMMON]
|
||||
FC : ifort -fpic
|
||||
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 -DINTEL -DSET_NESTED
|
||||
|
||||
# Global options
|
||||
################
|
||||
#
|
||||
# 1 : Activate
|
||||
# 0 : Deactivate
|
||||
#
|
||||
[OPTION]
|
||||
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
|
||||
CACHE : 0 ; Enable cache_compile.py
|
||||
OPENMP : 1 ; Append OpenMP flags
|
||||
|
||||
# Optimization flags
|
||||
####################
|
||||
#
|
||||
# -xHost : Compile a binary optimized for the current architecture
|
||||
# -O2 : O3 not better than O2.
|
||||
# -ip : Inter-procedural optimizations
|
||||
# -ftz : Flushes denormal results to zero
|
||||
#
|
||||
[OPT]
|
||||
FC : -traceback
|
||||
FCFLAGS : -xSSE4.2 -O2 -ip -ftz -g
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
|
||||
|
||||
# Debugging flags
|
||||
#################
|
||||
#
|
||||
# -traceback : Activate backtrace on runtime
|
||||
# -fpe0 : All floating point exaceptions
|
||||
# -C : Checks uninitialized variables, array subscripts, etc...
|
||||
# -g : Extra debugging information
|
||||
# -xSSE2 : Valgrind needs a very simple x86 executable
|
||||
#
|
||||
[DEBUG]
|
||||
FC : -g -traceback
|
||||
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
|
||||
|
||||
# OpenMP flags
|
||||
#################
|
||||
#
|
||||
[OPENMP]
|
||||
FC : -qopenmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
|
64
config/ifort_2019_sse4_mpi.cfg
Normal file
64
config/ifort_2019_sse4_mpi.cfg
Normal file
@ -0,0 +1,64 @@
|
||||
# Common flags
|
||||
##############
|
||||
#
|
||||
# -mkl=[parallel|sequential] : Use the MKL library
|
||||
# --ninja : Allow the utilisation of ninja. It is mandatory !
|
||||
# --align=32 : Align all provided arrays on a 32-byte boundary
|
||||
#
|
||||
[COMMON]
|
||||
FC : mpiifort -fpic
|
||||
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 -DMPI -DINTEL -DSET_NESTED
|
||||
|
||||
# Global options
|
||||
################
|
||||
#
|
||||
# 1 : Activate
|
||||
# 0 : Deactivate
|
||||
#
|
||||
[OPTION]
|
||||
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
|
||||
CACHE : 0 ; Enable cache_compile.py
|
||||
OPENMP : 1 ; Append OpenMP flags
|
||||
|
||||
# Optimization flags
|
||||
####################
|
||||
#
|
||||
# -xHost : Compile a binary optimized for the current architecture
|
||||
# -O2 : O3 not better than O2.
|
||||
# -ip : Inter-procedural optimizations
|
||||
# -ftz : Flushes denormal results to zero
|
||||
#
|
||||
[OPT]
|
||||
FCFLAGS : -msse4.2 -O2 -ip -ftz -g -traceback
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS : -msse4.2 -O2 -ip -ftz
|
||||
|
||||
|
||||
# Debugging flags
|
||||
#################
|
||||
#
|
||||
# -traceback : Activate backtrace on runtime
|
||||
# -fpe0 : All floating point exaceptions
|
||||
# -C : Checks uninitialized variables, array subscripts, etc...
|
||||
# -g : Extra debugging information
|
||||
# -xSSE2 : Valgrind needs a very simple x86 executable
|
||||
#
|
||||
[DEBUG]
|
||||
FC : -g -traceback
|
||||
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
|
||||
|
||||
|
||||
# OpenMP flags
|
||||
#################
|
||||
#
|
||||
[OPENMP]
|
||||
FC : -qopenmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
|
63
config/ifort_2019_xHost.cfg
Normal file
63
config/ifort_2019_xHost.cfg
Normal file
@ -0,0 +1,63 @@
|
||||
# Common flags
|
||||
##############
|
||||
#
|
||||
# -mkl=[parallel|sequential] : Use the MKL library
|
||||
# --ninja : Allow the utilisation of ninja. It is mandatory !
|
||||
# --align=32 : Align all provided arrays on a 32-byte boundary
|
||||
#
|
||||
[COMMON]
|
||||
FC : ifort -fpic
|
||||
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=64 -DINTEL -DSET_NESTED
|
||||
|
||||
# Global options
|
||||
################
|
||||
#
|
||||
# 1 : Activate
|
||||
# 0 : Deactivate
|
||||
#
|
||||
[OPTION]
|
||||
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
|
||||
CACHE : 0 ; Enable cache_compile.py
|
||||
OPENMP : 1 ; Append OpenMP flags
|
||||
|
||||
# Optimization flags
|
||||
####################
|
||||
#
|
||||
# -xHost : Compile a binary optimized for the current architecture
|
||||
# -O2 : O3 not better than O2.
|
||||
# -ip : Inter-procedural optimizations
|
||||
# -ftz : Flushes denormal results to zero
|
||||
#
|
||||
[OPT]
|
||||
FC : -traceback
|
||||
FCFLAGS : -xHost -O2 -ip -ftz -g
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
|
||||
|
||||
# Debugging flags
|
||||
#################
|
||||
#
|
||||
# -traceback : Activate backtrace on runtime
|
||||
# -fpe0 : All floating point exaceptions
|
||||
# -C : Checks uninitialized variables, array subscripts, etc...
|
||||
# -g : Extra debugging information
|
||||
# -xSSE2 : Valgrind needs a very simple x86 executable
|
||||
#
|
||||
[DEBUG]
|
||||
FC : -g -traceback
|
||||
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
|
||||
|
||||
# OpenMP flags
|
||||
#################
|
||||
#
|
||||
[OPENMP]
|
||||
FC : -qopenmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
|
@ -9,7 +9,7 @@
|
||||
FC : ifort -fpic
|
||||
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 -DINTEL
|
||||
IRPF90_FLAGS : --ninja --align=32 -DINTEL
|
||||
|
||||
# Global options
|
||||
################
|
@ -9,7 +9,7 @@
|
||||
FC : mpiifort -fpic
|
||||
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 -DMPI -DINTEL
|
||||
IRPF90_FLAGS : --ninja --align=32 -DMPI -DINTEL
|
||||
|
||||
# Global options
|
||||
################
|
63
config/ifort_2021_mpi_rome.cfg
Normal file
63
config/ifort_2021_mpi_rome.cfg
Normal file
@ -0,0 +1,63 @@
|
||||
# Common flags
|
||||
##############
|
||||
#
|
||||
# -mkl=[parallel|sequential] : Use the MKL library
|
||||
# --ninja : Allow the utilisation of ninja. It is mandatory !
|
||||
# --align=32 : Align all provided arrays on a 32-byte boundary
|
||||
#
|
||||
[COMMON]
|
||||
FC : mpiifort -fpic
|
||||
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 -DINTEL
|
||||
|
||||
# Global options
|
||||
################
|
||||
#
|
||||
# 1 : Activate
|
||||
# 0 : Deactivate
|
||||
#
|
||||
[OPTION]
|
||||
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
|
||||
CACHE : 0 ; Enable cache_compile.py
|
||||
OPENMP : 1 ; Append OpenMP flags
|
||||
|
||||
# Optimization flags
|
||||
####################
|
||||
#
|
||||
# -xHost : Compile a binary optimized for the current architecture
|
||||
# -O2 : O3 not better than O2.
|
||||
# -ip : Inter-procedural optimizations
|
||||
# -ftz : Flushes denormal results to zero
|
||||
#
|
||||
[OPT]
|
||||
FC : -traceback -shared-intel
|
||||
FCFLAGS : -O2 -ip -g -march=core-avx2 -align array64byte -fma -ftz -fomit-frame-pointer
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
|
||||
|
||||
# Debugging flags
|
||||
#################
|
||||
#
|
||||
# -traceback : Activate backtrace on runtime
|
||||
# -fpe0 : All floating point exaceptions
|
||||
# -C : Checks uninitialized variables, array subscripts, etc...
|
||||
# -g : Extra debugging information
|
||||
# -xSSE2 : Valgrind needs a very simple x86 executable
|
||||
#
|
||||
[DEBUG]
|
||||
FC : -g -traceback
|
||||
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
|
||||
|
||||
# OpenMP flags
|
||||
#################
|
||||
#
|
||||
[OPENMP]
|
||||
FC : -qopenmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
|
@ -9,7 +9,7 @@
|
||||
FC : ifort -fpic
|
||||
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 -DINTEL
|
||||
IRPF90_FLAGS : --ninja --align=32 -DINTEL
|
||||
|
||||
# Global options
|
||||
################
|
@ -9,7 +9,7 @@
|
||||
FC : ifort -fpic
|
||||
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 -DINTEL
|
||||
IRPF90_FLAGS : --ninja --align=32 -DINTEL
|
||||
|
||||
# Global options
|
||||
################
|
@ -9,7 +9,7 @@
|
||||
FC : mpiifort -fpic
|
||||
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 -DMPI -DINTEL
|
||||
IRPF90_FLAGS : --ninja --align=32 -DMPI -DINTEL
|
||||
|
||||
# Global options
|
||||
################
|
@ -9,7 +9,7 @@
|
||||
FC : ifort -fpic
|
||||
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=64 -DINTEL
|
||||
IRPF90_FLAGS : --ninja --align=64 -DINTEL
|
||||
|
||||
# Global options
|
||||
################
|
@ -1,66 +0,0 @@
|
||||
# Common flags
|
||||
##############
|
||||
#
|
||||
# -mkl=[parallel|sequential] : Use the MKL library
|
||||
# --ninja : Allow the utilisation of ninja. It is mandatory !
|
||||
# --align=32 : Align all provided arrays on a 32-byte boundary
|
||||
#
|
||||
[COMMON]
|
||||
FC : ifort -fpic
|
||||
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
|
||||
IRPF90 : irpf90
|
||||
IRPF90_FLAGS : --ninja --align=32 --assert -DINTEL
|
||||
|
||||
# Global options
|
||||
################
|
||||
#
|
||||
# 1 : Activate
|
||||
# 0 : Deactivate
|
||||
#
|
||||
[OPTION]
|
||||
MODE : DEBUG ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
|
||||
CACHE : 0 ; Enable cache_compile.py
|
||||
OPENMP : 1 ; Append OpenMP flags
|
||||
|
||||
# Optimization flags
|
||||
####################
|
||||
#
|
||||
# -xHost : Compile a binary optimized for the current architecture
|
||||
# -O2 : O3 not better than O2.
|
||||
# -ip : Inter-procedural optimizations
|
||||
# -ftz : Flushes denormal results to zero
|
||||
#
|
||||
[OPT]
|
||||
FC : -traceback
|
||||
FCFLAGS : -msse4.2 -O2 -ip -ftz -g
|
||||
|
||||
|
||||
# Profiling flags
|
||||
#################
|
||||
#
|
||||
[PROFILE]
|
||||
FC : -p -g
|
||||
FCFLAGS : -msse4.2 -O2 -ip -ftz
|
||||
|
||||
|
||||
# Debugging flags
|
||||
#################
|
||||
#
|
||||
# -traceback : Activate backtrace on runtime
|
||||
# -fpe0 : All floating point exaceptions
|
||||
# -C : Checks uninitialized variables, array subscripts, etc...
|
||||
# -g : Extra debugging information
|
||||
# -msse4.2 : Valgrind needs a very simple x86 executable
|
||||
#
|
||||
[DEBUG]
|
||||
FC : -g -traceback
|
||||
FCFLAGS : -msse4.2 -check all -debug all -fpe-all=0 -implicitnone
|
||||
|
||||
|
||||
# OpenMP flags
|
||||
#################
|
||||
#
|
||||
[OPENMP]
|
||||
FC : -qopenmp
|
||||
IRPF90_FLAGS : --openmp
|
||||
|
@ -204,6 +204,9 @@ _qp_Complete()
|
||||
uninstall)
|
||||
COMPREPLY=( $(compgen -W "$(qp_plugins list -i)" -- $cur ) )
|
||||
return 0;;
|
||||
remove)
|
||||
COMPREPLY=( $(compgen -W "$(qp_plugins list -i)" -- $cur ) )
|
||||
return 0;;
|
||||
create)
|
||||
COMPREPLY=( $(compgen -W "-n " -- $cur ) )
|
||||
return 0;;
|
||||
|
@ -91,7 +91,7 @@ let run ?o b au c d m p cart xyz_file =
|
||||
| Element e -> Element.to_string e
|
||||
| Int_elem (i,e) -> Printf.sprintf "%d,%s" (Nucl_number.to_int i) (Element.to_string e)
|
||||
in
|
||||
Hashtbl.find basis_table key
|
||||
Hashtbl.find basis_table key
|
||||
in
|
||||
|
||||
let temp_filename =
|
||||
@ -132,7 +132,7 @@ let run ?o b au c d m p cart xyz_file =
|
||||
Element.to_string elem.Atom.element
|
||||
in
|
||||
Hashtbl.add basis_table key new_channel
|
||||
) nuclei
|
||||
) nuclei
|
||||
end
|
||||
| Some (key, basis) -> (*Aux basis *)
|
||||
begin
|
||||
@ -277,6 +277,16 @@ let run ?o b au c d m p cart xyz_file =
|
||||
) nuclei
|
||||
in
|
||||
|
||||
let z_core =
|
||||
List.map (fun x ->
|
||||
Positive_int.to_int x.Pseudo.n_elec
|
||||
|> float_of_int
|
||||
) pseudo
|
||||
in
|
||||
let nucl_num = (List.length z_core) in
|
||||
Ezfio.set_pseudo_nucl_charge_remove (Ezfio.ezfio_array_of_list
|
||||
~rank:1 ~dim:[| nucl_num |] ~data:z_core);
|
||||
|
||||
let molecule =
|
||||
let n_elec_to_remove =
|
||||
List.fold_left (fun accu x ->
|
||||
@ -293,13 +303,13 @@ let run ?o b au c d m p cart xyz_file =
|
||||
Molecule.nuclei =
|
||||
let charges =
|
||||
list_map (fun x -> Positive_int.to_int x.Pseudo.n_elec
|
||||
|> Float.of_int) pseudo
|
||||
|> Float.of_int) pseudo
|
||||
|> Array.of_list
|
||||
in
|
||||
List.mapi (fun i x ->
|
||||
{ x with Atom.charge = (Charge.to_float x.Atom.charge) -. charges.(i)
|
||||
|> Charge.of_float }
|
||||
) molecule.Molecule.nuclei
|
||||
) molecule.Molecule.nuclei
|
||||
}
|
||||
in
|
||||
let nuclei =
|
||||
@ -356,11 +366,11 @@ let run ?o b au c d m p cart xyz_file =
|
||||
in
|
||||
if (x > accu) then x
|
||||
else accu
|
||||
) 0 x.Pseudo.non_local
|
||||
) 0 x.Pseudo.non_local
|
||||
in
|
||||
if (x > accu) then x
|
||||
else accu
|
||||
) 0 pseudo
|
||||
) 0 pseudo
|
||||
in
|
||||
|
||||
let kmax =
|
||||
@ -368,10 +378,10 @@ let run ?o b au c d m p cart xyz_file =
|
||||
list_map (fun x ->
|
||||
List.filter (fun (y,_) ->
|
||||
(Positive_int.to_int y.Pseudo.GaussianPrimitive_non_local.proj) = i)
|
||||
x.Pseudo.non_local
|
||||
|> List.length ) pseudo
|
||||
x.Pseudo.non_local
|
||||
|> List.length ) pseudo
|
||||
|> List.fold_left (fun accu x ->
|
||||
if accu > x then accu else x) 0
|
||||
if accu > x then accu else x) 0
|
||||
)
|
||||
|> Array.fold_left (fun accu i ->
|
||||
if i > accu then i else accu) 0
|
||||
@ -396,11 +406,11 @@ let run ?o b au c d m p cart xyz_file =
|
||||
in
|
||||
tmp_array_dz_k.(i).(j) <- y;
|
||||
tmp_array_n_k.(i).(j) <- z;
|
||||
) x.Pseudo.local
|
||||
) x.Pseudo.local
|
||||
) pseudo ;
|
||||
let concat_2d tmp_array =
|
||||
let data =
|
||||
Array.map Array.to_list tmp_array
|
||||
Array.map Array.to_list tmp_array
|
||||
|> Array.to_list
|
||||
|> List.concat
|
||||
in
|
||||
@ -438,14 +448,14 @@ let run ?o b au c d m p cart xyz_file =
|
||||
tmp_array_dz_kl.(k).(i).(j) <- y;
|
||||
tmp_array_n_kl.(k).(i).(j) <- z;
|
||||
last_idx.(k) <- i+1;
|
||||
) x.Pseudo.non_local
|
||||
) x.Pseudo.non_local
|
||||
) pseudo ;
|
||||
let concat_3d tmp_array =
|
||||
let data =
|
||||
Array.map (fun x ->
|
||||
Array.map Array.to_list x
|
||||
|> Array.to_list
|
||||
|> List.concat) tmp_array
|
||||
|> List.concat) tmp_array
|
||||
|> Array.to_list
|
||||
|> List.concat
|
||||
in
|
||||
@ -513,8 +523,8 @@ let run ?o b au c d m p cart xyz_file =
|
||||
Ezfio.set_ao_basis_ao_num ao_num;
|
||||
Ezfio.set_ao_basis_ao_basis b;
|
||||
Ezfio.set_basis_basis b;
|
||||
let ao_prim_num = list_map (fun (_,g,_) -> List.length g.Gto.lc) long_basis
|
||||
and ao_nucl = list_map (fun (_,_,n) -> Nucl_number.to_int n) long_basis
|
||||
let ao_prim_num = list_map (fun (_,g,_) -> List.length g.Gto.lc) long_basis
|
||||
and ao_nucl = list_map (fun (_,_,n) -> Nucl_number.to_int n) long_basis
|
||||
and ao_power=
|
||||
let l = list_map (fun (x,_,_) -> x) long_basis in
|
||||
(list_map (fun t -> Positive_int.to_int Angmom.Xyz.(t.x)) l)@
|
||||
@ -526,7 +536,7 @@ let run ?o b au c d m p cart xyz_file =
|
||||
else s) 0 ao_prim_num
|
||||
in
|
||||
let gtos =
|
||||
list_map (fun (_,x,_) -> x) long_basis
|
||||
list_map (fun (_,x,_) -> x) long_basis
|
||||
in
|
||||
|
||||
let create_expo_coef ec =
|
||||
@ -534,10 +544,10 @@ let run ?o b au c d m p cart xyz_file =
|
||||
begin match ec with
|
||||
| `Coefs -> list_map (fun x->
|
||||
list_map (fun (_,coef) ->
|
||||
AO_coef.to_float coef) x.Gto.lc) gtos
|
||||
AO_coef.to_float coef) x.Gto.lc) gtos
|
||||
| `Expos -> list_map (fun x->
|
||||
list_map (fun (prim,_) -> AO_expo.to_float
|
||||
prim.GaussianPrimitive.expo) x.Gto.lc) gtos
|
||||
prim.GaussianPrimitive.expo) x.Gto.lc) gtos
|
||||
end
|
||||
in
|
||||
let rec get_n n accu = function
|
||||
@ -567,7 +577,7 @@ let run ?o b au c d m p cart xyz_file =
|
||||
list_map ( fun (g,_) -> g.Gto.lc ) basis
|
||||
in
|
||||
let ang_mom =
|
||||
list_map (fun (l : (GaussianPrimitive.t * Qptypes.AO_coef.t) list) ->
|
||||
list_map (fun (l : (GaussianPrimitive.t * Qptypes.AO_coef.t) list) ->
|
||||
let x, _ = List.hd l in
|
||||
Angmom.to_l x.GaussianPrimitive.sym |> Qptypes.Positive_int.to_int
|
||||
) lc
|
||||
@ -577,7 +587,7 @@ let run ?o b au c d m p cart xyz_file =
|
||||
|> List.concat
|
||||
in
|
||||
let coef =
|
||||
list_map (fun l ->
|
||||
list_map (fun l ->
|
||||
list_map (fun (_,x) -> Qptypes.AO_coef.to_float x) l
|
||||
) lc
|
||||
|> List.concat
|
||||
@ -585,12 +595,16 @@ let run ?o b au c d m p cart xyz_file =
|
||||
let shell_prim_num =
|
||||
list_map List.length lc
|
||||
in
|
||||
let shell_prim_idx =
|
||||
let shell_idx =
|
||||
let rec make_list n accu = function
|
||||
| 0 -> accu
|
||||
| i -> make_list n (n :: accu) (i-1)
|
||||
in
|
||||
let rec aux count accu = function
|
||||
| [] -> List.rev accu
|
||||
| l::rest ->
|
||||
let newcount = count+(List.length l) in
|
||||
aux newcount (count::accu) rest
|
||||
let new_l = make_list count accu (List.length l) in
|
||||
aux (count+1) new_l rest
|
||||
in
|
||||
aux 1 [] lc
|
||||
in
|
||||
@ -602,26 +616,18 @@ let run ?o b au c d m p cart xyz_file =
|
||||
~rank:1 ~dim:[| shell_num |] ~data:shell_prim_num);
|
||||
Ezfio.set_basis_shell_ang_mom (Ezfio.ezfio_array_of_list
|
||||
~rank:1 ~dim:[| shell_num |] ~data:ang_mom ) ;
|
||||
Ezfio.set_basis_shell_prim_index (Ezfio.ezfio_array_of_list
|
||||
~rank:1 ~dim:[| shell_num |] ~data:shell_prim_idx) ;
|
||||
Ezfio.set_basis_shell_index (Ezfio.ezfio_array_of_list
|
||||
~rank:1 ~dim:[| prim_num |] ~data:shell_idx) ;
|
||||
Ezfio.set_basis_basis_nucleus_index (Ezfio.ezfio_array_of_list
|
||||
~rank:1 ~dim:[| nucl_num |]
|
||||
~data:(
|
||||
list_map (fun (_,n) -> Nucl_number.to_int n) basis
|
||||
|> List.fold_left (fun accu i ->
|
||||
match accu with
|
||||
| [] -> []
|
||||
| (h,j) :: rest -> if j == i then ((h+1,j)::rest) else ((h+1,i)::(h+1,j)::rest)
|
||||
) [(0,0)]
|
||||
|> List.rev
|
||||
|> List.map fst
|
||||
)) ;
|
||||
~rank:1 ~dim:[| shell_num |]
|
||||
~data:( list_map (fun (_,n) -> Nucl_number.to_int n) basis)
|
||||
) ;
|
||||
Ezfio.set_basis_nucleus_shell_num(Ezfio.ezfio_array_of_list
|
||||
~rank:1 ~dim:[| nucl_num |]
|
||||
~data:(
|
||||
list_map (fun (_,n) -> Nucl_number.to_int n) basis
|
||||
|> List.fold_left (fun accu i ->
|
||||
match accu with
|
||||
|> List.fold_left (fun accu i ->
|
||||
match accu with
|
||||
| [] -> [(1,i)]
|
||||
| (h,j) :: rest -> if j == i then ((h+1,j)::rest) else ((1,i)::(h,j)::rest)
|
||||
) []
|
||||
@ -717,7 +723,7 @@ If a file with the same name as the basis set exists, this file will be read. O
|
||||
|
||||
anonymous "FILE" Mandatory "Input file in xyz format or z-matrix.";
|
||||
]
|
||||
|> set_specs
|
||||
|> set_specs
|
||||
end;
|
||||
|
||||
|
||||
@ -741,7 +747,7 @@ If a file with the same name as the basis set exists, this file will be read. O
|
||||
| None -> 0
|
||||
| Some x -> ( if x.[0] = 'm' then
|
||||
~- (int_of_string (String.sub x 1 (String.length x - 1)))
|
||||
else
|
||||
else
|
||||
int_of_string x )
|
||||
in
|
||||
|
||||
|
27
scripts/cipsi_save.sh
Normal file
27
scripts/cipsi_save.sh
Normal file
@ -0,0 +1,27 @@
|
||||
#!/bin/bash
|
||||
#
|
||||
# This script runs a CIPSI calculation as a sequence of single CIPSI iterations.
|
||||
# After each iteration, the EZFIO directory is saved.
|
||||
#
|
||||
# Usage: cipsi_save [EZFIO_FILE] [NDET]
|
||||
#
|
||||
# Example: cipsi_save file.ezfio 10000
|
||||
|
||||
EZ=$1
|
||||
NDETMAX=$2
|
||||
|
||||
qp set_file ${EZ}
|
||||
qp reset -d
|
||||
qp set determinants read_wf true
|
||||
declare -i NDET
|
||||
NDET=1
|
||||
while [[ ${NDET} -lt ${NDETMAX} ]]
|
||||
do
|
||||
NDET=$(($NDET + $NDET))
|
||||
qp set determinants n_det_max $NDET
|
||||
qp run fci > ${EZ}.out
|
||||
NDET=$(qp get determinants n_det)
|
||||
mv ${EZ}.out ${EZ}.${NDET}.out
|
||||
cp -r ${EZ} ${EZ}.${NDET}
|
||||
done
|
||||
|
@ -116,6 +116,7 @@ def get_l_module_descendant(d_child, l_module):
|
||||
print("Error: ", file=sys.stderr)
|
||||
print("`{0}` is not a submodule".format(module), file=sys.stderr)
|
||||
print("Check the typo (spelling, case, '/', etc.) ", file=sys.stderr)
|
||||
# pass
|
||||
sys.exit(1)
|
||||
|
||||
return list(set(l))
|
||||
|
175
scripts/verif_omp/check_omp.f90
Normal file
175
scripts/verif_omp/check_omp.f90
Normal file
@ -0,0 +1,175 @@
|
||||
program check_omp_v2
|
||||
|
||||
use omp_lib
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: accu, accu2
|
||||
integer :: s, n_setting
|
||||
logical :: verbose, test_versions
|
||||
logical, allocatable :: is_working(:)
|
||||
|
||||
verbose = .False.
|
||||
test_versions = .True.
|
||||
n_setting = 4
|
||||
|
||||
allocate(is_working(n_setting))
|
||||
|
||||
is_working = .False.
|
||||
|
||||
! set the number of threads
|
||||
call omp_set_num_threads(2)
|
||||
|
||||
do s = 1, n_setting
|
||||
|
||||
accu = 0
|
||||
accu2 = 0
|
||||
|
||||
call omp_set_max_active_levels(1)
|
||||
call omp_set_nested(.False.)
|
||||
|
||||
if (s==1) then
|
||||
!call set_multiple_levels_omp()
|
||||
cycle
|
||||
elseif (s==2) then
|
||||
call omp_set_max_active_levels(5)
|
||||
elseif (s==3) then
|
||||
call omp_set_nested(.True.)
|
||||
else
|
||||
call omp_set_nested(.True.)
|
||||
call omp_set_max_active_levels(5)
|
||||
endif
|
||||
|
||||
! Level 1
|
||||
!$OMP PARALLEL
|
||||
if (verbose) then
|
||||
print*,'Num threads level 1:',omp_get_num_threads()
|
||||
endif
|
||||
|
||||
! Level 2
|
||||
!$OMP PARALLEL
|
||||
if (verbose) then
|
||||
print*,'Num threads level 2:',omp_get_num_threads()
|
||||
endif
|
||||
|
||||
! Level 3
|
||||
!$OMP PARALLEL
|
||||
if (verbose) then
|
||||
print*,'Num threads level 3:',omp_get_num_threads()
|
||||
endif
|
||||
|
||||
call check_omp_in_subroutine(accu2)
|
||||
|
||||
! Level 4
|
||||
!$OMP PARALLEL
|
||||
|
||||
if (verbose) then
|
||||
print*,'Num threads level 4:',omp_get_num_threads()
|
||||
endif
|
||||
|
||||
!$OMP ATOMIC
|
||||
accu = accu + 1
|
||||
!$OMP END ATOMIC
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
if (verbose) then
|
||||
print*,'Setting:',s,'accu=',accu
|
||||
print*,'Setting:',s,'accu2=',accu2
|
||||
endif
|
||||
|
||||
if (accu == 16 .and. accu2 == 16) then
|
||||
is_working(s) = .True.
