9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-07 05:53:37 +01:00

tc_scf compiles and gives good energy for Ne. Added a test in test_Ne.sh
Some checks failed
continuous-integration/drone/push Build is failing

This commit is contained in:
eginer 2023-02-06 19:26:58 +01:00
parent ca4cdf56d5
commit a4bb488d64
33 changed files with 6498 additions and 0 deletions

4
src/tc_scf/EZFIO.cfg Normal file
View File

@ -0,0 +1,4 @@
[bitc_energy]
type: Threshold
doc: Energy bi-tc HF
interface: ezfio

6
src/tc_scf/NEED Normal file
View File

@ -0,0 +1,6 @@
hartree_fock
bi_ortho_mos
three_body_ints
bi_ort_ints
tc_keywords
non_hermit_dav

View File

@ -0,0 +1,74 @@
! ---
program combine_lr_tcscf
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
bi_ortho = .True.
touch bi_ortho
call comb_orbitals()
end
! ---
subroutine comb_orbitals()
implicit none
integer :: i, m, n, nn, mm
double precision :: accu_d, accu_nd
double precision, allocatable :: R(:,:), L(:,:), Rnew(:,:), tmp(:,:), S(:,:)
n = ao_num
m = mo_num
nn = elec_alpha_num
mm = m - nn
allocate(L(n,m), R(n,m), Rnew(n,m), S(m,m))
L = mo_l_coef
R = mo_r_coef
call check_weighted_biorthog(n, m, ao_overlap, L, R, accu_d, accu_nd, S, .true.)
allocate(tmp(n,nn))
do i = 1, nn
tmp(1:n,i) = R(1:n,i)
enddo
call impose_weighted_orthog_svd(n, nn, ao_overlap, tmp)
do i = 1, nn
Rnew(1:n,i) = tmp(1:n,i)
enddo
deallocate(tmp)
allocate(tmp(n,mm))
do i = 1, mm
tmp(1:n,i) = L(1:n,i+nn)
enddo
call impose_weighted_orthog_svd(n, mm, ao_overlap, tmp)
do i = 1, mm
Rnew(1:n,i+nn) = tmp(1:n,i)
enddo
deallocate(tmp)
call check_weighted_biorthog(n, m, ao_overlap, Rnew, Rnew, accu_d, accu_nd, S, .true.)
mo_r_coef = Rnew
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
deallocate(L, R, Rnew, S)
end subroutine comb_orbitals
! ---

View File

@ -0,0 +1,229 @@
! ---
BEGIN_PROVIDER [ double precision, fock_tc_reigvec_mo, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, fock_tc_leigvec_mo, (mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, eigval_fock_tc_mo, (mo_num)]
&BEGIN_PROVIDER [ double precision, overlap_fock_tc_eigvec_mo, (mo_num, mo_num)]
BEGIN_DOC
! EIGENVECTORS OF FOCK MATRIX ON THE MO BASIS and their OVERLAP
END_DOC
implicit none
integer :: n_real_tc
integer :: i, j, k, l
double precision :: accu_d, accu_nd, accu_tmp
double precision :: norm
double precision, allocatable :: eigval_right_tmp(:)
double precision, allocatable :: F_tmp(:,:)
allocate( eigval_right_tmp(mo_num), F_tmp(mo_num,mo_num) )
PROVIDE Fock_matrix_tc_mo_tot
do i = 1, mo_num
do j = 1, mo_num
F_tmp(j,i) = Fock_matrix_tc_mo_tot(j,i)
enddo
enddo
! insert level shift here
do i = elec_beta_num+1, elec_alpha_num
F_tmp(i,i) += 0.5d0 * level_shift_tcscf
enddo
do i = elec_alpha_num+1, mo_num
F_tmp(i,i) += level_shift_tcscf
enddo
call non_hrmt_bieig( mo_num, F_tmp, thresh_biorthog_diag, thresh_biorthog_nondiag &
, fock_tc_leigvec_mo, fock_tc_reigvec_mo &
, n_real_tc, eigval_right_tmp )
!if(max_ov_tc_scf)then
! call non_hrmt_fock_mat( mo_num, F_tmp, thresh_biorthog_diag, thresh_biorthog_nondiag &
! , fock_tc_leigvec_mo, fock_tc_reigvec_mo &
! , n_real_tc, eigval_right_tmp )
!else
! call non_hrmt_diag_split_degen_bi_orthog( mo_num, F_tmp &
! , fock_tc_leigvec_mo, fock_tc_reigvec_mo &
! , n_real_tc, eigval_right_tmp )
!endif
deallocate(F_tmp)
! if(n_real_tc .ne. mo_num)then
! print*,'n_real_tc ne mo_num ! ',n_real_tc
! stop
! endif
eigval_fock_tc_mo = eigval_right_tmp
! print*,'Eigenvalues of Fock_matrix_tc_mo_tot'
! do i = 1, elec_alpha_num
! print*, i, eigval_fock_tc_mo(i)
! enddo
! do i = elec_alpha_num+1, mo_num
! print*, i, eigval_fock_tc_mo(i) - level_shift_tcscf
! enddo
! deallocate( eigval_right_tmp )
! L.T x R
call dgemm( "T", "N", mo_num, mo_num, mo_num, 1.d0 &
, fock_tc_leigvec_mo, size(fock_tc_leigvec_mo, 1) &
, fock_tc_reigvec_mo, size(fock_tc_reigvec_mo, 1) &
, 0.d0, overlap_fock_tc_eigvec_mo, size(overlap_fock_tc_eigvec_mo, 1) )
! ---
accu_d = 0.d0
accu_nd = 0.d0
do i = 1, mo_num
do k = 1, mo_num
if(i==k) then
accu_tmp = overlap_fock_tc_eigvec_mo(k,i)
accu_d += dabs(accu_tmp )
else
accu_tmp = overlap_fock_tc_eigvec_mo(k,i)
accu_nd += accu_tmp * accu_tmp
if(dabs(overlap_fock_tc_eigvec_mo(k,i)) .gt. thresh_biorthog_nondiag)then
print *, 'k,i', k, i, overlap_fock_tc_eigvec_mo(k,i)
endif
endif
enddo
enddo
accu_nd = dsqrt(accu_nd) / accu_d
if(accu_nd .gt. thresh_biorthog_nondiag) then
print *, ' bi-orthog failed'
print *, ' accu_nd MO = ', accu_nd, thresh_biorthog_nondiag
print *, ' overlap_fock_tc_eigvec_mo = '
do i = 1, mo_num
write(*,'(100(F16.10,X))') overlap_fock_tc_eigvec_mo(i,:)
enddo
stop
endif
! ---
if(dabs(accu_d - dble(mo_num))/dble(mo_num) .gt. thresh_biorthog_diag) then
print *, ' mo_num = ', mo_num
print *, ' accu_d MO = ', accu_d, thresh_biorthog_diag
print *, ' normalizing vectors ...'
do i = 1, mo_num
norm = dsqrt(dabs(overlap_fock_tc_eigvec_mo(i,i)))
if(norm .gt. thresh_biorthog_diag) then
do k = 1, mo_num
fock_tc_reigvec_mo(k,i) *= 1.d0/norm
fock_tc_leigvec_mo(k,i) *= 1.d0/norm
enddo
endif
enddo
call dgemm( "T", "N", mo_num, mo_num, mo_num, 1.d0 &
, fock_tc_leigvec_mo, size(fock_tc_leigvec_mo, 1) &
, fock_tc_reigvec_mo, size(fock_tc_reigvec_mo, 1) &
, 0.d0, overlap_fock_tc_eigvec_mo, size(overlap_fock_tc_eigvec_mo, 1) )
accu_d = 0.d0
accu_nd = 0.d0
do i = 1, mo_num
do k = 1, mo_num
if(i==k) then
accu_tmp = overlap_fock_tc_eigvec_mo(k,i)
accu_d += dabs(accu_tmp)
else
accu_tmp = overlap_fock_tc_eigvec_mo(k,i)
accu_nd += accu_tmp * accu_tmp
if(dabs(overlap_fock_tc_eigvec_mo(k,i)) .gt. thresh_biorthog_nondiag)then
print *, 'k,i', k, i, overlap_fock_tc_eigvec_mo(k,i)
endif
endif
enddo
enddo
accu_nd = dsqrt(accu_nd) / accu_d
if(accu_nd .gt. thresh_biorthog_diag) then
print *, ' bi-orthog failed'
print *, ' accu_nd MO = ', accu_nd, thresh_biorthog_nondiag
print *, ' overlap_fock_tc_eigvec_mo = '
do i = 1, mo_num
write(*,'(100(F16.10,X))') overlap_fock_tc_eigvec_mo(i,:)
enddo
stop
endif
endif
! ---
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, fock_tc_reigvec_ao, (ao_num, mo_num)]
&BEGIN_PROVIDER [ double precision, fock_tc_leigvec_ao, (ao_num, mo_num)]
&BEGIN_PROVIDER [ double precision, overlap_fock_tc_eigvec_ao, (mo_num, mo_num) ]
BEGIN_DOC
! EIGENVECTORS OF FOCK MATRIX ON THE AO BASIS and their OVERLAP
!
! THE OVERLAP SHOULD BE THE SAME AS overlap_fock_tc_eigvec_mo
END_DOC
implicit none
integer :: i, j, k, q, p
double precision :: accu, accu_d
double precision, allocatable :: tmp(:,:)
PROVIDE mo_l_coef mo_r_coef
! ! MO_R x R
call dgemm( 'N', 'N', ao_num, mo_num, mo_num, 1.d0 &
, mo_r_coef, size(mo_r_coef, 1) &
, fock_tc_reigvec_mo, size(fock_tc_reigvec_mo, 1) &
, 0.d0, fock_tc_reigvec_ao, size(fock_tc_reigvec_ao, 1) )
! MO_L x L
call dgemm( 'N', 'N', ao_num, mo_num, mo_num, 1.d0 &
, mo_l_coef, size(mo_l_coef, 1) &
, fock_tc_leigvec_mo, size(fock_tc_leigvec_mo, 1) &
, 0.d0, fock_tc_leigvec_ao, size(fock_tc_leigvec_ao, 1) )
allocate( tmp(mo_num,ao_num) )
! tmp <-- L.T x S_ao
call dgemm( "T", "N", mo_num, ao_num, ao_num, 1.d0 &
, fock_tc_leigvec_ao, size(fock_tc_leigvec_ao, 1), ao_overlap, size(ao_overlap, 1) &
, 0.d0, tmp, size(tmp, 1) )
! S <-- tmp x R
call dgemm( "N", "N", mo_num, mo_num, ao_num, 1.d0 &
, tmp, size(tmp, 1), fock_tc_reigvec_ao, size(fock_tc_reigvec_ao, 1) &
, 0.d0, overlap_fock_tc_eigvec_ao, size(overlap_fock_tc_eigvec_ao, 1) )
deallocate( tmp )
! ---
double precision :: norm
do i = 1, mo_num
norm = 1.d0/dsqrt(dabs(overlap_fock_tc_eigvec_ao(i,i)))
do j = 1, mo_num
fock_tc_reigvec_ao(j,i) *= norm
fock_tc_leigvec_ao(j,i) *= norm
enddo
enddo
allocate( tmp(mo_num,ao_num) )
! tmp <-- L.T x S_ao
call dgemm( "T", "N", mo_num, ao_num, ao_num, 1.d0 &
, fock_tc_leigvec_ao, size(fock_tc_leigvec_ao, 1), ao_overlap, size(ao_overlap, 1) &
, 0.d0, tmp, size(tmp, 1) )
! S <-- tmp x R
call dgemm( "N", "N", mo_num, mo_num, ao_num, 1.d0 &
, tmp, size(tmp, 1), fock_tc_reigvec_ao, size(fock_tc_reigvec_ao, 1) &
, 0.d0, overlap_fock_tc_eigvec_ao, size(overlap_fock_tc_eigvec_ao, 1) )
deallocate( tmp )
END_PROVIDER

186
src/tc_scf/diis_tcscf.irp.f Normal file
View File

@ -0,0 +1,186 @@
! ---
BEGIN_PROVIDER [ double precision, threshold_DIIS_nonzero_TCSCF ]
implicit none
if(threshold_DIIS_TCSCF == 0.d0) then
threshold_DIIS_nonzero_TCSCF = dsqrt(thresh_tcscf)
else
threshold_DIIS_nonzero_TCSCF = threshold_DIIS_TCSCF
endif
ASSERT(threshold_DIIS_nonzero_TCSCF >= 0.d0)
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, Q_alpha, (ao_num, ao_num) ]
BEGIN_DOC
!
! Q_alpha = mo_r_coef x eta_occ_alpha x mo_l_coef.T
!
! [Q_alpha]_ij = \sum_{k=1}^{elec_alpha_num} [mo_r_coef]_ik [mo_l_coef]_jk
!
END_DOC
implicit none
Q_alpha = 0.d0
call dgemm( 'N', 'T', ao_num, ao_num, elec_alpha_num, 1.d0 &
, mo_r_coef, size(mo_r_coef, 1), mo_l_coef, size(mo_l_coef, 1) &
, 0.d0, Q_alpha, size(Q_alpha, 1) )
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, Q_beta, (ao_num, ao_num) ]
BEGIN_DOC
!
! Q_beta = mo_r_coef x eta_occ_beta x mo_l_coef.T
!
! [Q_beta]_ij = \sum_{k=1}^{elec_beta_num} [mo_r_coef]_ik [mo_l_coef]_jk
!
END_DOC
implicit none
Q_beta = 0.d0
call dgemm( 'N', 'T', ao_num, ao_num, elec_beta_num, 1.d0 &
, mo_r_coef, size(mo_r_coef, 1), mo_l_coef, size(mo_l_coef, 1) &
, 0.d0, Q_beta, size(Q_beta, 1) )
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, Q_matrix, (ao_num, ao_num) ]
BEGIN_DOC
!
! Q_matrix = 2 mo_r_coef x eta_occ x mo_l_coef.T
!
! with:
! | 1 if i = j = 1, ..., nb of occ orbitals
! [eta_occ]_ij = |
! | 0 otherwise
!
! the diis error is defines as:
! e = F_ao x Q x ao_overlap - ao_overlap x Q x F_ao
! with:
! mo_l_coef.T x ao_overlap x mo_r_coef = I
! F_mo = mo_l_coef.T x F_ao x mo_r_coef
! F_ao = (ao_overlap x mo_r_coef) x F_mo x (ao_overlap x mo_l_coef).T
!
! ==> e = 2 ao_overlap x mo_r_coef x [ F_mo x eta_occ - eta_occ x F_mo ] x (ao_overlap x mo_l_coef).T
!
! at convergence:
! F_mo x eta_occ - eta_occ x F_mo = 0
! ==> [F_mo]_ij ([eta_occ]_ii - [eta_occ]_jj) = 0
! ==> [F_mo]_ia = [F_mo]_ai = 0 where: i = occ and a = vir
! ==> Brillouin conditions
!
END_DOC
implicit none
if(elec_alpha_num == elec_beta_num) then
Q_matrix = Q_alpha + Q_alpha
else
Q_matrix = Q_alpha + Q_beta
endif
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, FQS_SQF_ao, (ao_num, ao_num)]
implicit none
double precision, allocatable :: tmp(:,:)
allocate(tmp(ao_num,ao_num))
! F x Q
call dgemm( 'N', 'N', ao_num, ao_num, ao_num, 1.d0 &
, Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1), Q_matrix, size(Q_matrix, 1) &
, 0.d0, tmp, size(tmp, 1) )
! F x Q x S
call dgemm( 'N', 'N', ao_num, ao_num, ao_num, 1.d0 &
, tmp, size(tmp, 1), ao_overlap, size(ao_overlap, 1) &
, 0.d0, FQS_SQF_ao, size(FQS_SQF_ao, 1) )
! S x Q
tmp = 0.d0
call dgemm( 'N', 'N', ao_num, ao_num, ao_num, 1.d0 &
, ao_overlap, size(ao_overlap, 1), Q_matrix, size(Q_matrix, 1) &
, 0.d0, tmp, size(tmp, 1) )
! F x Q x S - S x Q x F
call dgemm( 'N', 'N', ao_num, ao_num, ao_num, -1.d0 &
, tmp, size(tmp, 1), Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1) &
, 1.d0, FQS_SQF_ao, size(FQS_SQF_ao, 1) )
deallocate(tmp)
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, FQS_SQF_mo, (mo_num, mo_num)]
implicit none
call ao_to_mo_bi_ortho( FQS_SQF_ao, size(FQS_SQF_ao, 1) &
, FQS_SQF_mo, size(FQS_SQF_mo, 1) )
END_PROVIDER
! ---
! BEGIN_PROVIDER [ double precision, eigenval_Fock_tc_ao, (ao_num) ]
!&BEGIN_PROVIDER [ double precision, eigenvec_Fock_tc_ao, (ao_num,ao_num) ]
!
! BEGIN_DOC
! !
! ! Eigenvalues and eigenvectors of the Fock matrix over the ao basis
! !
! ! F' = X.T x F x X where X = ao_overlap^(-1/2)
! !
! ! F' x Cr' = Cr' x E ==> F Cr = Cr x E with Cr = X x Cr'
! ! F'.T x Cl' = Cl' x E ==> F.T Cl = Cl x E with Cl = X x Cl'
! !
! END_DOC
!
! implicit none
! double precision, allocatable :: tmp1(:,:), tmp2(:,:)
!
! ! ---
! ! Fock matrix in orthogonal basis: F' = X.T x F x X
!
! allocate(tmp1(ao_num,ao_num))
! call dgemm( 'N', 'N', ao_num, ao_num, ao_num, 1.d0 &
! , Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1), S_half_inv, size(S_half_inv, 1) &
! , 0.d0, tmp1, size(tmp1, 1) )
!
! allocate(tmp2(ao_num,ao_num))
! call dgemm( 'T', 'N', ao_num, ao_num, ao_num, 1.d0 &
! , S_half_inv, size(S_half_inv, 1), tmp1, size(tmp1, 1) &
! , 0.d0, tmp2, size(tmp2, 1) )
!
! ! ---
!
! ! Diagonalize F' to obtain eigenvectors in orthogonal basis C' and eigenvalues
! ! TODO
!
! ! Back-transform eigenvectors: C =X.C'
!
!END_PROVIDER
! ---
~

