9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-22 19:43:32 +01:00

added providers for the totally symmetrized integrals

This commit is contained in:
eginer 2023-01-20 17:30:08 +01:00
parent 9eba8d692d
commit a5ded6cd59
5 changed files with 156 additions and 18 deletions

View File

@ -113,7 +113,7 @@ subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i,jj,mm,j,m
double precision :: three_e_diag_parrallel_spin, direct_int, exchange_int
double precision :: direct_int, exchange_int
if (iorb < 1) then
@ -163,7 +163,7 @@ subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
jj = occ(j,ispin)
do m = j+1, na
mm = occ(m,ispin)
hthree += three_e_diag_parrallel_spin(mm,jj,iorb)
hthree += three_e_diag_parrallel_spin_prov(mm,jj,iorb)
enddo
enddo
!! same-spin/oposite-spin
@ -210,7 +210,7 @@ subroutine a_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hmono,htwoe,hthree
double precision :: direct_int, exchange_int, three_e_diag_parrallel_spin
double precision :: direct_int, exchange_int
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i,jj,mm,j,m
@ -250,7 +250,7 @@ subroutine a_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)
jj = occ(j,ispin)
do m = j+1, na
mm = occ(m,ispin)
hthree -= three_e_diag_parrallel_spin(mm,jj,iorb)
hthree -= three_e_diag_parrallel_spin_prov(mm,jj,iorb)
enddo
enddo
!! same-spin/oposite-spin

View File

@ -84,7 +84,7 @@ subroutine three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
integer :: n_occ_ab_hole(2),n_occ_ab_particle(2)
integer(bit_kind) :: det_tmp(N_int,2)
integer :: ipart, ihole
double precision :: direct_int, exchange_int, three_e_double_parrallel_spin
double precision :: direct_int, exchange_int
nexc(1) = 0
nexc(2) = 0
@ -118,9 +118,9 @@ subroutine three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
ispin = 1 ! i==alpha ==> pure same spin terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
ipart=occ_particle(i,ispin)
hthree += three_e_double_parrallel_spin(ipart,p2,h2,p1,h1)
hthree += three_e_double_parrallel_spin_prov(ipart,p2,h2,p1,h1)
ihole=occ_hole(i,ispin)
hthree -= three_e_double_parrallel_spin(ihole,p2,h2,p1,h1)
hthree -= three_e_double_parrallel_spin_prov(ihole,p2,h2,p1,h1)
enddo
ispin = 2 ! i==beta ==> alpha/alpha/beta terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
@ -145,9 +145,9 @@ subroutine three_comp_two_e_elem(key_i,h1,h2,p1,p2,s1,s2,hthree)
ispin = 2 ! i==beta ==> pure same spin terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
ipart=occ_particle(i,ispin)
hthree += three_e_double_parrallel_spin(ipart,p2,h2,p1,h1)
hthree += three_e_double_parrallel_spin_prov(ipart,p2,h2,p1,h1)
ihole=occ_hole(i,ispin)
hthree -= three_e_double_parrallel_spin(ihole,p2,h2,p1,h1)
hthree -= three_e_double_parrallel_spin_prov(ihole,p2,h2,p1,h1)
enddo
ispin = 1 ! i==alpha==> beta/beta/alpha terms
do i = 1, nexc(ispin) ! number of couple of holes/particles
@ -305,13 +305,12 @@ subroutine give_contrib_for_aaaa(h1,h2,p1,p2,occ,Ne,contrib)
double precision, intent(out) :: contrib
integer :: mm,m
double precision :: direct_int, exchange_int
double precision :: three_e_double_parrallel_spin
!! h1,p1 == alpha
!! h2,p2 == alpha
contrib = 0.d0
do mm = 1, Ne(1) !! alpha ==> pure parallele spin contribution
m = occ(mm,1)
contrib += three_e_double_parrallel_spin(m,p2,h2,p1,h1)
contrib += three_e_double_parrallel_spin_prov(m,p2,h2,p1,h1)
enddo
do mm = 1, Ne(2) !! beta
@ -371,13 +370,12 @@ subroutine give_contrib_for_bbbb(h1,h2,p1,p2,occ,Ne,contrib)
double precision, intent(out) :: contrib
integer :: mm,m
double precision :: direct_int, exchange_int
double precision :: three_e_double_parrallel_spin
!! h1,p1 == beta
!! h2,p2 == beta
contrib = 0.d0
do mm = 1, Ne(2) !! beta ==> pure parallele spin contribution
m = occ(mm,1)
contrib += three_e_double_parrallel_spin(m,p2,h2,p1,h1)
contrib += three_e_double_parrallel_spin_prov(m,p2,h2,p1,h1)
enddo
do mm = 1, Ne(1) !! alpha