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
if (verbose) then
|
||||
if (is_working(2)) then
|
||||
print*,'The parallelization works on 4 levels with:'
|
||||
print*,'call omp_set_max_active_levels(5)'
|
||||
print*,''
|
||||
print*,'Please use the irpf90 flags -DSET_MAX_ACT in qp2/config/${compiler_name}.cfg'
|
||||
elseif (is_working(3)) then
|
||||
print*,'The parallelization works on 4 levels with:'
|
||||
print*,'call omp_set_nested(.True.)'
|
||||
print*,''
|
||||
print*,'Please use the irpf90 flag -DSET_NESTED in qp2/config/${compiler_name}.cfg'
|
||||
elseif (is_working(4)) then
|
||||
print*,'The parallelization works on 4 levels with:'
|
||||
print*,'call omp_set_nested(.True.)'
|
||||
print*,'+'
|
||||
print*,'call omp_set_max_active_levels(5)'
|
||||
print*,''
|
||||
print*,'Please use the irpf90 flags -DSET_NESTED -DSET_MAX_ACT in qp2/config/${compiler_name}.cfg'
|
||||
else
|
||||
print*,'The parallelization on multiple levels does not work with:'
|
||||
print*,'call omp_set_max_active_levels(5)'
|
||||
print*,'or'
|
||||
print*,'call omp_set_nested(.True.)'
|
||||
print*,'or'
|
||||
print*,'call omp_set_nested(.True.)'
|
||||
print*,'+'
|
||||
print*,'call omp_set_max_active_levels(5)'
|
||||
print*,''
|
||||
print*,'Try an other compiler and good luck...'
|
||||
endif
|
||||
|
||||
! if (is_working(1)) then
|
||||
! print*,''
|
||||
! print*,'=========================================================='
|
||||
! print*,'Your actual set up works for parallelization with 4 levels'
|
||||
! print*,'=========================================================='
|
||||
! print*,''
|
||||
! else
|
||||
! print*,''
|
||||
! print*,'==================================================================='
|
||||
! print*,'Your actual set up does not work for parallelization with 4 levels'
|
||||
! print*,'Please look at the previous messages to understand the requirements'
|
||||
! print*,'==================================================================='
|
||||
! print*,''
|
||||
! endif
|
||||
endif
|
||||
|
||||
! List of working flags
|
||||
if (test_versions) then
|
||||
print*,'Tests:',is_working(2:4)
|
||||
endif
|
||||
|
||||
! IRPF90_FLAGS
|
||||
if (is_working(2)) then
|
||||
print*,'-DSET_MAX_ACT'
|
||||
elseif (is_working(3)) then
|
||||
print*,'-DSET_NESTED'
|
||||
elseif (is_working(4)) then
|
||||
print*,'-DSET_MAX_ACT -DSET_NESTED'
|
||||
else
|
||||
print*,'ERROR'
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
subroutine check_omp_in_subroutine(accu2)
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(inout) :: accu2
|
||||
|
||||
!$OMP PARALLEL
|
||||
|
||||
!$OMP ATOMIC
|
||||
accu2 = accu2 + 1
|
||||
!$OMP END ATOMIC
|
||||
|
||||
!$OMP END PARALLEL
|
||||
|
||||
end
|
19
scripts/verif_omp/check_required_setup.sh
Executable file
19
scripts/verif_omp/check_required_setup.sh
Executable file
@ -0,0 +1,19 @@
|
||||
#!/bin/sh
|
||||
|
||||
# take one argument which is the compiler used
|
||||
# return the required IRPF90_FLAGS for the $1 compiler
|
||||
|
||||
if [ -z "$1" ]
|
||||
then
|
||||
echo "Give the compiler in argument"
|
||||
else
|
||||
|
||||
$1 --version > /dev/null \
|
||||
&& $1 -O0 -fopenmp check_omp.f90 \
|
||||
&& ./a.out | tail -n 1
|
||||
|
||||
|
||||
# if there is an error or if the compiler is not found
|
||||
$1 --version > /dev/null || echo 'compiler not found'
|
||||
|
||||
fi
|
30
scripts/verif_omp/study_omp.sh
Executable file
30
scripts/verif_omp/study_omp.sh
Executable file
@ -0,0 +1,30 @@
|
||||
#!/bin/sh
|
||||
|
||||
# list of compilers
|
||||
list_comp="ifort gfortran-7 gfortran-8 gfortran-9"
|
||||
|
||||
# file to store the results
|
||||
FILE=results.dat
|
||||
|
||||
touch $FILE
|
||||
rm $FILE
|
||||
|
||||
# Comments
|
||||
echo "1: omp_set_max_active_levels(5)" >> $FILE
|
||||
echo "2: omp_set_nested(.True.)" >> $FILE
|
||||
echo "3: 1 + 2" >> $FILE
|
||||
echo "" >> $FILE
|
||||
echo "1 2 3" >> $FILE
|
||||
|
||||
# loop on the comp
|
||||
for comp in $list_comp
|
||||
do
|
||||
$comp --version > /dev/null \
|
||||
&& $comp -O0 -fopenmp check_omp.f90 \
|
||||
&& echo $(./a.out | grep "Tests:" | cut -d ":" -f2- ) $(echo " : ") $($comp --version | head -n 1) >> $FILE
|
||||
|
||||
done
|
||||
|
||||
# Display
|
||||
cat $FILE
|
||||
|
49
scripts/verif_omp/update_comp.sh
Executable file
49
scripts/verif_omp/update_comp.sh
Executable file
@ -0,0 +1,49 @@
|
||||
#!/bin/bash
|
||||
|
||||
# Compiler
|
||||
COMP=$1
|
||||
|
||||
# Path to file.cfg
|
||||
config_PATH="../../config/"
|
||||
END="*.cfg"
|
||||
CONFIG="/config/"
|
||||
|
||||
#LIST=${config_PATH}${COMP}${END} # without ${QP_ROOT}
|
||||
LIST=${QP_ROOT}${CONFIG}${COMP}${END}
|
||||
|
||||
if [ -z "$1" ]
|
||||
then
|
||||
echo "Give the compiler in argument"
|
||||
else
|
||||
|
||||
# List of the config files for the compiler
|
||||
#list_files=$(ls ../../config/$comp*.cfg) #does not give the right list
|
||||
list_files=${LIST}
|
||||
echo "Files that will be modified:"
|
||||
echo $list_files
|
||||
|
||||
# Flags that must be added
|
||||
FLAGS=$(./check_required_setup.sh $COMP)
|
||||
|
||||
# Add the flags
|
||||
for file in $list_files
|
||||
do
|
||||
echo $file
|
||||
BASE="IRPF90_FLAGS : --ninja"
|
||||
ACTUAL=$(grep "$BASE" $file)
|
||||
|
||||
# To have only one time each flag
|
||||
grep " -DSET_MAX_ACT" $file && ${ACTUAL/" -DSET_MAX"/""}
|
||||
grep " -DSET_NESTED" $file && ${ACTUAL/" -DSET_NESTED"/""}
|
||||
SPACE=" "
|
||||
|
||||
NEW=${ACTUAL}${SPACE}${FLAGS}
|
||||
|
||||
# Debug
|
||||
#echo ${NEW}
|
||||
|
||||
sed "s/${ACTUAL}/${NEW}/" $file
|
||||
# -i # to change the files
|
||||
done
|
||||
|
||||
fi
|
@ -12,21 +12,21 @@ double precision function ao_value(i,r)
|
||||
integer :: power_ao(3)
|
||||
double precision :: accu,dx,dy,dz,r2
|
||||
num_ao = ao_nucl(i)
|
||||
power_ao(1:3)= ao_power(i,1:3)
|
||||
center_ao(1:3) = nucl_coord(num_ao,1:3)
|
||||
dx = (r(1) - center_ao(1))
|
||||
dy = (r(2) - center_ao(2))
|
||||
dz = (r(3) - center_ao(3))
|
||||
r2 = dx*dx + dy*dy + dz*dz
|
||||
dx = dx**power_ao(1)
|
||||
dy = dy**power_ao(2)
|
||||
dz = dz**power_ao(3)
|
||||
! power_ao(1:3)= ao_power(i,1:3)
|
||||
! center_ao(1:3) = nucl_coord(num_ao,1:3)
|
||||
! dx = (r(1) - center_ao(1))
|
||||
! dy = (r(2) - center_ao(2))
|
||||
! dz = (r(3) - center_ao(3))
|
||||
! r2 = dx*dx + dy*dy + dz*dz
|
||||
! dx = dx**power_ao(1)
|
||||
! dy = dy**power_ao(2)
|
||||
! dz = dz**power_ao(3)
|
||||
|
||||
accu = 0.d0
|
||||
do m=1,ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
accu += ao_coef_normalized_ordered_transp(m,i) * dexp(-beta*r2)
|
||||
enddo
|
||||
! do m=1,ao_prim_num(i)
|
||||
! beta = ao_expo_ordered_transp(m,i)
|
||||
! accu += ao_coef_normalized_ordered_transp(m,i) * dexp(-beta*r2)
|
||||
! enddo
|
||||
ao_value = accu * dx * dy * dz
|
||||
|
||||
end
|
||||
|
@ -1,7 +1,7 @@
|
||||
! Spherical to cartesian transformation matrix obtained with
|
||||
! Horton (http://theochem.github.com/horton/, 2015)
|
||||
|
||||
! First index is the index of the carteisan AO, obtained by ao_power_index
|
||||
! First index is the index of the cartesian AO, obtained by ao_power_index
|
||||
! Second index is the index of the spherical AO
|
||||
|
||||
BEGIN_PROVIDER [ double precision, cart_to_sphe_0, (1,1) ]
|
||||
|
@ -37,16 +37,16 @@ doc: Number of primitives in a shell
|
||||
size: (basis.shell_num)
|
||||
interface: ezfio, provider
|
||||
|
||||
[shell_prim_index]
|
||||
[shell_index]
|
||||
type: integer
|
||||
doc: Index of the first primitive of the shell
|
||||
size: (basis.shell_num)
|
||||
doc: Index of the shell for each primitive
|
||||
size: (basis.prim_num)
|
||||
interface: ezfio, provider
|
||||
|
||||
[basis_nucleus_index]
|
||||
type: integer
|
||||
doc: Index of the nucleus on which the shell is centered
|
||||
size: (nuclei.nucl_num)
|
||||
doc: Nucleus on which the shell is centered
|
||||
size: (basis.shell_num)
|
||||
interface: ezfio, provider
|
||||
|
||||
[prim_normalization_factor]
|
||||
|
@ -30,8 +30,10 @@ BEGIN_PROVIDER [ double precision, shell_normalization_factor , (shell_num) ]
|
||||
powA(3) = 0
|
||||
|
||||
norm = 0.d0
|
||||
do k=shell_prim_index(i),shell_prim_index(i)+shell_prim_num(i)-1
|
||||
do j=shell_prim_index(i),shell_prim_index(i)+shell_prim_num(i)-1
|
||||
do k=1, prim_num
|
||||
if (shell_index(k) /= i) cycle
|
||||
do j=1, prim_num
|
||||
if (shell_index(j) /= i) cycle
|
||||
call overlap_gaussian_xyz(C_A,C_A,prim_expo(j),prim_expo(k), &
|
||||
powA,powA,overlap_x,overlap_y,overlap_z,c,nz)
|
||||
norm = norm+c*prim_coef(j)*prim_coef(k) * prim_normalization_factor(j) * prim_normalization_factor(k)
|
||||
@ -91,7 +93,8 @@ BEGIN_PROVIDER [ double precision, prim_normalization_factor , (prim_num) ]
|
||||
powA(2) = 0
|
||||
powA(3) = 0
|
||||
|
||||
do k=shell_prim_index(i),shell_prim_index(i)+shell_prim_num(i)-1
|
||||
do k=1, prim_num
|
||||
if (shell_index(k) /= i) cycle
|
||||
call overlap_gaussian_xyz(C_A,C_A,prim_expo(k),prim_expo(k), &
|
||||
powA,powA,overlap_x,overlap_y,overlap_z,norm,nz)
|
||||
prim_normalization_factor(k) = 1.d0/dsqrt(norm)
|
||||
|
@ -58,3 +58,17 @@ END_PROVIDER
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, final_grid_points_transp, (n_points_final_grid,3)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Transposed final_grid_points
|
||||
END_DOC
|
||||
|
||||
integer :: i,j
|
||||
do j=1,3
|
||||
do i=1,n_points_final_grid
|
||||
final_grid_points_transp(i,j) = final_grid_points(j,i)
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
@ -268,6 +268,21 @@ subroutine print_spindet(string,Nint)
|
||||
|
||||
end
|
||||
|
||||
subroutine print_det_one_dimension(string,Nint)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Subroutine to print the content of a determinant using the '+-' notation
|
||||
END_DOC
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: string(Nint)
|
||||
character*(2048) :: output(1)
|
||||
|
||||
call bitstring_to_str( output(1), string, Nint )
|
||||
print *, trim(output(1))
|
||||
|
||||
end
|
||||
|
||||
logical function is_integer_in_string(bite,string,Nint)
|
||||
use bitmasks
|
||||
implicit none
|
||||
|
@ -1,9 +1,3 @@
|
||||
[pert_2rdm]
|
||||
type: logical
|
||||
doc: If true, computes the one- and two-body rdms with perturbation theory
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
[save_wf_after_selection]
|
||||
type: logical
|
||||
doc: If true, saves the wave function after the selection, before the diagonalization
|
||||
@ -40,3 +34,9 @@ doc: Maximum number of excitation for beta determinants with respect to the Hart
|
||||
interface: ezfio,ocaml,provider
|
||||
default: -1
|
||||
|
||||
[twice_hierarchy_max]
|
||||
type: integer
|
||||
doc: Twice the maximum hierarchy parameter (excitation degree plus half the seniority number). Using -1 selects all determinants
|
||||
interface: ezfio,ocaml,provider
|
||||
default: -1
|
||||
|
||||
|
@ -2,5 +2,4 @@ perturbation
|
||||
zmq
|
||||
mpi
|
||||
iterations
|
||||
two_body_rdm
|
||||
csf
|
||||
|
@ -70,8 +70,8 @@ subroutine run_cipsi
|
||||
|
||||
do while ( &
|
||||
(N_det < N_det_max) .and. &
|
||||
(maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) .and. &
|
||||
(maxval(abs(pt2_data % variance(1:N_states))) > variance_max) .and. &
|
||||
(sum(abs(pt2_data % pt2(1:N_states)) * state_average_weight(1:N_states)) > pt2_max) .and. &
|
||||
(sum(abs(pt2_data % variance(1:N_states)) * state_average_weight(1:N_states)) > variance_max) .and. &
|
||||
(correlation_energy_ratio <= correlation_energy_ratio_max) &
|
||||
)
|
||||
write(*,'(A)') '--------------------------------------------------------------------------------'
|
||||
|
@ -1,183 +0,0 @@
|
||||
|
||||
use bitmasks
|
||||
use omp_lib
|
||||
|
||||
BEGIN_PROVIDER [ integer(omp_lock_kind), pert_2rdm_lock]
|
||||
use f77_zmq
|
||||
implicit none
|
||||
call omp_init_lock(pert_2rdm_lock)
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, n_orb_pert_rdm]
|
||||
implicit none
|
||||
n_orb_pert_rdm = n_act_orb
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, list_orb_reverse_pert_rdm, (mo_num)]
|
||||
implicit none
|
||||
list_orb_reverse_pert_rdm = list_act_reverse
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [integer, list_orb_pert_rdm, (n_orb_pert_rdm)]
|
||||
implicit none
|
||||
list_orb_pert_rdm = list_act
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, pert_2rdm_provider, (n_orb_pert_rdm,n_orb_pert_rdm,n_orb_pert_rdm,n_orb_pert_rdm)]
|
||||
implicit none
|
||||
pert_2rdm_provider = 0.d0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf, psi_det_connection, psi_coef_connection_reverse, n_det_connection)
|
||||
use bitmasks
|
||||
use selection_types
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n_det_connection
|
||||
double precision, intent(in) :: psi_coef_connection_reverse(N_states,n_det_connection)
|
||||
integer(bit_kind), intent(in) :: psi_det_connection(N_int,2,n_det_connection)
|
||||
integer, intent(in) :: i_generator, sp, h1, h2
|
||||
double precision, intent(in) :: mat(N_states, mo_num, mo_num)
|
||||
logical, intent(in) :: bannedOrb(mo_num, 2), banned(mo_num, mo_num)
|
||||
double precision, intent(in) :: fock_diag_tmp(mo_num)
|
||||
double precision, intent(in) :: E0(N_states)
|
||||
type(pt2_type), intent(inout) :: pt2_data
|
||||
type(selection_buffer), intent(inout) :: buf
|
||||
logical :: ok
|
||||
integer :: s1, s2, p1, p2, ib, j, istate, jstate
|
||||
integer(bit_kind) :: mask(N_int, 2), det(N_int, 2)
|
||||
double precision :: e_pert, delta_E, val, Hii, sum_e_pert, tmp, alpha_h_psi, coef(N_states)
|
||||
double precision, external :: diag_H_mat_elem_fock
|
||||
double precision :: E_shift
|
||||
|
||||
logical, external :: detEq
|
||||
double precision, allocatable :: values(:)
|
||||
integer, allocatable :: keys(:,:)
|
||||
integer :: nkeys
|
||||
integer :: sze_buff
|
||||
sze_buff = 5 * mo_num ** 2
|
||||
allocate(keys(4,sze_buff),values(sze_buff))
|
||||
nkeys = 0
|
||||
if(sp == 3) then
|
||||
s1 = 1
|
||||
s2 = 2
|
||||
else
|
||||
s1 = sp
|
||||
s2 = sp
|
||||
end if
|
||||
call apply_holes(psi_det_generators(1,1,i_generator), s1, h1, s2, h2, mask, ok, N_int)
|
||||
E_shift = 0.d0
|
||||
|
||||
if (h0_type == 'CFG') then
|
||||
j = det_to_configuration(i_generator)
|
||||
E_shift = psi_det_Hii(i_generator) - psi_configuration_Hii(j)
|
||||
endif
|
||||
|
||||
do p1=1,mo_num
|
||||
if(bannedOrb(p1, s1)) cycle
|
||||
ib = 1
|
||||
if(sp /= 3) ib = p1+1
|
||||
|
||||
do p2=ib,mo_num
|
||||
|
||||
! -----
|
||||
! /!\ Generating only single excited determinants doesn't work because a
|
||||
! determinant generated by a single excitation may be doubly excited wrt
|
||||
! to a determinant of the future. In that case, the determinant will be
|
||||
! detected as already generated when generating in the future with a
|
||||
! double excitation.
|
||||
!
|
||||
! if (.not.do_singles) then
|
||||
! if ((h1 == p1) .or. (h2 == p2)) then
|
||||
! cycle
|
||||
! endif
|
||||
! endif
|
||||
!
|
||||
! if (.not.do_doubles) then
|
||||
! if ((h1 /= p1).and.(h2 /= p2)) then
|
||||
! cycle
|
||||
! endif
|
||||
! endif
|
||||
! -----
|
||||
|
||||
if(bannedOrb(p2, s2)) cycle
|
||||
if(banned(p1,p2)) cycle
|
||||
|
||||
|
||||
if( sum(abs(mat(1:N_states, p1, p2))) == 0d0) cycle
|
||||
call apply_particles(mask, s1, p1, s2, p2, det, ok, N_int)
|
||||
|
||||
if (do_only_cas) then
|
||||
integer, external :: number_of_holes, number_of_particles
|
||||
if (number_of_particles(det)>0) then
|
||||
cycle
|
||||
endif
|
||||
if (number_of_holes(det)>0) then
|
||||
cycle
|
||||
endif
|
||||
endif
|
||||
|
||||
if (do_ddci) then
|
||||
logical, external :: is_a_two_holes_two_particles
|
||||
if (is_a_two_holes_two_particles(det)) then
|
||||
cycle
|
||||
endif
|
||||
endif
|
||||
|
||||
if (do_only_1h1p) then
|
||||
logical, external :: is_a_1h1p
|
||||
if (.not.is_a_1h1p(det)) cycle
|
||||
endif
|
||||
|
||||
|
||||
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
|
||||
|
||||
sum_e_pert = 0d0
|
||||
integer :: degree
|
||||
call get_excitation_degree(det,HF_bitmask,degree,N_int)
|
||||
if(degree == 2)cycle
|
||||
do istate=1,N_states
|
||||
delta_E = E0(istate) - Hii + E_shift
|
||||
alpha_h_psi = mat(istate, p1, p2)
|
||||
val = alpha_h_psi + alpha_h_psi
|
||||
tmp = dsqrt(delta_E * delta_E + val * val)
|
||||
if (delta_E < 0.d0) then
|
||||
tmp = -tmp
|
||||
endif
|
||||
e_pert = 0.5d0 * (tmp - delta_E)
|
||||
coef(istate) = e_pert / alpha_h_psi
|
||||
print*,e_pert,coef,alpha_h_psi
|
||||
pt2_data % pt2(istate) += e_pert
|
||||
pt2_data % variance(istate) += alpha_h_psi * alpha_h_psi
|
||||
enddo
|
||||
|
||||
do istate=1,N_states
|
||||
alpha_h_psi = mat(istate, p1, p2)
|
||||
e_pert = coef(istate) * alpha_h_psi
|
||||
do jstate=1,N_states
|
||||
pt2_data % overlap(jstate,jstate) = coef(istate) * coef(jstate)
|
||||
enddo
|
||||
|
||||
if (weight_selection /= 5) then
|
||||
! Energy selection
|
||||
sum_e_pert = sum_e_pert + e_pert * selection_weight(istate)
|
||||
|
||||
else
|
||||
! Variance selection
|
||||
sum_e_pert = sum_e_pert - alpha_h_psi * alpha_h_psi * selection_weight(istate)
|
||||
endif
|
||||
end do
|
||||
call give_2rdm_pert_contrib(det,coef,psi_det_connection,psi_coef_connection_reverse,n_det_connection,nkeys,keys,values,sze_buff)
|
||||
|
||||
if(sum_e_pert <= buf%mini) then
|
||||
call add_to_selection_buffer(buf, det, sum_e_pert)
|
||||
end if
|
||||
end do
|
||||
end do
|
||||
call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
|
||||
end
|
||||
|
||||
|
@ -117,7 +117,6 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
|
||||
|
||||
integer(ZMQ_PTR) :: zmq_to_qp_run_socket, zmq_socket_pull
|
||||
integer, intent(in) :: N_in
|
||||
! integer, intent(inout) :: N_in
|
||||
double precision, intent(in) :: relative_error, E(N_states)
|
||||
type(pt2_type), intent(inout) :: pt2_data, pt2_data_err
|
||||
!
|
||||
@ -132,8 +131,8 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
|
||||
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
|
||||
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp psi_det_sorted
|
||||
PROVIDE psi_det_hii selection_weight pseudo_sym
|
||||
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
|
||||
PROVIDE pert_2rdm excitation_beta_max excitation_alpha_max excitation_max
|
||||
PROVIDE list_act list_inact list_core list_virt list_del seniority_max
|
||||
PROVIDE excitation_beta_max excitation_alpha_max excitation_max
|
||||
|
||||
if (h0_type == 'CFG') then
|
||||
PROVIDE psi_configuration_hii det_to_configuration
|
||||
@ -288,11 +287,11 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
|
||||
call write_int(6,nproc_target,'Number of threads for PT2')
|
||||
call write_double(6,mem,'Memory (Gb)')
|
||||
|
||||
call omp_set_max_active_levels(1)
|
||||
call set_multiple_levels_omp(.False.)
|
||||
|
||||
|
||||
print '(A)', '========== ======================= ===================== ===================== ==========='
|
||||
print '(A)', ' Samples Energy Variance Norm^2 Seconds'
|
||||
print '(A)', ' Samples Energy Variance Norm^2 Seconds'
|
||||
print '(A)', '========== ======================= ===================== ===================== ==========='
|
||||
|
||||
PROVIDE global_selection_buffer
|
||||
@ -315,14 +314,14 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
|
||||
endif
|
||||
!$OMP END PARALLEL
|
||||
call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'pt2')
|
||||
call omp_set_max_active_levels(8)
|
||||
call set_multiple_levels_omp(.True.)
|
||||
|
||||
print '(A)', '========== ======================= ===================== ===================== ==========='
|
||||
|
||||
do k=1,N_states
|
||||
pt2_overlap(pt2_stoch_istate,k) = pt2_data % overlap(k,pt2_stoch_istate)
|
||||
enddo
|
||||
SOFT_TOUCH pt2_overlap
|
||||
do k=1,N_states
|
||||
pt2_overlap(pt2_stoch_istate,k) = pt2_data % overlap(k,pt2_stoch_istate)
|
||||
enddo
|
||||
SOFT_TOUCH pt2_overlap
|
||||
|
||||
enddo
|
||||
FREE pt2_stoch_istate
|
||||
@ -524,21 +523,21 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2_data, pt2_data_
|
||||
! 1/(N-1.5) : see Brugger, The American Statistician (23) 4 p. 32 (1969)
|
||||
if(c > 2) then
|
||||
eqt = dabs((pt2_data_S2(t) % pt2(pt2_stoch_istate) / c) - (pt2_data_S(t) % pt2(pt2_stoch_istate)/c)**2) ! dabs for numerical stability
|
||||
eqt = sqrt(eqt / (dble(c) - 1.5d0))
|
||||
eqt = dsqrt(eqt / (dble(c) - 1.5d0))
|
||||
pt2_data_err % pt2(pt2_stoch_istate) = eqt
|
||||
|
||||
eqt = dabs((pt2_data_S2(t) % variance(pt2_stoch_istate) / c) - (pt2_data_S(t) % variance(pt2_stoch_istate)/c)**2) ! dabs for numerical stability
|
||||
eqt = sqrt(eqt / (dble(c) - 1.5d0))
|
||||
eqt = dsqrt(eqt / (dble(c) - 1.5d0))
|
||||
pt2_data_err % variance(pt2_stoch_istate) = eqt
|
||||
|
||||
eqta(:) = dabs((pt2_data_S2(t) % overlap(:,pt2_stoch_istate) / c) - (pt2_data_S(t) % overlap(:,pt2_stoch_istate)/c)**2) ! dabs for numerical stability
|
||||
eqta(:) = sqrt(eqta(:) / (dble(c) - 1.5d0))
|
||||
eqta(:) = dsqrt(eqta(:) / (dble(c) - 1.5d0))
|
||||
pt2_data_err % overlap(:,pt2_stoch_istate) = eqta(:)
|
||||
|
||||
|
||||
if ((time - time1 > 1.d0) .or. (n==N_det_generators)) then
|
||||
time1 = time
|
||||
print '(I10, X, F12.6, X, G10.3, X, F10.6, X, G10.3, X, F10.6, X, G10.3, X, F10.4)', c, &
|
||||
print '(I10, X, F12.6, X, G10.3, X, F10.6, X, G10.3, X, F10.6, X, G10.3, X, F10.1)', c, &
|
||||
pt2_data % pt2(pt2_stoch_istate) +E, &
|
||||
pt2_data_err % pt2(pt2_stoch_istate), &
|
||||
pt2_data % variance(pt2_stoch_istate), &
|
||||
@ -576,11 +575,11 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2_data, pt2_data_
|
||||
endif
|
||||
do i=1,n_tasks
|
||||
if(index(i).gt.size(pt2_data_I,1).or.index(i).lt.1)then
|
||||
print*,'PB !!!'