View File

@ -0,0 +1,405 @@
! ---
BEGIN_PROVIDER [double precision, fock_3e_uhf_mo_cs, (mo_num, mo_num)]
implicit none
integer :: a, b, i, j
double precision :: I_bij_aij, I_bij_ija, I_bij_jai, I_bij_aji, I_bij_iaj, I_bij_jia
double precision :: ti, tf
PROVIDE mo_l_coef mo_r_coef
!print *, ' PROVIDING fock_3e_uhf_mo_cs ...'
call wall_time(ti)
fock_3e_uhf_mo_cs = 0.d0
do a = 1, mo_num
do b = 1, mo_num
do j = 1, elec_beta_num
do i = 1, elec_beta_num
call give_integrals_3_body_bi_ort(b, i, j, a, i, j, I_bij_aij)
call give_integrals_3_body_bi_ort(b, i, j, i, j, a, I_bij_ija)
call give_integrals_3_body_bi_ort(b, i, j, j, a, i, I_bij_jai)
call give_integrals_3_body_bi_ort(b, i, j, a, j, i, I_bij_aji)
call give_integrals_3_body_bi_ort(b, i, j, i, a, j, I_bij_iaj)
call give_integrals_3_body_bi_ort(b, i, j, j, i, a, I_bij_jia)
fock_3e_uhf_mo_cs(b,a) -= 0.5d0 * ( 4.d0 * I_bij_aij &
+ I_bij_ija &
+ I_bij_jai &
- 2.d0 * I_bij_aji &
- 2.d0 * I_bij_iaj &
- 2.d0 * I_bij_jia )
enddo
enddo
enddo
enddo
call wall_time(tf)
!print *, ' total Wall time for fock_3e_uhf_mo_cs =', tf - ti
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, fock_3e_uhf_mo_a, (mo_num, mo_num)]
implicit none
integer :: a, b, i, j, o
double precision :: I_bij_aij, I_bij_ija, I_bij_jai, I_bij_aji, I_bij_iaj, I_bij_jia
double precision :: ti, tf
PROVIDE mo_l_coef mo_r_coef
!print *, ' PROVIDING fock_3e_uhf_mo_a ...'
call wall_time(ti)
o = elec_beta_num + 1
fock_3e_uhf_mo_a = fock_3e_uhf_mo_cs
do a = 1, mo_num
do b = 1, mo_num
! ---
do j = o, elec_alpha_num
do i = 1, elec_beta_num
call give_integrals_3_body_bi_ort(b, i, j, a, i, j, I_bij_aij)
call give_integrals_3_body_bi_ort(b, i, j, i, j, a, I_bij_ija)
call give_integrals_3_body_bi_ort(b, i, j, j, a, i, I_bij_jai)
call give_integrals_3_body_bi_ort(b, i, j, a, j, i, I_bij_aji)
call give_integrals_3_body_bi_ort(b, i, j, i, a, j, I_bij_iaj)
call give_integrals_3_body_bi_ort(b, i, j, j, i, a, I_bij_jia)
fock_3e_uhf_mo_a(b,a) -= 0.5d0 * ( 2.d0 * I_bij_aij &
+ I_bij_ija &
+ I_bij_jai &
- I_bij_aji &
- I_bij_iaj &
- 2.d0 * I_bij_jia )
enddo
enddo
! ---
do j = 1, elec_beta_num
do i = o, elec_alpha_num
call give_integrals_3_body_bi_ort(b, i, j, a, i, j, I_bij_aij)
call give_integrals_3_body_bi_ort(b, i, j, i, j, a, I_bij_ija)
call give_integrals_3_body_bi_ort(b, i, j, j, a, i, I_bij_jai)
call give_integrals_3_body_bi_ort(b, i, j, a, j, i, I_bij_aji)
call give_integrals_3_body_bi_ort(b, i, j, i, a, j, I_bij_iaj)
call give_integrals_3_body_bi_ort(b, i, j, j, i, a, I_bij_jia)
fock_3e_uhf_mo_a(b,a) -= 0.5d0 * ( 2.d0 * I_bij_aij &
+ I_bij_ija &
+ I_bij_jai &
- I_bij_aji &
- 2.d0 * I_bij_iaj &
- I_bij_jia )
enddo
enddo
! ---
do j = o, elec_alpha_num
do i = o, elec_alpha_num
call give_integrals_3_body_bi_ort(b, i, j, a, i, j, I_bij_aij)
call give_integrals_3_body_bi_ort(b, i, j, i, j, a, I_bij_ija)
call give_integrals_3_body_bi_ort(b, i, j, j, a, i, I_bij_jai)
call give_integrals_3_body_bi_ort(b, i, j, a, j, i, I_bij_aji)
call give_integrals_3_body_bi_ort(b, i, j, i, a, j, I_bij_iaj)
call give_integrals_3_body_bi_ort(b, i, j, j, i, a, I_bij_jia)
fock_3e_uhf_mo_a(b,a) -= 0.5d0 * ( I_bij_aij &
+ I_bij_ija &
+ I_bij_jai &
- I_bij_aji &
- I_bij_iaj &
- I_bij_jia )
enddo
enddo
! ---
enddo
enddo
call wall_time(tf)
!print *, ' total Wall time for fock_3e_uhf_mo_a =', tf - ti
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, fock_3e_uhf_mo_b, (mo_num, mo_num)]
implicit none
integer :: a, b, i, j, o
double precision :: I_bij_aij, I_bij_ija, I_bij_jai, I_bij_aji, I_bij_iaj, I_bij_jia
double precision :: ti, tf
PROVIDE mo_l_coef mo_r_coef
!print *, ' PROVIDING fock_3e_uhf_mo_b ...'
call wall_time(ti)
o = elec_beta_num + 1
fock_3e_uhf_mo_b = fock_3e_uhf_mo_cs
do a = 1, mo_num
do b = 1, mo_num
! ---
do j = o, elec_alpha_num
do i = 1, elec_beta_num
call give_integrals_3_body_bi_ort(b, i, j, a, i, j, I_bij_aij)
call give_integrals_3_body_bi_ort(b, i, j, i, j, a, I_bij_ija)
call give_integrals_3_body_bi_ort(b, i, j, j, a, i, I_bij_jai)
call give_integrals_3_body_bi_ort(b, i, j, a, j, i, I_bij_aji)
call give_integrals_3_body_bi_ort(b, i, j, i, a, j, I_bij_iaj)
call give_integrals_3_body_bi_ort(b, i, j, j, i, a, I_bij_jia)
fock_3e_uhf_mo_b(b,a) -= 0.5d0 * ( 2.d0 * I_bij_aij &
- I_bij_aji &
- I_bij_iaj )
enddo
enddo
! ---
do j = 1, elec_beta_num
do i = o, elec_alpha_num
call give_integrals_3_body_bi_ort(b, i, j, a, i, j, I_bij_aij)
call give_integrals_3_body_bi_ort(b, i, j, i, j, a, I_bij_ija)
call give_integrals_3_body_bi_ort(b, i, j, j, a, i, I_bij_jai)
call give_integrals_3_body_bi_ort(b, i, j, a, j, i, I_bij_aji)
call give_integrals_3_body_bi_ort(b, i, j, i, a, j, I_bij_iaj)
call give_integrals_3_body_bi_ort(b, i, j, j, i, a, I_bij_jia)
fock_3e_uhf_mo_b(b,a) -= 0.5d0 * ( 2.d0 * I_bij_aij &
- I_bij_aji &
- I_bij_jia )
enddo
enddo
! ---
do j = o, elec_alpha_num
do i = o, elec_alpha_num
call give_integrals_3_body_bi_ort(b, i, j, a, i, j, I_bij_aij)
call give_integrals_3_body_bi_ort(b, i, j, i, j, a, I_bij_ija)
call give_integrals_3_body_bi_ort(b, i, j, j, a, i, I_bij_jai)
call give_integrals_3_body_bi_ort(b, i, j, a, j, i, I_bij_aji)
call give_integrals_3_body_bi_ort(b, i, j, i, a, j, I_bij_iaj)
call give_integrals_3_body_bi_ort(b, i, j, j, i, a, I_bij_jia)
fock_3e_uhf_mo_b(b,a) -= 0.5d0 * ( I_bij_aij &
- I_bij_aji )
enddo
enddo
! ---
enddo
enddo
call wall_time(tf)
!print *, ' total Wall time for fock_3e_uhf_mo_b =', tf - ti
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, fock_3e_uhf_ao_a, (ao_num, ao_num)]
BEGIN_DOC
!
! Equations (B6) and (B7)
!
! g <--> gamma
! d <--> delta
! e <--> eta
! k <--> kappa
!
END_DOC
implicit none
integer :: g, d, e, k, mu, nu
double precision :: dm_ge_a, dm_ge_b, dm_ge
double precision :: dm_dk_a, dm_dk_b, dm_dk
double precision :: i_mugd_nuek, i_mugd_eknu, i_mugd_knue, i_mugd_nuke, i_mugd_enuk, i_mugd_kenu
double precision :: ti, tf
double precision, allocatable :: f_tmp(:,:)
print *, ' PROVIDING fock_3e_uhf_ao_a ...'
call wall_time(ti)
fock_3e_uhf_ao_a = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (g, e, d, k, mu, nu, dm_ge_a, dm_ge_b, dm_ge, dm_dk_a, dm_dk_b, dm_dk, f_tmp, &
!$OMP i_mugd_nuek, i_mugd_eknu, i_mugd_knue, i_mugd_nuke, i_mugd_enuk, i_mugd_kenu) &
!$OMP SHARED (ao_num, TCSCF_bi_ort_dm_ao_alpha, TCSCF_bi_ort_dm_ao_beta, fock_3e_uhf_ao_a)
allocate(f_tmp(ao_num,ao_num))
f_tmp = 0.d0
!$OMP DO
do g = 1, ao_num
do e = 1, ao_num
dm_ge_a = TCSCF_bi_ort_dm_ao_alpha(g,e)
dm_ge_b = TCSCF_bi_ort_dm_ao_beta (g,e)
dm_ge = dm_ge_a + dm_ge_b
do d = 1, ao_num
do k = 1, ao_num
dm_dk_a = TCSCF_bi_ort_dm_ao_alpha(d,k)
dm_dk_b = TCSCF_bi_ort_dm_ao_beta (d,k)
dm_dk = dm_dk_a + dm_dk_b
do mu = 1, ao_num
do nu = 1, ao_num
call give_integrals_3_body_bi_ort_ao(mu, g, d, nu, e, k, i_mugd_nuek)
call give_integrals_3_body_bi_ort_ao(mu, g, d, e, k, nu, i_mugd_eknu)
call give_integrals_3_body_bi_ort_ao(mu, g, d, k, nu, e, i_mugd_knue)
call give_integrals_3_body_bi_ort_ao(mu, g, d, nu, k, e, i_mugd_nuke)
call give_integrals_3_body_bi_ort_ao(mu, g, d, e, nu, k, i_mugd_enuk)
call give_integrals_3_body_bi_ort_ao(mu, g, d, k, e, nu, i_mugd_kenu)
f_tmp(mu,nu) -= 0.5d0 * ( dm_ge * dm_dk * i_mugd_nuek &
+ dm_ge_a * dm_dk_a * i_mugd_eknu &
+ dm_ge_a * dm_dk_a * i_mugd_knue &
- dm_ge_a * dm_dk * i_mugd_enuk &
- dm_ge * dm_dk_a * i_mugd_kenu &
- dm_ge_a * dm_dk_a * i_mugd_nuke &
- dm_ge_b * dm_dk_b * i_mugd_nuke )
enddo
enddo
enddo
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
do mu = 1, ao_num
do nu = 1, ao_num
fock_3e_uhf_ao_a(mu,nu) += f_tmp(mu,nu)
enddo
enddo
!$OMP END CRITICAL
deallocate(f_tmp)
!$OMP END PARALLEL
call wall_time(tf)
print *, ' total Wall time for fock_3e_uhf_ao_a =', tf - ti
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, fock_3e_uhf_ao_b, (ao_num, ao_num)]
BEGIN_DOC
!
! Equations (B6) and (B7)
!
! g <--> gamma
! d <--> delta
! e <--> eta
! k <--> kappa
!
END_DOC
implicit none
integer :: g, d, e, k, mu, nu
double precision :: dm_ge_a, dm_ge_b, dm_ge
double precision :: dm_dk_a, dm_dk_b, dm_dk
double precision :: i_mugd_nuek, i_mugd_eknu, i_mugd_knue, i_mugd_nuke, i_mugd_enuk, i_mugd_kenu
double precision :: ti, tf
double precision, allocatable :: f_tmp(:,:)
print *, ' PROVIDING fock_3e_uhf_ao_b ...'
call wall_time(ti)
fock_3e_uhf_ao_b = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (g, e, d, k, mu, nu, dm_ge_a, dm_ge_b, dm_ge, dm_dk_a, dm_dk_b, dm_dk, f_tmp, &
!$OMP i_mugd_nuek, i_mugd_eknu, i_mugd_knue, i_mugd_nuke, i_mugd_enuk, i_mugd_kenu) &
!$OMP SHARED (ao_num, TCSCF_bi_ort_dm_ao_alpha, TCSCF_bi_ort_dm_ao_beta, fock_3e_uhf_ao_b)
allocate(f_tmp(ao_num,ao_num))
f_tmp = 0.d0
!$OMP DO
do g = 1, ao_num
do e = 1, ao_num
dm_ge_a = TCSCF_bi_ort_dm_ao_alpha(g,e)
dm_ge_b = TCSCF_bi_ort_dm_ao_beta (g,e)
dm_ge = dm_ge_a + dm_ge_b
do d = 1, ao_num
do k = 1, ao_num
dm_dk_a = TCSCF_bi_ort_dm_ao_alpha(d,k)
dm_dk_b = TCSCF_bi_ort_dm_ao_beta (d,k)
dm_dk = dm_dk_a + dm_dk_b
do mu = 1, ao_num
do nu = 1, ao_num
call give_integrals_3_body_bi_ort_ao(mu, g, d, nu, e, k, i_mugd_nuek)
call give_integrals_3_body_bi_ort_ao(mu, g, d, e, k, nu, i_mugd_eknu)
call give_integrals_3_body_bi_ort_ao(mu, g, d, k, nu, e, i_mugd_knue)
call give_integrals_3_body_bi_ort_ao(mu, g, d, nu, k, e, i_mugd_nuke)
call give_integrals_3_body_bi_ort_ao(mu, g, d, e, nu, k, i_mugd_enuk)
call give_integrals_3_body_bi_ort_ao(mu, g, d, k, e, nu, i_mugd_kenu)
f_tmp(mu,nu) -= 0.5d0 * ( dm_ge * dm_dk * i_mugd_nuek &
+ dm_ge_b * dm_dk_b * i_mugd_eknu &
+ dm_ge_b * dm_dk_b * i_mugd_knue &
- dm_ge_b * dm_dk * i_mugd_enuk &
- dm_ge * dm_dk_b * i_mugd_kenu &
- dm_ge_b * dm_dk_b * i_mugd_nuke &
- dm_ge_a * dm_dk_a * i_mugd_nuke )
enddo
enddo
enddo
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
do mu = 1, ao_num
do nu = 1, ao_num
fock_3e_uhf_ao_b(mu,nu) += f_tmp(mu,nu)
enddo
enddo
!$OMP END CRITICAL
deallocate(f_tmp)
!$OMP END PARALLEL
call wall_time(tf)
print *, ' total Wall time for fock_3e_uhf_ao_b =', tf - ti
END_PROVIDER
! ---