View File

@ -196,7 +196,7 @@ subroutine fock_ac_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i,jj,j
double precision :: three_e_single_parrallel_spin, direct_int, exchange_int
double precision :: direct_int, exchange_int
if (iorb < 1) then
@ -236,7 +236,7 @@ subroutine fock_ac_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,
!! jj = ispin = ispin_fock >> pure parallel spin
do j = 1, na
jj = occ(j,ispin)
hthree += three_e_single_parrallel_spin(jj,iorb,p_fock,h_fock)
hthree += three_e_single_parrallel_spin_prov(jj,iorb,p_fock,h_fock)
enddo
!! spin of jj == other spin than ispin AND ispin_fock
!! exchange between the iorb and (h_fock, p_fock)
@ -287,7 +287,7 @@ subroutine fock_a_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,N
integer(bit_kind), intent(inout) :: key(Nint,2)
double precision, intent(inout) :: hthree
double precision :: direct_int, exchange_int, three_e_single_parrallel_spin
double precision :: direct_int, exchange_int
integer :: occ(Nint*bit_kind_size,2)
integer :: other_spin
integer :: k,l,i,jj,mm,j,m
@ -315,7 +315,7 @@ subroutine fock_a_tc_operator(iorb,ispin,key, h_fock,p_fock, ispin_fock,hthree,N
!! jj = ispin = ispin_fock >> pure parallel spin
do j = 1, na
jj = occ(j,ispin)
hthree -= three_e_single_parrallel_spin(jj,iorb,p_fock,h_fock)
hthree -= three_e_single_parrallel_spin_prov(jj,iorb,p_fock,h_fock)
enddo
!! spin of jj == other spin than ispin AND ispin_fock
!! exchange between the iorb and (h_fock, p_fock)

View File

@ -0,0 +1,140 @@
BEGIN_PROVIDER [ double precision, three_e_diag_parrallel_spin_prov, (mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator ON A BI ORTHONORMAL BASIS
!
! three_e_diag_parrallel_spin_prov(m,j,i) = All combinations of the form <mji|-L|mji> for same spin matrix elements
!
! notice the -1 sign: in this way three_e_diag_parrallel_spin_prov can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, m
double precision :: integral, wall1, wall0, three_e_diag_parrallel_spin
three_e_diag_parrallel_spin_prov = 0.d0
print *, ' Providing the three_e_diag_parrallel_spin_prov ...'
integral = three_e_diag_parrallel_spin(1,1,1) ! to provide all stuffs
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
!$OMP SHARED (mo_num,three_e_diag_parrallel_spin_prov)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do j = 1, mo_num
do m = j, mo_num
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin(m,j,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do i = 1, mo_num
do j = 1, mo_num
do m = 1, j
three_e_diag_parrallel_spin_prov(m,j,i) = three_e_diag_parrallel_spin_prov(j,m,i)
enddo
enddo
enddo
call wall_time(wall1)
print *, ' wall time for three_e_diag_parrallel_spin_prov', wall1 - wall0
END_PROVIDER
BEGIN_PROVIDER [ double precision, three_e_single_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_single_parrallel_spin_prov(m,j,k,i) = All combination of <mjk|-L|mji> for same spin matrix elements
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m
double precision :: integral, wall1, wall0, three_e_single_parrallel_spin
three_e_single_parrallel_spin_prov = 0.d0
print *, ' Providing the three_e_single_parrallel_spin_prov ...'
integral = three_e_single_parrallel_spin(1,1,1,1)
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_single_parrallel_spin_prov)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_single_parrallel_spin_prov(m,j,k,i) = three_e_single_parrallel_spin(m,j,k,i)
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_single_parrallel_spin_prov', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_double_parrallel_spin_prov, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_double_parrallel_spin_prov(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0, three_e_double_parrallel_spin
three_e_double_parrallel_spin_prov = 0.d0
print *, ' Providing the three_e_double_parrallel_spin_prov ...'
call wall_time(wall0)
integral = three_e_double_parrallel_spin(1,1,1,1,1)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_double_parrallel_spin_prov)
!$OMP DO SCHEDULE (dynamic)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
three_e_double_parrallel_spin_prov(m,l,j,k,i) = three_e_double_parrallel_spin(m,l,j,k,i)
enddo
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_double_parrallel_spin_prov', wall1 - wall0
END_PROVIDER

View File

@ -57,7 +57,7 @@ subroutine test_slater_tc_opt
! print*,hthree,hnewthree,dabs(hthree-hnewthree)
stop
endif
print*,htot,hnewtot,dabs(htot-hnewtot)
! print*,htot,hnewtot,dabs(htot-hnewtot)
endif
enddo
enddo