|
||||
print*,'If you see this, send a bug report with the following content'
|
||||
print*,irp_here
|
||||
print*,'i,index(i),size(pt2_data_I,1) = ',i,index(i),size(pt2_data_I,1)
|
||||
stop -1
|
||||
print*,'PB !!!'
|
||||
print*,'If you see this, send a bug report with the following content'
|
||||
print*,irp_here
|
||||
print*,'i,index(i),size(pt2_data_I,1) = ',i,index(i),size(pt2_data_I,1)
|
||||
stop -1
|
||||
endif
|
||||
call pt2_add(pt2_data_I(index(i)),1.d0,pt2_data_task(i))
|
||||
f(index(i)) -= 1
|
||||
@ -843,9 +842,8 @@ END_PROVIDER
|
||||
do t=1, pt2_N_teeth
|
||||
tooth_width = tilde_cW(pt2_n_0(t+1)) - tilde_cW(pt2_n_0(t))
|
||||
if (tooth_width == 0.d0) then
|
||||
tooth_width = sum(tilde_w(pt2_n_0(t):pt2_n_0(t+1)))
|
||||
tooth_width = max(1.d-15,sum(tilde_w(pt2_n_0(t):pt2_n_0(t+1))))
|
||||
endif
|
||||
ASSERT(tooth_width > 0.d0)
|
||||
do i=pt2_n_0(t)+1, pt2_n_0(t+1)
|
||||
pt2_w(i) = tilde_w(i) * pt2_W_T / tooth_width
|
||||
end do
|
||||
|
@ -31,12 +31,11 @@ subroutine run_pt2_slave(thread,iproc,energy)
|
||||
|
||||
double precision, intent(in) :: energy(N_states_diag)
|
||||
integer, intent(in) :: thread, iproc
|
||||
call run_pt2_slave_large(thread,iproc,energy)
|
||||
! if (N_det > nproc*(elec_alpha_num * (mo_num-elec_alpha_num))**2) then
|
||||
! call run_pt2_slave_large(thread,iproc,energy)
|
||||
! else
|
||||
! call run_pt2_slave_small(thread,iproc,energy)
|
||||
! endif
|
||||
if (N_det > 100000 ) then
|
||||
call run_pt2_slave_large(thread,iproc,energy)
|
||||
else
|
||||
call run_pt2_slave_small(thread,iproc,energy)
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine run_pt2_slave_small(thread,iproc,energy)
|
||||
@ -67,7 +66,6 @@ subroutine run_pt2_slave_small(thread,iproc,energy)
|
||||
|
||||
double precision, external :: memory_of_double, memory_of_int
|
||||
integer :: bsize ! Size of selection buffers
|
||||
! logical :: sending
|
||||
|
||||
allocate(task_id(pt2_n_tasks_max), task(pt2_n_tasks_max))
|
||||
allocate(pt2_data(pt2_n_tasks_max), i_generator(pt2_n_tasks_max), subset(pt2_n_tasks_max))
|
||||
@ -85,7 +83,6 @@ subroutine run_pt2_slave_small(thread,iproc,energy)
|
||||
buffer_ready = .False.
|
||||
n_tasks = 1
|
||||
|
||||
! sending = .False.
|
||||
done = .False.
|
||||
do while (.not.done)
|
||||
|
||||
@ -119,14 +116,13 @@ subroutine run_pt2_slave_small(thread,iproc,energy)
|
||||
do k=1,n_tasks
|
||||
call pt2_alloc(pt2_data(k),N_states)
|
||||
b%cur = 0
|
||||
!double precision :: time2
|
||||
!call wall_time(time2)
|
||||
! double precision :: time2
|
||||
! call wall_time(time2)
|
||||
call select_connected(i_generator(k),energy,pt2_data(k),b,subset(k),pt2_F(i_generator(k)))
|
||||
!call wall_time(time1)
|
||||
!print *, i_generator(1), time1-time2, n_tasks, pt2_F(i_generator(1))
|
||||
! call wall_time(time1)
|
||||
! print *, i_generator(1), time1-time2, n_tasks, pt2_F(i_generator(1))
|
||||
enddo
|
||||
call wall_time(time1)
|
||||
!print *, '-->', i_generator(1), time1-time0, n_tasks
|
||||
|
||||
integer, external :: tasks_done_to_taskserver
|
||||
if (tasks_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,n_tasks) == -1) then
|
||||
@ -164,6 +160,11 @@ end subroutine
|
||||
subroutine run_pt2_slave_large(thread,iproc,energy)
|
||||
use selection_types
|
||||
use f77_zmq
|
||||
BEGIN_DOC
|
||||
! This subroutine can miss important determinants when the PT2 is completely
|
||||
! computed. It should be called only for large workloads where the PT2 is
|
||||
! interrupted before the end
|
||||
END_DOC
|
||||
implicit none
|
||||
|
||||
double precision, intent(in) :: energy(N_states_diag)
|
||||
@ -189,8 +190,12 @@ subroutine run_pt2_slave_large(thread,iproc,energy)
|
||||
|
||||
integer :: bsize ! Size of selection buffers
|
||||
logical :: sending
|
||||
double precision :: time_shift
|
||||
|
||||
PROVIDE global_selection_buffer global_selection_buffer_lock
|
||||
|
||||
call random_number(time_shift)
|
||||
time_shift = time_shift*15.d0
|
||||
|
||||
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
|
||||
|
||||
@ -208,6 +213,9 @@ subroutine run_pt2_slave_large(thread,iproc,energy)
|
||||
|
||||
sending = .False.
|
||||
done = .False.
|
||||
double precision :: time0, time1
|
||||
call wall_time(time0)
|
||||
time0 = time0+time_shift
|
||||
do while (.not.done)
|
||||
|
||||
integer, external :: get_tasks_from_taskserver
|
||||
@ -234,25 +242,28 @@ subroutine run_pt2_slave_large(thread,iproc,energy)
|
||||
ASSERT (b%N == bsize)
|
||||
endif
|
||||
|
||||
double precision :: time0, time1
|
||||
call wall_time(time0)
|
||||
call pt2_alloc(pt2_data,N_states)
|
||||
b%cur = 0
|
||||
call select_connected(i_generator,energy,pt2_data,b,subset,pt2_F(i_generator))
|
||||
call wall_time(time1)
|
||||
|
||||
integer, external :: tasks_done_to_taskserver
|
||||
if (tasks_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,n_tasks) == -1) then
|
||||
done = .true.
|
||||
endif
|
||||
call sort_selection_buffer(b)
|
||||
|
||||
call wall_time(time1)
|
||||
! if (time1-time0 > 15.d0) then
|
||||
call omp_set_lock(global_selection_buffer_lock)
|
||||
global_selection_buffer%mini = b%mini
|
||||
call merge_selection_buffers(b,global_selection_buffer)
|
||||
b%cur=0
|
||||
call omp_unset_lock(global_selection_buffer_lock)
|
||||
call wall_time(time0)
|
||||
! endif
|
||||
|
||||
call push_pt2_results_async_recv(zmq_socket_push,b%mini,sending)
|
||||
call omp_set_lock(global_selection_buffer_lock)
|
||||
global_selection_buffer%mini = b%mini
|
||||
call merge_selection_buffers(b,global_selection_buffer)
|
||||
b%cur=0
|
||||
call omp_unset_lock(global_selection_buffer_lock)
|
||||
if ( iproc == 1 ) then
|
||||
if ( iproc == 1 .or. i_generator < 100 .or. done) then
|
||||
call omp_set_lock(global_selection_buffer_lock)
|
||||
call push_pt2_results_async_send(zmq_socket_push, (/i_generator/), (/pt2_data/), global_selection_buffer, (/task_id/), 1,sending)
|
||||
global_selection_buffer%cur = 0
|
||||
|
@ -195,7 +195,10 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
|
||||
integer :: l_a, nmax, idx
|
||||
integer, allocatable :: indices(:), exc_degree(:), iorder(:)
|
||||
double precision, parameter :: norm_thr = 1.d-16
|
||||
|
||||
! Removed to avoid introducing determinants already presents in the wf
|
||||
!double precision, parameter :: norm_thr = 1.d-16
|
||||
|
||||
allocate (indices(N_det), &
|
||||
exc_degree(max(N_det_alpha_unique,N_det_beta_unique)))
|
||||
|
||||
@ -215,10 +218,11 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
i = psi_bilinear_matrix_rows(l_a)
|
||||
if (nt + exc_degree(i) <= 4) then
|
||||
idx = psi_det_sorted_order(psi_bilinear_matrix_order(l_a))
|
||||
if (psi_average_norm_contrib_sorted(idx) > norm_thr) then
|
||||
! Removed to avoid introducing determinants already presents in the wf
|
||||
!if (psi_average_norm_contrib_sorted(idx) > norm_thr) then
|
||||
indices(k) = idx
|
||||
k=k+1
|
||||
endif
|
||||
!endif
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
@ -242,10 +246,11 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
idx = psi_det_sorted_order( &
|
||||
psi_bilinear_matrix_order( &
|
||||
psi_bilinear_matrix_transp_order(l_a)))
|
||||
if (psi_average_norm_contrib_sorted(idx) > norm_thr) then
|
||||
! Removed to avoid introducing determinants already presents in the wf
|
||||
!if (psi_average_norm_contrib_sorted(idx) > norm_thr) then
|
||||
indices(k) = idx
|
||||
k=k+1
|
||||
endif
|
||||
!endif
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
@ -464,27 +469,21 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
|
||||
allocate (fullminilist (N_int, 2, fullinteresting(0)), &
|
||||
minilist (N_int, 2, interesting(0)) )
|
||||
if(pert_2rdm)then
|
||||
allocate(coef_fullminilist_rev(N_states,fullinteresting(0)))
|
||||
do i=1,fullinteresting(0)
|
||||
do j = 1, N_states
|
||||
coef_fullminilist_rev(j,i) = psi_coef_sorted(fullinteresting(i),j)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
! if(pert_2rdm)then
|
||||
! allocate(coef_fullminilist_rev(N_states,fullinteresting(0)))
|
||||
! do i=1,fullinteresting(0)
|
||||
! do j = 1, N_states
|
||||
! coef_fullminilist_rev(j,i) = psi_coef_sorted(fullinteresting(i),j)
|
||||
! enddo
|
||||
! enddo
|
||||
! endif
|
||||
|
||||
do i=1,fullinteresting(0)
|
||||
do k=1,N_int
|
||||
fullminilist(k,1,i) = psi_det_sorted(k,1,fullinteresting(i))
|
||||
fullminilist(k,2,i) = psi_det_sorted(k,2,fullinteresting(i))
|
||||
enddo
|
||||
fullminilist(:,:,i) = psi_det_sorted(:,:,fullinteresting(i))
|
||||
enddo
|
||||
|
||||
do i=1,interesting(0)
|
||||
do k=1,N_int
|
||||
minilist(k,1,i) = psi_det_sorted(k,1,interesting(i))
|
||||
minilist(k,2,i) = psi_det_sorted(k,2,interesting(i))
|
||||
enddo
|
||||
minilist(:,:,i) = psi_det_sorted(:,:,interesting(i))
|
||||
enddo
|
||||
|
||||
do s2=s1,2
|
||||
@ -531,19 +530,19 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
|
||||
|
||||
call splash_pq(mask, sp, minilist, i_generator, interesting(0), bannedOrb, banned, mat, interesting)
|
||||
|
||||
if(.not.pert_2rdm)then
|
||||
! if(.not.pert_2rdm)then
|
||||
call fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf)
|
||||
else
|
||||
call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0))
|
||||
endif
|
||||
! else
|
||||
! call fill_buffer_double_rdm(i_generator, sp, h1, h2, bannedOrb, banned, fock_diag_tmp, E0, pt2_data, mat, buf,fullminilist, coef_fullminilist_rev, fullinteresting(0))
|
||||
! endif
|
||||
end if
|
||||
enddo
|
||||
if(s1 /= s2) monoBdo = .false.
|
||||
enddo
|
||||
deallocate(fullminilist,minilist)
|
||||
if(pert_2rdm)then
|
||||
deallocate(coef_fullminilist_rev)
|
||||
endif
|
||||
! if(pert_2rdm)then
|
||||
! deallocate(coef_fullminilist_rev)
|
||||
! endif
|
||||
enddo
|
||||
enddo
|
||||
deallocate(preinteresting, prefullinteresting, interesting, fullinteresting)
|
||||
@ -572,6 +571,7 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
double precision, external :: diag_H_mat_elem_fock
|
||||
double precision :: E_shift
|
||||
double precision :: s_weight(N_states,N_states)
|
||||
logical, external :: is_in_wavefunction
|
||||
PROVIDE dominant_dets_of_cfgs N_dominant_dets_of_cfgs
|
||||
do jstate=1,N_states
|
||||
do istate=1,N_states
|
||||
@ -713,6 +713,25 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
if (do_cycle) cycle
|
||||
endif
|
||||
|
||||
if (twice_hierarchy_max >= 0) then
|
||||
s = 0
|
||||
do k=1,N_int
|
||||
s = s + popcnt(ieor(det(k,1),det(k,2)))
|
||||
enddo
|
||||
if ( mod(s,2)>0 ) stop 'For now, hierarchy CI is defined only for an even number of electrons'
|
||||
if (excitation_ref == 1) then
|
||||
call get_excitation_degree(HF_bitmask,det(1,1),degree,N_int)
|
||||
else if (excitation_ref == 2) then
|
||||
stop 'For now, hierarchy CI is defined only for a single reference determinant'
|
||||
! do k=1,N_dominant_dets_of_cfgs
|
||||
! call get_excitation_degree(dominant_dets_of_cfgs(1,1,k),det(1,1),degree,N_int)
|
||||
! enddo
|
||||
endif
|
||||
integer :: twice_hierarchy
|
||||
twice_hierarchy = degree + s/2
|
||||
if (twice_hierarchy > twice_hierarchy_max) cycle
|
||||
endif
|
||||
|
||||
Hii = diag_H_mat_elem_fock(psi_det_generators(1,1,i_generator),det,fock_diag_tmp,N_int)
|
||||
|
||||
w = 0d0
|
||||
@ -834,8 +853,27 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
|
||||
endif
|
||||
|
||||
end select
|
||||
|
||||
! To force the inclusion of determinants with a positive pt2 contribution
|
||||
if (e_pert(istate) > 1d-8) then
|
||||
w = -huge(1.0)
|
||||
endif
|
||||
|
||||
end do
|
||||
|
||||
!!!BEGIN_DEBUG
|
||||
! ! To check if the pt2 is taking determinants already in the wf
|
||||
! if (is_in_wavefunction(det(N_int,1),N_int)) then
|
||||
! print*, 'A determinant contributing to the pt2 is already in'
|
||||
! print*, 'the wave function:'
|
||||
! call print_det(det(N_int,1),N_int)
|
||||
! print*,'contribution to the pt2 for the states:', e_pert(:)
|
||||
! print*,'error in the filtering in'
|
||||
! print*, 'cipsi/selection.irp.f sub: selecte_singles_and_doubles'
|
||||
! print*, 'abort'
|
||||
! call abort
|
||||
! endif
|
||||
!!!END_DEBUG
|
||||
|
||||
integer(bit_kind) :: occ(N_int,2), n
|
||||
if (h0_type == 'CFG') then
|
||||
@ -1556,7 +1594,7 @@ subroutine bitstring_to_list_in_selection( string, list, n_elements, Nint)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gives the inidices(+1) of the bits set to 1 in the bit string
|
||||
! Gives the indices(+1) of the bits set to 1 in the bit string
|
||||
END_DOC
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: string(Nint)
|
||||
|
@ -60,6 +60,7 @@ subroutine add_to_selection_buffer(b, det, val)
|
||||
b%val(b%cur) = val
|
||||
if(b%cur == size(b%val)) then
|
||||
call sort_selection_buffer(b)
|
||||
b%cur = b%cur-1
|
||||
end if
|
||||
end if
|
||||
end subroutine
|
||||
@ -86,43 +87,56 @@ subroutine merge_selection_buffers(b1, b2)
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double
|
||||
sze = max(size(b1%val), size(b2%val))
|
||||
rss = memory_of_double(sze) + 2*N_int*memory_of_double(sze)
|
||||
call check_mem(rss,irp_here)
|
||||
! rss = memory_of_double(sze) + 2*N_int*memory_of_double(sze)
|
||||
! call check_mem(rss,irp_here)
|
||||
allocate(val(sze), detmp(N_int, 2, sze))
|
||||
i1=1
|
||||
i2=1
|
||||
do i=1,nmwen
|
||||
if ( (i1 > b1%cur).and.(i2 > b2%cur) ) then
|
||||
exit
|
||||
else if (i1 > b1%cur) then
|
||||
val(i) = b2%val(i2)
|
||||
detmp(1:N_int,1,i) = b2%det(1:N_int,1,i2)
|
||||
detmp(1:N_int,2,i) = b2%det(1:N_int,2,i2)
|
||||
i2=i2+1
|
||||
else if (i2 > b2%cur) then
|
||||
val(i) = b1%val(i1)
|
||||
detmp(1:N_int,1,i) = b1%det(1:N_int,1,i1)
|
||||
detmp(1:N_int,2,i) = b1%det(1:N_int,2,i1)
|
||||
i1=i1+1
|
||||
else
|
||||
if (b1%val(i1) <= b2%val(i2)) then
|
||||
val(i) = b1%val(i1)
|
||||
detmp(1:N_int,1,i) = b1%det(1:N_int,1,i1)
|
||||
detmp(1:N_int,2,i) = b1%det(1:N_int,2,i1)
|
||||
i1=i1+1
|
||||
|
||||
select case (N_int)
|
||||
BEGIN_TEMPLATE
|
||||
case $case
|
||||
do i=1,nmwen
|
||||
if ( (i1 > b1%cur).and.(i2 > b2%cur) ) then
|
||||
exit
|
||||
else if (i1 > b1%cur) then
|
||||
val(i) = b2%val(i2)
|
||||
detmp(1:$N_int,1,i) = b2%det(1:$N_int,1,i2)
|
||||
detmp(1:$N_int,2,i) = b2%det(1:$N_int,2,i2)
|
||||
i2=i2+1
|
||||
else if (i2 > b2%cur) then
|
||||
val(i) = b1%val(i1)
|
||||
detmp(1:$N_int,1,i) = b1%det(1:$N_int,1,i1)
|
||||
detmp(1:$N_int,2,i) = b1%det(1:$N_int,2,i1)
|
||||
i1=i1+1
|
||||
else
|
||||
val(i) = b2%val(i2)
|
||||
detmp(1:N_int,1,i) = b2%det(1:N_int,1,i2)
|
||||
detmp(1:N_int,2,i) = b2%det(1:N_int,2,i2)
|
||||
i2=i2+1
|
||||
if (b1%val(i1) <= b2%val(i2)) then
|
||||
val(i) = b1%val(i1)
|
||||
detmp(1:$N_int,1,i) = b1%det(1:$N_int,1,i1)
|
||||
detmp(1:$N_int,2,i) = b1%det(1:$N_int,2,i1)
|
||||
i1=i1+1
|
||||
else
|
||||
val(i) = b2%val(i2)
|
||||
detmp(1:$N_int,1,i) = b2%det(1:$N_int,1,i2)
|
||||
detmp(1:$N_int,2,i) = b2%det(1:$N_int,2,i2)
|
||||
i2=i2+1
|
||||
endif
|
||||
endif
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
do i=nmwen+1,b2%N
|
||||
val(i) = 0.d0
|
||||
! detmp(1:$N_int,1,i) = 0_bit_kind
|
||||
! detmp(1:$N_int,2,i) = 0_bit_kind
|
||||
enddo
|
||||
SUBST [ case, N_int ]
|
||||
(1); 1;;
|
||||
(2); 2;;
|
||||
(3); 3;;
|
||||
(4); 4;;
|
||||
default; N_int;;
|
||||
END_TEMPLATE
|
||||
end select
|
||||
deallocate(b2%det, b2%val)
|
||||
do i=nmwen+1,b2%N
|
||||
val(i) = 0.d0
|
||||
detmp(1:N_int,1:2,i) = 0_bit_kind
|
||||
enddo
|
||||
b2%det => detmp
|
||||
b2%val => val
|
||||
b2%mini = min(b2%mini,b2%val(b2%N))
|
||||
@ -144,8 +158,8 @@ subroutine sort_selection_buffer(b)
|
||||
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double, memory_of_int
|
||||
rss = memory_of_int(b%cur) + 2*N_int*memory_of_double(size(b%det,3))
|
||||
call check_mem(rss,irp_here)
|
||||
! rss = memory_of_int(b%cur) + 2*N_int*memory_of_double(size(b%det,3))
|
||||
! call check_mem(rss,irp_here)
|
||||
allocate(iorder(b%cur), detmp(N_int, 2, size(b%det,3)))
|
||||
do i=1,b%cur
|
||||
iorder(i) = i
|
||||
@ -225,14 +239,14 @@ subroutine make_selection_buffer_s2(b)
|
||||
endif
|
||||
dup = .True.
|
||||
do k=1,N_int
|
||||
if ( (tmp_array(k,1,i) /= tmp_array(k,1,j)) &
|
||||
.or. (tmp_array(k,2,i) /= tmp_array(k,2,j)) ) then
|
||||
if ( (tmp_array(k,1,i) /= tmp_array(k,1,j)) .or. &
|
||||
(tmp_array(k,2,i) /= tmp_array(k,2,j)) ) then
|
||||
dup = .False.
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if (dup) then
|
||||
val(i) = max(val(i), val(j))
|
||||
val(i) = min(val(i), val(j))
|
||||
duplicate(j) = .True.
|
||||
endif
|
||||
j+=1
|
||||
@ -282,9 +296,6 @@ subroutine make_selection_buffer_s2(b)
|
||||
call configuration_to_dets_size(o(1,1,i),sze,elec_alpha_num,N_int)
|
||||
n_d = n_d + sze
|
||||
if (n_d > b%cur) then
|
||||
! if (n_d - b%cur > b%cur - n_d + sze) then
|
||||
! n_d = n_d - sze
|
||||
! endif
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
@ -329,10 +340,11 @@ subroutine remove_duplicates_in_selection_buffer(b)
|
||||
integer(bit_kind), allocatable :: tmp_array(:,:,:)
|
||||
logical, allocatable :: duplicate(:)
|
||||
|
||||
n_d = b%cur
|
||||
logical :: found_duplicates
|
||||
double precision :: rss
|
||||
double precision, external :: memory_of_double
|
||||
|
||||
n_d = b%cur
|
||||
rss = (4*N_int+4)*memory_of_double(n_d)
|
||||
call check_mem(rss,irp_here)
|
||||
|
||||
|
@ -38,11 +38,11 @@ subroutine update_pt2_and_variance_weights(pt2_data, N_st)
|
||||
|
||||
avg = sum(pt2(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
|
||||
|
||||
dt = 8.d0 !* selection_factor
|
||||
dt = 4.d0 !* selection_factor
|
||||
do k=1,N_st
|
||||
element = exp(dt*(pt2(k)/avg - 1.d0))
|
||||
element = min(2.0d0 , element)
|
||||
element = max(0.5d0 , element)
|
||||
element = pt2(k) !exp(dt*(pt2(k)/avg - 1.d0))
|
||||
! element = min(2.0d0 , element)
|
||||
! element = max(0.5d0 , element)
|
||||
pt2_match_weight(k) *= element
|
||||
enddo
|
||||
|
||||
@ -50,9 +50,9 @@ subroutine update_pt2_and_variance_weights(pt2_data, N_st)
|
||||
avg = sum(variance(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
|
||||
|
||||
do k=1,N_st
|
||||
element = exp(dt*(variance(k)/avg -1.d0))
|
||||
element = min(2.0d0 , element)
|
||||
element = max(0.5d0 , element)
|
||||
element = variance(k) ! exp(dt*(variance(k)/avg -1.d0))
|
||||
! element = min(2.0d0 , element)
|
||||
! element = max(0.5d0 , element)
|
||||
variance_match_weight(k) *= element
|
||||
enddo
|
||||
|
||||
@ -62,6 +62,9 @@ subroutine update_pt2_and_variance_weights(pt2_data, N_st)
|
||||
variance_match_weight(:) = 1.d0
|
||||
endif
|
||||
|
||||
pt2_match_weight(:) = pt2_match_weight(:)/sum(pt2_match_weight(:))
|
||||
variance_match_weight(:) = variance_match_weight(:)/sum(variance_match_weight(:))
|
||||
|
||||
threshold_davidson_pt2 = min(1.d-6, &
|
||||
max(threshold_davidson, 1.e-1 * PT2_relative_error * minval(abs(pt2(1:N_states)))) )
|
||||
|
||||
@ -87,7 +90,7 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states)
|
||||
|
||||
case (2)
|
||||
print *, 'Using pt2-matching weight in selection'
|
||||
print *, 'Using PT2-matching weight in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * pt2_match_weight(1:N_states)
|
||||
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
|
||||
|
||||
@ -97,7 +100,7 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
|
||||
print *, '# var weight ', real(variance_match_weight(:),4)
|
||||
|
||||
case (4)
|
||||
print *, 'Using variance- and pt2-matching weights in selection'
|
||||
print *, 'Using variance- and PT2-matching weights in selection'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states))
|
||||
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
|
||||
print *, '# var weight ', real(variance_match_weight(:),4)
|
||||
@ -112,7 +115,7 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states)
|
||||
|
||||
case (7)
|
||||
print *, 'Input weights multiplied by variance- and pt2-matching'
|
||||
print *, 'Input weights multiplied by variance- and PT2-matching'
|
||||
selection_weight(1:N_states) = c0_weight(1:N_states) * sqrt(variance_match_weight(1:N_states) * pt2_match_weight(1:N_states)) * state_average_weight(1:N_states)
|
||||
print *, '# PT2 weight ', real(pt2_match_weight(:),4)
|
||||
print *, '# var weight ', real(variance_match_weight(:),4)
|
||||
@ -128,6 +131,7 @@ BEGIN_PROVIDER [ double precision, selection_weight, (N_states) ]
|
||||
print *, '# var weight ', real(variance_match_weight(:),4)
|
||||
|
||||
end select
|
||||
selection_weight(:) = selection_weight(:)/sum(selection_weight(:))
|
||||
print *, '# Total weight ', real(selection_weight(:),4)
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -4,7 +4,7 @@ subroutine run_slave_cipsi
|
||||
! Helper program for distributed parallelism
|
||||
END_DOC
|
||||
|
||||
call omp_set_max_active_levels(1)
|
||||
call set_multiple_levels_omp(.False.)
|
||||
distributed_davidson = .False.
|
||||
read_wf = .False.
|
||||
SOFT_TOUCH read_wf distributed_davidson
|
||||
@ -171,9 +171,9 @@ subroutine run_slave_main
|
||||
call write_double(6,(t1-t0),'Broadcast time')
|
||||
|
||||
!---
|
||||
call omp_set_max_active_levels(8)
|
||||
call set_multiple_levels_omp(.True.)
|
||||
call davidson_slave_tcp(0)
|
||||
call omp_set_max_active_levels(1)
|
||||
call set_multiple_levels_omp(.False.)