View File

@ -0,0 +1,107 @@
! ---
BEGIN_PROVIDER [ double precision, good_hermit_tc_fock_mat, (mo_num, mo_num)]
BEGIN_DOC
! good_hermit_tc_fock_mat = Hermitian Upper triangular Fock matrix
!
! The converged eigenvectors of such matrix yield to orthonormal vectors satisfying the left Brillouin theorem
END_DOC
implicit none
integer :: i, j
good_hermit_tc_fock_mat = Fock_matrix_tc_mo_tot
do j = 1, mo_num
do i = 1, j-1
good_hermit_tc_fock_mat(i,j) = Fock_matrix_tc_mo_tot(j,i)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, hermit_average_tc_fock_mat, (mo_num, mo_num)]
BEGIN_DOC
! hermit_average_tc_fock_mat = (F + F^\dagger)/2
END_DOC
implicit none
integer :: i, j
hermit_average_tc_fock_mat = Fock_matrix_tc_mo_tot
do j = 1, mo_num
do i = 1, mo_num
hermit_average_tc_fock_mat(i,j) = 0.5d0 * (Fock_matrix_tc_mo_tot(j,i) + Fock_matrix_tc_mo_tot(i,j))
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, grad_hermit]
implicit none
BEGIN_DOC
! square of gradient of the energy
END_DOC
if(symetric_fock_tc)then
grad_hermit = grad_hermit_average_tc_fock_mat
else
grad_hermit = grad_good_hermit_tc_fock_mat
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, grad_good_hermit_tc_fock_mat]
implicit none
BEGIN_DOC
! grad_good_hermit_tc_fock_mat = norm of gradients of the upper triangular TC fock
END_DOC
integer :: i, j
grad_good_hermit_tc_fock_mat = 0.d0
do i = 1, elec_alpha_num
do j = elec_alpha_num+1, mo_num
grad_good_hermit_tc_fock_mat += dabs(good_hermit_tc_fock_mat(i,j))
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, grad_hermit_average_tc_fock_mat]
implicit none
BEGIN_DOC
! grad_hermit_average_tc_fock_mat = norm of gradients of the upper triangular TC fock
END_DOC
integer :: i, j
grad_hermit_average_tc_fock_mat = 0.d0
do i = 1, elec_alpha_num
do j = elec_alpha_num+1, mo_num
grad_hermit_average_tc_fock_mat += dabs(hermit_average_tc_fock_mat(i,j))
enddo
enddo
END_PROVIDER
! ---
subroutine save_good_hermit_tc_eigvectors()
implicit none
integer :: sign
character*(64) :: label
logical :: output
sign = 1
label = "Canonical"
output = .False.
if(symetric_fock_tc)then
call mo_as_eigvectors_of_mo_matrix(hermit_average_tc_fock_mat, mo_num, mo_num, label, sign, output)
else
call mo_as_eigvectors_of_mo_matrix(good_hermit_tc_fock_mat, mo_num, mo_num, label, sign, output)
endif
end subroutine save_good_hermit_tc_eigvectors
! ---

307
src/tc_scf/fock_tc.irp.f Normal file
View File

@ -0,0 +1,307 @@
! ---
BEGIN_PROVIDER [ double precision, two_e_tc_non_hermit_integral_seq_alpha, (ao_num, ao_num)]
&BEGIN_PROVIDER [ double precision, two_e_tc_non_hermit_integral_seq_beta , (ao_num, ao_num)]
BEGIN_DOC
!
! two_e_tc_non_hermit_integral_seq_alpha(k,i) = <k| F^tc_alpha |i>
!
! where F^tc is the two-body part of the TC Fock matrix and k,i are AO basis functions
!
END_DOC
implicit none
integer :: i, j, k, l
double precision :: density, density_a, density_b
double precision :: t0, t1
!print*, ' providing two_e_tc_non_hermit_integral_seq ...'
!call wall_time(t0)
two_e_tc_non_hermit_integral_seq_alpha = 0.d0
two_e_tc_non_hermit_integral_seq_beta = 0.d0
do i = 1, ao_num
do k = 1, ao_num
do j = 1, ao_num
do l = 1, ao_num
density_a = TCSCF_density_matrix_ao_alpha(l,j)
density_b = TCSCF_density_matrix_ao_beta (l,j)
density = density_a + density_b
!! rho(l,j) * < k l| T | i j>
!two_e_tc_non_hermit_integral_seq_alpha(k,i) += density * ao_two_e_tc_tot(l,j,k,i)
!! rho(l,j) * < k l| T | i j>
!two_e_tc_non_hermit_integral_seq_beta (k,i) += density * ao_two_e_tc_tot(l,j,k,i)
!! rho_a(l,j) * < l k| T | i j>
!two_e_tc_non_hermit_integral_seq_alpha(k,i) -= density_a * ao_two_e_tc_tot(k,j,l,i)
!! rho_b(l,j) * < l k| T | i j>
!two_e_tc_non_hermit_integral_seq_beta (k,i) -= density_b * ao_two_e_tc_tot(k,j,l,i)
!! rho(l,j) * < k l| T | i j>
!two_e_tc_non_hermit_integral_alpha(k,i) += density * ao_two_e_tc_tot(l,j,k,i)
!! rho(l,j) * < k l| T | i j>
!two_e_tc_non_hermit_integral_beta (k,i) += density * ao_two_e_tc_tot(l,j,k,i)
!! rho_a(l,j) * < l k| T | i j>
!two_e_tc_non_hermit_integral_alpha(k,i) -= density_a * ao_two_e_tc_tot(k,j,l,i)
!! rho_b(l,j) * < l k| T | i j>
!two_e_tc_non_hermit_integral_beta (k,i) -= density_b * ao_two_e_tc_tot(k,j,l,i)
! rho(l,j) * < k l| T | i j>
two_e_tc_non_hermit_integral_seq_alpha(k,i) += density * ao_two_e_tc_tot(k,i,l,j)
! rho(l,j) * < k l| T | i j>
two_e_tc_non_hermit_integral_seq_beta (k,i) += density * ao_two_e_tc_tot(k,i,l,j)
! rho_a(l,j) * < k l| T | j i>
two_e_tc_non_hermit_integral_seq_alpha(k,i) -= density_a * ao_two_e_tc_tot(k,j,l,i)
! rho_b(l,j) * < k l| T | j i>
two_e_tc_non_hermit_integral_seq_beta (k,i) -= density_b * ao_two_e_tc_tot(k,j,l,i)
enddo
enddo
enddo
enddo
!call wall_time(t1)
!print*, ' wall time for two_e_tc_non_hermit_integral_seq after = ', t1 - t0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, two_e_tc_non_hermit_integral_alpha, (ao_num, ao_num)]
&BEGIN_PROVIDER [ double precision, two_e_tc_non_hermit_integral_beta , (ao_num, ao_num)]
BEGIN_DOC
!
! two_e_tc_non_hermit_integral_alpha(k,i) = <k| F^tc_alpha |i>
!
! where F^tc is the two-body part of the TC Fock matrix and k,i are AO basis functions
!
END_DOC
implicit none
integer :: i, j, k, l
double precision :: density, density_a, density_b, I_coul, I_kjli
double precision :: t0, t1
double precision, allocatable :: tmp_a(:,:), tmp_b(:,:)
!print*, ' providing two_e_tc_non_hermit_integral ...'
!call wall_time(t0)
two_e_tc_non_hermit_integral_alpha = 0.d0
two_e_tc_non_hermit_integral_beta = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (i, j, k, l, density_a, density_b, density, tmp_a, tmp_b, I_coul, I_kjli) &
!$OMP SHARED (ao_num, TCSCF_density_matrix_ao_alpha, TCSCF_density_matrix_ao_beta, ao_two_e_tc_tot, &
!$OMP two_e_tc_non_hermit_integral_alpha, two_e_tc_non_hermit_integral_beta)
allocate(tmp_a(ao_num,ao_num), tmp_b(ao_num,ao_num))
tmp_a = 0.d0
tmp_b = 0.d0
!$OMP DO
do j = 1, ao_num
do l = 1, ao_num
density_a = TCSCF_density_matrix_ao_alpha(l,j)
density_b = TCSCF_density_matrix_ao_beta (l,j)
density = density_a + density_b
do i = 1, ao_num
do k = 1, ao_num
I_coul = density * ao_two_e_tc_tot(k,i,l,j)
I_kjli = ao_two_e_tc_tot(k,j,l,i)
tmp_a(k,i) += I_coul - density_a * I_kjli
tmp_b(k,i) += I_coul - density_b * I_kjli
enddo
enddo
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
do i = 1, ao_num
do j = 1, ao_num
two_e_tc_non_hermit_integral_alpha(j,i) += tmp_a(j,i)
two_e_tc_non_hermit_integral_beta (j,i) += tmp_b(j,i)
enddo
enddo
!$OMP END CRITICAL
deallocate(tmp_a, tmp_b)
!$OMP END PARALLEL
!call wall_time(t1)
!print*, ' wall time for two_e_tc_non_hermit_integral after = ', t1 - t0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, Fock_matrix_tc_ao_alpha, (ao_num, ao_num)]
BEGIN_DOC
! Total alpha TC Fock matrix : h_c + Two-e^TC terms on the AO basis
END_DOC
implicit none
Fock_matrix_tc_ao_alpha = ao_one_e_integrals_tc_tot + two_e_tc_non_hermit_integral_alpha
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, Fock_matrix_tc_ao_beta, (ao_num, ao_num)]
BEGIN_DOC
! Total beta TC Fock matrix : h_c + Two-e^TC terms on the AO basis
END_DOC
implicit none
Fock_matrix_tc_ao_beta = ao_one_e_integrals_tc_tot + two_e_tc_non_hermit_integral_beta
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, Fock_matrix_tc_mo_alpha, (mo_num, mo_num) ]
BEGIN_DOC
! Total alpha TC Fock matrix : h_c + Two-e^TC terms on the MO basis
END_DOC
implicit none
double precision, allocatable :: tmp(:,:)
if(bi_ortho) then
!allocate(tmp(ao_num,ao_num))
!tmp = Fock_matrix_tc_ao_alpha
!if(three_body_h_tc) then
! tmp += fock_3e_uhf_ao_a
!endif
!call ao_to_mo_bi_ortho(tmp, size(tmp, 1), Fock_matrix_tc_mo_alpha, size(Fock_matrix_tc_mo_alpha, 1))
!deallocate(tmp)
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_alpha, size(Fock_matrix_tc_ao_alpha, 1) &
, Fock_matrix_tc_mo_alpha, size(Fock_matrix_tc_mo_alpha, 1) )
if(three_body_h_tc) then
!Fock_matrix_tc_mo_alpha += fock_a_tot_3e_bi_orth
Fock_matrix_tc_mo_alpha += fock_3e_uhf_mo_a
endif
else
call ao_to_mo( Fock_matrix_tc_ao_alpha, size(Fock_matrix_tc_ao_alpha, 1) &
, Fock_matrix_tc_mo_alpha, size(Fock_matrix_tc_mo_alpha, 1) )
endif
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, Fock_matrix_tc_mo_beta, (mo_num,mo_num) ]
BEGIN_DOC
! Total beta TC Fock matrix : h_c + Two-e^TC terms on the MO basis
END_DOC
implicit none
double precision, allocatable :: tmp(:,:)
if(bi_ortho) then
!allocate(tmp(ao_num,ao_num))
!tmp = Fock_matrix_tc_ao_beta
!if(three_body_h_tc) then
! tmp += fock_3e_uhf_ao_b
!endif
!call ao_to_mo_bi_ortho(tmp, size(tmp, 1), Fock_matrix_tc_mo_beta, size(Fock_matrix_tc_mo_beta, 1))
!deallocate(tmp)
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_beta, size(Fock_matrix_tc_ao_beta, 1) &
, Fock_matrix_tc_mo_beta, size(Fock_matrix_tc_mo_beta, 1) )
if(three_body_h_tc) then
!Fock_matrix_tc_mo_beta += fock_b_tot_3e_bi_orth
Fock_matrix_tc_mo_beta += fock_3e_uhf_mo_b
endif
else
call ao_to_mo( Fock_matrix_tc_ao_beta, size(Fock_matrix_tc_ao_beta, 1) &
, Fock_matrix_tc_mo_beta, size(Fock_matrix_tc_mo_beta, 1) )
endif
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, grad_non_hermit_left]
&BEGIN_PROVIDER [ double precision, grad_non_hermit_right]
&BEGIN_PROVIDER [ double precision, grad_non_hermit]
implicit none
integer :: i, k
grad_non_hermit_left = 0.d0
grad_non_hermit_right = 0.d0
do i = 1, elec_beta_num ! doc --> SOMO
do k = elec_beta_num+1, elec_alpha_num
grad_non_hermit_left = max(grad_non_hermit_left , dabs(Fock_matrix_tc_mo_tot(k,i)))
grad_non_hermit_right = max(grad_non_hermit_right, dabs(Fock_matrix_tc_mo_tot(i,k)))
!grad_non_hermit_left += dabs(Fock_matrix_tc_mo_tot(k,i))
!grad_non_hermit_right += dabs(Fock_matrix_tc_mo_tot(i,k))
!grad_non_hermit_left += Fock_matrix_tc_mo_tot(k,i) * Fock_matrix_tc_mo_tot(k,i)
!grad_non_hermit_right += Fock_matrix_tc_mo_tot(i,k) * Fock_matrix_tc_mo_tot(i,k)
enddo
enddo
do i = 1, elec_beta_num ! doc --> virt
do k = elec_alpha_num+1, mo_num
grad_non_hermit_left = max(grad_non_hermit_left , dabs(Fock_matrix_tc_mo_tot(k,i)))
grad_non_hermit_right = max(grad_non_hermit_right, dabs(Fock_matrix_tc_mo_tot(i,k)))
!grad_non_hermit_left += dabs(Fock_matrix_tc_mo_tot(k,i))
!grad_non_hermit_right += dabs(Fock_matrix_tc_mo_tot(i,k))
grad_non_hermit_left += Fock_matrix_tc_mo_tot(k,i) * Fock_matrix_tc_mo_tot(k,i)
grad_non_hermit_right += Fock_matrix_tc_mo_tot(i,k) * Fock_matrix_tc_mo_tot(i,k)
enddo
enddo
do i = elec_beta_num+1, elec_alpha_num ! SOMO --> virt
do k = elec_alpha_num+1, mo_num
grad_non_hermit_left = max(grad_non_hermit_left , dabs(Fock_matrix_tc_mo_tot(k,i)))
grad_non_hermit_right = max(grad_non_hermit_right, dabs(Fock_matrix_tc_mo_tot(i,k)))
!grad_non_hermit_left += dabs(Fock_matrix_tc_mo_tot(k,i))
!grad_non_hermit_right += dabs(Fock_matrix_tc_mo_tot(i,k))
grad_non_hermit_left += Fock_matrix_tc_mo_tot(k,i) * Fock_matrix_tc_mo_tot(k,i)
grad_non_hermit_right += Fock_matrix_tc_mo_tot(i,k) * Fock_matrix_tc_mo_tot(i,k)
enddo
enddo
!grad_non_hermit = dsqrt(grad_non_hermit_left) + dsqrt(grad_non_hermit_right)
grad_non_hermit = grad_non_hermit_left + grad_non_hermit_right
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, Fock_matrix_tc_ao_tot, (ao_num, ao_num) ]
implicit none
call mo_to_ao_bi_ortho( Fock_matrix_tc_mo_tot, size(Fock_matrix_tc_mo_tot, 1) &
, Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1) )
END_PROVIDER
! ---