|
||||
print *, mpi_rank, ': Davidson done'
|
||||
!---
|
||||
|
||||
@ -311,7 +311,7 @@ subroutine run_slave_main
|
||||
if (mpi_master) then
|
||||
print *, 'Running PT2'
|
||||
endif
|
||||
!$OMP PARALLEL PRIVATE(i) NUM_THREADS(nproc_target+1)
|
||||
!$OMP PARALLEL PRIVATE(i) NUM_THREADS(nproc_target)
|
||||
i = omp_get_thread_num()
|
||||
call run_pt2_slave(0,i,pt2_e0_denominator)
|
||||
!$OMP END PARALLEL
|
||||
|
@ -69,8 +69,8 @@ subroutine run_stochastic_cipsi
|
||||
|
||||
do while ( &
|
||||
(N_det < N_det_max) .and. &
|
||||
(maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) .and. &
|
||||
(maxval(abs(pt2_data % variance(1:N_states))) > variance_max) .and. &
|
||||
(sum(abs(pt2_data % pt2(1:N_states)) * state_average_weight(1:N_states)) > pt2_max) .and. &
|
||||
(sum(abs(pt2_data % variance(1:N_states)) * state_average_weight(1:N_states)) > variance_max) .and. &
|
||||
(correlation_energy_ratio <= correlation_energy_ratio_max) &
|
||||
)
|
||||
write(*,'(A)') '--------------------------------------------------------------------------------'
|
||||
|
@ -1,223 +0,0 @@
|
||||
use bitmasks
|
||||
|
||||
subroutine give_2rdm_pert_contrib(det,coef,psi_det_connection,psi_coef_connection_reverse,n_det_connection,nkeys,keys,values,sze_buff)
|
||||
implicit none
|
||||
integer, intent(in) :: n_det_connection,sze_buff
|
||||
double precision, intent(in) :: coef(N_states)
|
||||
integer(bit_kind), intent(in) :: det(N_int,2)
|
||||
integer(bit_kind), intent(in) :: psi_det_connection(N_int,2,n_det_connection)
|
||||
double precision, intent(in) :: psi_coef_connection_reverse(N_states,n_det_connection)
|
||||
integer, intent(inout) :: keys(4,sze_buff),nkeys
|
||||
double precision, intent(inout) :: values(sze_buff)
|
||||
integer :: i,j
|
||||
integer :: exc(0:2,2,2)
|
||||
integer :: degree
|
||||
double precision :: phase, contrib
|
||||
do i = 1, n_det_connection
|
||||
call get_excitation(det,psi_det_connection(1,1,i),exc,degree,phase,N_int)
|
||||
if(degree.gt.2)cycle
|
||||
contrib = 0.d0
|
||||
do j = 1, N_states
|
||||
contrib += state_average_weight(j) * psi_coef_connection_reverse(j,i) * phase * coef(j)
|
||||
enddo
|
||||
! case of single excitations
|
||||
if(degree == 1)then
|
||||
if (nkeys + 6 * elec_alpha_num .ge. sze_buff)then
|
||||
call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
|
||||
nkeys = 0
|
||||
endif
|
||||
call update_buffer_single_exc_rdm(det,psi_det_connection(1,1,i),exc,phase,contrib,nkeys,keys,values,sze_buff)
|
||||
else
|
||||
!! case of double excitations
|
||||
! if (nkeys + 4 .ge. sze_buff)then
|
||||
! call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
|
||||
! nkeys = 0
|
||||
! endif
|
||||
! call update_buffer_double_exc_rdm(exc,phase,contrib,nkeys,keys,values,sze_buff)
|
||||
endif
|
||||
enddo
|
||||
!call update_keys_values(keys,values,nkeys,n_orb_pert_rdm,pert_2rdm_provider,pert_2rdm_lock)
|
||||
!nkeys = 0
|
||||
|
||||
end
|
||||
|
||||
subroutine update_buffer_single_exc_rdm(det1,det2,exc,phase,contrib,nkeys,keys,values,sze_buff)
|
||||
implicit none
|
||||
integer, intent(in) :: sze_buff
|
||||
integer(bit_kind), intent(in) :: det1(N_int,2)
|
||||
integer(bit_kind), intent(in) :: det2(N_int,2)
|
||||
integer,intent(in) :: exc(0:2,2,2)
|
||||
double precision,intent(in) :: phase, contrib
|
||||
integer, intent(inout) :: nkeys, keys(4,sze_buff)
|
||||
double precision, intent(inout):: values(sze_buff)
|
||||
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2),ispin,other_spin
|
||||
integer :: h1,h2,p1,p2,i
|
||||
call bitstring_to_list_ab(det1, occ, n_occ_ab, N_int)
|
||||
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
h1 = exc(1,1,1)
|
||||
p1 = exc(1,2,1)
|
||||
ispin = 1
|
||||
other_spin = 2
|
||||
else
|
||||
! Mono beta
|
||||
h1 = exc(1,1,2)
|
||||
p1 = exc(1,2,2)
|
||||
ispin = 2
|
||||
other_spin = 1
|
||||
endif
|
||||
if(list_orb_reverse_pert_rdm(h1).lt.0)return
|
||||
h1 = list_orb_reverse_pert_rdm(h1)
|
||||
if(list_orb_reverse_pert_rdm(p1).lt.0)return
|
||||
p1 = list_orb_reverse_pert_rdm(p1)
|
||||
!update the alpha/beta part
|
||||
do i = 1, n_occ_ab(other_spin)
|
||||
h2 = occ(i,other_spin)
|
||||
if(list_orb_reverse_pert_rdm(h2).lt.0)return
|
||||
h2 = list_orb_reverse_pert_rdm(h2)
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = p1
|
||||
enddo
|
||||
!update the same spin part
|
||||
!do i = 1, n_occ_ab(ispin)
|
||||
! h2 = occ(i,ispin)
|
||||
! if(list_orb_reverse_pert_rdm(h2).lt.0)return
|
||||
! h2 = list_orb_reverse_pert_rdm(h2)
|
||||
|
||||
! nkeys += 1
|
||||
! values(nkeys) = 0.5d0 * contrib * phase
|
||||
! keys(1,nkeys) = h1
|
||||
! keys(2,nkeys) = h2
|
||||
! keys(3,nkeys) = p1
|
||||
! keys(4,nkeys) = h2
|
||||
|
||||
! nkeys += 1
|
||||
! values(nkeys) = - 0.5d0 * contrib * phase
|
||||
! keys(1,nkeys) = h1
|
||||
! keys(2,nkeys) = h2
|
||||
! keys(3,nkeys) = h2
|
||||
! keys(4,nkeys) = p1
|
||||
!
|
||||
! nkeys += 1
|
||||
! values(nkeys) = 0.5d0 * contrib * phase
|
||||
! keys(1,nkeys) = h2
|
||||
! keys(2,nkeys) = h1
|
||||
! keys(3,nkeys) = h2
|
||||
! keys(4,nkeys) = p1
|
||||
|
||||
! nkeys += 1
|
||||
! values(nkeys) = - 0.5d0 * contrib * phase
|
||||
! keys(1,nkeys) = h2
|
||||
! keys(2,nkeys) = h1
|
||||
! keys(3,nkeys) = p1
|
||||
! keys(4,nkeys) = h2
|
||||
!enddo
|
||||
|
||||
end
|
||||
|
||||
subroutine update_buffer_double_exc_rdm(exc,phase,contrib,nkeys,keys,values,sze_buff)
|
||||
implicit none
|
||||
integer, intent(in) :: sze_buff
|
||||
integer,intent(in) :: exc(0:2,2,2)
|
||||
double precision,intent(in) :: phase, contrib
|
||||
integer, intent(inout) :: nkeys, keys(4,sze_buff)
|
||||
double precision, intent(inout):: values(sze_buff)
|
||||
integer :: h1,h2,p1,p2
|
||||
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Double alpha/beta
|
||||
h1 = exc(1,1,1)
|
||||
h2 = exc(1,1,2)
|
||||
p1 = exc(1,2,1)
|
||||
p2 = exc(1,2,2)
|
||||
! check if the orbitals involved are within the orbital range
|
||||
if(list_orb_reverse_pert_rdm(h1).lt.0)return
|
||||
h1 = list_orb_reverse_pert_rdm(h1)
|
||||
if(list_orb_reverse_pert_rdm(h2).lt.0)return
|
||||
h2 = list_orb_reverse_pert_rdm(h2)
|
||||
if(list_orb_reverse_pert_rdm(p1).lt.0)return
|
||||
p1 = list_orb_reverse_pert_rdm(p1)
|
||||
if(list_orb_reverse_pert_rdm(p2).lt.0)return
|
||||
p2 = list_orb_reverse_pert_rdm(p2)
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = p1
|
||||
keys(2,nkeys) = p2
|
||||
keys(3,nkeys) = h1
|
||||
keys(4,nkeys) = h2
|
||||
|
||||
else
|
||||
if (exc(0,1,1) == 2) then
|
||||
! Double alpha/alpha
|
||||
h1 = exc(1,1,1)
|
||||
h2 = exc(2,1,1)
|
||||
p1 = exc(1,2,1)
|
||||
p2 = exc(2,2,1)
|
||||
else if (exc(0,1,2) == 2) then
|
||||
! Double beta
|
||||
h1 = exc(1,1,2)
|
||||
h2 = exc(2,1,2)
|
||||
p1 = exc(1,2,2)
|
||||
p2 = exc(2,2,2)
|
||||
endif
|
||||
! check if the orbitals involved are within the orbital range
|
||||
if(list_orb_reverse_pert_rdm(h1).lt.0)return
|
||||
h1 = list_orb_reverse_pert_rdm(h1)
|
||||
if(list_orb_reverse_pert_rdm(h2).lt.0)return
|
||||
h2 = list_orb_reverse_pert_rdm(h2)
|
||||
if(list_orb_reverse_pert_rdm(p1).lt.0)return
|
||||
p1 = list_orb_reverse_pert_rdm(p1)
|
||||
if(list_orb_reverse_pert_rdm(p2).lt.0)return
|
||||
p2 = list_orb_reverse_pert_rdm(p2)
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * contrib * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
|
@ -22,7 +22,7 @@ subroutine ZMQ_selection(N_in, pt2_data)
|
||||
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
|
||||
PROVIDE psi_bilinear_matrix_transp_order selection_weight pseudo_sym
|
||||
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
|
||||
PROVIDE pert_2rdm excitation_beta_max excitation_alpha_max excitation_max
|
||||
PROVIDE excitation_beta_max excitation_alpha_max excitation_max
|
||||
|
||||
call new_parallel_job(zmq_to_qp_run_socket,zmq_socket_pull,'selection')
|
||||
|
||||
|
@ -5,4 +5,3 @@ interface: ezfio
|
||||
size: (determinants.n_states)
|
||||
|
||||
|
||||
|
||||
|
@ -62,6 +62,7 @@ subroutine run
|
||||
else
|
||||
call H_apply_cis
|
||||
endif
|
||||
print*,''
|
||||
print *, 'N_det = ', N_det
|
||||
print*,'******************************'
|
||||
print *, 'Energies of the states:'
|
||||
@ -69,16 +70,18 @@ subroutine run
|
||||
print *, i, CI_energy(i)
|
||||
enddo
|
||||
if (N_states > 1) then
|
||||
print*,'******************************'
|
||||
print*,'Excitation energies '
|
||||
print*,''
|
||||
print*,'******************************************************'
|
||||
print*,'Excitation energies (au) (eV)'
|
||||
do i = 2, N_states
|
||||
print*, i ,CI_energy(i) - CI_energy(1)
|
||||
print*, i ,CI_energy(i) - CI_energy(1), (CI_energy(i) - CI_energy(1))/0.0367502d0
|
||||
enddo
|
||||
print*,''
|
||||
endif
|
||||
|
||||
call ezfio_set_cis_energy(CI_energy)
|
||||
psi_coef = ci_eigenvectors
|
||||
SOFT_TOUCH psi_coef
|
||||
call save_wavefunction_truncated(1.d-12)
|
||||
call save_wavefunction_truncated(save_threshold)
|
||||
|
||||
end
|
||||
|
@ -63,7 +63,7 @@ subroutine run
|
||||
endif
|
||||
psi_coef = ci_eigenvectors
|
||||
SOFT_TOUCH psi_coef
|
||||
call save_wavefunction
|
||||
call save_wavefunction_truncated(save_threshold)
|
||||
call ezfio_set_cisd_energy(CI_energy)
|
||||
|
||||
do i = 1,N_states
|
||||
|
@ -779,6 +779,7 @@ subroutine binary_search_cfg(cfgInp,addcfg)
|
||||
end subroutine
|
||||
|
||||
BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det, (2,N_configuration) ]
|
||||
&BEGIN_PROVIDER [ integer, psi_configuration_n_det, (N_configuration) ]
|
||||
&BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det_data, (N_det) ]
|
||||
|
||||
implicit none
|
||||
@ -867,6 +868,29 @@ end subroutine
|
||||
enddo
|
||||
|
||||
deallocate(dets, old_order)
|
||||
integer :: ndet_conf
|
||||
do i = 1, N_configuration
|
||||
ndet_conf = psi_configuration_to_psi_det(2,i) - psi_configuration_to_psi_det(1,i) + 1
|
||||
psi_configuration_n_det(i) = ndet_conf
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, n_elec_alpha_for_psi_configuration, (N_configuration)]
|
||||
implicit none
|
||||
integer :: i,j,k,l
|
||||
integer(bit_kind) :: det_tmp(N_int,2),det_alpha(N_int)
|
||||
n_elec_alpha_for_psi_configuration = 0
|
||||
do i = 1, N_configuration
|
||||
j = psi_configuration_to_psi_det(2,i)
|
||||
det_tmp(:,:) = psi_det(:,:,j)
|
||||
k = 0
|
||||
do l = 1, N_int
|
||||
det_alpha(N_int) = iand(det_tmp(l,1),psi_configuration(l,1,i))
|
||||
k += popcnt(det_alpha(l))
|
||||
enddo
|
||||
n_elec_alpha_for_psi_configuration(i) = k
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
@ -1,3 +1,15 @@
|
||||
BEGIN_PROVIDER [ double precision, psi_csf_coef, (N_csf, N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Wafe function in CSF basis
|
||||
END_DOC
|
||||
|
||||
double precision, allocatable :: buffer(:,:)
|
||||
allocate ( buffer(N_det, N_states) )
|
||||
buffer(1:N_det, 1:N_states) = psi_coef(1:N_det, 1:N_states)
|
||||
call convertWFfromDETtoCSF(N_states, buffer, psi_csf_coef)
|
||||
END_PROVIDER
|
||||
|
||||
subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
|
||||
use cfunctions
|
||||
use bitmasks
|
||||
@ -26,6 +38,8 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
|
||||
|
||||
integer s, bfIcfg
|
||||
integer countcsf
|
||||
integer MS
|
||||
MS = elec_alpha_num-elec_beta_num
|
||||
countcsf = 0
|
||||
phasedet = 1.0d0
|
||||
do i = 1,N_configuration
|
||||
@ -44,12 +58,17 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
s = 0
|
||||
s = 0 ! s == total number of SOMOs
|
||||
do k=1,N_int
|
||||
if (psi_configuration(k,1,i) == 0_bit_kind) cycle
|
||||
s = s + popcnt(psi_configuration(k,1,i))
|
||||
enddo
|
||||
bfIcfg = max(1,nint((binom(s,(s+1)/2)-binom(s,((s+1)/2)+1))))
|
||||
|
||||
if(iand(s,1) .EQ. 0) then
|
||||
bfIcfg = max(1,nint((binom(s,s/2)-binom(s,(s/2)+1))))
|
||||
else
|
||||
bfIcfg = max(1,nint((binom(s,(s+1)/2)-binom(s,((s+1)/2)+1))))
|
||||
endif
|
||||
|
||||
! perhaps blocking with CFGs of same seniority
|
||||
! can be more efficient
|
||||
|
@ -1,9 +1,12 @@
|
||||
real*8 function logabsgamma(x)
|
||||
implicit none
|
||||
real*8, intent(in) :: x
|
||||
logabsgamma = log(abs(gamma(x)))
|
||||
logabsgamma = 1.d32 ! Avoid floating point exception
|
||||
if (x>0.d0) then
|
||||
logabsgamma = log(abs(gamma(x)))
|
||||
endif
|
||||
end function logabsgamma
|
||||
|
||||
|
||||
BEGIN_PROVIDER [ integer, NSOMOMax]
|
||||
&BEGIN_PROVIDER [ integer, NCSFMax]
|
||||
&BEGIN_PROVIDER [ integer*8, NMO]
|
||||
@ -48,11 +51,24 @@
|
||||
if(cfg_seniority_index(i+2) > ncfgpersomo) then
|
||||
ncfgpersomo = cfg_seniority_index(i+2)
|
||||
else
|
||||
k = 0
|
||||
do while(cfg_seniority_index(i+2+k) < ncfgpersomo)
|
||||
k = k + 2
|
||||
ncfgpersomo = cfg_seniority_index(i+2+k)
|
||||
! l = i+k+2
|
||||
! Loop over l with a constraint to ensure that l <= size(cfg_seniority_index,1)-1
|
||||
! Old version commented just below
|
||||
do l = min(size(cfg_seniority_index,1)-1, i+2), size(cfg_seniority_index,1)-1, 2
|
||||
if (cfg_seniority_index(l) >= ncfgpersomo) then
|
||||
ncfgpersomo = cfg_seniority_index(l)
|
||||
endif
|
||||
enddo
|
||||
!k = 0
|
||||
!if ((i+2+k) < size(cfg_seniority_index,1)) then
|
||||
! do while(cfg_seniority_index(i+2+k) < ncfgpersomo)
|
||||
! k = k + 2
|
||||
! if ((i+2+k) >= size(cfg_seniority_index,1)) then
|
||||
! exit
|
||||
! endif
|
||||
! ncfgpersomo = cfg_seniority_index(i+2+k)
|
||||
! enddo
|
||||
!endif
|
||||
endif
|
||||
endif
|
||||
ncfg = ncfgpersomo - ncfgprev
|
||||
@ -62,34 +78,33 @@
|
||||
dimcsfpercfg = 2
|
||||
else
|
||||
if(iand(MS,1) .EQ. 0) then
|
||||
!dimcsfpercfg = max(1,nint((binom(i,i/2)-binom(i,i/2+1))))
|
||||
binom1 = dexp(logabsgamma(1.0d0*(i+1)) &
|
||||
- logabsgamma(1.0d0*((i/2)+1)) &
|
||||
- logabsgamma(1.0d0*(i-((i/2))+1)));
|
||||
binom2 = dexp(logabsgamma(1.0d0*(i+1)) &
|
||||
- logabsgamma(1.0d0*(((i/2)+1)+1)) &
|
||||
- logabsgamma(1.0d0*(i-((i/2)+1)+1)));
|
||||
dimcsfpercfg = max(1,nint(binom1 - binom2))
|
||||
dimcsfpercfg = max(1,nint((binom(i,i/2)-binom(i,i/2+1))))
|
||||
else
|
||||
!dimcsfpercfg = max(1,nint((binom(i,(i+1)/2)-binom(i,(i+3)/2))))
|
||||
binom1 = dexp(logabsgamma(1.0d0*(i+1)) &
|
||||
- logabsgamma(1.0d0*(((i+1)/2)+1)) &
|
||||
- logabsgamma(1.0d0*(i-(((i+1)/2))+1)));
|
||||
binom2 = dexp(logabsgamma(1.0d0*(i+1)) &
|
||||
- logabsgamma(1.0d0*((((i+3)/2)+1)+1)) &
|
||||
- logabsgamma(1.0d0*(i-(((i+3)/2)+1)+1)));
|
||||
dimcsfpercfg = max(1,nint(binom1 - binom2))
|
||||
dimcsfpercfg = max(1,nint((binom(i,(i+1)/2)-binom(i,(i+3)/2))))
|
||||
endif
|
||||
endif
|
||||
n_CSF += ncfg * dimcsfpercfg
|
||||
if(cfg_seniority_index(i+2) > ncfgprev) then
|
||||
ncfgprev = cfg_seniority_index(i+2)
|
||||
else
|
||||
k = 0
|
||||
do while(cfg_seniority_index(i+2+k) < ncfgprev)
|
||||
k = k + 2
|
||||
ncfgprev = cfg_seniority_index(i+2+k)
|
||||
! l = i+k+2
|
||||
! Loop over l with a constraint to ensure that l <= size(cfg_seniority_index,1)-1
|
||||
! Old version commented just below
|
||||
do l = min(size(cfg_seniority_index,1)-1, i+2), size(cfg_seniority_index,1)-1, 2
|
||||
if (cfg_seniority_index(l) >= ncfgprev) then
|
||||
ncfgprev = cfg_seniority_index(l)
|
||||
endif
|
||||
enddo
|
||||
!k = 0
|
||||
!if ((i+2+k) < size(cfg_seniority_index,1)) then
|
||||
! do while(cfg_seniority_index(i+2+k) < ncfgprev)
|
||||
! k = k + 2
|
||||
! if ((i+2+k) >= size(cfg_seniority_index,1)) then
|
||||
! exit
|
||||
! endif
|
||||
! ncfgprev = cfg_seniority_index(i+2+k)
|
||||
! enddo
|
||||
!endif
|
||||
endif
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
451
src/dav_general_mat/dav_diag_dressed_ext_rout.irp.f
Normal file
451
src/dav_general_mat/dav_diag_dressed_ext_rout.irp.f
Normal file
@ -0,0 +1,451 @@
|
||||
|
||||
subroutine davidson_general_ext_rout_diag_dressed(u_in,H_jj,Dress_jj,energies,sze,N_st,N_st_diag_in,converged,hcalc)
|
||||
use mmap_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Generic Davidson diagonalization with ONE DIAGONAL DRESSING OPERATOR
|
||||
!
|
||||
! Dress_jj : DIAGONAL DRESSING of the Hamiltonian
|
||||
!
|
||||
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten on exit
|
||||
!
|
||||
! sze : leftmost dimension of u_in
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
!
|
||||
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
|
||||
END_DOC
|
||||
integer, intent(in) :: sze, N_st, N_st_diag_in
|
||||
double precision, intent(in) :: H_jj(sze),Dress_jj(sze)
|
||||
double precision, intent(inout) :: u_in(sze,N_st_diag_in)
|
||||
double precision, intent(out) :: energies(N_st)
|
||||
external hcalc
|
||||
|
||||
integer :: iter, N_st_diag
|
||||
integer :: i,j,k,l,m
|
||||
logical, intent(inout) :: converged
|
||||
|
||||
double precision, external :: u_dot_v, u_dot_u
|
||||
|
||||
integer :: k_pairs, kl
|
||||
|
||||
integer :: iter2, itertot
|
||||
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
|
||||
double precision, allocatable :: residual_norm(:)
|
||||
character*(16384) :: write_buffer
|
||||
double precision :: to_print(2,N_st)
|
||||
double precision :: cpu, wall
|
||||
integer :: shift, shift2, itermax, istate
|
||||
double precision :: r1, r2, alpha
|
||||
integer :: nproc_target
|
||||
integer :: order(N_st_diag_in)
|
||||
double precision :: cmax
|
||||
double precision, allocatable :: U(:,:), overlap(:,:)!, S_d(:,:)
|
||||
double precision, pointer :: W(:,:)
|
||||
logical :: disk_based
|
||||
double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
N_st_diag = N_st_diag_in
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
|
||||
if (N_st_diag*3 > sze) then
|
||||
print *, 'error in Davidson :'
|
||||
print *, 'Increase n_det_max_full to ', N_st_diag*3
|
||||
stop -1
|
||||
endif
|
||||
|
||||
itermax = max(2,min(davidson_sze_max, sze/N_st_diag))+1
|
||||
itertot = 0
|
||||
|
||||
if (state_following) then
|
||||
allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
|
||||
else
|
||||
allocate(overlap(1,1)) ! avoid 'if' for deallocate
|
||||
endif
|
||||
overlap = 0.d0
|
||||
|
||||
provide threshold_davidson !nthreads_davidson
|
||||
call write_time(6)
|
||||
write(6,'(A)') ''
|
||||
write(6,'(A)') 'Davidson Diagonalization'
|
||||
write(6,'(A)') '------------------------'
|
||||
write(6,'(A)') ''
|
||||
|
||||
! Find max number of cores to fit in memory
|
||||
! -----------------------------------------
|
||||
|
||||
nproc_target = nproc
|
||||
double precision :: rss
|
||||
integer :: maxab
|
||||
maxab = sze
|
||||
|
||||
m=1
|
||||
disk_based = .False.
|
||||
call resident_memory(rss)
|
||||
do
|
||||
r1 = 8.d0 * &! bytes
|
||||
( dble(sze)*(N_st_diag*itermax) &! U
|
||||
+ 1.d0*dble(sze*m)*(N_st_diag*itermax) &! W
|
||||
+ 2.0d0*(N_st_diag*itermax)**2 &! h,y
|
||||
+ 2.d0*(N_st_diag*itermax) &! s2,lambda
|
||||
+ 1.d0*(N_st_diag) &! residual_norm
|
||||
! In H_S2_u_0_nstates_zmq
|
||||
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on collector
|
||||
+ 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on slave
|
||||
+ 0.5d0*maxab &! idx0 in H_S2_u_0_nstates_openmp_work_*
|
||||
+ nproc_target * &! In OMP section
|
||||
( 1.d0*(N_int*maxab) &! buffer
|
||||
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
|
||||
) / 1024.d0**3
|
||||
|
||||
if (nproc_target == 0) then
|
||||
call check_mem(r1,irp_here)
|
||||
nproc_target = 1
|
||||
exit
|
||||
endif
|
||||
|
||||
if (r1+rss < qp_max_mem) then
|
||||
exit
|
||||
endif
|
||||
|
||||
if (itermax > 4) then
|
||||
itermax = itermax - 1
|
||||
else if (m==1.and.disk_based_davidson) then
|
||||
m=0
|
||||
disk_based = .True.
|
||||
itermax = 6
|
||||
else
|
||||
nproc_target = nproc_target - 1
|
||||
endif
|
||||
|
||||
enddo
|
||||
nthreads_davidson = nproc_target
|
||||
TOUCH nthreads_davidson
|
||||
call write_int(6,N_st,'Number of states')
|
||||
call write_int(6,N_st_diag,'Number of states in diagonalization')
|
||||
call write_int(6,sze,'Number of basis functions')
|
||||
call write_int(6,nproc_target,'Number of threads for diagonalization')
|
||||
call write_double(6, r1, 'Memory(Gb)')
|
||||
if (disk_based) then
|
||||
print *, 'Using swap space to reduce RAM'
|
||||
endif
|
||||
|
||||
double precision, allocatable :: H_jj_tmp(:)
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (sze > 0)
|
||||
allocate(H_jj_tmp(sze))
|
||||
|
||||
do i=1,sze
|
||||
H_jj_tmp(i) = H_jj(i) + Dress_jj(i)
|
||||
enddo
|
||||
|
||||
!---------------
|
||||
|
||||
write(6,'(A)') ''
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = 'Iter'
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' Energy Residual '
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
|
||||
|
||||
allocate(W(sze,N_st_diag*itermax))
|
||||
|
||||
allocate( &
|
||||
! Large
|
||||
U(sze,N_st_diag*itermax), &
|
||||
! Small
|
||||
h(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
y(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
residual_norm(N_st_diag), &
|
||||
lambda(N_st_diag*itermax))
|
||||
|
||||
h = 0.d0
|
||||
U = 0.d0
|
||||
y = 0.d0
|
||||
|
||||
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (N_st_diag >= N_st)
|
||||
ASSERT (sze > 0)
|
||||
|
||||
! Davidson iterations
|
||||
! ===================
|
||||
|
||||
converged = .False.
|
||||
|
||||
! Initialize from N_st to N_st_diat with gaussian random numbers
|
||||
! to be sure to have overlap with any eigenvectors
|
||||
do k=N_st+1,N_st_diag
|
||||
u_in(k,k) = 10.d0
|
||||
do i=1,sze
|
||||
call random_number(r1)
|
||||
call random_number(r2)
|
||||
r1 = dsqrt(-2.d0*dlog(r1))
|
||||
r2 = dtwo_pi*r2
|
||||
u_in(i,k) = r1*dcos(r2)
|
||||
enddo
|
||||
enddo
|
||||
! Normalize all states
|
||||
do k=1,N_st_diag
|
||||
call normalize(u_in(1,k),sze)
|
||||
enddo
|
||||
|
||||
! Copy from the guess input "u_in" to the working vectors "U"
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
do while (.not.converged)
|
||||
itertot = itertot+1
|
||||
if (itertot == 8) then
|
||||
exit
|
||||
endif
|
||||
|
||||
do iter=1,itermax-1
|
||||
|
||||
shift = N_st_diag*(iter-1)
|
||||
shift2 = N_st_diag*iter
|
||||
|
||||
if ((iter > 1).or.(itertot == 1)) then
|
||||
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
||||
! -----------------------------------
|
||||
|
||||
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
|
||||
call ortho_qr(U,size(U,1),sze,shift2)
|
||||
call ortho_qr(U,size(U,1),sze,shift2)
|
||||
! it does W = H U with W(sze,N_st_diag),U(sze,N_st_diag)
|
||||
! where sze is the size of the vector, N_st_diag is the number of states
|
||||
call hcalc(W(1,shift+1),U(1,shift+1),N_st_diag,sze)
|
||||
! Compute then the DIAGONAL PART OF THE DRESSING
|
||||
! <i|W_k> += Dress_jj(i) * <i|U>
|
||||
call dressing_diag_uv(W(1,shift+1),U(1,shift+1),Dress_jj,N_st_diag_in,sze)
|
||||
else
|
||||
! Already computed in update below
|
||||
continue
|
||||
endif
|
||||
|
||||
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||
! -------------------------------------------
|
||||
|
||||
call dgemm('T','N', shift2, shift2, sze, &
|
||||
1.d0, U, size(U,1), W, size(W,1), &
|
||||
0.d0, h, size(h,1))
|
||||
|
||||
! Diagonalize h y = lambda y
|
||||
! ---------------
|
||||
|
||||
call lapack_diag(lambda,y,h,size(h,1),shift2)
|
||||
|
||||
if (state_following) then
|
||||
|
||||
overlap = -1.d0
|
||||
do k=1,shift2
|
||||
do i=1,shift2
|
||||
overlap(k,i) = dabs(y(k,i))
|
||||
enddo
|
||||
enddo
|
||||
do k=1,N_st
|
||||
cmax = -1.d0
|
||||
do i=1,N_st
|
||||
if (overlap(i,k) > cmax) then
|
||||
cmax = overlap(i,k)
|
||||
order(k) = i
|
||||
endif
|
||||
enddo
|
||||
do i=1,N_st_diag
|
||||
overlap(order(k),i) = -1.d0
|
||||
enddo
|
||||
enddo
|
||||
overlap = y
|
||||
do k=1,N_st
|
||||
l = order(k)
|
||||
if (k /= l) then
|
||||
y(1:shift2,k) = overlap(1:shift2,l)
|
||||
endif
|
||||
enddo
|
||||
do k=1,N_st
|
||||
overlap(k,1) = lambda(k)
|
||||
enddo
|
||||
do k=1,N_st
|
||||
l = order(k)
|
||||
if (k /= l) then
|
||||
lambda(k) = overlap(l,1)
|
||||
endif
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
|
||||
! Express eigenvectors of h in the determinant basis
|
||||
! --------------------------------------------------
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze
|
||||
U(i,shift2+k) = &
|
||||
(lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
|
||||
/max(H_jj_tmp(i) - lambda (k),1.d-2)
|
||||
enddo
|
||||
|
||||
if (k <= N_st) then
|
||||
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
|
||||
to_print(1,k) = lambda(k)
|
||||
to_print(2,k) = residual_norm(k)
|
||||
endif
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
|
||||
if ((itertot>1).and.(iter == 1)) then
|
||||
!don't print
|
||||
continue
|
||||
else
|
||||
write(*,'(1X,I3,1X,100(1X,F16.10,1X,F11.6,1X,E11.3))') iter-1, to_print(1:2,1:N_st)
|
||||
endif
|
||||
|
||||
! Check convergence
|
||||
if (iter > 1) then
|
||||
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
|
||||
endif
|
||||
|
||||
|
||||
do k=1,N_st
|
||||
if (residual_norm(k) > 1.e8) then
|
||||
print *, 'Davidson failed'
|
||||
stop -1
|
||||
endif
|
||||
enddo
|
||||
if (converged) then
|
||||
exit
|
||||
endif
|
||||
|
||||
logical, external :: qp_stop
|
||||
if (qp_stop()) then
|
||||
converged = .True.
|
||||
exit
|
||||
endif
|
||||
|
||||
|
||||
enddo
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
|
||||
W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze
|
||||
W(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
|
||||
U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
call ortho_qr(U,size(U,1),sze,N_st_diag)
|
||||
call ortho_qr(U,size(U,1),sze,N_st_diag)
|
||||
do j=1,N_st_diag
|
||||
k=1
|
||||
do while ((k<sze).and.(U(k,j) == 0.d0))
|
||||
k = k+1
|
||||
enddo
|
||||
if (U(k,j) * u_in(k,j) < 0.d0) then
|
||||
do i=1,sze
|
||||
W(i,j) = -W(i,j)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do k=1,N_st
|
||||
energies(k) = lambda(k)
|
||||
enddo
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') trim(write_buffer)
|
||||
write(6,'(A)') ''
|
||||
call write_time(6)
|
||||
|
||||
deallocate(W)
|
||||
|
||||
deallocate ( &
|
||||
residual_norm, &
|
||||
U, h, &
|
||||
y, &
|
||||
lambda &
|
||||
)
|
||||
deallocate(overlap)
|
||||
FREE nthreads_davidson
|
||||
end
|
||||
|
||||
subroutine dressing_diag_uv(v,u,dress_diag,N_st,sze)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Routine that computes the diagonal part of the dressing
|
||||
!
|
||||
! v(i) += u(i) * dress_diag(i)
|
||||
!
|
||||
! !!!!!!!! WARNING !!!!!!!! the vector v is not initialized
|
||||
!
|
||||
! !!!!!!!! SO MAKE SURE THERE ARE SOME MEANINGFUL VALUES IN THERE
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze
|
||||
double precision, intent(in) :: u(sze,N_st),dress_diag(sze)
|
||||
double precision, intent(inout) :: v(sze,N_st)
|
||||
integer :: i,istate
|
||||
do istate = 1, N_st
|
||||
do i = 1, sze
|
||||
v(i,istate) += dress_diag(i) * u(i,istate)
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
518
src/dav_general_mat/dav_double_dress_ext_rout.irp.f
Normal file
518
src/dav_general_mat/dav_double_dress_ext_rout.irp.f
Normal file
@ -0,0 +1,518 @@
|
||||
subroutine dav_double_dressed(u_in,H_jj,Dress_jj,Dressing_vec,idx_dress,energies,sze,N_st,N_st_diag,converged,hcalc)
|
||||
use mmap_module
|
||||
BEGIN_DOC
|
||||
! Generic Davidson diagonalization with TWO DRESSING VECTORS
|
||||
!
|
||||
! Dress_jj : DIAGONAL DRESSING of the Hamiltonian
|
||||
!
|
||||
! Dressing_vec : COLUMN / LINE DRESSING VECTOR
|
||||
!
|
||||
! idx_dress : position of the basis function used to use the Dressing_vec (usually the largest coeff)
|
||||
!
|
||||
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten on exit
|
||||
!
|
||||
! sze : leftmost dimension of u_in
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! N_st_diag : Number of states in which H is diagonalized. Assumed > sze
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
!
|
||||
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: sze, N_st, N_st_diag, idx_dress
|
||||
double precision, intent(in) :: H_jj(sze),Dress_jj(sze),Dressing_vec(sze,N_st)
|
||||
double precision, intent(inout) :: u_in(sze,N_st_diag)
|
||||
double precision, intent(out) :: energies(N_st_diag)
|
||||
logical, intent(out) :: converged
|
||||
external hcalc
|
||||
|
||||
double precision, allocatable :: H_jj_tmp(:)
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (sze > 0)
|
||||
allocate(H_jj_tmp(sze))
|
||||
|
||||
do i=1,sze
|
||||
H_jj_tmp(i) = H_jj(i) + Dress_jj(i)
|
||||
enddo
|
||||
do k=1,N_st
|
||||
do i=1,sze
|
||||
H_jj_tmp(i) += u_in(i,k) * Dressing_vec(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
integer :: iter
|
||||
integer :: i,j,k,l,m
|
||||
|
||||
double precision, external :: u_dot_v, u_dot_u
|
||||
|
||||
integer :: k_pairs, kl
|
||||
|
||||
integer :: iter2, itertot
|
||||
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
|
||||
double precision, allocatable :: s_tmp(:,:)
|
||||
double precision, allocatable :: residual_norm(:),inv_c_idx_dress_vec(:)
|
||||
character*(16384) :: write_buffer
|
||||
double precision :: to_print(2,N_st),inv_c_idx_dress
|
||||
double precision :: cpu, wall
|
||||
integer :: shift, shift2, itermax, istate
|
||||
double precision :: r1, r2, alpha
|
||||
logical :: state_ok(N_st_diag*davidson_sze_max)
|
||||
integer :: nproc_target
|
||||
integer :: order(N_st_diag)
|
||||
double precision :: cmax
|
||||
double precision, allocatable :: U(:,:), overlap(:,:)
|
||||
double precision, pointer :: W(:,:)
|
||||
logical :: disk_based
|
||||
double precision :: energy_shift(N_st_diag*davidson_sze_max)
|
||||
|
||||
|
||||
allocate(inv_c_idx_dress_vec(N_st))
|
||||
inv_c_idx_dress = 1.d0/u_in(idx_dress,1)
|
||||
do i = 1, N_st
|
||||
inv_c_idx_dress_vec(i) = 1.d0/u_in(idx_dress,i)
|
||||
enddo
|
||||
include 'constants.include.F'
|
||||
|
||||
integer :: N_st_diag_in
|
||||
N_st_diag_in = N_st_diag
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
|
||||
if (N_st_diag_in*3 > sze) then
|
||||
print *, 'error in Davidson :'
|
||||
print *, 'Increase n_det_max_full to ', N_st_diag_in*3
|
||||
stop -1
|
||||
endif
|
||||
|
||||
itermax = max(2,min(davidson_sze_max, sze/N_st_diag_in))+1
|
||||
itertot = 0
|
||||
|
||||
if (state_following) then
|
||||
allocate(overlap(N_st_diag_in*itermax, N_st_diag_in*itermax))
|
||||
else
|
||||
allocate(overlap(1,1)) ! avoid 'if' for deallocate
|
||||
endif
|
||||
overlap = 0.d0
|
||||
|
||||
call write_time(6)
|
||||
write(6,'(A)') ''
|
||||
write(6,'(A)') 'Davidson Diagonalization'
|
||||
write(6,'(A)') '------------------------'
|
||||
write(6,'(A)') ''
|
||||
|
||||
! Find max number of cores to fit in memory
|
||||
! -----------------------------------------
|
||||
|
||||
nproc_target = nproc
|
||||
double precision :: rss
|
||||
integer :: maxab
|
||||
maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||||
|
||||
m=1
|
||||
disk_based = .False.
|
||||
call resident_memory(rss)
|
||||
do
|
||||
r1 = 8.d0 * &! bytes
|
||||
( dble(sze)*(N_st_diag_in*itermax) &! U
|
||||
+ 1.0d0*dble(sze*m)*(N_st_diag_in*itermax) &! W
|
||||
+ 3.0d0*(N_st_diag_in*itermax)**2 &! h,y,s_tmp
|
||||
+ 1.d0*(N_st_diag_in*itermax) &! lambda
|
||||
+ 1.d0*(N_st_diag_in) &! residual_norm
|
||||
! In H_u_0_nstates_zmq
|
||||
+ 2.d0*(N_st_diag_in*N_det) &! u_t, v_t, on collector
|
||||
+ 2.d0*(N_st_diag_in*N_det) &! u_t, v_t, on slave
|
||||
+ 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_*
|
||||
+ nproc_target * &! In OMP section
|
||||
( 1.d0*(N_int*maxab) &! buffer
|
||||
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
|
||||
) / 1024.d0**3
|
||||
|
||||
if (nproc_target == 0) then
|
||||
call check_mem(r1,irp_here)
|
||||
nproc_target = 1
|
||||
exit
|
||||
endif
|
||||
|
||||
if (r1+rss < qp_max_mem) then
|
||||
exit
|
||||
endif
|
||||
|
||||
if (itermax > 4) then
|
||||
itermax = itermax - 1
|
||||
else if (m==1.and.disk_based_davidson) then
|
||||
m=0
|
||||
disk_based = .True.
|
||||
itermax = 6
|
||||
else
|
||||
nproc_target = nproc_target - 1
|
||||
endif
|
||||
|
||||
enddo
|
||||
nthreads_davidson = nproc_target
|
||||
TOUCH nthreads_davidson
|
||||
call write_int(6,N_st,'Number of states')
|
||||
call write_int(6,N_st_diag_in,'Number of states in diagonalization')
|
||||
call write_int(6,sze,'Number of basis functions ')
|
||||
call write_int(6,nproc_target,'Number of threads for diagonalization')
|
||||
call write_double(6, r1, 'Memory(Gb)')
|
||||
if (disk_based) then
|
||||
print *, 'Using swap space to reduce RAM'
|
||||
endif
|
||||
|
||||
!---------------
|
||||
|
||||
write(6,'(A)') ''
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = 'Iter'
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' Energy Residual '
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
|
||||
|
||||
allocate(W(sze,N_st_diag_in*itermax))
|
||||
|
||||
allocate( &
|
||||
! Large
|
||||
U(sze,N_st_diag_in*itermax), &
|
||||
|
||||
! Small
|
||||
h(N_st_diag_in*itermax,N_st_diag_in*itermax), &
|
||||
y(N_st_diag_in*itermax,N_st_diag_in*itermax), &
|
||||
s_tmp(N_st_diag_in*itermax,N_st_diag_in*itermax), &
|
||||
residual_norm(N_st_diag_in), &
|
||||
lambda(N_st_diag_in*itermax))
|
||||
|
||||
h = 0.d0
|
||||
U = 0.d0
|
||||
y = 0.d0
|
||||
s_tmp = 0.d0
|
||||
|
||||
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (N_st_diag_in >= N_st)
|
||||
ASSERT (sze > 0)
|
||||
|
||||
! Davidson iterations
|
||||
! ===================
|
||||
|
||||
converged = .False.
|
||||
|
||||
do k=N_st+1,N_st_diag_in
|
||||
do i=1,sze
|
||||
call random_number(r1)
|
||||
call random_number(r2)
|
||||
r1 = dsqrt(-2.d0*dlog(r1))
|
||||
r2 = dtwo_pi*r2
|
||||
u_in(i,k) = r1*dcos(r2) * u_in(i,k-N_st)
|
||||
enddo
|
||||
u_in(k,k) = u_in(k,k) + 10.d0
|
||||
enddo
|
||||
do k=1,N_st_diag_in
|
||||
call normalize(u_in(1,k),sze)
|
||||
enddo
|
||||
|
||||
do k=1,N_st_diag_in
|
||||
do i=1,sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
do while (.not.converged)
|
||||
itertot = itertot+1
|
||||
if (itertot == 2) then
|
||||
exit
|
||||
endif
|
||||
|
||||
do iter=1,itermax-1
|
||||
|
||||
shift = N_st_diag_in*(iter-1)
|
||||
shift2 = N_st_diag_in*iter
|
||||
|
||||
if ((iter > 1).or.(itertot == 1)) then
|
||||
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
||||
! -----------------------------------
|
||||
call hcalc(W(1,shift+1),U(1,shift+1),N_st_diag_in,sze)
|
||||
! Compute then the DIAGONAL PART OF THE DRESSING
|
||||
! <i|W_k> += Dress_jj(i) * <i|U>
|
||||
call dressing_diag_uv(W(1,shift+1),U(1,shift+1),Dress_jj,N_st_diag_in,sze)
|
||||
else
|
||||
! Already computed in update below
|
||||
continue
|
||||
endif
|
||||
|
||||
|
||||
if (N_st == 1) then
|
||||
|
||||
l = idx_dress
|
||||
double precision :: f
|
||||
f = inv_c_idx_dress
|
||||
do istate=1,N_st_diag_in
|
||||
do i=1,sze
|
||||
W(i,shift+istate) += Dressing_vec(i,1) *f * U(l,shift+istate)
|
||||
W(l,shift+istate) += Dressing_vec(i,1) *f * U(i,shift+istate)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
else
|
||||
print*,'dav_double_dressed routine not yet implemented for N_st > 1'
|
||||
!
|
||||
! call dgemm('T','N', N_st, N_st_diag_in, sze, 1.d0, &
|
||||
! psi_coef, size(psi_coef,1), &
|
||||
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
!
|
||||
! call dgemm('N','N', sze, N_st_diag_in, N_st, 1.0d0, &
|
||||
! Dressing_vec, size(Dressing_vec,1), s_tmp, size(s_tmp,1), &
|
||||
! 1.d0, W(1,shift+1), size(W,1))
|
||||
!
|
||||
!
|
||||
! call dgemm('T','N', N_st, N_st_diag_in, sze, 1.d0, &
|
||||
! Dressing_vec, size(Dressing_vec,1), &
|
||||
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
!
|
||||
! call dgemm('N','N', sze, N_st_diag_in, N_st, 1.0d0, &
|
||||
! psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
|
||||
! 1.d0, W(1,shift+1), size(W,1))
|
||||
!
|
||||
endif
|
||||
|
||||
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||
! -------------------------------------------
|
||||
|
||||
call dgemm('T','N', shift2, shift2, sze, &
|
||||
1.d0, U, size(U,1), W, size(W,1), &
|
||||
0.d0, h, size(h,1))
|
||||
call dgemm('T','N', shift2, shift2, sze, &
|
||||
1.d0, U, size(U,1), U, size(U,1), &
|
||||
0.d0, s_tmp, size(s_tmp,1))
|
||||
|
||||
! Diagonalize h
|
||||
! ---------------
|
||||
|
||||
integer :: lwork, info
|
||||
double precision, allocatable :: work(:)
|
||||
|
||||
y = h
|
||||
lwork = -1
|
||||
allocate(work(1))
|
||||
call dsygv(1,'V','U',shift2,y,size(y,1), &
|
||||
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
|
||||
lwork = int(work(1))
|
||||
deallocate(work)
|
||||
allocate(work(lwork))
|
||||
call dsygv(1,'V','U',shift2,y,size(y,1), &
|
||||
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
|
||||
deallocate(work)
|
||||
if (info /= 0) then
|
||||
stop 'DSYGV Diagonalization failed'
|
||||
endif
|
||||
|
||||
! Compute Energy for each eigenvector
|
||||
! -----------------------------------
|
||||
|
||||
call dgemm('N','N',shift2,shift2,shift2, &
|
||||
1.d0, h, size(h,1), y, size(y,1), &
|
||||
0.d0, s_tmp, size(s_tmp,1))
|
||||
|
||||
call dgemm('T','N',shift2,shift2,shift2, &
|
||||
1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
|
||||
0.d0, h, size(h,1))
|
||||
|
||||
do k=1,shift2
|
||||
lambda(k) = h(k,k)
|
||||
enddo
|
||||
|
||||
if (state_following) then
|
||||
|
||||
overlap = -1.d0
|
||||
do k=1,shift2
|
||||
do i=1,shift2
|
||||
overlap(k,i) = dabs(y(k,i))
|
||||
enddo
|
||||
enddo
|
||||
do k=1,N_st
|
||||
cmax = -1.d0
|
||||
do i=1,N_st
|
||||
if (overlap(i,k) > cmax) then
|
||||
cmax = overlap(i,k)
|
||||
order(k) = i
|
||||
endif
|
||||
enddo
|
||||
do i=1,N_st_diag_in
|
||||
overlap(order(k),i) = -1.d0
|
||||
enddo
|
||||
enddo
|
||||
overlap = y
|
||||
do k=1,N_st
|
||||
l = order(k)
|
||||
if (k /= l) then
|
||||
y(1:shift2,k) = overlap(1:shift2,l)
|
||||
endif
|
||||
enddo
|
||||
do k=1,N_st
|
||||
overlap(k,1) = lambda(k)
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
|
||||
! Express eigenvectors of h in the determinant basis
|
||||
! --------------------------------------------------
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag_in, shift2, &
|
||||
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
|
||||
call dgemm('N','N', sze, N_st_diag_in, shift2, &
|
||||
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
||||
do k=1,N_st_diag_in
|
||||
do i=1,sze
|
||||
U(i,shift2+k) = &
|
||||
(lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
|
||||
/max(H_jj_tmp(i) - lambda (k),1.d-2)
|
||||
enddo
|
||||
|
||||
if (k <= N_st) then
|
||||
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
|
||||
to_print(1,k) = lambda(k)
|
||||
to_print(2,k) = residual_norm(k)
|
||||
endif
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
|
||||
if ((itertot>1).and.(iter == 1)) then
|
||||
!don't print
|
||||
continue
|
||||
else
|
||||
write(*,'(1X,I3,1X,100(1X,F16.10,1X,E11.3))') iter-1, to_print(1:2,1:N_st)
|
||||
endif
|
||||
|
||||
! Check convergence
|
||||
if (iter > 1) then
|
||||
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
|
||||
endif
|
||||
|
||||
do k=1,N_st
|
||||
if (residual_norm(k) > 1.d8) then
|
||||
print *, 'Davidson failed'
|
||||
stop -1
|
||||
endif
|
||||
enddo
|
||||
if (converged) then
|
||||
exit
|
||||
endif
|
||||
|
||||
logical, external :: qp_stop
|
||||
if (qp_stop()) then
|
||||
converged = .True.
|
||||
exit
|
||||
endif
|
||||
|
||||
|
||||
enddo
|
||||
|
||||
! Re-contract U and update W
|
||||
! --------------------------------
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag_in, shift2, 1.d0, &
|
||||
W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||
do k=1,N_st_diag_in
|
||||
do i=1,sze
|
||||
W(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag_in, shift2, 1.d0, &
|
||||
U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||
|
||||
do k=1,N_st_diag_in
|
||||
do i=1,sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
call nullify_small_elements(sze,N_st_diag_in,U,size(U,1),threshold_davidson_pt2)
|
||||
do k=1,N_st_diag_in
|
||||
do i=1,sze
|
||||
u_in(i,k) = U(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do k=1,N_st_diag_in
|
||||
energies(k) = lambda(k)
|
||||
enddo
|
||||
write_buffer = '======'
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') trim(write_buffer)
|
||||
write(6,'(A)') ''
|
||||
call write_time(6)
|
||||
|
||||
deallocate(W)
|
||||
|
||||
deallocate ( &
|
||||
residual_norm, &
|
||||
U, overlap, &
|
||||
h, y, s_tmp, &
|
||||
lambda &
|
||||
)
|
||||
FREE nthreads_davidson
|
||||
end
|
||||
|
||||
|
||||
subroutine dressing_diag_uv(v,u,dress_diag,N_st,sze)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Routine that computes the diagonal part of the dressing
|
||||
!
|
||||
! v(i) += u(i) * dress_diag(i)
|
||||
!
|
||||
! !!!!!!!! WARNING !!!!!!!! the vector v is not initialized
|
||||
!
|
||||
! !!!!!!!! SO MAKE SURE THERE ARE SOME MEANINGFUL VALUES IN THERE
|
||||
END_DOC
|
||||
integer, intent(in) :: N_st,sze
|
||||
double precision, intent(in) :: u(sze,N_st),dress_diag(sze)
|
||||
double precision, intent(inout) :: v(sze,N_st)
|
||||
integer :: i,istate
|
||||
do istate = 1, N_st
|
||||
do i = 1, sze
|
||||
v(i,istate) += dress_diag(i) * u(i,istate)
|
||||
enddo
|
||||
enddo
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
485
src/dav_general_mat/dav_dressed_ext_rout.irp.f
Normal file
485
src/dav_general_mat/dav_dressed_ext_rout.irp.f
Normal file
@ -0,0 +1,485 @@
|
||||
subroutine davidson_general_ext_rout_dressed(u_in,H_jj,energies,sze,N_st,N_st_diag,dressing_state,dressing_vec,idress,converged,hcalc)
|
||||
use mmap_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Davidson diagonalization.