View File

@ -0,0 +1,144 @@
BEGIN_PROVIDER [ double precision, Fock_matrix_tc_mo_tot, (mo_num,mo_num) ]
&BEGIN_PROVIDER [ double precision, Fock_matrix_tc_diag_mo_tot, (mo_num)]
implicit none
BEGIN_DOC
! Fock matrix on the MO basis.
! For open shells, the ROHF Fock Matrix is ::
!
! | F-K | F + K/2 | F |
! |---------------------------------|
! | F + K/2 | F | F - K/2 |
! |---------------------------------|
! | F | F - K/2 | F + K |
!
!
! F = 1/2 (Fa + Fb)
!
! K = Fb - Fa
!
END_DOC
integer :: i,j,n
if (elec_alpha_num == elec_beta_num) then
Fock_matrix_tc_mo_tot = Fock_matrix_tc_mo_alpha
else
do j=1,elec_beta_num
! F-K
do i=1,elec_beta_num !CC
Fock_matrix_tc_mo_tot(i,j) = 0.5d0*(Fock_matrix_tc_mo_alpha(i,j)+Fock_matrix_tc_mo_beta(i,j))&
- (Fock_matrix_tc_mo_beta(i,j) - Fock_matrix_tc_mo_alpha(i,j))
enddo
! F+K/2
do i=elec_beta_num+1,elec_alpha_num !CA
Fock_matrix_tc_mo_tot(i,j) = 0.5d0*(Fock_matrix_tc_mo_alpha(i,j)+Fock_matrix_tc_mo_beta(i,j))&
+ 0.5d0*(Fock_matrix_tc_mo_beta(i,j) - Fock_matrix_tc_mo_alpha(i,j))
enddo
! F
do i=elec_alpha_num+1, mo_num !CV
Fock_matrix_tc_mo_tot(i,j) = 0.5d0*(Fock_matrix_tc_mo_alpha(i,j)+Fock_matrix_tc_mo_beta(i,j))
enddo
enddo
do j=elec_beta_num+1,elec_alpha_num
! F+K/2
do i=1,elec_beta_num !AC
Fock_matrix_tc_mo_tot(i,j) = 0.5d0*(Fock_matrix_tc_mo_alpha(i,j)+Fock_matrix_tc_mo_beta(i,j))&
+ 0.5d0*(Fock_matrix_tc_mo_beta(i,j) - Fock_matrix_tc_mo_alpha(i,j))
enddo
! F
do i=elec_beta_num+1,elec_alpha_num !AA
Fock_matrix_tc_mo_tot(i,j) = 0.5d0*(Fock_matrix_tc_mo_alpha(i,j)+Fock_matrix_tc_mo_beta(i,j))
enddo
! F-K/2
do i=elec_alpha_num+1, mo_num !AV
Fock_matrix_tc_mo_tot(i,j) = 0.5d0*(Fock_matrix_tc_mo_alpha(i,j)+Fock_matrix_tc_mo_beta(i,j))&
- 0.5d0*(Fock_matrix_tc_mo_beta(i,j) - Fock_matrix_tc_mo_alpha(i,j))
enddo
enddo
do j=elec_alpha_num+1, mo_num
! F
do i=1,elec_beta_num !VC
Fock_matrix_tc_mo_tot(i,j) = 0.5d0*(Fock_matrix_tc_mo_alpha(i,j)+Fock_matrix_tc_mo_beta(i,j))
enddo
! F-K/2
do i=elec_beta_num+1,elec_alpha_num !VA
Fock_matrix_tc_mo_tot(i,j) = 0.5d0*(Fock_matrix_tc_mo_alpha(i,j)+Fock_matrix_tc_mo_beta(i,j))&
- 0.5d0*(Fock_matrix_tc_mo_beta(i,j) - Fock_matrix_tc_mo_alpha(i,j))
enddo
! F+K
do i=elec_alpha_num+1,mo_num !VV
Fock_matrix_tc_mo_tot(i,j) = 0.5d0*(Fock_matrix_tc_mo_alpha(i,j)+Fock_matrix_tc_mo_beta(i,j)) &
+ (Fock_matrix_tc_mo_beta(i,j) - Fock_matrix_tc_mo_alpha(i,j))
enddo
enddo
if(three_body_h_tc)then
! C-O
do j = 1, elec_beta_num
do i = elec_beta_num+1, elec_alpha_num
Fock_matrix_tc_mo_tot(i,j) += 0.5d0*(fock_a_tot_3e_bi_orth(i,j) + fock_b_tot_3e_bi_orth(i,j))
Fock_matrix_tc_mo_tot(j,i) += 0.5d0*(fock_a_tot_3e_bi_orth(j,i) + fock_b_tot_3e_bi_orth(j,i))
enddo
enddo
! C-V
do j = 1, elec_beta_num
do i = elec_alpha_num+1, mo_num
Fock_matrix_tc_mo_tot(i,j) += 0.5d0*(fock_a_tot_3e_bi_orth(i,j) + fock_b_tot_3e_bi_orth(i,j))
Fock_matrix_tc_mo_tot(j,i) += 0.5d0*(fock_a_tot_3e_bi_orth(j,i) + fock_b_tot_3e_bi_orth(j,i))
enddo
enddo
! O-V
do j = elec_beta_num+1, elec_alpha_num
do i = elec_alpha_num+1, mo_num
Fock_matrix_tc_mo_tot(i,j) += 0.5d0*(fock_a_tot_3e_bi_orth(i,j) + fock_b_tot_3e_bi_orth(i,j))
Fock_matrix_tc_mo_tot(j,i) += 0.5d0*(fock_a_tot_3e_bi_orth(j,i) + fock_b_tot_3e_bi_orth(j,i))
enddo
enddo
endif
endif
do i = 1, mo_num
Fock_matrix_tc_diag_mo_tot(i) = Fock_matrix_tc_mo_tot(i,i)
enddo
if(frozen_orb_scf)then
integer :: iorb,jorb
do i = 1, n_core_orb
iorb = list_core(i)
do j = 1, n_act_orb
jorb = list_act(j)
Fock_matrix_tc_mo_tot(iorb,jorb) = 0.d0
Fock_matrix_tc_mo_tot(jorb,iorb) = 0.d0
enddo
enddo
endif
if(no_oa_or_av_opt)then
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_inact_orb
jorb = list_inact(j)
Fock_matrix_tc_mo_tot(iorb,jorb) = 0.d0
Fock_matrix_tc_mo_tot(jorb,iorb) = 0.d0
enddo
do j = 1, n_virt_orb
jorb = list_virt(j)
Fock_matrix_tc_mo_tot(iorb,jorb) = 0.d0
Fock_matrix_tc_mo_tot(jorb,iorb) = 0.d0
enddo
do j = 1, n_core_orb
jorb = list_core(j)
Fock_matrix_tc_mo_tot(iorb,jorb) = 0.d0
Fock_matrix_tc_mo_tot(jorb,iorb) = 0.d0
enddo
enddo
endif
if(.not.bi_ortho .and. three_body_h_tc)then
Fock_matrix_tc_mo_tot += fock_3_mat
endif
END_PROVIDER

229
src/tc_scf/fock_three.irp.f Normal file
View File

@ -0,0 +1,229 @@
BEGIN_PROVIDER [ double precision, fock_3_mat, (mo_num, mo_num)]
implicit none
integer :: i,j
double precision :: contrib
fock_3_mat = 0.d0
if(.not.bi_ortho.and.three_body_h_tc)then
call give_fock_ia_three_e_total(1,1,contrib)
!! !$OMP PARALLEL &
!! !$OMP DEFAULT (NONE) &
!! !$OMP PRIVATE (i,j,m,integral) &
!! !$OMP SHARED (mo_num,three_body_3_index)
!! !$OMP DO SCHEDULE (guided) COLLAPSE(3)
do i = 1, mo_num
do j = 1, mo_num
call give_fock_ia_three_e_total(j,i,contrib)
fock_3_mat(j,i) = -contrib
enddo
enddo
else if(bi_ortho.and.three_body_h_tc)then
!! !$OMP END DO
!! !$OMP END PARALLEL
!! do i = 1, mo_num
!! do j = 1, i-1
!! mat_three(j,i) = mat_three(i,j)
!! enddo
!! enddo
endif
END_PROVIDER
subroutine give_fock_ia_three_e_total(i,a,contrib)
implicit none
BEGIN_DOC
! contrib is the TOTAL (same spins / opposite spins) contribution from the three body term to the Fock operator
!
END_DOC
integer, intent(in) :: i,a
double precision, intent(out) :: contrib
double precision :: int_1, int_2, int_3
double precision :: mos_i, mos_a, w_ia
double precision :: mos_ia, weight
integer :: mm, ipoint,k,l
int_1 = 0.d0
int_2 = 0.d0
int_3 = 0.d0
do mm = 1, 3
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
mos_i = mos_in_r_array_transp(ipoint,i)
mos_a = mos_in_r_array_transp(ipoint,a)
mos_ia = mos_a * mos_i
w_ia = x_W_ij_erf_rk(ipoint,mm,i,a)
int_1 += weight * fock_3_w_kk_sum(ipoint,mm) * (4.d0 * fock_3_rho_beta(ipoint) * w_ia &
+ 2.0d0 * mos_ia * fock_3_w_kk_sum(ipoint,mm) &
- 2.0d0 * fock_3_w_ki_mos_k(ipoint,mm,i) * mos_a &
- 2.0d0 * fock_3_w_ki_mos_k(ipoint,mm,a) * mos_i )
int_2 += weight * (-1.d0) * ( 2.0d0 * fock_3_w_kl_mo_k_mo_l(ipoint,mm) * w_ia &
+ 2.0d0 * fock_3_rho_beta(ipoint) * fock_3_w_ki_wk_a(ipoint,mm,i,a) &
+ 1.0d0 * mos_ia * fock_3_trace_w_tilde(ipoint,mm) )
int_3 += weight * 1.d0 * (fock_3_w_kl_wla_phi_k(ipoint,mm,i) * mos_a + fock_3_w_kl_wla_phi_k(ipoint,mm,a) * mos_i &
+fock_3_w_ki_mos_k(ipoint,mm,i) * fock_3_w_ki_mos_k(ipoint,mm,a) )
enddo
enddo
contrib = int_1 + int_2 + int_3
end
! ---
BEGIN_PROVIDER [double precision, diag_three_elem_hf]
implicit none
integer :: i, j, k, ipoint, mm
double precision :: contrib, weight, four_third, one_third, two_third, exchange_int_231
double precision :: integral_aaa, hthree, integral_aab, integral_abb, integral_bbb
PROVIDE mo_l_coef mo_r_coef
!print *, ' providing diag_three_elem_hf'
if(.not. three_body_h_tc) then
diag_three_elem_hf = 0.d0
else
if(.not. bi_ortho) then
! ---
one_third = 1.d0/3.d0
two_third = 2.d0/3.d0
four_third = 4.d0/3.d0
diag_three_elem_hf = 0.d0
do i = 1, elec_beta_num
do j = 1, elec_beta_num
do k = 1, elec_beta_num
call give_integrals_3_body(k, j, i, j, i, k,exchange_int_231)
diag_three_elem_hf += two_third * exchange_int_231
enddo
enddo
enddo
do mm = 1, 3
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
contrib = 3.d0 * fock_3_w_kk_sum(ipoint,mm) * fock_3_rho_beta(ipoint) * fock_3_w_kk_sum(ipoint,mm) &
- 2.d0 * fock_3_w_kl_mo_k_mo_l(ipoint,mm) * fock_3_w_kk_sum(ipoint,mm) &
- 1.d0 * fock_3_rho_beta(ipoint) * fock_3_w_kl_w_kl(ipoint,mm)
contrib *= four_third
contrib += -two_third * fock_3_rho_beta(ipoint) * fock_3_w_kl_w_kl(ipoint,mm) &
-four_third * fock_3_w_kk_sum(ipoint,mm) * fock_3_w_kl_mo_k_mo_l(ipoint,mm)
diag_three_elem_hf += weight * contrib
enddo
enddo
diag_three_elem_hf = - diag_three_elem_hf
! ---
else
provide mo_l_coef mo_r_coef
call give_aaa_contrib(integral_aaa)
call give_aab_contrib(integral_aab)
call give_abb_contrib(integral_abb)
call give_bbb_contrib(integral_bbb)
diag_three_elem_hf = integral_aaa + integral_aab + integral_abb + integral_bbb
! print*,'integral_aaa + integral_aab + integral_abb + integral_bbb'
! print*,integral_aaa , integral_aab , integral_abb , integral_bbb
endif
endif
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, fock_3_mat_a_op_sh, (mo_num, mo_num)]
implicit none
integer :: h,p,i,j
double precision :: direct_int, exch_int, exchange_int_231, exchange_int_312
double precision :: exchange_int_23, exchange_int_12, exchange_int_13
fock_3_mat_a_op_sh = 0.d0
do h = 1, mo_num
do p = 1, mo_num
!F_a^{ab}(h,p)
do i = 1, elec_beta_num ! beta
do j = elec_beta_num+1, elec_alpha_num ! alpha
call give_integrals_3_body(h,j,i,p,j,i,direct_int) ! <hji|pji>
call give_integrals_3_body(h,j,i,j,p,i,exch_int)
fock_3_mat_a_op_sh(h,p) -= direct_int - exch_int
enddo
enddo
!F_a^{aa}(h,p)
do i = 1, elec_beta_num ! alpha
do j = elec_beta_num+1, elec_alpha_num ! alpha
direct_int = three_body_4_index(j,i,h,p)
call give_integrals_3_body(h,j,i,p,j,i,direct_int)
call give_integrals_3_body(h,j,i,i,p,j,exchange_int_231)
call give_integrals_3_body(h,j,i,j,i,p,exchange_int_312)
call give_integrals_3_body(h,j,i,p,i,j,exchange_int_23)
call give_integrals_3_body(h,j,i,i,j,p,exchange_int_12)
call give_integrals_3_body(h,j,i,j,p,i,exchange_int_13)
fock_3_mat_a_op_sh(h,p) -= ( direct_int + exchange_int_231 + exchange_int_312 &
- exchange_int_23 & ! i <-> j
- exchange_int_12 & ! p <-> j
- exchange_int_13 )! p <-> i
enddo
enddo
enddo
enddo
! symmetrized
! do p = 1, elec_beta_num
! do h = elec_alpha_num +1, mo_num
! fock_3_mat_a_op_sh(h,p) = fock_3_mat_a_op_sh(p,h)
! enddo
! enddo
! do h = elec_beta_num+1, elec_alpha_num
! do p = elec_alpha_num +1, mo_num
! !F_a^{bb}(h,p)
! do i = 1, elec_beta_num
! do j = i+1, elec_beta_num
! call give_integrals_3_body(h,j,i,p,j,i,direct_int)
! call give_integrals_3_body(h,j,i,p,i,j,exch_int)
! fock_3_mat_a_op_sh(h,p) -= direct_int - exch_int
! enddo
! enddo
! enddo
! enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, fock_3_mat_b_op_sh, (mo_num, mo_num)]
implicit none
integer :: h,p,i,j
double precision :: direct_int, exch_int
fock_3_mat_b_op_sh = 0.d0
do h = 1, elec_beta_num
do p = elec_alpha_num +1, mo_num
!F_b^{aa}(h,p)
do i = 1, elec_beta_num
do j = elec_beta_num+1, elec_alpha_num
call give_integrals_3_body(h,j,i,p,j,i,direct_int)
call give_integrals_3_body(h,j,i,p,i,j,exch_int)
fock_3_mat_b_op_sh(h,p) += direct_int - exch_int
enddo
enddo
!F_b^{ab}(h,p)
do i = elec_beta_num+1, elec_beta_num
do j = 1, elec_beta_num
call give_integrals_3_body(h,j,i,p,j,i,direct_int)
call give_integrals_3_body(h,j,i,j,p,i,exch_int)
fock_3_mat_b_op_sh(h,p) += direct_int - exch_int
enddo
enddo
enddo
enddo
END_PROVIDER