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten
|
||||
! on exit
|
||||
!
|
||||
! sze : leftmost dimension of u_in
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
! N_st : Number of eigenstates
|
||||
!
|
||||
! Initial guess vectors are not necessarily orthonormal
|
||||
END_DOC
|
||||
integer, intent(in) :: sze, N_st, N_st_diag,idress
|
||||
double precision, intent(inout) :: u_in(sze,N_st_diag)
|
||||
double precision, intent(inout) :: H_jj(sze)
|
||||
double precision, intent(out) :: energies(N_st_diag)
|
||||
double precision, intent(in) :: dressing_vec(sze,N_st)
|
||||
integer, intent(in) :: dressing_state
|
||||
logical, intent(out) :: converged
|
||||
external hcalc
|
||||
|
||||
double precision :: f
|
||||
|
||||
integer :: iter
|
||||
integer :: i,j,k,l,m
|
||||
|
||||
double precision, external :: u_dot_v, u_dot_u
|
||||
|
||||
integer :: k_pairs, kl
|
||||
|
||||
integer :: iter2, itertot
|
||||
double precision, allocatable :: y(:,:), h(:,:), lambda(:)
|
||||
double precision, allocatable :: s_tmp(:,:)
|
||||
double precision :: diag_h_mat_elem
|
||||
double precision, allocatable :: residual_norm(:)
|
||||
character*(16384) :: write_buffer
|
||||
double precision :: to_print(2,N_st)
|
||||
double precision :: cpu, wall
|
||||
integer :: shift, shift2, itermax, istate
|
||||
double precision :: r1, r2, alpha
|
||||
logical :: state_ok(N_st_diag*davidson_sze_max)
|
||||
integer :: nproc_target
|
||||
integer :: order(N_st_diag)
|
||||
double precision :: cmax
|
||||
double precision, allocatable :: U(:,:), overlap(:,:)
|
||||
double precision, pointer :: W(:,:)
|
||||
logical :: disk_based
|
||||
double precision :: energy_shift(N_st_diag*davidson_sze_max)
|
||||
!!!! TO CHANGE !!!!
|
||||
integer :: idx_dress(1)
|
||||
idx_dress = idress
|
||||
|
||||
|
||||
if (dressing_state > 0) then
|
||||
do k=1,N_st
|
||||
do i=1,sze
|
||||
H_jj(i) += u_in(i,k) * dressing_vec(i,k)
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
l = idx_dress(1)
|
||||
f = 1.0d0/u_in(l,1)
|
||||
|
||||
include 'constants.include.F'
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, y, h, lambda
|
||||
if (N_st_diag*3 > sze) then
|
||||
print *, 'error in Davidson :'
|
||||
print *, 'Increase n_det_max_full to ', N_st_diag*3
|
||||
stop -1
|
||||
endif
|
||||
|
||||
itermax = max(2,min(davidson_sze_max, sze/N_st_diag))+1
|
||||
itertot = 0
|
||||
|
||||
if (state_following) then
|
||||
allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
|
||||
else
|
||||
allocate(overlap(1,1)) ! avoid 'if' for deallocate
|
||||
endif
|
||||
overlap = 0.d0
|
||||
|
||||
|
||||
provide threshold_davidson !nthreads_davidson
|
||||
call write_time(6)
|
||||
write(6,'(A)') ''
|
||||
write(6,'(A)') 'Davidson Diagonalization'
|
||||
write(6,'(A)') '------------------------'
|
||||
write(6,'(A)') ''
|
||||
|
||||
! Find max number of cores to fit in memory
|
||||
! -----------------------------------------
|
||||
|
||||
nproc_target = nproc
|
||||
double precision :: rss
|
||||
integer :: maxab
|
||||
! maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
|
||||
maxab = sze
|
||||
|
||||
m=1
|
||||
disk_based = .False.
|
||||
call resident_memory(rss)
|
||||
do
|
||||
r1 = 8.d0 * &! bytes
|
||||
( dble(sze)*(N_st_diag*itermax) &! U
|
||||
+ 1.0d0*dble(sze*m)*(N_st_diag*itermax) &! W
|
||||
+ 3.0d0*(N_st_diag*itermax)**2 &! h,y,s_tmp
|
||||
+ 1.d0*(N_st_diag*itermax) &! lambda
|
||||
+ 1.d0*(N_st_diag) &! residual_norm
|
||||
! In H_u_0_nstates_zmq
|
||||
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on collector
|
||||
+ 2.d0*(N_st_diag*N_det) &! u_t, v_t, on slave
|
||||
+ 0.5d0*maxab &! idx0 in H_u_0_nstates_openmp_work_*
|
||||
+ nproc_target * &! In OMP section
|
||||
( 1.d0*(N_int*maxab) &! buffer
|
||||
+ 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
|
||||
) / 1024.d0**3
|
||||
|
||||
if (nproc_target == 0) then
|
||||
call check_mem(r1,irp_here)
|
||||
nproc_target = 1
|
||||
exit
|
||||
endif
|
||||
|
||||
if (r1+rss < qp_max_mem) then
|
||||
exit
|
||||
endif
|
||||
|
||||
if (itermax > 4) then
|
||||
itermax = itermax - 1
|
||||
else if (m==1.and.disk_based_davidson) then
|
||||
m=0
|
||||
disk_based = .True.
|
||||
itermax = 6
|
||||
else
|
||||
nproc_target = nproc_target - 1
|
||||
endif
|
||||
|
||||
enddo
|
||||
nthreads_davidson = nproc_target
|
||||
TOUCH nthreads_davidson
|
||||
call write_int(6,N_st,'Number of states')
|
||||
call write_int(6,N_st_diag,'Number of states in diagonalization')
|
||||
call write_int(6,sze,'Number of basis function')
|
||||
call write_int(6,nproc_target,'Number of threads for diagonalization')
|
||||
call write_double(6, r1, 'Memory(Gb)')
|
||||
if (disk_based) then
|
||||
print *, 'Using swap space to reduce RAM'
|
||||
endif
|
||||
|
||||
!---------------
|
||||
|
||||
write(6,'(A)') ''
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = 'Iter'
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' Energy Residual '
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
write_buffer = '====='
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
|
||||
|
||||
allocate(W(sze,N_st_diag*itermax))
|
||||
|
||||
allocate( &
|
||||
! Large
|
||||
U(sze,N_st_diag*itermax), &
|
||||
|
||||
! Small
|
||||
h(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
y(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
|
||||
residual_norm(N_st_diag), &
|
||||
lambda(N_st_diag*itermax))
|
||||
|
||||
h = 0.d0
|
||||
U = 0.d0
|
||||
y = 0.d0
|
||||
s_tmp = 0.d0
|
||||
|
||||
|
||||
ASSERT (N_st > 0)
|
||||
ASSERT (N_st_diag >= N_st)
|
||||
ASSERT (sze > 0)
|
||||
|
||||
! Davidson iterations
|
||||
! ===================
|
||||
|
||||
converged = .False.
|
||||
|
||||
do k=N_st+1,N_st_diag
|
||||
do i=1,sze
|
||||
call random_number(r1)
|
||||
call random_number(r2)
|
||||
r1 = dsqrt(-2.d0*dlog(r1))
|
||||
r2 = dtwo_pi*r2
|
||||
u_in(i,k) = r1*dcos(r2) * u_in(i,k-N_st)
|
||||
enddo
|
||||
u_in(k,k) = u_in(k,k) + 10.d0
|
||||
enddo
|
||||
! Normalize all states
|
||||
do k=1,N_st_diag
|
||||
call normalize(u_in(1,k),sze)
|
||||
enddo
|
||||
! Copy from the guess input "u_in" to the working vectors "U"
|
||||
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
do while (.not.converged)
|
||||
itertot = itertot+1
|
||||
if (itertot == 8) then
|
||||
exit
|
||||
endif
|
||||
|
||||
do iter=1,itermax-1
|
||||
|
||||
shift = N_st_diag*(iter-1)
|
||||
shift2 = N_st_diag*iter
|
||||
|
||||
if ((iter > 1).or.(itertot == 1)) then
|
||||
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
||||
! -----------------------------------
|
||||
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
|
||||
call ortho_qr(U,size(U,1),sze,shift2)
|
||||
call ortho_qr(U,size(U,1),sze,shift2)
|
||||
! it does W = H U with W(sze,N_st_diag),U(sze,N_st_diag)
|
||||
! where sze is the size of the vector, N_st_diag is the number of states
|
||||
call hcalc(W(1,shift+1),U(1,shift+1),N_st_diag,sze)
|
||||
else
|
||||
! Already computed in update below
|
||||
continue
|
||||
endif
|
||||
|
||||
if (dressing_state > 0) then
|
||||
|
||||
if (N_st == 1) then
|
||||
|
||||
|
||||
do istate=1,N_st_diag
|
||||
do i=1,sze
|
||||
W(i,shift+istate) += dressing_vec(i,1) *f * U(l,shift+istate)
|
||||
W(l,shift+istate) += dressing_vec(i,1) *f * U(i,shift+istate)
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
else
|
||||
print*,'Not implemented yet for multi state ...'
|
||||
stop
|
||||
! call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
|
||||
! psi_coef, size(psi_coef,1), &
|
||||
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
!
|
||||
! call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
|
||||
! dressing_vec, size(dressing_vec,1), s_tmp, size(s_tmp,1), &
|
||||
! 1.d0, W(1,shift+1), size(W,1))
|
||||
!
|
||||
!
|
||||
! call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
|
||||
! dressing_vec, size(dressing_vec,1), &
|
||||
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
|
||||
!
|
||||
! call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
|
||||
! psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
|
||||
! 1.d0, W(1,shift+1), size(W,1))
|
||||
|
||||
endif
|
||||
endif
|
||||
|
||||
! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
|
||||
! -------------------------------------------
|
||||
|
||||
call dgemm('T','N', shift2, shift2, sze, &
|
||||
1.d0, U, size(U,1), W, size(W,1), &
|
||||
0.d0, h, size(h,1))
|
||||
call dgemm('T','N', shift2, shift2, sze, &
|
||||
1.d0, U, size(U,1), U, size(U,1), &
|
||||
0.d0, s_tmp, size(s_tmp,1))
|
||||
|
||||
! Diagonalize h
|
||||
! ---------------
|
||||
|
||||
integer :: lwork, info
|
||||
double precision, allocatable :: work(:)
|
||||
|
||||
y = h
|
||||
lwork = -1
|
||||
allocate(work(1))
|
||||
call dsygv(1,'V','U',shift2,y,size(y,1), &
|
||||
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
|
||||
lwork = int(work(1))
|
||||
deallocate(work)
|
||||
allocate(work(lwork))
|
||||
call dsygv(1,'V','U',shift2,y,size(y,1), &
|
||||
s_tmp,size(s_tmp,1), lambda, work,lwork,info)
|
||||
deallocate(work)
|
||||
if (info /= 0) then
|
||||
stop 'DSYGV Diagonalization failed'
|
||||
endif
|
||||
|
||||
! Compute Energy for each eigenvector
|
||||
! -----------------------------------
|
||||
|
||||
call dgemm('N','N',shift2,shift2,shift2, &
|
||||
1.d0, h, size(h,1), y, size(y,1), &
|
||||
0.d0, s_tmp, size(s_tmp,1))
|
||||
|
||||
call dgemm('T','N',shift2,shift2,shift2, &
|
||||
1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
|
||||
0.d0, h, size(h,1))
|
||||
|
||||
do k=1,shift2
|
||||
lambda(k) = h(k,k)
|
||||
enddo
|
||||
|
||||
if (state_following) then
|
||||
|
||||
overlap = -1.d0
|
||||
do k=1,shift2
|
||||
do i=1,shift2
|
||||
overlap(k,i) = dabs(y(k,i))
|
||||
enddo
|
||||
enddo
|
||||
do k=1,N_st
|
||||
cmax = -1.d0
|
||||
do i=1,N_st
|
||||
if (overlap(i,k) > cmax) then
|
||||
cmax = overlap(i,k)
|
||||
order(k) = i
|
||||
endif
|
||||
enddo
|
||||
do i=1,N_st_diag
|
||||
overlap(order(k),i) = -1.d0
|
||||
enddo
|
||||
enddo
|
||||
overlap = y
|
||||
do k=1,N_st
|
||||
l = order(k)
|
||||
if (k /= l) then
|
||||
y(1:shift2,k) = overlap(1:shift2,l)
|
||||
endif
|
||||
enddo
|
||||
do k=1,N_st
|
||||
overlap(k,1) = lambda(k)
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
|
||||
! Express eigenvectors of h in the determinant basis
|
||||
! --------------------------------------------------
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||
1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, &
|
||||
1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
|
||||
|
||||
! Compute residual vector and davidson step
|
||||
! -----------------------------------------
|
||||
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze
|
||||
U(i,shift2+k) = &
|
||||
(lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
|
||||
/max(H_jj(i) - lambda (k),1.d-2)
|
||||
enddo
|
||||
|
||||
if (k <= N_st) then
|
||||
residual_norm(k) = u_dot_u(U(1,shift2+k),sze)
|
||||
to_print(1,k) = lambda(k)
|
||||
to_print(2,k) = residual_norm(k)
|
||||
endif
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
|
||||
if ((itertot>1).and.(iter == 1)) then
|
||||
!don't print
|
||||
continue
|
||||
else
|
||||
write(*,'(1X,I3,1X,100(1X,F16.10,1X,E11.3))') iter-1, to_print(1:2,1:N_st)
|
||||
endif
|
||||
|
||||
! Check convergence
|
||||
if (iter > 1) then
|
||||
converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson
|
||||
endif
|
||||
|
||||
do k=1,N_st
|
||||
if (residual_norm(k) > 1.d8) then
|
||||
print *, 'Davidson failed'
|
||||
stop -1
|
||||
endif
|
||||
enddo
|
||||
if (converged) then
|
||||
exit
|
||||
endif
|
||||
|
||||
logical, external :: qp_stop
|
||||
if (qp_stop()) then
|
||||
converged = .True.
|
||||
exit
|
||||
endif
|
||||
|
||||
|
||||
enddo
|
||||
|
||||
! Re-contract U and update W
|
||||
! --------------------------------
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
|
||||
W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze
|
||||
W(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
|
||||
U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
call nullify_small_elements(sze,N_st_diag,U,size(U,1),threshold_davidson_pt2)
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze
|
||||
u_in(i,k) = U(i,k)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do k=1,N_st_diag
|
||||
energies(k) = lambda(k)
|
||||
enddo
|
||||
write_buffer = '======'
|
||||
do i=1,N_st
|
||||
write_buffer = trim(write_buffer)//' ================ ==========='
|
||||
enddo
|
||||
write(6,'(A)') trim(write_buffer)
|
||||
write(6,'(A)') ''
|
||||
call write_time(6)
|
||||
|
||||
deallocate(W)
|
||||
|
||||
deallocate ( &
|
||||
residual_norm, &
|
||||
U, overlap, &
|
||||
h, y, s_tmp, &
|
||||
lambda &
|
||||
)
|
||||
FREE nthreads_davidson
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -1,15 +1,15 @@
|
||||
|
||||
subroutine davidson_general_ext_rout(u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag_in,converged,hcalc)
|
||||
subroutine davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,converged,hcalc)
|
||||
use mmap_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Davidson diagonalization with specific diagonal elements of the H matrix
|
||||
! Generic Davidson diagonalization
|
||||
!
|
||||
! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
|
||||
!
|
||||
! u_in : guess coefficients on the various states. Overwritten on exit
|
||||
!
|
||||
! dim_in : leftmost dimension of u_in
|
||||
! sze : leftmost dimension of u_in
|
||||
!
|
||||
! sze : Number of determinants
|
||||
!
|
||||
@ -21,9 +21,9 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,dim_in,sze,N_st,N_st_dia
|
||||
!
|
||||
! hcalc subroutine to compute W = H U (see routine hcalc_template for template of input/output)
|
||||
END_DOC
|
||||
integer, intent(in) :: dim_in, sze, N_st, N_st_diag_in
|
||||
integer, intent(in) :: sze, N_st, N_st_diag_in
|
||||
double precision, intent(in) :: H_jj(sze)
|
||||
double precision, intent(inout) :: u_in(dim_in,N_st_diag_in)
|
||||
double precision, intent(inout) :: u_in(sze,N_st_diag_in)
|
||||
double precision, intent(out) :: energies(N_st)
|
||||
external hcalc
|
||||
|
||||
@ -157,19 +157,7 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,dim_in,sze,N_st,N_st_dia
|
||||
write(6,'(A)') write_buffer(1:6+41*N_st)
|
||||
|
||||
|
||||
! if (disk_based) then
|
||||
! ! Create memory-mapped files for W and S
|
||||
! type(c_ptr) :: ptr_w, ptr_s
|
||||
! integer :: fd_s, fd_w
|
||||
! call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),&
|
||||
! 8, fd_w, .False., ptr_w)
|
||||
! call mmap(trim(ezfio_work_dir)//'davidson_s', (/int(sze,8),int(N_st_diag*itermax,8)/),&
|
||||
! 4, fd_s, .False., ptr_s)
|
||||
! call c_f_pointer(ptr_w, w, (/sze,N_st_diag*itermax/))
|
||||
! call c_f_pointer(ptr_s, s, (/sze,N_st_diag*itermax/))
|
||||
! else
|
||||
allocate(W(sze,N_st_diag*itermax))
|
||||
! endif
|
||||
allocate(W(sze,N_st_diag*itermax))
|
||||
|
||||
allocate( &
|
||||
! Large
|
||||
@ -233,7 +221,6 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,dim_in,sze,N_st,N_st_dia
|
||||
if ((iter > 1).or.(itertot == 1)) then
|
||||
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
||||
! -----------------------------------
|
||||
|
||||
! Gram-Schmidt to orthogonalize all new guess with the previous vectors
|
||||
call ortho_qr(U,size(U,1),sze,shift2)
|
||||
call ortho_qr(U,size(U,1),sze,shift2)
|
||||
@ -357,6 +344,9 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,dim_in,sze,N_st,N_st_dia
|
||||
|
||||
enddo
|
||||
|
||||
! Re-contract U and update W
|
||||
! --------------------------------
|
||||
|
||||
call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
|
||||
W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||
do k=1,N_st_diag
|
||||
@ -372,8 +362,8 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,dim_in,sze,N_st,N_st_dia
|
||||
U(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
call ortho_qr(U,size(U,1),sze,N_st_diag)
|
||||
call ortho_qr(U,size(U,1),sze,N_st_diag)
|
||||
call ortho_qr(U,size(U,1),sze,N_st_diag)
|
||||
call ortho_qr(U,size(U,1),sze,N_st_diag)
|
||||
do j=1,N_st_diag
|
||||
k=1
|
||||
do while ((k<sze).and.(U(k,j) == 0.d0))
|
||||
@ -398,7 +388,7 @@ subroutine davidson_general_ext_rout(u_in,H_jj,energies,dim_in,sze,N_st,N_st_dia
|
||||
write(6,'(A)') ''
|
||||
call write_time(6)
|
||||
|
||||
deallocate(W)
|
||||
deallocate(W)
|
||||
|
||||
deallocate ( &
|
||||
residual_norm, &
|
||||
|
@ -8,12 +8,13 @@ program test_dav
|
||||
touch read_wf
|
||||
PROVIDE threshold_davidson nthreads_davidson
|
||||
call routine
|
||||
call test_dav_dress
|
||||
end
|
||||
|
||||
subroutine routine
|
||||
implicit none
|
||||
double precision, allocatable :: u_in(:,:), H_jj(:), energies(:),h_mat(:,:)
|
||||
integer :: dim_in,sze,N_st,N_st_diag_in,dressing_state
|
||||
integer :: dim_in,sze,N_st,N_st_diag_in
|
||||
logical :: converged
|
||||
integer :: i,j
|
||||
external hcalc_template
|
||||
@ -21,9 +22,8 @@ subroutine routine
|
||||
N_st_diag_in = N_states_diag
|
||||
sze = N_det
|
||||
dim_in = sze
|
||||
dressing_state = 0
|
||||
!!!! MARK THAT u_in mut dimensioned with "N_st_diag_in" as a second dimension
|
||||
allocate(u_in(dim_in,N_st_diag_in),H_jj(sze),h_mat(sze,sze),energies(N_st))
|
||||
allocate(u_in(dim_in,N_st_diag_in),H_jj(sze),h_mat(sze,sze),energies(N_st_diag_in))
|
||||
u_in = 0.d0
|
||||
do i = 1, N_st
|
||||
u_in(1,i) = 1.d0
|
||||
@ -42,7 +42,38 @@ subroutine routine
|
||||
print*,'energies = ',energies
|
||||
!!! hcalc_template is the routine that computes v = H u
|
||||
!!! and you can use the routine "davidson_general_ext_rout"
|
||||
call davidson_general_ext_rout(u_in,H_jj,energies,dim_in,sze,N_st,N_st_diag_in,converged,hcalc_template)
|
||||
call davidson_general_ext_rout(u_in,H_jj,energies,sze,N_st,N_st_diag_in,converged,hcalc_template)
|
||||
print*,'energies = ',energies
|
||||
end
|
||||
|
||||
|
||||
subroutine test_dav_dress
|
||||
implicit none
|
||||
double precision, allocatable :: u_in(:,:), H_jj(:), energies(:)
|
||||
integer :: sze,N_st,N_st_diag_in,dressing_state
|
||||
logical :: converged
|
||||
integer :: i,j
|
||||
external hcalc_template
|
||||
double precision, allocatable :: dressing_vec(:)
|
||||
integer :: idress
|
||||
N_st = N_states
|
||||
N_st_diag_in = N_states_diag
|
||||
sze = N_det
|
||||
dressing_state = 0
|
||||
idress = 1
|
||||
!!!! MARK THAT u_in mut dimensioned with "N_st_diag_in" as a second dimension
|
||||
allocate(u_in(sze,N_st_diag_in),H_jj(sze),energies(N_st_diag_in))
|
||||
allocate(dressing_vec(sze))
|
||||
dressing_vec = 0.d0
|
||||
u_in = 0.d0
|
||||
do i = 1, N_st
|
||||
u_in(1,i) = 1.d0
|
||||
enddo
|
||||
do i = 1, sze
|
||||
H_jj(i) = H_matrix_all_dets(i,i) + nuclear_repulsion
|
||||
enddo
|
||||
print*,'dressing davidson '
|
||||
call davidson_general_ext_rout_dressed(u_in,H_jj,energies,sze,N_st,N_st_diag_in,dressing_state,dressing_vec,idress,converged,hcalc_template)
|
||||
print*,'energies(1) = ',energies(1)
|
||||
|
||||
end
|
||||
|
@ -508,7 +508,7 @@ subroutine H_S2_u_0_nstates_zmq(v_0,s_0,u_0,N_st,sze)
|
||||
endif
|
||||
|
||||
|
||||
call omp_set_max_active_levels(5)
|
||||
call set_multiple_levels_omp(.True.)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(shared) NUM_THREADS(2) PRIVATE(ithread)
|
||||
ithread = omp_get_thread_num()
|
||||
|
@ -464,7 +464,8 @@ subroutine H_u_0_nstates_zmq(v_0,u_0,N_st,sze)
|
||||
print *, irp_here, ': Failed in zmq_set_running'
|
||||
endif
|
||||
|
||||
call omp_set_max_active_levels(4)
|
||||
call set_multiple_levels_omp(.True.)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(shared) NUM_THREADS(2) PRIVATE(ithread)
|
||||
ithread = omp_get_thread_num()
|
||||
if (ithread == 0 ) then
|
||||
|
@ -464,7 +464,8 @@ subroutine H_u_0_nstates_zmq(v_0,u_0,N_st,sze)
|
||||
print *, irp_here, ': Failed in zmq_set_running'
|
||||
endif
|
||||
|
||||
call omp_set_max_active_levels(4)
|
||||
call set_multiple_levels_omp(.True.)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(shared) NUM_THREADS(2) PRIVATE(ithread)
|
||||
ithread = omp_get_thread_num()
|
||||
if (ithread == 0 ) then
|
||||
|
@ -299,7 +299,7 @@ subroutine davidson_diag_csf_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N
|
||||
shift = N_st_diag*(iter-1)
|
||||
shift2 = N_st_diag*iter
|
||||
|
||||
if ((iter > 1).or.(itertot == 1)) then
|
||||
! if ((iter > 1).or.(itertot == 1)) then
|
||||
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
||||
! -----------------------------------
|
||||
|
||||
@ -309,10 +309,10 @@ subroutine davidson_diag_csf_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N
|
||||
else
|
||||
call H_u_0_nstates_openmp(W,U,N_st_diag,sze)
|
||||
endif
|
||||
else
|
||||
! Already computed in update below
|
||||
continue
|
||||
endif
|
||||
! else
|
||||
! ! Already computed in update below
|
||||
! continue
|
||||
! endif
|
||||
|
||||
if (dressing_state > 0) then
|
||||
|
||||
@ -508,17 +508,8 @@ subroutine davidson_diag_csf_hjj(dets_in,u_in,H_jj,energies,dim_in,sze,sze_csf,N
|
||||
|
||||
enddo
|
||||
|
||||
! Re-contract U and update W
|
||||
! --------------------------------
|
||||
|
||||
call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, &
|
||||
W_csf, size(W_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||
do k=1,N_st_diag
|
||||
do i=1,sze_csf
|
||||
W_csf(i,k) = u_in(i,k)
|
||||
enddo
|
||||
enddo
|
||||
call convertWFfromCSFtoDET(N_st_diag,W_csf,W)
|
||||
! Re-contract U
|
||||
! -------------
|
||||
|
||||
call dgemm('N','N', sze_csf, N_st_diag, shift2, 1.d0, &
|
||||
U_csf, size(U_csf,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
|
||||
|
@ -349,7 +349,7 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
shift = N_st_diag*(iter-1)
|
||||
shift2 = N_st_diag*iter
|
||||
|
||||
if ((iter > 1).or.(itertot == 1)) then
|
||||
! if ((iter > 1).or.(itertot == 1)) then
|
||||
! Compute |W_k> = \sum_i |i><i|H|u_k>
|
||||
! -----------------------------------
|
||||
|
||||
@ -359,10 +359,10 @@ subroutine davidson_diag_hjj_sjj(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_
|
||||
call H_S2_u_0_nstates_openmp(W(1,shift+1),S_d,U(1,shift+1),N_st_diag,sze)
|
||||
endif
|
||||
S(1:sze,shift+1:shift+N_st_diag) = real(S_d(1:sze,1:N_st_diag))
|
||||
else
|
||||
! Already computed in update below
|
||||
continue
|
||||
endif
|
||||
! else
|
||||
! ! Already computed in update below
|
||||
! continue
|
||||
! endif
|
||||
|
||||
if (dressing_state > 0) then
|
||||
|
||||
|
@ -1,9 +1,9 @@
|
||||
|
||||
BEGIN_PROVIDER [ double precision, CI_energy, (N_states_diag) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! :c:data:`n_states` lowest eigenvalues of the |CI| matrix
|
||||
END_DOC
|
||||
PROVIDE distributed_davidson
|
||||
|
||||
integer :: j
|
||||
character*(8) :: st
|
||||
@ -247,6 +247,7 @@ subroutine diagonalize_CI
|
||||
! eigenstates of the |CI| matrix.
|
||||
END_DOC
|
||||
integer :: i,j
|
||||
PROVIDE distributed_davidson
|
||||
do j=1,N_states
|
||||
do i=1,N_det
|
||||
psi_coef(i,j) = CI_eigenvectors(i,j)
|
||||
|
@ -203,7 +203,7 @@ subroutine H_S2_u_0_nstates_openmp_work_$N_int(v_t,s_t,u_t,N_st,sze,istart,iend,
|
||||
integer, allocatable :: doubles(:)
|
||||
integer, allocatable :: singles_a(:)
|
||||
integer, allocatable :: singles_b(:)
|
||||
integer, allocatable :: idx(:), idx0(:)
|
||||
integer, allocatable :: idx(:), buffer_lrow(:), idx0(:)
|
||||
integer :: maxab, n_singles_a, n_singles_b, kcol_prev
|
||||
integer*8 :: k8
|
||||
logical :: compute_singles
|
||||
@ -253,7 +253,7 @@ compute_singles=.True.
|
||||
!$OMP PRIVATE(krow, kcol, tmp_det, spindet, k_a, k_b, i, &
|
||||
!$OMP lcol, lrow, l_a, l_b, utl, kk, u_is_sparse, &
|
||||
!$OMP buffer, doubles, n_doubles, umax, &
|
||||
!$OMP tmp_det2, hij, sij, idx, l, kcol_prev, &
|
||||
!$OMP tmp_det2, hij, sij, idx, buffer_lrow, l, kcol_prev, &
|
||||
!$OMP singles_a, n_singles_a, singles_b, ratio, &
|
||||
!$OMP n_singles_b, k8, last_found,left,right,right_max)
|
||||
|
||||
@ -264,7 +264,7 @@ compute_singles=.True.
|
||||
singles_a(maxab), &
|
||||
singles_b(maxab), &
|
||||
doubles(maxab), &
|
||||
idx(maxab), utl(N_st,block_size))
|
||||
idx(maxab), buffer_lrow(maxab), utl(N_st,block_size))
|
||||
|
||||
kcol_prev=-1
|
||||
|
||||
@ -332,18 +332,20 @@ compute_singles=.True.
|
||||
l_a = psi_bilinear_matrix_columns_loc(lcol)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
!DIR$ UNROLL(8)
|
||||
!DIR$ LOOP COUNT avg(50000)
|
||||
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
|
||||
lrow = psi_bilinear_matrix_rows(l_a)
|
||||
ASSERT (lrow <= N_det_alpha_unique)
|
||||
|
||||
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, lrow) ! hot spot
|
||||
buffer_lrow(j) = lrow
|
||||
|
||||
ASSERT (l_a <= N_det)
|
||||
idx(j) = l_a
|
||||
l_a = l_a+1
|
||||
enddo
|
||||
|
||||
do j=1,psi_bilinear_matrix_columns_loc(lcol+1) - psi_bilinear_matrix_columns_loc(lcol)
|
||||
buffer(1:$N_int,j) = psi_det_alpha_unique(1:$N_int, buffer_lrow(j)) ! hot spot
|
||||
enddo
|
||||
j = j-1
|
||||
|
||||
call get_all_spin_singles_$N_int( &
|
||||
@ -789,7 +791,7 @@ compute_singles=.True.
|
||||
|
||||
end do
|
||||
!$OMP END DO
|
||||
deallocate(buffer, singles_a, singles_b, doubles, idx, utl)
|
||||
deallocate(buffer, singles_a, singles_b, doubles, idx, buffer_lrow, utl)
|
||||
!$OMP END PARALLEL
|
||||
|
||||
end
|
||||
|
@ -12,7 +12,7 @@ BEGIN_PROVIDER [ double precision, CI_energy_dressed, (N_states_diag) ]
|
||||
enddo
|
||||
do j=1,min(N_det,N_states)
|
||||
write(st,'(I4)') j
|
||||
call write_double(6,CI_energy_dressed(j),'Energy of state '//trim(st))
|
||||
call write_double(6,CI_energy_dressed(j),'Energy dressed of state '//trim(st))
|
||||
call write_double(6,CI_eigenvectors_s2_dressed(j),'S^2 of state '//trim(st))
|
||||
enddo
|
||||
|
||||
@ -21,133 +21,201 @@ END_PROVIDER
|
||||
BEGIN_PROVIDER [ double precision, CI_electronic_energy_dressed, (N_states_diag) ]
|
||||
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_dressed, (N_det,N_states_diag) ]
|
||||
&BEGIN_PROVIDER [ double precision, CI_eigenvectors_s2_dressed, (N_states_diag) ]
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/values of the CI matrix
|
||||
END_DOC
|
||||
implicit none
|
||||
double precision :: ovrlp,u_dot_v
|
||||
integer :: i_good_state
|
||||
integer, allocatable :: index_good_state_array(:)
|
||||
logical, allocatable :: good_state_array(:)
|
||||
double precision, allocatable :: s2_values_tmp(:)
|
||||
integer :: i_other_state
|
||||
double precision, allocatable :: eigenvectors(:,:), eigenvectors_s2(:,:), eigenvalues(:)
|
||||
integer :: i_state
|
||||
double precision :: e_0
|
||||
integer :: i,j,k,mrcc_state
|
||||
double precision, allocatable :: s2_eigvalues(:)
|
||||
double precision, allocatable :: e_array(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
|
||||
PROVIDE threshold_davidson nthreads_davidson
|
||||
! Guess values for the "N_states" states of the CI_eigenvectors_dressed
|
||||
do j=1,min(N_states,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j=min(N_states,N_det)+1,N_states_diag
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
if (diag_algorithm == "Davidson") then
|
||||
|
||||
do j=1,min(N_states,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
logical :: converged
|
||||
converged = .False.
|
||||
call davidson_diag_HS2(psi_det,CI_eigenvectors_dressed, CI_eigenvectors_s2_dressed,&
|
||||
size(CI_eigenvectors_dressed,1), CI_electronic_energy_dressed,&
|
||||
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
|
||||
|
||||
else if (diag_algorithm == "Lapack") then
|
||||
|
||||
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
|
||||
allocate (eigenvalues(N_det))
|
||||
|
||||
call lapack_diag(eigenvalues,eigenvectors, &
|
||||
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
|
||||
CI_electronic_energy_dressed(:) = 0.d0
|
||||
if (s2_eig) then
|
||||
i_state = 0
|
||||
allocate (s2_eigvalues(N_det))
|
||||
allocate(index_good_state_array(N_det),good_state_array(N_det))
|
||||
good_state_array = .False.
|
||||
|
||||
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
|
||||
N_det,size(eigenvectors,1))
|
||||
do j=1,N_det
|
||||
! Select at least n_states states with S^2 values closed to "expected_s2"
|
||||
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
|
||||
i_state +=1
|
||||
index_good_state_array(i_state) = j
|
||||
good_state_array(j) = .True.
|
||||
endif
|
||||
if(i_state.eq.N_states) then
|
||||
exit
|
||||
endif
|
||||
BEGIN_DOC
|
||||
! Eigenvectors/values of the CI matrix
|
||||
END_DOC
|
||||
implicit none
|
||||
double precision :: ovrlp,u_dot_v
|
||||
integer :: i_good_state
|
||||
integer, allocatable :: index_good_state_array(:)
|
||||
logical, allocatable :: good_state_array(:)
|
||||
double precision, allocatable :: s2_values_tmp(:)
|
||||
integer :: i_other_state
|
||||
double precision, allocatable :: eigenvectors(:,:), eigenvectors_s2(:,:), eigenvalues(:)
|
||||
integer :: i_state
|
||||
double precision :: e_0
|
||||
integer :: i,j,k,mrcc_state
|
||||
double precision, allocatable :: s2_eigvalues(:)
|
||||
double precision, allocatable :: e_array(:)
|
||||
integer, allocatable :: iorder(:)
|
||||
logical :: converged
|
||||
logical :: do_csf
|
||||
|
||||
PROVIDE threshold_davidson nthreads_davidson
|
||||
! Guess values for the "N_states" states of the CI_eigenvectors_dressed
|
||||
do j=1,min(N_states,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j=min(N_states,N_det)+1,N_states_diag
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = 0.d0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do_csf = s2_eig .and. only_expected_s2 .and. csf_based
|
||||
|
||||
if (diag_algorithm == "Davidson") then
|
||||
|
||||
do j=1,min(N_states,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = psi_coef(i,j)
|
||||
enddo
|
||||
if(i_state .ne.0)then
|
||||
! Fill the first "i_state" states that have a correct S^2 value
|
||||
do j = 1, i_state
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,index_good_state_array(j))
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(index_good_state_array(j))
|
||||
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j))
|
||||
enddo
|
||||
i_other_state = 0
|
||||
do j = 1, N_det
|
||||
if(good_state_array(j))cycle
|
||||
i_other_state +=1
|
||||
if(i_state+i_other_state.gt.n_states_diag)then
|
||||
exit
|
||||
endif
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,i_state+i_other_state) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(i_state+i_other_state) = eigenvalues(j)
|
||||
CI_eigenvectors_s2_dressed(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state)
|
||||
enddo
|
||||
else
|
||||
print*,''
|
||||
print*,'!!!!!!!! WARNING !!!!!!!!!'
|
||||
print*,' Within the ',N_det,'determinants selected'
|
||||
print*,' and the ',N_states_diag,'states requested'
|
||||
print*,' We did not find any state with S^2 values close to ',expected_s2
|
||||
print*,' We will then set the first N_states eigenvectors of the H matrix'
|
||||
print*,' as the CI_eigenvectors_dressed'
|
||||
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
|
||||
print*,''
|
||||
do j=1,min(N_states_diag,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(j)
|
||||
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(j)
|
||||
enddo
|
||||
endif
|
||||
deallocate(index_good_state_array,good_state_array)
|
||||
deallocate(s2_eigvalues)
|
||||
enddo
|
||||
converged = .False.
|
||||
if (do_csf) then
|
||||
call davidson_diag_H_csf(psi_det,CI_eigenvectors_dressed, &
|
||||
size(CI_eigenvectors_dressed,1),CI_electronic_energy_dressed, &
|
||||
N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
|
||||
else
|
||||
call u_0_S2_u_0(CI_eigenvectors_s2_dressed,eigenvectors,N_det,psi_det,N_int,&
|
||||
min(N_det,N_states_diag),size(eigenvectors,1))
|
||||
! Select the "N_states_diag" states of lowest energy
|
||||
do j=1,min(N_det,N_states_diag)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(j)
|
||||
enddo
|
||||
call davidson_diag_HS2(psi_det,CI_eigenvectors_dressed, CI_eigenvectors_s2_dressed,&
|
||||
size(CI_eigenvectors_dressed,1), CI_electronic_energy_dressed,&
|
||||
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
|
||||
endif
|
||||
deallocate(eigenvectors,eigenvalues)
|
||||
endif
|
||||
|
||||
integer :: N_states_diag_save
|
||||
N_states_diag_save = N_states_diag
|
||||
do while (.not.converged)
|
||||
double precision, allocatable :: CI_electronic_energy_tmp (:)
|
||||
double precision, allocatable :: CI_eigenvectors_tmp (:,:)
|
||||
double precision, allocatable :: CI_s2_tmp (:)
|
||||
|
||||
N_states_diag *= 2
|
||||
TOUCH N_states_diag
|
||||
|
||||
if (do_csf) then
|
||||
|
||||
allocate (CI_electronic_energy_tmp (N_states_diag) )
|
||||
allocate (CI_eigenvectors_tmp (N_det,N_states_diag) )
|
||||
|
||||
CI_electronic_energy_tmp(1:N_states_diag_save) = CI_electronic_energy_dressed(1:N_states_diag_save)
|
||||
CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) = CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save)
|
||||
|
||||
call davidson_diag_H_csf(psi_det,CI_eigenvectors_tmp, &
|
||||
size(CI_eigenvectors_tmp,1),CI_electronic_energy_tmp, &
|
||||
N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
|
||||
|
||||
CI_electronic_energy_dressed(1:N_states_diag_save) = CI_electronic_energy_tmp(1:N_states_diag_save)
|
||||
CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save) = CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save)
|
||||
|
||||
deallocate (CI_electronic_energy_tmp)
|
||||
deallocate (CI_eigenvectors_tmp)
|
||||
|
||||
else
|
||||
|
||||
allocate (CI_electronic_energy_tmp (N_states_diag) )
|
||||
allocate (CI_eigenvectors_tmp (N_det,N_states_diag) )
|
||||
allocate (CI_s2_tmp (N_states_diag) )
|
||||
|
||||
CI_electronic_energy_tmp(1:N_states_diag_save) = CI_electronic_energy_dressed(1:N_states_diag_save)
|
||||
CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save) = CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save)
|
||||
CI_s2_tmp(1:N_states_diag_save) = CI_eigenvectors_s2_dressed(1:N_states_diag_save)
|
||||
|
||||
call davidson_diag_HS2(psi_det,CI_eigenvectors_tmp, CI_s2_tmp, &
|
||||
size(CI_eigenvectors_tmp,1),CI_electronic_energy_tmp, &
|
||||
N_det,min(N_det,N_states),min(N_det,N_states_diag),N_int,1,converged)
|
||||
|
||||
CI_electronic_energy_dressed(1:N_states_diag_save) = CI_electronic_energy_tmp(1:N_states_diag_save)
|
||||
CI_eigenvectors_dressed(1:N_det,1:N_states_diag_save) = CI_eigenvectors_tmp(1:N_det,1:N_states_diag_save)
|
||||
CI_eigenvectors_s2_dressed(1:N_states_diag_save) = CI_s2_tmp(1:N_states_diag_save)
|
||||
|
||||
deallocate (CI_electronic_energy_tmp)
|
||||
deallocate (CI_eigenvectors_tmp)
|
||||
deallocate (CI_s2_tmp)
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
if (N_states_diag > N_states_diag_save) then
|
||||
N_states_diag = N_states_diag_save
|
||||
TOUCH N_states_diag
|
||||
endif
|
||||
|
||||
else if (diag_algorithm == "Lapack") then
|
||||
|
||||
print *, 'Diagonalization of H using Lapack'
|
||||
allocate (eigenvectors(size(H_matrix_dressed,1),N_det))
|
||||
allocate (eigenvalues(N_det))
|
||||
|
||||
call lapack_diag(eigenvalues,eigenvectors, &
|
||||
H_matrix_dressed,size(H_matrix_dressed,1),N_det)
|
||||
CI_electronic_energy_dressed(:) = 0.d0
|
||||
if (s2_eig) then
|
||||
i_state = 0
|
||||
allocate (s2_eigvalues(N_det))
|
||||
allocate(index_good_state_array(N_det),good_state_array(N_det))
|
||||
good_state_array = .False.
|
||||
|
||||
call u_0_S2_u_0(s2_eigvalues,eigenvectors,N_det,psi_det,N_int,&
|
||||
N_det,size(eigenvectors,1))
|
||||
do j=1,N_det
|
||||
! Select at least n_states states with S^2 values closed to "expected_s2"
|
||||
if(dabs(s2_eigvalues(j)-expected_s2).le.0.5d0)then
|
||||
i_state +=1
|
||||
index_good_state_array(i_state) = j
|
||||
good_state_array(j) = .True.
|
||||
endif
|
||||
if(i_state.eq.N_states) then
|
||||
exit
|
||||
endif
|
||||
enddo
|
||||
if(i_state .ne.0)then
|
||||
! Fill the first "i_state" states that have a correct S^2 value
|
||||
do j = 1, i_state
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,index_good_state_array(j))
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(index_good_state_array(j))
|
||||
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(index_good_state_array(j))
|
||||
enddo
|
||||
i_other_state = 0
|
||||
do j = 1, N_det
|
||||
if(good_state_array(j))cycle
|
||||
i_other_state +=1
|
||||
if(i_state+i_other_state.gt.n_states_diag)then
|
||||
exit
|
||||
endif
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,i_state+i_other_state) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(i_state+i_other_state) = eigenvalues(j)
|
||||
CI_eigenvectors_s2_dressed(i_state+i_other_state) = s2_eigvalues(i_state+i_other_state)
|
||||
enddo
|
||||
else
|
||||
print*,''
|
||||
print*,'!!!!!!!! WARNING !!!!!!!!!'
|
||||
print*,' Within the ',N_det,'determinants selected'
|
||||
print*,' and the ',N_states_diag,'states requested'
|
||||
print*,' We did not find any state with S^2 values close to ',expected_s2
|
||||
print*,' We will then set the first N_states eigenvectors of the H matrix'
|
||||
print*,' as the CI_eigenvectors_dressed'
|
||||
print*,' You should consider more states and maybe ask for s2_eig to be .True. or just enlarge the CI space'
|
||||
print*,''
|
||||
do j=1,min(N_states_diag,N_det)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(j)
|
||||
CI_eigenvectors_s2_dressed(j) = s2_eigvalues(j)
|
||||
enddo
|
||||
endif
|
||||
deallocate(index_good_state_array,good_state_array)
|
||||
deallocate(s2_eigvalues)
|
||||
else
|
||||
call u_0_S2_u_0(CI_eigenvectors_s2_dressed,eigenvectors,N_det,psi_det,N_int,&
|
||||
min(N_det,N_states_diag),size(eigenvectors,1))
|
||||
! Select the "N_states_diag" states of lowest energy
|
||||
do j=1,min(N_det,N_states_diag)
|
||||
do i=1,N_det
|
||||
CI_eigenvectors_dressed(i,j) = eigenvectors(i,j)
|
||||
enddo
|
||||
CI_electronic_energy_dressed(j) = eigenvalues(j)
|
||||
enddo
|
||||
endif
|
||||
deallocate(eigenvectors,eigenvalues)
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -42,13 +42,13 @@ default: 2
|
||||
|
||||
[weight_selection]
|
||||
type: integer
|
||||
doc: Weight used in the selection. 0: input state-average weight, 1: 1./(c_0^2), 2: rPT2 matching, 3: variance matching, 4: variance and rPT2 matching, 5: variance minimization and matching, 6: CI coefficients 7: input state-average multiplied by variance and rPT2 matching 8: input state-average multiplied by rPT2 matching 9: input state-average multiplied by variance matching
|
||||
doc: Weight used in the selection. 0: input state-average weight, 1: 1./(c_0^2), 2: PT2 matching, 3: variance matching, 4: variance and PT2 matching, 5: variance minimization and matching, 6: CI coefficients 7: input state-average multiplied by variance and PT2 matching 8: input state-average multiplied by PT2 matching 9: input state-average multiplied by variance matching
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1
|
||||
|
||||
[threshold_generators]
|
||||
type: Threshold
|
||||
doc: Thresholds on generators (fraction of the square of the norm)
|
||||
doc: Thresholds on generators (fraction of the square of the norm)
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.999
|
||||
|
||||
@ -80,7 +80,7 @@ type: integer
|
||||
[psi_coef]
|
||||
interface: ezfio
|
||||
doc: Coefficients of the wave function
|
||||
type: double precision
|
||||
type: double precision
|
||||
size: (determinants.n_det,determinants.n_states)
|
||||
|
||||
[psi_det]
|
||||
@ -92,7 +92,7 @@ size: (determinants.n_int*determinants.bit_kind/8,2,determinants.n_det)
|
||||
[psi_coef_qp_edit]
|
||||
interface: ezfio
|
||||
doc: Coefficients of the wave function
|
||||
type: double precision
|
||||
type: double precision
|
||||
size: (determinants.n_det_qp_edit,determinants.n_states)
|
||||
|
||||
[psi_det_qp_edit]
|
||||
@ -126,13 +126,18 @@ default: 1.
|
||||
|
||||
[thresh_sym]
|
||||
type: Threshold
|
||||
doc: Thresholds to check if a determinant is connected with HF
|
||||
doc: Thresholds to check if a determinant is connected with HF
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-15
|
||||
|
||||
[pseudo_sym]
|
||||
type: logical
|
||||
doc: If |true|, discard any Slater determinants with an interaction smaller than thresh_sym with HF.
|
||||
doc: If |true|, discard any Slater determinants with an interaction smaller than thresh_sym with HF.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
[save_threshold]
|
||||
type: Threshold
|
||||
doc: Cut-off to apply to the CI coefficients when the wave function is stored
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-14
|
||||
|
@ -268,6 +268,44 @@ subroutine set_natural_mos
|
||||
soft_touch mo_occ
|
||||
end
|
||||
|
||||
|
||||
subroutine save_natural_mos_canon_label
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Save natural orbitals, obtained by diagonalization of the one-body density matrix in
|
||||
! the |MO| basis
|
||||
END_DOC
|
||||
call set_natural_mos_canon_label
|
||||
call nullify_small_elements(ao_num,mo_num,mo_coef,size(mo_coef,1),1.d-10)
|
||||
call orthonormalize_mos
|
||||
call save_mos
|
||||
end
|
||||
|
||||
subroutine set_natural_mos_canon_label
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Set natural orbitals, obtained by diagonalization of the one-body density matrix
|
||||
! in the |MO| basis
|
||||
END_DOC
|
||||
character*(64) :: label
|
||||
double precision, allocatable :: tmp(:,:)
|
||||
|
||||
label = "Canonical"
|
||||
integer :: i,j,iorb,jorb
|
||||
do i = 1, n_virt_orb
|
||||
iorb = list_virt(i)
|
||||
do j = 1, n_core_inact_act_orb
|
||||
jorb = list_core_inact_act(j)
|
||||
enddo
|
||||
enddo
|
||||
call mo_as_svd_vectors_of_mo_matrix_eig(one_e_dm_mo,size(one_e_dm_mo,1),mo_num,mo_num,mo_occ,label)
|
||||
soft_touch mo_occ
|
||||
end
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine set_natorb_no_ov_rot
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
@ -330,12 +368,12 @@ BEGIN_PROVIDER [ double precision, c0_weight, (N_states) ]
|
||||
c = maxval(psi_coef(:,i) * psi_coef(:,i))
|
||||
c0_weight(i) = 1.d0/(c+1.d-20)
|
||||
enddo
|
||||
c = 1.d0/minval(c0_weight(:))
|
||||
c = 1.d0/sum(c0_weight(:))
|
||||
do i=1,N_states
|
||||
c0_weight(i) = c0_weight(i) * c
|
||||
enddo
|
||||
else
|
||||
c0_weight = 1.d0
|
||||
c0_weight(:) = 1.d0
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
@ -352,7 +390,7 @@ BEGIN_PROVIDER [ double precision, state_average_weight, (N_states) ]
|
||||
if (weight_one_e_dm == 0) then
|
||||
state_average_weight(:) = c0_weight(:)
|
||||
else if (weight_one_e_dm == 1) then
|
||||
state_average_weight(:) = 1./N_states
|
||||
state_average_weight(:) = 1.d0/N_states
|
||||
else
|
||||
call ezfio_has_determinants_state_average_weight(exists)
|
||||
if (exists) then
|
||||
|
@ -77,29 +77,31 @@ BEGIN_PROVIDER [ integer, psi_det_size ]
|
||||
END_DOC
|
||||
PROVIDE ezfio_filename
|
||||
logical :: exists
|
||||
if (mpi_master) then
|
||||
call ezfio_has_determinants_n_det(exists)
|
||||
if (exists) then
|
||||
call ezfio_get_determinants_n_det(psi_det_size)
|
||||
else
|
||||
psi_det_size = 1
|
||||
psi_det_size = 1
|
||||
PROVIDE mpi_master
|
||||
if (read_wf) then
|
||||
if (mpi_master) then
|
||||
call ezfio_has_determinants_n_det(exists)
|
||||
if (exists) then
|
||||
call ezfio_get_determinants_n_det(psi_det_size)
|
||||
else
|
||||
psi_det_size = 1
|
||||
endif
|
||||
call write_int(6,psi_det_size,'Dimension of the psi arrays')
|
||||
endif
|
||||
psi_det_size = max(psi_det_size,100000)
|
||||
call write_int(6,psi_det_size,'Dimension of the psi arrays')
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST( psi_det_size, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read psi_det_size with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
endif
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST( psi_det_size, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read psi_det_size with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -9,7 +9,7 @@
|
||||
double precision :: weight, r(3)
|
||||
double precision :: cpu0,cpu1,nuclei_part_z,nuclei_part_y,nuclei_part_x
|
||||
|
||||
call cpu_time(cpu0)
|
||||
! call cpu_time(cpu0)
|
||||
z_dipole_moment = 0.d0
|
||||
y_dipole_moment = 0.d0
|
||||
x_dipole_moment = 0.d0
|
||||
@ -26,10 +26,10 @@
|
||||
enddo
|
||||
enddo
|
||||
|
||||
print*,'electron part for z_dipole = ',z_dipole_moment
|
||||
print*,'electron part for y_dipole = ',y_dipole_moment
|
||||
print*,'electron part for x_dipole = ',x_dipole_moment
|
||||
|
||||
! print*,'electron part for z_dipole = ',z_dipole_moment
|
||||
! print*,'electron part for y_dipole = ',y_dipole_moment
|
||||
! print*,'electron part for x_dipole = ',x_dipole_moment
|
||||
!
|
||||
nuclei_part_z = 0.d0
|
||||
nuclei_part_y = 0.d0
|
||||
nuclei_part_x = 0.d0
|
||||
@ -38,28 +38,39 @@
|
||||
nuclei_part_y += nucl_charge(i) * nucl_coord(i,2)
|
||||
nuclei_part_x += nucl_charge(i) * nucl_coord(i,1)
|
||||
enddo
|
||||
print*,'nuclei part for z_dipole = ',nuclei_part_z
|
||||
print*,'nuclei part for y_dipole = ',nuclei_part_y
|
||||
print*,'nuclei part for x_dipole = ',nuclei_part_x
|
||||
|
||||
! print*,'nuclei part for z_dipole = ',nuclei_part_z
|
||||
! print*,'nuclei part for y_dipole = ',nuclei_part_y
|
||||
! print*,'nuclei part for x_dipole = ',nuclei_part_x
|
||||
!
|
||||
do istate = 1, N_states
|
||||
z_dipole_moment(istate) += nuclei_part_z
|
||||
y_dipole_moment(istate) += nuclei_part_y
|
||||
x_dipole_moment(istate) += nuclei_part_x
|
||||
enddo
|
||||
|
||||
call cpu_time(cpu1)
|
||||
print*,'Time to provide the dipole moment :',cpu1-cpu0
|
||||
! call cpu_time(cpu1)
|
||||
! print*,'Time to provide the dipole moment :',cpu1-cpu0
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine print_z_dipole_moment_only
|
||||
subroutine print_dipole_moments
|
||||
implicit none
|
||||
integer :: i
|
||||
print*, ''
|
||||
print*, ''
|
||||
print*, '****************************************'
|
||||
print*, 'z_dipole_moment = ',z_dipole_moment
|
||||
write(*,'(A10)',advance='no') ' State : '
|
||||
do i = 1,N_states
|
||||
write(*,'(i16)',advance='no') i
|
||||
end do
|
||||
write(*,*) ''
|
||||
write(*,'(A17,100(1pE16.8))') 'x_dipole_moment = ',x_dipole_moment
|
||||
write(*,'(A17,100(1pE16.8))') 'y_dipole_moment = ',y_dipole_moment
|
||||
write(*,'(A17,100(1pE16.8))') 'z_dipole_moment = ',z_dipole_moment
|
||||
!print*, 'x_dipole_moment = ',x_dipole_moment
|
||||
!print*, 'y_dipole_moment = ',y_dipole_moment
|
||||
!print*, 'z_dipole_moment = ',z_dipole_moment
|
||||
print*, '****************************************'
|
||||
end
|
||||
|
@ -322,10 +322,7 @@ subroutine fill_H_apply_buffer_no_selection(n_selected,det_buffer,Nint,iproc)
|
||||
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i))) == elec_beta_num)
|
||||
enddo
|
||||
do i=1,n_selected
|
||||
do j=1,N_int
|
||||
H_apply_buffer(iproc)%det(j,1,i+H_apply_buffer(iproc)%N_det) = det_buffer(j,1,i)
|
||||
H_apply_buffer(iproc)%det(j,2,i+H_apply_buffer(iproc)%N_det) = det_buffer(j,2,i)
|
||||
enddo
|
||||
H_apply_buffer(iproc)%det(:,:,i+H_apply_buffer(iproc)%N_det) = det_buffer(:,:,i)
|
||||
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,1,i+H_apply_buffer(iproc)%N_det)) )== elec_alpha_num)
|
||||
ASSERT (sum(popcnt(H_apply_buffer(iproc)%det(:,2,i+H_apply_buffer(iproc)%N_det))) == elec_beta_num)
|
||||
enddo
|
||||
|
@ -103,13 +103,17 @@ BEGIN_PROVIDER [ double precision, expected_s2]
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, s2_values, (N_states) ]
|
||||
BEGIN_PROVIDER [ double precision, s2_values, (N_states) ]
|
||||
&BEGIN_PROVIDER [ double precision, s_values, (N_states) ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! array of the averaged values of the S^2 operator on the various states
|
||||
END_DOC
|
||||
integer :: i
|
||||
call u_0_S2_u_0(s2_values,psi_coef,n_det,psi_det,N_int,N_states,psi_det_size)
|
||||
do i = 1, N_states
|
||||
s_values(i) = 0.5d0 *(-1.d0 + dsqrt(1.d0 + 4 * s2_values(i)))
|
||||
enddo
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -438,7 +438,7 @@ subroutine bitstring_to_list_ab( string, list, n_elements, Nint)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gives the inidices(+1) of the bits set to 1 in the bit string
|
||||
! Gives the indices(+1) of the bits set to 1 in the bit string
|
||||
! For alpha/beta determinants.
|
||||
END_DOC
|
||||
integer, intent(in) :: Nint
|
||||
@ -472,6 +472,35 @@ subroutine bitstring_to_list_ab( string, list, n_elements, Nint)
|
||||
|
||||
end
|
||||
|
||||
!subroutine bitstring_to_list( string, list, n_elements, Nint)
|
||||
! use bitmasks
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! Gives the indices(+1) of the bits set to 1 in the bit string
|
||||
! END_DOC
|
||||
! integer, intent(in) :: Nint
|
||||
! integer(bit_kind), intent(in) :: string(Nint)
|
||||
! integer, intent(out) :: list(Nint*bit_kind_size)
|
||||
! integer, intent(out) :: n_elements
|
||||
!
|
||||
! integer :: i, j, ishift
|
||||
! integer(bit_kind) :: l
|
||||
!
|
||||
! n_elements = 0
|
||||
! ishift = 1
|
||||
! do i=1,Nint
|
||||
! l = string(i)
|
||||
! do while (l /= 0_bit_kind)
|
||||
! j = trailz(l)
|
||||
! n_elements = n_elements + 1
|
||||
! l = ibclr(l,j)
|
||||
! list(n_elements) = ishift+j
|
||||
! enddo
|
||||
! ishift = ishift + bit_kind_size
|
||||
! enddo
|
||||
!
|
||||
!end
|
||||
|
||||
|
||||
subroutine i_H_j_s2(key_i,key_j,Nint,hij,s2)
|
||||
use bitmasks
|
||||
|
@ -585,7 +585,7 @@ END_PROVIDER
|
||||
enddo
|
||||
!$OMP ENDDO
|
||||
!$OMP END PARALLEL
|
||||
call i8radix_sort(to_sort, psi_bilinear_matrix_transp_order, N_det,-1)
|
||||
call i8sort(to_sort, psi_bilinear_matrix_transp_order, N_det)
|
||||
call iset_order(psi_bilinear_matrix_transp_rows,psi_bilinear_matrix_transp_order,N_det)
|
||||
call iset_order(psi_bilinear_matrix_transp_columns,psi_bilinear_matrix_transp_order,N_det)
|
||||
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(l)
|
||||
|
@ -8,6 +8,7 @@ BEGIN_PROVIDER [ double precision, H_matrix_all_dets,(N_det,N_det) ]
|
||||
double precision :: hij
|
||||
integer :: degree(N_det),idx(0:N_det)
|
||||
call i_H_j(psi_det(1,1,1),psi_det(1,1,1),N_int,hij)
|
||||
print*,'Providing the H_matrix_all_dets ...'