View File

@ -0,0 +1,178 @@
BEGIN_PROVIDER [ double precision, fock_a_abb_3e_bi_orth_old, (mo_num, mo_num)]
implicit none
BEGIN_DOC
! fock_a_abb_3e_bi_orth_old(a,i) = bi-ortho 3-e Fock matrix for alpha electrons from alpha,beta,beta contribution
END_DOC
fock_a_abb_3e_bi_orth_old = 0.d0
integer :: i,a,j,k
double precision :: direct_int, exch_23_int
do i = 1, mo_num
do a = 1, mo_num
do j = 1, elec_beta_num
do k = j+1, elec_beta_num
! see contrib_3e_soo
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int) ! < a k j | i k j >
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)! < a k j | i j k > : E_23
fock_a_abb_3e_bi_orth_old(a,i) += direct_int - exch_23_int
enddo
enddo
enddo
enddo
fock_a_abb_3e_bi_orth_old = - fock_a_abb_3e_bi_orth_old
END_PROVIDER
BEGIN_PROVIDER [ double precision, fock_a_aba_3e_bi_orth_old, (mo_num, mo_num)]
implicit none
BEGIN_DOC
! fock_a_aba_3e_bi_orth_old(a,i) = bi-ortho 3-e Fock matrix for alpha electrons from alpha,alpha,beta contribution
END_DOC
fock_a_aba_3e_bi_orth_old = 0.d0
integer :: i,a,j,k
double precision :: direct_int, exch_13_int
do i = 1, mo_num
do a = 1, mo_num
do j = 1, elec_alpha_num ! a
do k = 1, elec_beta_num ! b
! a b a a b a
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )! < a k j | i k j >
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)! < a k j | j k i > : E_13
fock_a_aba_3e_bi_orth_old(a,i) += direct_int - exch_13_int
enddo
enddo
enddo
enddo
fock_a_aba_3e_bi_orth_old = - fock_a_aba_3e_bi_orth_old
END_PROVIDER
BEGIN_PROVIDER [ double precision, fock_a_aaa_3e_bi_orth_old, (mo_num, mo_num)]
implicit none
BEGIN_DOC
! fock_a_aaa_3e_bi_orth_old(a,i) = bi-ortho 3-e Fock matrix for alpha electrons from alpha,alpha,alpha contribution
END_DOC
fock_a_aaa_3e_bi_orth_old = 0.d0
integer :: i,a,j,k
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
do i = 1, mo_num
do a = 1, mo_num
do j = 1, elec_alpha_num
do k = j+1, elec_alpha_num
! positive terms :: cycle contrib
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )!!! < a k j | i k j >
call give_integrals_3_body_bi_ort(a, k, j, j, i, k, c_3_int) ! < a k j | j i k >
call give_integrals_3_body_bi_ort(a, k, j, k, j, i, c_minus_3_int)! < a k j | k j i >
fock_a_aaa_3e_bi_orth_old(a,i) += direct_int + c_3_int + c_minus_3_int
! negative terms :: exchange contrib
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)!!! < a k j | j k i > : E_13
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)!!! < a k j | i j k > : E_23
call give_integrals_3_body_bi_ort(a, k, j, k, i, j, exch_12_int)!!! < a k j | k i j > : E_12
fock_a_aaa_3e_bi_orth_old(a,i) += - exch_13_int - exch_23_int - exch_12_int
enddo
enddo
enddo
enddo
fock_a_aaa_3e_bi_orth_old = - fock_a_aaa_3e_bi_orth_old
END_PROVIDER
BEGIN_PROVIDER [double precision, fock_a_tot_3e_bi_orth_old, (mo_num, mo_num)]
implicit none
BEGIN_DOC
! fock_a_tot_3e_bi_orth_old = bi-ortho 3-e Fock matrix for alpha electrons from all possible spin contributions
END_DOC
fock_a_tot_3e_bi_orth_old = fock_a_abb_3e_bi_orth_old + fock_a_aba_3e_bi_orth_old + fock_a_aaa_3e_bi_orth_old
END_PROVIDER
BEGIN_PROVIDER [ double precision, fock_b_baa_3e_bi_orth_old, (mo_num, mo_num)]
implicit none
BEGIN_DOC
! fock_b_baa_3e_bi_orth_old(a,i) = bi-ortho 3-e Fock matrix for beta electrons from beta,alpha,alpha contribution
END_DOC
fock_b_baa_3e_bi_orth_old = 0.d0
integer :: i,a,j,k
double precision :: direct_int, exch_23_int
do i = 1, mo_num
do a = 1, mo_num
do j = 1, elec_alpha_num
do k = j+1, elec_alpha_num
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int) ! < a k j | i k j >
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)! < a k j | i j k > : E_23
fock_b_baa_3e_bi_orth_old(a,i) += direct_int - exch_23_int
enddo
enddo
enddo
enddo
fock_b_baa_3e_bi_orth_old = - fock_b_baa_3e_bi_orth_old
END_PROVIDER
BEGIN_PROVIDER [ double precision, fock_b_bab_3e_bi_orth_old, (mo_num, mo_num)]
implicit none
BEGIN_DOC
! fock_b_bab_3e_bi_orth_old(a,i) = bi-ortho 3-e Fock matrix for beta electrons from beta,alpha,beta contribution
END_DOC
fock_b_bab_3e_bi_orth_old = 0.d0
integer :: i,a,j,k
double precision :: direct_int, exch_13_int
do i = 1, mo_num
do a = 1, mo_num
do j = 1, elec_beta_num
do k = 1, elec_alpha_num
! b a b b a b
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int) ! < a k j | i k j >
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)! < a k j | j k i > : E_13
fock_b_bab_3e_bi_orth_old(a,i) += direct_int - exch_13_int
enddo
enddo
enddo
enddo
fock_b_bab_3e_bi_orth_old = - fock_b_bab_3e_bi_orth_old
END_PROVIDER
BEGIN_PROVIDER [ double precision, fock_b_bbb_3e_bi_orth_old, (mo_num, mo_num)]
implicit none
BEGIN_DOC
! fock_b_bbb_3e_bi_orth_old(a,i) = bi-ortho 3-e Fock matrix for alpha electrons from alpha,alpha,alpha contribution
END_DOC
fock_b_bbb_3e_bi_orth_old = 0.d0
integer :: i,a,j,k
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
do i = 1, mo_num
do a = 1, mo_num
do j = 1, elec_beta_num
do k = j+1, elec_beta_num
! positive terms :: cycle contrib
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )!!! < a k j | i k j >
call give_integrals_3_body_bi_ort(a, k, j, j, i, k, c_3_int) ! < a k j | j i k >
call give_integrals_3_body_bi_ort(a, k, j, k, j, i, c_minus_3_int)! < a k j | k j i >
fock_b_bbb_3e_bi_orth_old(a,i) += direct_int + c_3_int + c_minus_3_int
! negative terms :: exchange contrib
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)!!! < a k j | j k i > : E_13
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)!!! < a k j | i j k > : E_23
call give_integrals_3_body_bi_ort(a, k, j, k, i, j, exch_12_int)!!! < a k j | k i j > : E_12
fock_b_bbb_3e_bi_orth_old(a,i) += - exch_13_int - exch_23_int - exch_12_int
enddo
enddo
enddo
enddo
fock_b_bbb_3e_bi_orth_old = - fock_b_bbb_3e_bi_orth_old
END_PROVIDER
BEGIN_PROVIDER [ double precision, fock_b_tot_3e_bi_orth_old, (mo_num, mo_num)]
implicit none
BEGIN_DOC
! fock_b_tot_3e_bi_orth_old = bi-ortho 3-e Fock matrix for alpha electrons from all possible spin contributions
END_DOC
fock_b_tot_3e_bi_orth_old = fock_b_bbb_3e_bi_orth_old + fock_b_bab_3e_bi_orth_old + fock_b_baa_3e_bi_orth_old
END_PROVIDER

View File

@ -0,0 +1,286 @@
! ---
BEGIN_PROVIDER [double precision, fock_a_tot_3e_bi_orth, (mo_num, mo_num)]
implicit none
integer :: i, a
PROVIDE mo_l_coef mo_r_coef
fock_a_tot_3e_bi_orth = 0.d0
do i = 1, mo_num
do a = 1, mo_num
fock_a_tot_3e_bi_orth(a,i) += fock_cs_3e_bi_orth (a,i)
fock_a_tot_3e_bi_orth(a,i) += fock_a_tmp1_bi_ortho(a,i)
fock_a_tot_3e_bi_orth(a,i) += fock_a_tmp2_bi_ortho(a,i)
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, fock_b_tot_3e_bi_orth, (mo_num, mo_num)]
implicit none
integer :: i, a
PROVIDE mo_l_coef mo_r_coef
fock_b_tot_3e_bi_orth = 0.d0
do i = 1, mo_num
do a = 1, mo_num
fock_b_tot_3e_bi_orth(a,i) += fock_cs_3e_bi_orth (a,i)
fock_b_tot_3e_bi_orth(a,i) += fock_b_tmp2_bi_ortho(a,i)
fock_b_tot_3e_bi_orth(a,i) += fock_b_tmp1_bi_ortho(a,i)
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, fock_cs_3e_bi_orth, (mo_num, mo_num)]
implicit none
integer :: i, a, j, k
double precision :: contrib_sss, contrib_sos, contrib_soo, contrib
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
double precision :: new
PROVIDE mo_l_coef mo_r_coef
fock_cs_3e_bi_orth = 0.d0
do i = 1, mo_num
do a = 1, mo_num
do j = 1, elec_beta_num
do k = 1, elec_beta_num
!!call contrib_3e_sss(a,i,j,k,contrib_sss)
!!call contrib_3e_soo(a,i,j,k,contrib_soo)
!!call contrib_3e_sos(a,i,j,k,contrib_sos)
!!contrib = 0.5d0 * (contrib_sss + contrib_soo) + contrib_sos
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )!!! < a k j | i k j >
call give_integrals_3_body_bi_ort(a, k, j, j, i, k, c_3_int) ! < a k j | j i k >
call give_integrals_3_body_bi_ort(a, k, j, k, j, i, c_minus_3_int)! < a k j | k j i >
! negative terms :: exchange contrib
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)!!! < a k j | j k i > : E_13
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)!!! < a k j | i j k > : E_23
call give_integrals_3_body_bi_ort(a, k, j, k, i, j, exch_12_int)!!! < a k j | k i j > : E_12
new = 2.d0 * direct_int + 0.5d0 * (c_3_int + c_minus_3_int - exch_12_int) -1.5d0 * exch_13_int - exch_23_int
fock_cs_3e_bi_orth(a,i) += new
enddo
enddo
enddo
enddo
fock_cs_3e_bi_orth = - fock_cs_3e_bi_orth
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, fock_a_tmp1_bi_ortho, (mo_num, mo_num)]
implicit none
integer :: i, a, j, k
double precision :: contrib_sss, contrib_sos, contrib_soo, contrib
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
double precision :: new
PROVIDE mo_l_coef mo_r_coef
fock_a_tmp1_bi_ortho = 0.d0
do i = 1, mo_num
do a = 1, mo_num
do j = elec_beta_num + 1, elec_alpha_num
do k = 1, elec_beta_num
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )!!! < a k j | i k j >
call give_integrals_3_body_bi_ort(a, k, j, j, i, k, c_3_int) ! < a k j | j i k >
call give_integrals_3_body_bi_ort(a, k, j, k, j, i, c_minus_3_int)! < a k j | k j i >
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)!!! < a k j | j k i > : E_13
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)!!! < a k j | i j k > : E_23
call give_integrals_3_body_bi_ort(a, k, j, k, i, j, exch_12_int)!!! < a k j | k i j > : E_12
fock_a_tmp1_bi_ortho(a,i) += 1.5d0 * (direct_int - exch_13_int) + 0.5d0 * (c_3_int + c_minus_3_int - exch_23_int - exch_12_int)
enddo
enddo
enddo
enddo
fock_a_tmp1_bi_ortho = - fock_a_tmp1_bi_ortho
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, fock_a_tmp2_bi_ortho, (mo_num, mo_num)]
implicit none
integer :: i, a, j, k
double precision :: contrib_sss
PROVIDE mo_l_coef mo_r_coef
fock_a_tmp2_bi_ortho = 0.d0
do i = 1, mo_num
do a = 1, mo_num
do j = 1, elec_alpha_num
do k = elec_beta_num+1, elec_alpha_num
call contrib_3e_sss(a, i, j, k, contrib_sss)
fock_a_tmp2_bi_ortho(a,i) += 0.5d0 * contrib_sss
enddo
enddo
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, fock_b_tmp1_bi_ortho, (mo_num, mo_num)]
implicit none
integer :: i, a, j, k
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int
double precision :: new
PROVIDE mo_l_coef mo_r_coef
fock_b_tmp1_bi_ortho = 0.d0
do i = 1, mo_num
do a = 1, mo_num
do j = 1, elec_beta_num
do k = elec_beta_num+1, elec_alpha_num
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )!!! < a k j | i k j >
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)!!! < a k j | j k i > : E_13
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)!!! < a k j | i j k > : E_23
fock_b_tmp1_bi_ortho(a,i) += 1.5d0 * direct_int - 0.5d0 * exch_23_int - exch_13_int
enddo
enddo
enddo
enddo
fock_b_tmp1_bi_ortho = - fock_b_tmp1_bi_ortho
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, fock_b_tmp2_bi_ortho, (mo_num, mo_num)]
implicit none
integer :: i, a, j, k
double precision :: contrib_soo
PROVIDE mo_l_coef mo_r_coef
fock_b_tmp2_bi_ortho = 0.d0
do i = 1, mo_num
do a = 1, mo_num
do j = elec_beta_num + 1, elec_alpha_num
do k = 1, elec_alpha_num
call contrib_3e_soo(a, i, j, k, contrib_soo)
fock_b_tmp2_bi_ortho(a,i) += 0.5d0 * contrib_soo
enddo
enddo
enddo
enddo
END_PROVIDER
! ---
subroutine contrib_3e_sss(a, i, j, k, integral)
BEGIN_DOC
! returns the pure same spin contribution to F(a,i) from two orbitals j,k
END_DOC
implicit none
integer, intent(in) :: a, i, j, k
double precision, intent(out) :: integral
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
PROVIDE mo_l_coef mo_r_coef
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )!!! < a k j | i k j >
call give_integrals_3_body_bi_ort(a, k, j, j, i, k, c_3_int) ! < a k j | j i k >
call give_integrals_3_body_bi_ort(a, k, j, k, j, i, c_minus_3_int)! < a k j | k j i >
integral = direct_int + c_3_int + c_minus_3_int
! negative terms :: exchange contrib
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)!!! < a k j | j k i > : E_13
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)!!! < a k j | i j k > : E_23
call give_integrals_3_body_bi_ort(a, k, j, k, i, j, exch_12_int)!!! < a k j | k i j > : E_12
integral += - exch_13_int - exch_23_int - exch_12_int
integral = -integral
end
! ---
subroutine contrib_3e_soo(a,i,j,k,integral)
BEGIN_DOC
! returns the same spin / opposite spin / opposite spin contribution to F(a,i) from two orbitals j,k
END_DOC
implicit none
integer, intent(in) :: a, i, j, k
double precision, intent(out) :: integral
double precision :: direct_int, exch_23_int
PROVIDE mo_l_coef mo_r_coef
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int) ! < a k j | i k j >
call give_integrals_3_body_bi_ort(a, k, j, i, j, k, exch_23_int)! < a k j | i j k > : E_23
integral = direct_int - exch_23_int
integral = -integral
end
! ---
subroutine contrib_3e_sos(a, i, j, k, integral)
BEGIN_DOC
! returns the same spin / opposite spin / same spin contribution to F(a,i) from two orbitals j,k
END_DOC
PROVIDE mo_l_coef mo_r_coef
implicit none
integer, intent(in) :: a, i, j, k
double precision, intent(out) :: integral
double precision :: direct_int, exch_13_int
call give_integrals_3_body_bi_ort(a, k, j, i, k, j, direct_int )! < a k j | i k j >
call give_integrals_3_body_bi_ort(a, k, j, j, k, i, exch_13_int)! < a k j | j k i > : E_13
integral = direct_int - exch_13_int
integral = -integral
end
! ---

View File

@ -0,0 +1,140 @@
BEGIN_PROVIDER [ double precision, fock_3_w_kk_sum, (n_points_final_grid,3)]
implicit none
integer :: mm, ipoint,k
double precision :: w_kk
fock_3_w_kk_sum = 0.d0
do k = 1, elec_beta_num
do mm = 1, 3
do ipoint = 1, n_points_final_grid
w_kk = x_W_ij_erf_rk(ipoint,mm,k,k)
fock_3_w_kk_sum(ipoint,mm) += w_kk
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, fock_3_w_ki_mos_k, (n_points_final_grid,3,mo_num)]
implicit none
integer :: mm, ipoint,k,i
double precision :: w_ki, mo_k
fock_3_w_ki_mos_k = 0.d0
do i = 1, mo_num
do k = 1, elec_beta_num
do mm = 1, 3
do ipoint = 1, n_points_final_grid
w_ki = x_W_ij_erf_rk(ipoint,mm,k,i)
mo_k = mos_in_r_array(k,ipoint)
fock_3_w_ki_mos_k(ipoint,mm,i) += w_ki * mo_k
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, fock_3_w_kl_w_kl, (n_points_final_grid,3)]
implicit none
integer :: k,j,ipoint,mm
double precision :: w_kj
fock_3_w_kl_w_kl = 0.d0
do j = 1, elec_beta_num
do k = 1, elec_beta_num
do mm = 1, 3
do ipoint = 1, n_points_final_grid
w_kj = x_W_ij_erf_rk(ipoint,mm,k,j)
fock_3_w_kl_w_kl(ipoint,mm) += w_kj * w_kj
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, fock_3_rho_beta, (n_points_final_grid)]
implicit none
integer :: ipoint,k
fock_3_rho_beta = 0.d0
do ipoint = 1, n_points_final_grid
do k = 1, elec_beta_num
fock_3_rho_beta(ipoint) += mos_in_r_array(k,ipoint) * mos_in_r_array(k,ipoint)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, fock_3_w_kl_mo_k_mo_l, (n_points_final_grid,3)]
implicit none
integer :: ipoint,k,l,mm
double precision :: mos_k, mos_l, w_kl
fock_3_w_kl_mo_k_mo_l = 0.d0
do k = 1, elec_beta_num
do l = 1, elec_beta_num
do mm = 1, 3
do ipoint = 1, n_points_final_grid
mos_k = mos_in_r_array_transp(ipoint,k)
mos_l = mos_in_r_array_transp(ipoint,l)
w_kl = x_W_ij_erf_rk(ipoint,mm,l,k)
fock_3_w_kl_mo_k_mo_l(ipoint,mm) += w_kl * mos_k * mos_l
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, fock_3_w_ki_wk_a, (n_points_final_grid,3,mo_num, mo_num)]
implicit none
integer :: ipoint,i,a,k,mm
double precision :: w_ki,w_ka
fock_3_w_ki_wk_a = 0.d0
do i = 1, mo_num
do a = 1, mo_num
do mm = 1, 3
do ipoint = 1, n_points_final_grid
do k = 1, elec_beta_num
w_ki = x_W_ij_erf_rk(ipoint,mm,k,i)
w_ka = x_W_ij_erf_rk(ipoint,mm,k,a)
fock_3_w_ki_wk_a(ipoint,mm,a,i) += w_ki * w_ka
enddo
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, fock_3_trace_w_tilde, (n_points_final_grid,3)]
implicit none
integer :: ipoint,k,mm
fock_3_trace_w_tilde = 0.d0
do k = 1, elec_beta_num
do mm = 1, 3
do ipoint = 1, n_points_final_grid
fock_3_trace_w_tilde(ipoint,mm) += fock_3_w_ki_wk_a(ipoint,mm,k,k)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, fock_3_w_kl_wla_phi_k, (n_points_final_grid,3,mo_num)]
implicit none
integer :: ipoint,a,k,mm,l
double precision :: w_kl,w_la, mo_k
fock_3_w_kl_wla_phi_k = 0.d0
do a = 1, mo_num
do k = 1, elec_beta_num
do l = 1, elec_beta_num
do mm = 1, 3
do ipoint = 1, n_points_final_grid
w_kl = x_W_ij_erf_rk(ipoint,mm,l,k)
w_la = x_W_ij_erf_rk(ipoint,mm,l,a)
mo_k = mos_in_r_array_transp(ipoint,k)
fock_3_w_kl_wla_phi_k(ipoint,mm,a) += w_kl * w_la * mo_k
enddo
enddo
enddo
enddo
enddo
END_PROVIDER

View File

@ -0,0 +1,391 @@
! ---
BEGIN_PROVIDER [ double precision, tc_scf_dm_in_r, (n_points_final_grid) ]
implicit none
integer :: i, j
tc_scf_dm_in_r = 0.d0
do i = 1, n_points_final_grid
do j = 1, elec_beta_num
tc_scf_dm_in_r(i) += mos_r_in_r_array(j,i) * mos_l_in_r_array(j,i)
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, w_sum_in_r, (n_points_final_grid, 3)]
implicit none
integer :: ipoint, j, xi
w_sum_in_r = 0.d0
do j = 1, elec_beta_num
do xi = 1, 3
do ipoint = 1, n_points_final_grid
!w_sum_in_r(ipoint,xi) += x_W_ki_bi_ortho_erf_rk(ipoint,xi,j,j)
w_sum_in_r(ipoint,xi) += x_W_ki_bi_ortho_erf_rk_diag(ipoint,xi,j)
enddo
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, ww_sum_in_r, (n_points_final_grid, 3)]
implicit none
integer :: ipoint, j, xi
double precision :: tmp
ww_sum_in_r = 0.d0
do j = 1, elec_beta_num
do xi = 1, 3
do ipoint = 1, n_points_final_grid
tmp = x_W_ki_bi_ortho_erf_rk_diag(ipoint,xi,j)
ww_sum_in_r(ipoint,xi) += tmp * tmp
enddo
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, W1_r_in_r, (n_points_final_grid, 3, mo_num)]
implicit none
integer :: i, j, xi, ipoint
! TODO: call lapack
W1_r_in_r = 0.d0
do i = 1, mo_num
do j = 1, elec_beta_num
do xi = 1, 3
do ipoint = 1, n_points_final_grid
W1_r_in_r(ipoint,xi,i) += mos_r_in_r_array_transp(ipoint,j) * x_W_ki_bi_ortho_erf_rk(ipoint,xi,j,i)
enddo
enddo
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, W1_l_in_r, (n_points_final_grid, 3, mo_num)]
implicit none
integer :: i, j, xi, ipoint
! TODO: call lapack
W1_l_in_r = 0.d0
do i = 1, mo_num
do j = 1, elec_beta_num
do xi = 1, 3
do ipoint = 1, n_points_final_grid
W1_l_in_r(ipoint,xi,i) += mos_l_in_r_array_transp(ipoint,j) * x_W_ki_bi_ortho_erf_rk(ipoint,xi,i,j)
enddo
enddo
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, W1_in_r, (n_points_final_grid, 3)]
implicit none
integer :: j, xi, ipoint
! TODO: call lapack
W1_in_r = 0.d0
do j = 1, elec_beta_num
do xi = 1, 3
do ipoint = 1, n_points_final_grid
W1_in_r(ipoint,xi) += W1_l_in_r(ipoint,xi,j) * mos_r_in_r_array_transp(ipoint,j)
enddo
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, W1_diag_in_r, (n_points_final_grid, 3)]
implicit none
integer :: j, xi, ipoint
! TODO: call lapack
W1_diag_in_r = 0.d0
do j = 1, elec_beta_num
do xi = 1, 3
do ipoint = 1, n_points_final_grid
W1_diag_in_r(ipoint,xi) += mos_r_in_r_array_transp(ipoint,j) * mos_l_in_r_array_transp(ipoint,j) * x_W_ki_bi_ortho_erf_rk_diag(ipoint,xi,j)
enddo
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, v_sum_in_r, (n_points_final_grid, 3)]
implicit none
integer :: i, j, xi, ipoint
! TODO: call lapack
v_sum_in_r = 0.d0
do i = 1, elec_beta_num
do j = 1, elec_beta_num
do xi = 1, 3
do ipoint = 1, n_points_final_grid
v_sum_in_r(ipoint,xi) += x_W_ki_bi_ortho_erf_rk(ipoint,xi,i,j) * x_W_ki_bi_ortho_erf_rk(ipoint,xi,j,i)
enddo
enddo
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, W1_W1_r_in_r, (n_points_final_grid, 3, mo_num)]
implicit none
integer :: i, m, xi, ipoint
! TODO: call lapack
W1_W1_r_in_r = 0.d0
do i = 1, mo_num
do m = 1, elec_beta_num
do xi = 1, 3
do ipoint = 1, n_points_final_grid
W1_W1_r_in_r(ipoint,xi,i) += x_W_ki_bi_ortho_erf_rk(ipoint,xi,m,i) * W1_r_in_r(ipoint,xi,m)
enddo
enddo
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, W1_W1_l_in_r, (n_points_final_grid, 3, mo_num)]
implicit none
integer :: i, j, xi, ipoint
! TODO: call lapack
W1_W1_l_in_r = 0.d0
do i = 1, mo_num
do j = 1, elec_beta_num
do xi = 1, 3
do ipoint = 1, n_points_final_grid
W1_W1_l_in_r(ipoint,xi,i) += x_W_ki_bi_ortho_erf_rk(ipoint,xi,i,j) * W1_l_in_r(ipoint,xi,j)
enddo
enddo
enddo
enddo
END_PROVIDER
! ---
subroutine direct_term_imj_bi_ortho(a, i, integral)
BEGIN_DOC
! computes sum_(j,m = 1, elec_beta_num) < a m j | i m j > with bi ortho mos
END_DOC
implicit none
integer, intent(in) :: i, a
double precision, intent(out) :: integral
integer :: ipoint, xi
double precision :: weight, tmp
integral = 0.d0
do xi = 1, 3
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
!integral += ( mos_l_in_r_array(a,ipoint) * mos_r_in_r_array(i,ipoint) * w_sum_in_r(ipoint,xi) * w_sum_in_r(ipoint,xi) &
! + 2.d0 * tc_scf_dm_in_r(ipoint) * w_sum_in_r(ipoint,xi) * x_W_ki_bi_ortho_erf_rk(ipoint,xi,a,i) ) * weight
tmp = w_sum_in_r(ipoint,xi)
integral += ( mos_l_in_r_array_transp(ipoint,a) * mos_r_in_r_array_transp(ipoint,i) * tmp * tmp &
+ 2.d0 * tc_scf_dm_in_r(ipoint) * tmp * x_W_ki_bi_ortho_erf_rk(ipoint,xi,a,i) &
) * weight
enddo
enddo
end
! ---
subroutine exch_term_jmi_bi_ortho(a, i, integral)
BEGIN_DOC
! computes sum_(j,m = 1, elec_beta_num) < a m j | j m i > with bi ortho mos
END_DOC
implicit none
integer, intent(in) :: i, a
double precision, intent(out) :: integral
integer :: ipoint, xi, j
double precision :: weight, tmp
integral = 0.d0
do xi = 1, 3
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
tmp = 0.d0
do j = 1, elec_beta_num
tmp = tmp + x_W_ki_bi_ortho_erf_rk(ipoint,xi,a,j) * x_W_ki_bi_ortho_erf_rk(ipoint,xi,j,i)
enddo
integral += ( mos_l_in_r_array_transp(ipoint,a) * W1_r_in_r(ipoint,xi,i) * w_sum_in_r(ipoint,xi) &
+ tc_scf_dm_in_r(ipoint) * tmp &
+ mos_r_in_r_array_transp(ipoint,i) * W1_l_in_r(ipoint,xi,a) * w_sum_in_r(ipoint,xi) &
) * weight
enddo
enddo
end
! ---
subroutine exch_term_ijm_bi_ortho(a, i, integral)
BEGIN_DOC
! computes sum_(j,m = 1, elec_beta_num) < a m j | i j m > with bi ortho mos
END_DOC
implicit none
integer, intent(in) :: i, a
double precision, intent(out) :: integral
integer :: ipoint, xi
double precision :: weight
integral = 0.d0
do xi = 1, 3
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
integral += ( mos_l_in_r_array_transp(ipoint,a) * mos_r_in_r_array_transp(ipoint,i) * v_sum_in_r(ipoint,xi) &
+ 2.d0 * x_W_ki_bi_ortho_erf_rk(ipoint,xi,a,i) * W1_in_r(ipoint,xi) &
) * weight
enddo
enddo
end
! ---
subroutine direct_term_ijj_bi_ortho(a, i, integral)
BEGIN_DOC
! computes sum_(j = 1, elec_beta_num) < a j j | i j j > with bi ortho mos
END_DOC
implicit none
integer, intent(in) :: i, a
double precision, intent(out) :: integral
integer :: ipoint, xi
double precision :: weight
integral = 0.d0
do xi = 1, 3
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
integral += ( mos_l_in_r_array_transp(ipoint,a) * mos_r_in_r_array_transp(ipoint,i) * ww_sum_in_r(ipoint,xi) &
+ 2.d0 * W1_diag_in_r(ipoint, xi) * x_W_ki_bi_ortho_erf_rk(ipoint,xi,a,i) &
) * weight
enddo
enddo
end
! ---
subroutine cyclic_term_jim_bi_ortho(a, i, integral)
BEGIN_DOC
! computes sum_(j,m = 1, elec_beta_num) < a m j | j i m > with bi ortho mos
END_DOC
implicit none
integer, intent(in) :: i, a
double precision, intent(out) :: integral
integer :: ipoint, xi
double precision :: weight
integral = 0.d0
do xi = 1, 3
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
integral += ( mos_l_in_r_array_transp(ipoint,a) * W1_W1_r_in_r(ipoint,xi,i) &
+ W1_W1_l_in_r(ipoint,xi,a) * mos_r_in_r_array_transp(ipoint,i) &
+ W1_l_in_r(ipoint,xi,a) * W1_r_in_r(ipoint,xi,i) &
) * weight
enddo
enddo
end
! ---
subroutine cyclic_term_mji_bi_ortho(a, i, integral)
BEGIN_DOC
! computes sum_(j,m = 1, elec_beta_num) < a m j | m j i > with bi ortho mos
END_DOC
implicit none
integer, intent(in) :: i, a
double precision, intent(out) :: integral
integer :: ipoint, xi
double precision :: weight
integral = 0.d0
do xi = 1, 3
do ipoint = 1, n_points_final_grid
weight = final_weight_at_r_vector(ipoint)
integral += ( mos_l_in_r_array_transp(ipoint,a) * W1_W1_r_in_r(ipoint,xi,i) &
+ W1_l_in_r(ipoint,xi,a) * W1_r_in_r(ipoint,xi,i) &
+ W1_W1_l_in_r(ipoint,xi,a) * mos_r_in_r_array_transp(ipoint,i) &
) * weight
enddo
enddo
end
! ---

View File

@ -0,0 +1,12 @@
program print_angles
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 14 ! small grid for quick debug
touch my_n_pt_r_grid my_n_pt_a_grid
! call sort_by_tc_fock
call minimize_tc_orb_angles
end

View File

@ -0,0 +1,176 @@
program molden
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
implicit none
print *, 'starting ...'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call molden_lr
end
subroutine molden_lr
implicit none
BEGIN_DOC
! Produces a Molden file
END_DOC
character*(128) :: output
integer :: i_unit_output,getUnitAndOpen
integer :: i,j,k,l
double precision, parameter :: a0 = 0.529177249d0
PROVIDE ezfio_filename
output=trim(ezfio_filename)//'.mol'
print*,'output = ',trim(output)
i_unit_output = getUnitAndOpen(output,'w')
write(i_unit_output,'(A)') '[Molden Format]'
write(i_unit_output,'(A)') '[Atoms] Angs'
do i = 1, nucl_num
write(i_unit_output,'(A2,2X,I4,2X,I4,3(2X,F15.10))') &
trim(element_name(int(nucl_charge(i)))), &
i, &
int(nucl_charge(i)), &
nucl_coord(i,1)*a0, nucl_coord(i,2)*a0, nucl_coord(i,3)*a0
enddo
write(i_unit_output,'(A)') '[GTO]'
character*(1) :: character_shell
integer :: i_shell,i_prim,i_ao
integer :: iorder(ao_num)
integer :: nsort(ao_num)
i_shell = 0
i_prim = 0
do i=1,nucl_num
write(i_unit_output,*) i, 0
do j=1,nucl_num_shell_aos(i)
i_shell +=1
i_ao = nucl_list_shell_aos(i,j)
character_shell = trim(ao_l_char(i_ao))
write(i_unit_output,*) character_shell, ao_prim_num(i_ao), '1.00'
do k = 1, ao_prim_num(i_ao)
i_prim +=1
write(i_unit_output,'(E20.10,2X,E20.10)') ao_expo(i_ao,k), ao_coef(i_ao,k)
enddo
l = i_ao
do while ( ao_l(l) == ao_l(i_ao) )
nsort(l) = i*10000 + j*100
l += 1
if (l > ao_num) exit
enddo
enddo
write(i_unit_output,*)''
enddo
do i=1,ao_num
iorder(i) = i
! p
if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 1
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 2
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 3
! d
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 1
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 2
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 3
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 4
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 5
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 6
! f
else if ((ao_power(i,1) == 3 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 1
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 3 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 2
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 3 )) then
nsort(i) += 3
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 4
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 5
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 6
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 7
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 8
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 9
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 10
! g
else if ((ao_power(i,1) == 4 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 1
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 4 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 2
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 4 )) then
nsort(i) += 3
else if ((ao_power(i,1) == 3 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 4
else if ((ao_power(i,1) == 3 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 5
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 3 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 6
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 3 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 7
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 3 )) then
nsort(i) += 8
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 3 )) then
nsort(i) += 9
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 0 )) then
nsort(i) += 10
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 0 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 11
else if ((ao_power(i,1) == 0 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 12
else if ((ao_power(i,1) == 2 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 13
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 2 ).and.(ao_power(i,3) == 1 )) then
nsort(i) += 14
else if ((ao_power(i,1) == 1 ).and.(ao_power(i,2) == 1 ).and.(ao_power(i,3) == 2 )) then
nsort(i) += 15
endif
enddo
call isort(nsort,iorder,ao_num)
write(i_unit_output,'(A)') '[MO]'
do i=1,mo_num
write (i_unit_output,*) 'Sym= 1'
write (i_unit_output,*) 'Ene=', Fock_matrix_tc_mo_tot(i,i)
write (i_unit_output,*) 'Spin= Alpha'
write (i_unit_output,*) 'Occup=', mo_occ(i)
do j=1,ao_num
write(i_unit_output, '(I6,2X,E20.10)') j, mo_r_coef(iorder(j),i)
enddo
write (i_unit_output,*) 'Sym= 1'
write (i_unit_output,*) 'Ene=', Fock_matrix_tc_mo_tot(i,i)
write (i_unit_output,*) 'Spin= Alpha'
write (i_unit_output,*) 'Occup=', mo_occ(i)
do j=1,ao_num
write(i_unit_output, '(I6,2X,E20.10)') j, mo_l_coef(iorder(j),i)
enddo
enddo
close(i_unit_output)
end