|
||||
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,j,hij,degree,idx,k) &
|
||||
!$OMP SHARED (N_det, psi_det, N_int,H_matrix_all_dets)
|
||||
do i =1,N_det
|
||||
@ -18,6 +19,26 @@ BEGIN_PROVIDER [ double precision, H_matrix_all_dets,(N_det,N_det) ]
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
print*,'H_matrix_all_dets done '
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, H_matrix_diag_all_dets,(N_det) ]
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! |H| matrix on the basis of the Slater determinants defined by psi_det
|
||||
END_DOC
|
||||
integer :: i
|
||||
double precision :: hij
|
||||
integer :: degree(N_det)
|
||||
call i_H_j(psi_det(1,1,1),psi_det(1,1,1),N_int,hij)
|
||||
!$OMP PARALLEL DO SCHEDULE(GUIDED) DEFAULT(NONE) PRIVATE(i,hij,degree) &
|
||||
!$OMP SHARED (N_det, psi_det, N_int,H_matrix_diag_all_dets)
|
||||
do i =1,N_det
|
||||
call i_H_j(psi_det(1,1,i),psi_det(1,1,i),N_int,hij)
|
||||
H_matrix_diag_all_dets(i) = hij
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
@ -16,3 +16,8 @@ doc: Percentage of HF exchange in the DFT model
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.
|
||||
|
||||
[mu_dft_type]
|
||||
type: character*(32)
|
||||
doc: type of mu(r) for rsdft [ cst ]
|
||||
interface: ezfio, provider, ocaml
|
||||
default: cst
|
||||
|
@ -6,3 +6,4 @@ ao_one_e_ints
|
||||
ao_two_e_ints
|
||||
mo_two_e_erf_ints
|
||||
ao_two_e_erf_ints
|
||||
mu_of_r
|
||||
|
@ -8,3 +8,73 @@ BEGIN_PROVIDER [double precision, mu_erf_dft]
|
||||
mu_erf_dft = mu_erf
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, mu_of_r_dft, (n_points_final_grid)]
|
||||
implicit none
|
||||
integer :: i
|
||||
if(mu_dft_type == "Read")then
|
||||
call ezfio_get_mu_of_r_mu_of_r_disk(mu_of_r_dft)
|
||||
else
|
||||
do i = 1, n_points_final_grid
|
||||
if(mu_dft_type == "cst")then
|
||||
mu_of_r_dft(i) = mu_erf_dft
|
||||
else if(mu_dft_type == "hf")then
|
||||
mu_of_r_dft(i) = mu_of_r_hf(i)
|
||||
else if(mu_dft_type == "rsc")then
|
||||
mu_of_r_dft(i) = mu_rsc_of_r(i)
|
||||
else if(mu_dft_type == "grad_rho")then
|
||||
mu_of_r_dft(i) = mu_grad_rho(i)
|
||||
else
|
||||
print*,'mu_dft_type is not of good type = ',mu_dft_type
|
||||
print*,'it must be of type Read, cst, hf, rsc'
|
||||
print*,'Stopping ...'
|
||||
stop
|
||||
endif
|
||||
enddo
|
||||
endif
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, mu_rsc_of_r, (n_points_final_grid)]
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision :: mu_rs_c,rho,r(3), dm_a, dm_b
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call dm_dft_alpha_beta_at_r(r,dm_a,dm_b)
|
||||
rho = dm_a + dm_b
|
||||
mu_rsc_of_r(i) = mu_rs_c(rho)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, mu_grad_rho, (n_points_final_grid)]
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision :: mu_grad_rho_func, r(3)
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
mu_grad_rho(i) = mu_grad_rho_func(r)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
BEGIN_PROVIDER [double precision, mu_of_r_dft_average]
|
||||
implicit none
|
||||
integer :: i
|
||||
double precision :: mu_rs_c,rho,r(3), dm_a, dm_b
|
||||
mu_of_r_dft_average = 0.d0
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call dm_dft_alpha_beta_at_r(r,dm_a,dm_b)
|
||||
rho = dm_a + dm_b
|
||||
if(mu_of_r_dft(i).gt.1.d+3)cycle
|
||||
mu_of_r_dft_average += rho * mu_of_r_dft(i) * final_weight_at_r_vector(i)
|
||||
enddo
|
||||
mu_of_r_dft_average = mu_of_r_dft_average / dble(elec_alpha_num + elec_beta_num)
|
||||
print*,'mu_of_r_dft_average = ',mu_of_r_dft_average
|
||||
END_PROVIDER
|
||||
|
37
src/dft_utils_func/mu_of_r_dft.irp.f
Normal file
37
src/dft_utils_func/mu_of_r_dft.irp.f
Normal file
@ -0,0 +1,37 @@
|
||||
double precision function mu_rs_c(rho)
|
||||
implicit none
|
||||
double precision, intent(in) :: rho
|
||||
include 'constants.include.F'
|
||||
double precision :: cst_rs,alpha_rs,rs
|
||||
cst_rs = (4.d0 * dacos(-1.d0)/3.d0)**(-1.d0/3.d0)
|
||||
alpha_rs = 2.d0 * dsqrt((9.d0 * dacos(-1.d0)/4.d0)**(-1.d0/3.d0)) / sqpi
|
||||
|
||||
rs = cst_rs * rho**(-1.d0/3.d0)
|
||||
mu_rs_c = alpha_rs/dsqrt(rs)
|
||||
|
||||
end
|
||||
|
||||
double precision function mu_grad_rho_func(r)
|
||||
implicit none
|
||||
double precision , intent(in) :: r(3)
|
||||
integer :: m
|
||||
double precision :: rho, dm_a, dm_b, grad_dm_a(3), grad_dm_b(3)
|
||||
double precision :: eta, grad_rho(3), grad_sqr
|
||||
eta = mu_erf
|
||||
call density_and_grad_alpha_beta(r,dm_a,dm_b, grad_dm_a, grad_dm_b)
|
||||
rho = dm_a + dm_b
|
||||
do m = 1,3
|
||||
grad_rho(m) = grad_dm_a(m) + grad_dm_b(m)
|
||||
enddo
|
||||
grad_sqr=0.d0
|
||||
do m = 1,3
|
||||
grad_sqr=grad_sqr+grad_rho(m)*grad_rho(m)
|
||||
enddo
|
||||
grad_sqr = dsqrt(grad_sqr)
|
||||
if (rho<1.d-12) then
|
||||
mu_grad_rho_func = 1.d-10
|
||||
else
|
||||
mu_grad_rho_func = eta * grad_sqr / rho
|
||||
endif
|
||||
|
||||
end
|
@ -91,7 +91,19 @@
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER[double precision, aos_lapl_in_r_array, (ao_num,n_points_final_grid,3)]
|
||||
BEGIN_PROVIDER [double precision, aos_lapl_in_r_array_transp, (ao_num, n_points_final_grid,3)]
|
||||
implicit none
|
||||
integer :: i,j,m
|
||||
do i = 1, n_points_final_grid
|
||||
do j = 1, ao_num
|
||||
do m = 1, 3
|
||||
aos_lapl_in_r_array_transp(j,i,m) = aos_lapl_in_r_array(m,j,i)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [double precision, aos_lapl_in_r_array, (3,ao_num,n_points_final_grid)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! aos_lapl_in_r_array(i,j,k) = value of the kth component of the laplacian of jth ao on the ith grid point
|
||||
@ -100,20 +112,20 @@
|
||||
END_DOC
|
||||
integer :: i,j,m
|
||||
double precision :: aos_array(ao_num), r(3)
|
||||
double precision :: aos_grad_array(ao_num,3)
|
||||
double precision :: aos_lapl_array(ao_num,3)
|
||||
double precision :: aos_grad_array(3,ao_num)
|
||||
double precision :: aos_lapl_array(3,ao_num)
|
||||
!$OMP PARALLEL DO &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i,r,aos_array,aos_grad_array,aos_lapl_array,j,m) &
|
||||
!$OMP SHARED(aos_lapl_in_r_array,n_points_final_grid,ao_num,final_grid_points)
|
||||
do m = 1, 3
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call give_all_aos_and_grad_and_lapl_at_r(r,aos_array,aos_grad_array,aos_lapl_array)
|
||||
do j = 1, ao_num
|
||||
aos_lapl_in_r_array(j,i,m) = aos_lapl_array(j,m)
|
||||
do i = 1, n_points_final_grid
|
||||
r(1) = final_grid_points(1,i)
|
||||
r(2) = final_grid_points(2,i)
|
||||
r(3) = final_grid_points(3,i)
|
||||
call give_all_aos_and_grad_and_lapl_at_r(r,aos_array,aos_grad_array,aos_lapl_array)
|
||||
do j = 1, ao_num
|
||||
do m = 1, 3
|
||||
aos_lapl_in_r_array(m,j,i) = aos_lapl_array(m,j)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
39
src/dft_utils_in_r/ints_grad.irp.f
Normal file
39
src/dft_utils_in_r/ints_grad.irp.f
Normal file
@ -0,0 +1,39 @@
|
||||
BEGIN_PROVIDER [ double precision, mo_grad_ints, (mo_num, mo_num,3)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mo_grad_ints(i,j,m) = <phi_i^MO | d/dx | phi_j^MO>
|
||||
END_DOC
|
||||
integer :: i,j,ipoint,m
|
||||
double precision :: weight
|
||||
mo_grad_ints = 0.d0
|
||||
do m = 1, 3
|
||||
do ipoint = 1, n_points_final_grid
|
||||
weight = final_weight_at_r_vector(ipoint)
|
||||
do j = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
mo_grad_ints(i,j,m) += mos_grad_in_r_array(j,ipoint,m) * mos_in_r_array(i,ipoint) * weight
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ double precision, mo_grad_ints_transp, (3,mo_num, mo_num)]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mo_grad_ints(i,j,m) = <phi_i^MO | d/dx | phi_j^MO>
|
||||
END_DOC
|
||||
integer :: i,j,ipoint,m
|
||||
double precision :: weight
|
||||
do m = 1, 3
|
||||
do j = 1, mo_num
|
||||
do i = 1, mo_num
|
||||
mo_grad_ints_transp(m,i,j) = mo_grad_ints(i,j,m)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
|
||||
END_PROVIDER
|
@ -138,7 +138,7 @@
|
||||
integer :: m
|
||||
mos_lapl_in_r_array = 0.d0
|
||||
do m=1,3
|
||||
call dgemm('N','N',mo_num,n_points_final_grid,ao_num,1.d0,mo_coef_transp,mo_num,aos_lapl_in_r_array(1,1,m),ao_num,0.d0,mos_lapl_in_r_array(1,1,m),mo_num)
|
||||
call dgemm('N','N',mo_num,n_points_final_grid,ao_num,1.d0,mo_coef_transp,mo_num,aos_lapl_in_r_array_transp(1,1,m),ao_num,0.d0,mos_lapl_in_r_array(1,1,m),mo_num)
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -1179,7 +1179,7 @@ subroutine bitstring_to_list_in_selection( string, list, n_elements, Nint)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gives the inidices(+1) of the bits set to 1 in the bit string
|
||||
! Gives the indices(+1) of the bits set to 1 in the bit string
|
||||
END_DOC
|
||||
integer, intent(in) :: Nint
|
||||
integer(bit_kind), intent(in) :: string(Nint)
|
||||
|
@ -72,7 +72,7 @@ subroutine run_dress_slave(thread,iproce,energy)
|
||||
provide psi_energy
|
||||
ending = dress_N_cp+1
|
||||
ntask_tbd = 0
|
||||
call omp_set_max_active_levels(8)
|
||||
call set_multiple_levels_omp(.True.)
|
||||
|
||||
!$OMP PARALLEL DEFAULT(SHARED) &
|
||||
!$OMP PRIVATE(interesting, breve_delta_m, task_id) &
|
||||
@ -84,7 +84,7 @@ subroutine run_dress_slave(thread,iproce,energy)
|
||||
zmq_socket_push = new_zmq_push_socket(thread)
|
||||
integer, external :: connect_to_taskserver
|
||||
!$OMP CRITICAL
|
||||
call omp_set_max_active_levels(1)
|
||||
call set_multiple_levels_omp(.False.)
|
||||
if (connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread) == -1) then
|
||||
print *, irp_here, ': Unable to connect to task server'
|
||||
stop -1
|
||||
@ -296,7 +296,7 @@ subroutine run_dress_slave(thread,iproce,energy)
|
||||
!$OMP END CRITICAL
|
||||
|
||||
!$OMP END PARALLEL
|
||||
call omp_set_max_active_levels(1)
|
||||
call set_multiple_levels_omp(.False.)
|
||||
! do i=0,dress_N_cp+1
|
||||
! call omp_destroy_lock(lck_sto(i))
|
||||
! end do
|
||||
|
@ -25,7 +25,7 @@ subroutine write_time(iunit)
|
||||
ct = ct - output_cpu_time_0
|
||||
call wall_time(wt)
|
||||
wt = wt - output_wall_time_0
|
||||
write(6,'(A,F14.6,A,F14.6,A)') &
|
||||
write(6,'(A,F14.2,A,F14.2,A)') &
|
||||
'.. >>>>> [ WALL TIME: ', wt, ' s ] [ CPU TIME: ', ct, ' s ] <<<<< ..'
|
||||
write(6,*)
|
||||
end
|
||||
|
@ -59,43 +59,43 @@ function run_stoch() {
|
||||
|
||||
@test "HCO" { # 12.2868s
|
||||
qp set_file hco.ezfio
|
||||
run -113.389297812482 6.e-4 100000
|
||||
run -113.393356604085 1.e-3 100000
|
||||
}
|
||||
|
||||
@test "H2O2" { # 12.9214s
|
||||
qp set_file h2o2.ezfio
|
||||
qp set_mo_class --core="[1-2]" --act="[3-24]" --del="[25-38]"
|
||||
run -151.00467 1.e-4 100000
|
||||
run -151.005848404095 1.e-3 100000
|
||||
}
|
||||
|
||||
@test "HBO" { # 13.3144s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file hbo.ezfio
|
||||
run -100.212560384678 1.e-3 100000
|
||||
run -100.214099486337 1.e-3 100000
|
||||
}
|
||||
|
||||
@test "H2O" { # 11.3727s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file h2o.ezfio
|
||||
run -76.2361605151999 3.e-4 100000
|
||||
run -76.2361605151999 5.e-4 100000
|
||||
}
|
||||
|
||||
@test "ClO" { # 13.3755s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file clo.ezfio
|
||||
run -534.545616787223 3.e-4 100000
|
||||
run -534.546453546852 1.e-3 100000
|
||||
}
|
||||
|
||||
@test "SO" { # 13.4952s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file so.ezfio
|
||||
run -26.0096209515081 1.e-3 100000
|
||||
run -26.0176563764039 1.e-3 100000
|
||||
}
|
||||
|
||||
@test "H2S" { # 13.6745s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file h2s.ezfio
|
||||
run -398.859168655255 3.e-4 100000
|
||||
run -398.859577605891 5.e-4 100000
|
||||
}
|
||||
|
||||
@test "OH" { # 13.865s
|
||||
@ -113,13 +113,13 @@ function run_stoch() {
|
||||
@test "H3COH" { # 14.7299s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file h3coh.ezfio
|
||||
run -115.205191406072 3.e-4 100000
|
||||
run -115.205632960026 1.e-3 100000
|
||||
}
|
||||
|
||||
@test "SiH3" { # 15.99s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file sih3.ezfio
|
||||
run -5.57241217753818 3.e-4 100000
|
||||
run -5.57241217753818 5.e-4 100000
|
||||
}
|
||||
|
||||
@test "CH4" { # 16.1612s
|
||||
@ -132,28 +132,28 @@ function run_stoch() {
|
||||
@test "ClF" { # 16.8864s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file clf.ezfio
|
||||
run -559.169313755572 3.e-4 100000
|
||||
run -559.169748890031 1.5e-3 100000
|
||||
}
|
||||
|
||||
@test "SO2" { # 17.5645s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file so2.ezfio
|
||||
qp set_mo_class --core="[1-8]" --act="[9-87]"
|
||||
run -41.5746738713298 3.e-4 100000
|
||||
run -41.5746738713298 1.5e-3 100000
|
||||
}
|
||||
|
||||
@test "C2H2" { # 17.6827s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file c2h2.ezfio
|
||||
qp set_mo_class --act="[1-30]" --del="[31-36]"
|
||||
run -12.3685464085969 3.e-4 100000
|
||||
run -12.3685464085969 2.e-3 100000
|
||||
}
|
||||
|
||||
@test "N2" { # 18.0198s
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file n2.ezfio
|
||||
qp set_mo_class --core="[1,2]" --act="[3-40]" --del="[41-60]"
|
||||
run -109.28681540699360 3.e-4 100000
|
||||
run -109.287917088107 1.5e-3 100000
|
||||
}
|
||||
|
||||
@test "N2H4" { # 18.5006s
|
||||
@ -167,7 +167,7 @@ function run_stoch() {
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file co2.ezfio
|
||||
qp set_mo_class --core="[1,2]" --act="[3-30]" --del="[31-42]"
|
||||
run -187.968547952413 3.e-4 100000
|
||||
run -187.970184372047 1.5e-3 100000
|
||||
}
|
||||
|
||||
|
||||
@ -182,6 +182,6 @@ function run_stoch() {
|
||||
[[ -n $TRAVIS ]] && skip
|
||||
qp set_file hcn.ezfio
|
||||
qp set_mo_class --core="[1,2]" --act="[3-40]" --del="[41-55]"
|
||||
run -93.0771143355433 3.e-4 100000
|
||||
run -93.0777619629755 1.e-3 100000
|
||||
}
|
||||
|
||||
|
@ -21,7 +21,9 @@
|
||||
weight = final_weight_at_r_vector(i)
|
||||
rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||
rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||
call ex_lda_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_x,vx_a,vx_b)
|
||||
double precision :: mu_local
|
||||
mu_local = mu_of_r_dft(i)
|
||||
call ex_lda_sr(mu_local,rhoa(istate),rhob(istate),e_x,vx_a,vx_b)
|
||||
energy_x_sr_lda(istate) += weight * e_x
|
||||
enddo
|
||||
enddo
|
||||
@ -48,7 +50,9 @@
|
||||
weight = final_weight_at_r_vector(i)
|
||||
rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||
rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||
call ec_lda_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_c,vc_a,vc_b)
|
||||
double precision :: mu_local
|
||||
mu_local = mu_of_r_dft(i)
|
||||
call ec_lda_sr(mu_local,rhoa(istate),rhob(istate),e_c,vc_a,vc_b)
|
||||
energy_c_sr_lda(istate) += weight * e_c
|
||||
enddo
|
||||
enddo
|
||||
@ -122,8 +126,10 @@ END_PROVIDER
|
||||
weight = final_weight_at_r_vector(i)
|
||||
rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||
rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||
call ec_lda_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_c,sr_vc_a,sr_vc_b)
|
||||
call ex_lda_sr(mu_erf_dft,rhoa(istate),rhob(istate),e_x,sr_vx_a,sr_vx_b)
|
||||
double precision :: mu_local
|
||||
mu_local = mu_of_r_dft(i)
|
||||
call ec_lda_sr(mu_local,rhoa(istate),rhob(istate),e_c,sr_vc_a,sr_vc_b)
|
||||
call ex_lda_sr(mu_local,rhoa(istate),rhob(istate),e_x,sr_vx_a,sr_vx_b)
|
||||
do j =1, ao_num
|
||||
aos_sr_vc_alpha_lda_w(j,i,istate) = sr_vc_a * aos_in_r_array(j,i)*weight
|
||||
aos_sr_vc_beta_lda_w(j,i,istate) = sr_vc_b * aos_in_r_array(j,i)*weight
|
||||
@ -147,8 +153,6 @@ END_PROVIDER
|
||||
double precision :: mu,weight
|
||||
double precision :: e_c,sr_vc_a,sr_vc_b,e_x,sr_vx_a,sr_vx_b
|
||||
double precision, allocatable :: rhoa(:),rhob(:)
|
||||
double precision :: mu_local
|
||||
mu_local = mu_erf_dft
|
||||
allocate(rhoa(N_states), rhob(N_states))
|
||||
do istate = 1, N_states
|
||||
do i = 1, n_points_final_grid
|
||||
@ -158,6 +162,8 @@ END_PROVIDER
|
||||
weight = final_weight_at_r_vector(i)
|
||||
rhoa(istate) = one_e_dm_and_grad_alpha_in_r(4,i,istate)
|
||||
rhob(istate) = one_e_dm_and_grad_beta_in_r(4,i,istate)
|
||||
double precision :: mu_local
|
||||
mu_local = mu_of_r_dft(i)
|
||||
call ec_lda_sr(mu_local,rhoa(istate),rhob(istate),e_c,sr_vc_a,sr_vc_b)
|
||||
call ex_lda_sr(mu_local,rhoa(istate),rhob(istate),e_x,sr_vx_a,sr_vx_b)
|
||||
do j =1, ao_num
|
||||
|
@ -35,9 +35,11 @@
|
||||
grad_rho_b_2 += grad_rho_b(m) * grad_rho_b(m)
|
||||
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
|
||||
enddo
|
||||
|
||||
|
||||
double precision :: mu_local
|
||||
mu_local = mu_of_r_dft(i)
|
||||
! inputs
|
||||
call GGA_sr_type_functionals(mu_erf_dft,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||
call GGA_sr_type_functionals(mu_local,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||||
energy_x_sr_pbe(istate) += ex * weight
|
||||
@ -135,8 +137,10 @@ END_PROVIDER
|
||||
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
|
||||
enddo
|
||||
|
||||
double precision :: mu_local
|
||||
mu_local = mu_of_r_dft(i)
|
||||
! inputs
|
||||
call GGA_sr_type_functionals(mu_erf_dft,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||
call GGA_sr_type_functionals(mu_local,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||||
vx_rho_a *= weight
|
||||
@ -292,8 +296,10 @@ END_PROVIDER
|
||||
grad_rho_a_b += grad_rho_a(m) * grad_rho_b(m)
|
||||
enddo
|
||||
|
||||
double precision :: mu_local
|
||||
mu_local = mu_of_r_dft(i)
|
||||
! inputs
|
||||
call GGA_sr_type_functionals(mu_erf_dft,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||
call GGA_sr_type_functionals(mu_local,rho_a,rho_b,grad_rho_a_2,grad_rho_b_2,grad_rho_a_b, & ! outputs exchange
|
||||
ex,vx_rho_a,vx_rho_b,vx_grad_rho_a_2,vx_grad_rho_b_2,vx_grad_rho_a_b, & ! outputs correlation
|
||||
ec,vc_rho_a,vc_rho_b,vc_grad_rho_a_2,vc_grad_rho_b_2,vc_grad_rho_a_b )
|
||||
vx_rho_a *= weight
|
||||
|
@ -98,7 +98,7 @@ subroutine print_summary(e_,pt2_data,pt2_data_err,n_det_,n_configuration_,n_st,s
|
||||
enddo
|
||||
endif
|
||||
|
||||
call print_energy_components()
|
||||
! call print_energy_components()
|
||||
|
||||
end subroutine
|
||||
|
||||
|
@ -17,7 +17,7 @@ program rs_ks_scf
|
||||
print*, '**************************'
|
||||
print*, 'mu_erf_dft = ',mu_erf_dft
|
||||
print*, '**************************'
|
||||
call check_coherence_functional
|
||||
! call check_coherence_functional
|
||||
call create_guess
|
||||
call orthonormalize_mos
|
||||
call run
|
||||
|
@ -1,6 +1,9 @@
|
||||
|
||||
subroutine give_all_mos_at_r(r,mos_array)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! mos_array(i) = ith MO function evaluated at "r"
|
||||
END_DOC
|
||||
double precision, intent(in) :: r(3)
|
||||
double precision, intent(out) :: mos_array(mo_num)
|
||||
double precision :: aos_array(ao_num)
|
||||
|
@ -7,7 +7,7 @@ subroutine hcore_guess
|
||||
label = 'Guess'
|
||||
call mo_as_eigvectors_of_mo_matrix(mo_one_e_integrals, &
|
||||
size(mo_one_e_integrals,1), &
|
||||
size(mo_one_e_integrals,2),label,1,.false.)
|
||||
size(mo_one_e_integrals,2),label,1,.true.)
|
||||
call nullify_small_elements(ao_num, mo_num, mo_coef, size(mo_coef,1), 1.d-12 )
|
||||
call save_mos
|
||||
TOUCH mo_coef mo_label
|
||||
|
@ -302,21 +302,21 @@ end
|
||||
integer(key_kind) :: idx
|
||||
double precision :: tmp
|
||||
|
||||
icount = 1 ! Avoid division by zero
|
||||
do j=1,mo_num
|
||||
do i=1,j-1
|
||||
call two_e_integrals_index(i,j,j,i,idx)
|
||||
!DIR$ FORCEINLINE
|
||||
call map_get(mo_integrals_map,idx,tmp)
|
||||
banned_excitation(i,j) = dabs(tmp) < 1.d-14
|
||||
banned_excitation(j,i) = banned_excitation(i,j)
|
||||
if (banned_excitation(i,j)) icount = icount+2
|
||||
enddo
|
||||
enddo
|
||||
use_banned_excitation = (mo_num*mo_num) / icount <= 100 !1%
|
||||
if (use_banned_excitation) then
|
||||
print *, 'Using sparsity of exchange integrals'
|
||||
endif
|
||||
!icount = 1 ! Avoid division by zero
|
||||
!do j=1,mo_num
|
||||
! do i=1,j-1
|
||||
! call two_e_integrals_index(i,j,j,i,idx)
|
||||
! !DIR$ FORCEINLINE
|
||||
! call map_get(mo_integrals_map,idx,tmp)
|
||||
! banned_excitation(i,j) = dabs(tmp) < 1.d-14
|
||||
! banned_excitation(j,i) = banned_excitation(i,j)
|
||||
! if (banned_excitation(i,j)) icount = icount+2
|
||||
! enddo
|
||||
!enddo
|
||||
!use_banned_excitation = (mo_num*mo_num) / icount <= 100 !1%
|
||||
!if (use_banned_excitation) then
|
||||
! print *, 'Using sparsity of exchange integrals'
|
||||
!endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -10,7 +10,7 @@ type:integer
|
||||
interface: ezfio,provider
|
||||
|
||||
[pseudo_n_k]
|
||||
doc: Number of gaussians in the local component
|
||||
doc: Powers of r - 2 in the local component
|
||||
type: integer
|
||||
interface: ezfio,provider
|
||||
size: (nuclei.nucl_num,pseudo.pseudo_klocmax)
|
||||
@ -38,7 +38,7 @@ type:integer
|
||||
interface: ezfio,provider
|
||||
|
||||
[pseudo_n_kl]
|
||||
doc: Number of functions in the non-local component
|
||||
doc: Powers of r - 2 in the non-local component
|
||||
type: integer
|
||||
interface: ezfio,provider
|
||||
size: (nuclei.nucl_num,pseudo.pseudo_kmax,0:pseudo.pseudo_lmax)
|
||||
@ -69,7 +69,7 @@ default: 1000
|
||||
|
||||
[pseudo_grid_rmax]
|
||||
type: double precision
|
||||
doc: R_max of the QMC grid
|
||||
doc: R_max of the QMC grid
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 10.0
|
||||
|
||||
|
@ -2,3 +2,4 @@ fci
|
||||
mo_two_e_erf_ints
|
||||
aux_quantities
|
||||
hartree_fock
|
||||
two_body_rdm
|
||||
|
@ -52,8 +52,8 @@ program molden
|
||||
l += 1
|
||||
if (l > ao_num) exit
|
||||
enddo
|
||||
write(i_unit_output,*)''
|
||||
enddo
|
||||
write(i_unit_output,*)''
|
||||
enddo
|
||||
|
||||
|
||||
|
Some files were not shown because too many files have changed in this diff Show More
Loading…
Reference in New Issue
Block a user