View File

@ -0,0 +1,9 @@
program print_angles
implicit none
my_grid_becke = .True.
! my_n_pt_r_grid = 30
! my_n_pt_a_grid = 50
my_n_pt_r_grid = 10 ! small grid for quick debug
my_n_pt_a_grid = 14 ! small grid for quick debug
call print_angles_tc
end

View File

@ -0,0 +1,60 @@
program print_fit_param
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
!call create_guess
!call orthonormalize_mos
call main()
end
! ---
subroutine main()
implicit none
integer :: i
mu_erf = 1.d0
touch mu_erf
print *, ' fit for (1 - erf(x))^2'
do i = 1, n_max_fit_slat
print*, expo_gauss_1_erf_x_2(i), coef_gauss_1_erf_x_2(i)
enddo
print *, ''
print *, ' fit for [x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2)]'
do i = 1, n_max_fit_slat
print *, expo_gauss_j_mu_x(i), 2.d0 * coef_gauss_j_mu_x(i)
enddo
print *, ''
print *, ' fit for [x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2)]^2'
do i = 1, n_max_fit_slat
print *, expo_gauss_j_mu_x_2(i), 4.d0 * coef_gauss_j_mu_x_2(i)
enddo
print *, ''
print *, ' fit for [x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2)] x [1 - erf(mu * r12)]'
do i = 1, n_max_fit_slat
print *, expo_gauss_j_mu_1_erf(i), 4.d0 * coef_gauss_j_mu_1_erf(i)
enddo
return
end subroutine main
! ---

336
src/tc_scf/rh_tcscf.irp.f Normal file
View File

@ -0,0 +1,336 @@
! ---
subroutine rh_tcscf()
BEGIN_DOC
!
! Roothaan-Hall algorithm for TC-SCF calculation
!
END_DOC
implicit none
integer :: i, j
integer :: iteration_TCSCF, dim_DIIS, index_dim_DIIS
double precision :: energy_TCSCF, energy_TCSCF_1e, energy_TCSCF_2e, energy_TCSCF_3e, gradie_TCSCF
double precision :: energy_TCSCF_previous, delta_energy_TCSCF
double precision :: gradie_TCSCF_previous, delta_gradie_TCSCF
double precision :: max_error_DIIS_TCSCF
double precision :: level_shift_save
double precision :: delta_energy_tmp, delta_gradie_tmp
double precision, allocatable :: F_DIIS(:,:,:), e_DIIS(:,:,:)
double precision, allocatable :: mo_r_coef_save(:,:), mo_l_coef_save(:,:)
logical, external :: qp_stop
!PROVIDE ao_md5 mo_occ
PROVIDE level_shift_TCSCF
allocate( mo_r_coef_save(ao_num,mo_num), mo_l_coef_save(ao_num,mo_num) &
, F_DIIS(ao_num,ao_num,max_dim_DIIS_TCSCF), e_DIIS(ao_num,ao_num,max_dim_DIIS_TCSCF) )
F_DIIS = 0.d0
e_DIIS = 0.d0
mo_l_coef_save = 0.d0
mo_r_coef_save = 0.d0
call write_time(6)
! ---
! Initialize energies and density matrices
energy_TCSCF_previous = TC_HF_energy
energy_TCSCF_1e = TC_HF_one_e_energy
energy_TCSCF_2e = TC_HF_two_e_energy
energy_TCSCF_3e = 0.d0
if(three_body_h_tc) then
energy_TCSCF_3e = diag_three_elem_hf
endif
gradie_TCSCF_previous = grad_non_hermit
delta_energy_TCSCF = 1.d0
delta_gradie_TCSCF = 1.d0
iteration_TCSCF = 0
dim_DIIS = 0
max_error_DIIS_TCSCF = 1.d0
! ---
! Start of main SCF loop
PROVIDE FQS_SQF_ao Fock_matrix_tc_ao_tot
do while( (max_error_DIIS_TCSCF > threshold_DIIS_nonzero_TCSCF) .or. &
!(dabs(delta_energy_TCSCF) > thresh_TCSCF) .or. &
(dabs(gradie_TCSCF_previous) > dsqrt(thresh_TCSCF)) )
iteration_TCSCF += 1
if(iteration_TCSCF > n_it_TCSCF_max) then
print *, ' max of TCSCF iterations is reached ', n_it_TCSCF_max
stop
endif
dim_DIIS = min(dim_DIIS+1, max_dim_DIIS_TCSCF)
! ---
if((tcscf_algorithm == 'DIIS') .and. (dabs(delta_energy_TCSCF) > 1.d-6)) then
! store Fock and error matrices at each iteration
index_dim_DIIS = mod(dim_DIIS-1, max_dim_DIIS_TCSCF) + 1
do j = 1, ao_num
do i = 1, ao_num
F_DIIS(i,j,index_dim_DIIS) = Fock_matrix_tc_ao_tot(i,j)
e_DIIS(i,j,index_dim_DIIS) = FQS_SQF_ao(i,j)
enddo
enddo
call extrapolate_TC_Fock_matrix(e_DIIS, F_DIIS, Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1), iteration_TCSCF, dim_DIIS)
Fock_matrix_tc_ao_alpha = 0.5d0 * Fock_matrix_tc_ao_tot
Fock_matrix_tc_ao_beta = 0.5d0 * Fock_matrix_tc_ao_tot
!TOUCH Fock_matrix_tc_ao_alpha Fock_matrix_tc_ao_beta
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_alpha, size(Fock_matrix_tc_ao_alpha, 1) &
, Fock_matrix_tc_mo_alpha, size(Fock_matrix_tc_mo_alpha, 1) )
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_beta , size(Fock_matrix_tc_ao_beta , 1) &
, Fock_matrix_tc_mo_beta , size(Fock_matrix_tc_mo_beta , 1) )
TOUCH Fock_matrix_tc_mo_alpha Fock_matrix_tc_mo_beta
endif
! ---
mo_l_coef(1:ao_num,1:mo_num) = fock_tc_leigvec_ao(1:ao_num,1:mo_num)
mo_r_coef(1:ao_num,1:mo_num) = fock_tc_reigvec_ao(1:ao_num,1:mo_num)
TOUCH mo_l_coef mo_r_coef
! ---
! calculate error vectors
max_error_DIIS_TCSCF = maxval(abs(FQS_SQF_mo))
! ---
delta_energy_tmp = TC_HF_energy - energy_TCSCF_previous
delta_gradie_tmp = grad_non_hermit - gradie_TCSCF_previous
! ---
do while((delta_gradie_tmp > 1.d-7) .and. (iteration_TCSCF > 1))
!do while((dabs(delta_energy_tmp) > 0.5d0) .and. (iteration_TCSCF > 1))
print *, ' very big or bad step : ', delta_energy_tmp, delta_gradie_tmp
print *, ' TC level shift = ', level_shift_TCSCF
mo_l_coef(1:ao_num,1:mo_num) = mo_l_coef_save(1:ao_num,1:mo_num)
mo_r_coef(1:ao_num,1:mo_num) = mo_r_coef_save(1:ao_num,1:mo_num)
if(level_shift_TCSCF <= .1d0) then
level_shift_TCSCF = 1.d0
else
level_shift_TCSCF = level_shift_TCSCF * 3.0d0
endif
TOUCH mo_l_coef mo_r_coef level_shift_TCSCF
mo_l_coef(1:ao_num,1:mo_num) = fock_tc_leigvec_ao(1:ao_num,1:mo_num)
mo_r_coef(1:ao_num,1:mo_num) = fock_tc_reigvec_ao(1:ao_num,1:mo_num)
TOUCH mo_l_coef mo_r_coef
delta_energy_tmp = TC_HF_energy - energy_TCSCF_previous
delta_gradie_tmp = grad_non_hermit - gradie_TCSCF_previous
if(level_shift_TCSCF - level_shift_save > 40.d0) then
level_shift_TCSCF = level_shift_save * 4.d0
SOFT_TOUCH level_shift_TCSCF
exit
endif
dim_DIIS = 0
enddo
! print *, ' very big step : ', delta_energy_tmp
! print *, ' TC level shift = ', level_shift_TCSCF
! ---
level_shift_TCSCF = 0.d0
!level_shift_TCSCF = level_shift_TCSCF * 0.5d0
SOFT_TOUCH level_shift_TCSCF
gradie_TCSCF = grad_non_hermit
energy_TCSCF = TC_HF_energy
energy_TCSCF_1e = TC_HF_one_e_energy
energy_TCSCF_2e = TC_HF_two_e_energy
energy_TCSCF_3e = 0.d0
if(three_body_h_tc) then
energy_TCSCF_3e = diag_three_elem_hf
endif
delta_energy_TCSCF = energy_TCSCF - energy_TCSCF_previous
delta_gradie_TCSCF = gradie_TCSCF - gradie_TCSCF_previous
energy_TCSCF_previous = energy_TCSCF
gradie_TCSCF_previous = gradie_TCSCF
level_shift_save = level_shift_TCSCF
mo_l_coef_save(1:ao_num,1:mo_num) = mo_l_coef(1:ao_num,1:mo_num)
mo_r_coef_save(1:ao_num,1:mo_num) = mo_r_coef(1:ao_num,1:mo_num)
print *, ' iteration = ', iteration_TCSCF
print *, ' total TC energy = ', energy_TCSCF
print *, ' 1-e TC energy = ', energy_TCSCF_1e
print *, ' 2-e TC energy = ', energy_TCSCF_2e
print *, ' 3-e TC energy = ', energy_TCSCF_3e
print *, ' |delta TC energy| = ', dabs(delta_energy_TCSCF)
print *, ' TC gradient = ', gradie_TCSCF
print *, ' delta TC gradient = ', delta_gradie_TCSCF
print *, ' max TC DIIS error = ', max_error_DIIS_TCSCF
print *, ' TC DIIS dim = ', dim_DIIS
print *, ' TC level shift = ', level_shift_TCSCF
print *, ' '
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
if(qp_stop()) exit
enddo
! ---
print *, ' TCSCF DIIS converged !'
call print_energy_and_mos()
call write_time(6)
deallocate(mo_r_coef_save, mo_l_coef_save, F_DIIS, e_DIIS)
end
! ---
subroutine extrapolate_TC_Fock_matrix(e_DIIS, F_DIIS, F_ao, size_F_ao, iteration_TCSCF, dim_DIIS)
BEGIN_DOC
!
! Compute the extrapolated Fock matrix using the DIIS procedure
!
! e = \sum_i c_i e_i and \sum_i c_i = 1
! ==> lagrange multiplier with L = |e|^2 - \lambda (\sum_i c_i = 1)
!
END_DOC
implicit none
integer, intent(in) :: iteration_TCSCF, size_F_ao
integer, intent(inout) :: dim_DIIS
double precision, intent(in) :: F_DIIS(ao_num,ao_num,dim_DIIS)
double precision, intent(in) :: e_DIIS(ao_num,ao_num,dim_DIIS)
double precision, intent(inout) :: F_ao(size_F_ao,ao_num)
double precision, allocatable :: B_matrix_DIIS(:,:), X_vector_DIIS(:), C_vector_DIIS(:)
integer :: i, j, k, l, i_DIIS, j_DIIS
integer :: lwork
double precision :: rcond, ferr, berr
integer, allocatable :: iwork(:)
double precision, allocatable :: scratch(:,:)
if(dim_DIIS < 1) then
return
endif
allocate( B_matrix_DIIS(dim_DIIS+1,dim_DIIS+1), X_vector_DIIS(dim_DIIS+1) &
, C_vector_DIIS(dim_DIIS+1), scratch(ao_num,ao_num) )
! Compute the matrices B and X
B_matrix_DIIS(:,:) = 0.d0
do j = 1, dim_DIIS
j_DIIS = min(dim_DIIS, mod(iteration_TCSCF-j, max_dim_DIIS_TCSCF)+1)
do i = 1, dim_DIIS
i_DIIS = min(dim_DIIS, mod(iteration_TCSCF-i, max_dim_DIIS_TCSCF)+1)
! Compute product of two errors vectors
do l = 1, ao_num
do k = 1, ao_num
B_matrix_DIIS(i,j) = B_matrix_DIIS(i,j) + e_DIIS(k,l,i_DIIS) * e_DIIS(k,l,j_DIIS)
enddo
enddo
enddo
enddo
! Pad B matrix and build the X matrix
C_vector_DIIS(:) = 0.d0
do i = 1, dim_DIIS
B_matrix_DIIS(i,dim_DIIS+1) = -1.d0
B_matrix_DIIS(dim_DIIS+1,i) = -1.d0
enddo
C_vector_DIIS(dim_DIIS+1) = -1.d0
deallocate(scratch)
! Estimate condition number of B
integer :: info
double precision :: anorm
integer, allocatable :: ipiv(:)
double precision, allocatable :: AF(:,:)
double precision, external :: dlange
lwork = max((dim_DIIS+1)**2, (dim_DIIS+1)*5)
allocate(AF(dim_DIIS+1,dim_DIIS+1))
allocate(ipiv(2*(dim_DIIS+1)), iwork(2*(dim_DIIS+1)) )
allocate(scratch(lwork,1))
scratch(:,1) = 0.d0
anorm = dlange('1', dim_DIIS+1, dim_DIIS+1, B_matrix_DIIS, size(B_matrix_DIIS, 1), scratch(1,1))
AF(:,:) = B_matrix_DIIS(:,:)
call dgetrf(dim_DIIS+1, dim_DIIS+1, AF, size(AF, 1), ipiv, info)
if(info /= 0) then
dim_DIIS = 0
return
endif
call dgecon('1', dim_DIIS+1, AF, size(AF, 1), anorm, rcond, scratch, iwork, info)
if(info /= 0) then
dim_DIIS = 0
return
endif
if(rcond < 1.d-14) then
dim_DIIS = 0
return
endif
! solve the linear system C = B x X
X_vector_DIIS = C_vector_DIIS
call dgesv(dim_DIIS+1, 1, B_matrix_DIIS, size(B_matrix_DIIS, 1), ipiv , X_vector_DIIS, size(X_vector_DIIS, 1), info)
deallocate(scratch, AF, iwork)
if(info < 0) then
stop ' bug in TC-DIIS'
endif
! Compute extrapolated Fock matrix
!$OMP PARALLEL DO PRIVATE(i,j,k) DEFAULT(SHARED) if (ao_num > 200)
do j = 1, ao_num
do i = 1, ao_num
F_ao(i,j) = 0.d0
enddo
do k = 1, dim_DIIS
if(dabs(X_vector_DIIS(k)) < 1.d-10) cycle
do i = 1,ao_num
! FPE here
F_ao(i,j) = F_ao(i,j) + X_vector_DIIS(k) * F_DIIS(i,j,dim_DIIS-k+1)
enddo
enddo
enddo
!$OMP END PARALLEL DO
end
! ---

View File

@ -0,0 +1,362 @@
! ---
subroutine rh_tcscf_diis()
implicit none
integer :: i, j, it
integer :: dim_DIIS, index_dim_DIIS
double precision :: etc_tot, etc_1e, etc_2e, etc_3e, e_save, e_delta
double precision :: tc_grad, g_save, g_delta, g_delta_th
double precision :: level_shift_save, rate_th
double precision :: t0, t1
double precision :: er_DIIS, er_delta, er_save, er_delta_th
double precision, allocatable :: F_DIIS(:,:,:), E_DIIS(:,:,:)
double precision, allocatable :: mo_r_coef_save(:,:), mo_l_coef_save(:,:)
logical, external :: qp_stop
it = 0
e_save = 0.d0
dim_DIIS = 0
g_delta_th = 1d0
er_delta_th = 1d0
rate_th = 100.d0 !0.01d0 !0.2d0
allocate(mo_r_coef_save(ao_num,mo_num), mo_l_coef_save(ao_num,mo_num))
mo_l_coef_save = 0.d0
mo_r_coef_save = 0.d0
allocate(F_DIIS(ao_num,ao_num,max_dim_DIIS_TCSCF), E_DIIS(ao_num,ao_num,max_dim_DIIS_TCSCF))
F_DIIS = 0.d0
E_DIIS = 0.d0
call write_time(6)
! ---
PROVIDE level_shift_TCSCF
PROVIDE mo_l_coef mo_r_coef
write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
'====', '================', '================', '================', '================', '================' &
, '================', '================', '================', '====', '========'
write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
' it ', ' SCF TC Energy ', ' E(1e) ', ' E(2e) ', ' E(3e) ', ' energy diff ' &
, ' gradient ', ' DIIS error ', ' level shift ', 'DIIS', ' WT (m)'
write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
'====', '================', '================', '================', '================', '================' &
, '================', '================', '================', '====', '========'
! first iteration (HF orbitals)
call wall_time(t0)
etc_tot = TC_HF_energy
etc_1e = TC_HF_one_e_energy
etc_2e = TC_HF_two_e_energy
etc_3e = 0.d0
if(three_body_h_tc) then
etc_3e = diag_three_elem_hf
endif
tc_grad = grad_non_hermit
er_DIIS = maxval(abs(FQS_SQF_mo))
e_delta = dabs(etc_tot - e_save)
e_save = etc_tot
g_save = tc_grad
er_save = er_DIIS
call wall_time(t1)
write(6, '(I4,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, I4,1X, F8.2)') &
it, etc_tot, etc_1e, etc_2e, etc_3e, e_delta, tc_grad, er_DIIS, level_shift_tcscf, dim_DIIS, (t1-t0)/60.d0
! ---
PROVIDE FQS_SQF_ao Fock_matrix_tc_ao_tot
do while((tc_grad .gt. dsqrt(thresh_tcscf)) .and. (er_DIIS .gt. threshold_DIIS_nonzero_TCSCF))
call wall_time(t0)
it += 1
if(it > n_it_TCSCF_max) then
print *, ' max of TCSCF iterations is reached ', n_it_TCSCF_max
stop
endif
dim_DIIS = min(dim_DIIS+1, max_dim_DIIS_TCSCF)
! ---
if(dabs(e_delta) > 1.d-12) then
index_dim_DIIS = mod(dim_DIIS-1, max_dim_DIIS_TCSCF) + 1
do j = 1, ao_num
do i = 1, ao_num
F_DIIS(i,j,index_dim_DIIS) = Fock_matrix_tc_ao_tot(i,j)
E_DIIS(i,j,index_dim_DIIS) = FQS_SQF_ao (i,j)
enddo
enddo
call extrapolate_TC_Fock_matrix(E_DIIS, F_DIIS, Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1), it, dim_DIIS)
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1) &
, Fock_matrix_tc_mo_tot, size(Fock_matrix_tc_mo_tot, 1) )
TOUCH Fock_matrix_tc_mo_tot fock_matrix_tc_diag_mo_tot
endif
! ---
mo_l_coef(1:ao_num,1:mo_num) = fock_tc_leigvec_ao(1:ao_num,1:mo_num)
mo_r_coef(1:ao_num,1:mo_num) = fock_tc_reigvec_ao(1:ao_num,1:mo_num)
!call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
!call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
TOUCH mo_l_coef mo_r_coef
! ---
g_delta = grad_non_hermit - g_save
er_delta = maxval(abs(FQS_SQF_mo)) - er_save
!if((g_delta > rate_th * g_delta_th) .and. (er_delta > rate_th * er_delta_th) .and. (it > 1)) then
if((g_delta > rate_th * g_delta_th) .and. (it > 1)) then
!if((g_delta > 0.d0) .and. (it > 1)) then
Fock_matrix_tc_ao_tot(1:ao_num,1:ao_num) = F_DIIS(1:ao_num,1:ao_num,index_dim_DIIS)
call ao_to_mo_bi_ortho( Fock_matrix_tc_ao_tot, size(Fock_matrix_tc_ao_tot, 1) &
, Fock_matrix_tc_mo_tot, size(Fock_matrix_tc_mo_tot, 1) )
TOUCH Fock_matrix_tc_mo_tot fock_matrix_tc_diag_mo_tot
mo_l_coef(1:ao_num,1:mo_num) = fock_tc_leigvec_ao(1:ao_num,1:mo_num)
mo_r_coef(1:ao_num,1:mo_num) = fock_tc_reigvec_ao(1:ao_num,1:mo_num)
!call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
!call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
TOUCH mo_l_coef mo_r_coef
endif
! ---
g_delta = grad_non_hermit - g_save
er_delta = maxval(abs(FQS_SQF_mo)) - er_save
mo_l_coef_save(1:ao_num,1:mo_num) = mo_l_coef(1:ao_num,1:mo_num)
mo_r_coef_save(1:ao_num,1:mo_num) = mo_r_coef(1:ao_num,1:mo_num)
!do while((g_delta > rate_th * g_delta_th) .and. (er_delta > rate_th * er_delta_th) .and. (it > 1))
do while((g_delta > rate_th * g_delta_th) .and. (it > 1))
print *, ' big or bad step : ', g_delta, rate_th * g_delta_th
mo_l_coef(1:ao_num,1:mo_num) = mo_l_coef_save(1:ao_num,1:mo_num)
mo_r_coef(1:ao_num,1:mo_num) = mo_r_coef_save(1:ao_num,1:mo_num)
if(level_shift_TCSCF <= .1d0) then
level_shift_TCSCF = 1.d0
else
level_shift_TCSCF = level_shift_TCSCF * 3.0d0
endif
TOUCH mo_l_coef mo_r_coef level_shift_TCSCF
mo_l_coef(1:ao_num,1:mo_num) = fock_tc_leigvec_ao(1:ao_num,1:mo_num)
mo_r_coef(1:ao_num,1:mo_num) = fock_tc_reigvec_ao(1:ao_num,1:mo_num)
!call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
!call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
TOUCH mo_l_coef mo_r_coef
g_delta = grad_non_hermit - g_save
er_delta = maxval(abs(FQS_SQF_mo)) - er_save
if(level_shift_TCSCF - level_shift_save > 40.d0) then
level_shift_TCSCF = level_shift_save * 4.d0
SOFT_TOUCH level_shift_TCSCF
exit
endif
dim_DIIS = 0
enddo
! ---
level_shift_TCSCF = level_shift_TCSCF * 0.5d0
SOFT_TOUCH level_shift_TCSCF
etc_tot = TC_HF_energy
etc_1e = TC_HF_one_e_energy
etc_2e = TC_HF_two_e_energy
etc_3e = 0.d0
if(three_body_h_tc) then
etc_3e = diag_three_elem_hf
endif
tc_grad = grad_non_hermit
er_DIIS = maxval(abs(FQS_SQF_mo))
e_delta = dabs(etc_tot - e_save)
g_delta = tc_grad - g_save
er_delta = er_DIIS - er_save
e_save = etc_tot
g_save = tc_grad
level_shift_save = level_shift_TCSCF
er_save = er_DIIS
g_delta_th = dabs(tc_grad) ! g_delta)
er_delta_th = dabs(er_DIIS) !er_delta)
call wall_time(t1)
write(6, '(I4,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, I4,1X, F8.2)') &
it, etc_tot, etc_1e, etc_2e, etc_3e, e_delta, tc_grad, er_DIIS, level_shift_tcscf, dim_DIIS, (t1-t0)/60.d0
if(g_delta .lt. 0.d0) then
call ezfio_set_tc_scf_bitc_energy(etc_tot)
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
endif
if(qp_stop()) exit
enddo
! ---
print *, ' TCSCF DIIS converged !'
call print_energy_and_mos()
call write_time(6)
deallocate(mo_r_coef_save, mo_l_coef_save, F_DIIS, E_DIIS)
call ezfio_set_tc_scf_bitc_energy(TC_HF_energy)
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
end
! ---
subroutine extrapolate_TC_Fock_matrix(E_DIIS, F_DIIS, F_ao, size_F_ao, it, dim_DIIS)
BEGIN_DOC
!
! Compute the extrapolated Fock matrix using the DIIS procedure
!
! e = \sum_i c_i e_i and \sum_i c_i = 1
! ==> lagrange multiplier with L = |e|^2 - \lambda (\sum_i c_i = 1)
!
END_DOC
implicit none
integer, intent(in) :: it, size_F_ao
integer, intent(inout) :: dim_DIIS
double precision, intent(in) :: F_DIIS(ao_num,ao_num,dim_DIIS)
double precision, intent(in) :: E_DIIS(ao_num,ao_num,dim_DIIS)
double precision, intent(inout) :: F_ao(size_F_ao,ao_num)
double precision, allocatable :: B_matrix_DIIS(:,:), X_vector_DIIS(:), C_vector_DIIS(:)
integer :: i, j, k, l, i_DIIS, j_DIIS
integer :: lwork
double precision :: rcond, ferr, berr
integer, allocatable :: iwork(:)
double precision, allocatable :: scratch(:,:)
if(dim_DIIS < 1) then
return
endif
allocate( B_matrix_DIIS(dim_DIIS+1,dim_DIIS+1), X_vector_DIIS(dim_DIIS+1) &
, C_vector_DIIS(dim_DIIS+1), scratch(ao_num,ao_num) )
! Compute the matrices B and X
B_matrix_DIIS(:,:) = 0.d0
do j = 1, dim_DIIS
j_DIIS = min(dim_DIIS, mod(it-j, max_dim_DIIS_TCSCF)+1)
do i = 1, dim_DIIS
i_DIIS = min(dim_DIIS, mod(it-i, max_dim_DIIS_TCSCF)+1)
! Compute product of two errors vectors
do l = 1, ao_num
do k = 1, ao_num
B_matrix_DIIS(i,j) = B_matrix_DIIS(i,j) + E_DIIS(k,l,i_DIIS) * E_DIIS(k,l,j_DIIS)
enddo
enddo
enddo
enddo
! Pad B matrix and build the X matrix
C_vector_DIIS(:) = 0.d0
do i = 1, dim_DIIS
B_matrix_DIIS(i,dim_DIIS+1) = -1.d0
B_matrix_DIIS(dim_DIIS+1,i) = -1.d0
enddo
C_vector_DIIS(dim_DIIS+1) = -1.d0
deallocate(scratch)
! Estimate condition number of B
integer :: info
double precision :: anorm
integer, allocatable :: ipiv(:)
double precision, allocatable :: AF(:,:)
double precision, external :: dlange
lwork = max((dim_DIIS+1)**2, (dim_DIIS+1)*5)
allocate(AF(dim_DIIS+1,dim_DIIS+1))
allocate(ipiv(2*(dim_DIIS+1)), iwork(2*(dim_DIIS+1)) )
allocate(scratch(lwork,1))
scratch(:,1) = 0.d0
anorm = dlange('1', dim_DIIS+1, dim_DIIS+1, B_matrix_DIIS, size(B_matrix_DIIS, 1), scratch(1,1))
AF(:,:) = B_matrix_DIIS(:,:)
call dgetrf(dim_DIIS+1, dim_DIIS+1, AF, size(AF, 1), ipiv, info)
if(info /= 0) then
dim_DIIS = 0
return
endif
call dgecon('1', dim_DIIS+1, AF, size(AF, 1), anorm, rcond, scratch, iwork, info)
if(info /= 0) then
dim_DIIS = 0
return
endif
if(rcond < 1.d-14) then
dim_DIIS = 0
return
endif
! solve the linear system C = B x X
X_vector_DIIS = C_vector_DIIS
call dgesv(dim_DIIS+1, 1, B_matrix_DIIS, size(B_matrix_DIIS, 1), ipiv , X_vector_DIIS, size(X_vector_DIIS, 1), info)
deallocate(scratch, AF, iwork)
if(info < 0) then
stop ' bug in TC-DIIS'
endif
! Compute extrapolated Fock matrix
!$OMP PARALLEL DO PRIVATE(i,j,k) DEFAULT(SHARED) if (ao_num > 200)
do j = 1, ao_num
do i = 1, ao_num
F_ao(i,j) = 0.d0
enddo
do k = 1, dim_DIIS
if(dabs(X_vector_DIIS(k)) < 1.d-10) cycle
do i = 1,ao_num
! FPE here
F_ao(i,j) = F_ao(i,j) + X_vector_DIIS(k) * F_DIIS(i,j,dim_DIIS-k+1)
enddo
enddo
enddo
!$OMP END PARALLEL DO
end
! ---

View File

@ -0,0 +1,129 @@
! ---
subroutine rh_tcscf_simple()
implicit none
integer :: i, j, it, dim_DIIS
double precision :: t0, t1
double precision :: e_save, e_delta, rho_delta
double precision :: etc_tot, etc_1e, etc_2e, etc_3e, tc_grad
double precision :: er_DIIS
double precision, allocatable :: rho_old(:,:), rho_new(:,:)
allocate(rho_old(ao_num,ao_num), rho_new(ao_num,ao_num))
it = 0
e_save = 0.d0
dim_DIIS = 0
! ---
if(.not. bi_ortho) then
print *, ' grad_hermit = ', grad_hermit
call save_good_hermit_tc_eigvectors
TOUCH mo_coef
call save_mos
endif
! ---
if(bi_ortho) then
PROVIDE level_shift_tcscf
PROVIDE mo_l_coef mo_r_coef
write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
'====', '================', '================', '================', '================', '================' &
, '================', '================', '================', '====', '========'
write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
' it ', ' SCF TC Energy ', ' E(1e) ', ' E(2e) ', ' E(3e) ', ' energy diff ' &
, ' gradient ', ' DIIS error ', ' level shift ', 'DIIS', ' WT (m)'
write(6, '(A4,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A16,1X, A4, 1X, A8)') &
'====', '================', '================', '================', '================', '================' &
, '================', '================', '================', '====', '========'
! first iteration (HF orbitals)
call wall_time(t0)
etc_tot = TC_HF_energy
etc_1e = TC_HF_one_e_energy
etc_2e = TC_HF_two_e_energy
etc_3e = 0.d0
if(three_body_h_tc) then
etc_3e = diag_three_elem_hf
endif
tc_grad = grad_non_hermit
er_DIIS = maxval(abs(FQS_SQF_mo))
e_delta = dabs(etc_tot - e_save)
e_save = etc_tot
call wall_time(t1)
write(6, '(I4,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, I4,1X, F8.2)') &
it, etc_tot, etc_1e, etc_2e, etc_3e, e_delta, tc_grad, er_DIIS, level_shift_tcscf, dim_DIIS, (t1-t0)/60.d0
do while(tc_grad .gt. dsqrt(thresh_tcscf))
call wall_time(t0)
it += 1
if(it > n_it_tcscf_max) then
print *, ' max of TCSCF iterations is reached ', n_it_TCSCF_max
stop
endif
mo_l_coef = fock_tc_leigvec_ao
mo_r_coef = fock_tc_reigvec_ao
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
TOUCH mo_l_coef mo_r_coef
etc_tot = TC_HF_energy
etc_1e = TC_HF_one_e_energy
etc_2e = TC_HF_two_e_energy
etc_3e = 0.d0
if(three_body_h_tc) then
etc_3e = diag_three_elem_hf
endif
tc_grad = grad_non_hermit
er_DIIS = maxval(abs(FQS_SQF_mo))
e_delta = dabs(etc_tot - e_save)
e_save = etc_tot
call ezfio_set_tc_scf_bitc_energy(etc_tot)
call wall_time(t1)
write(6, '(I4,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, F16.10,1X, I4,1X, F8.2)') &
it, etc_tot, etc_1e, etc_2e, etc_3e, e_delta, tc_grad, er_DIIS, level_shift_tcscf, dim_DIIS, (t1-t0)/60.d0
enddo
else
do while( (grad_hermit.gt.dsqrt(thresh_tcscf)) .and. (it.lt.n_it_tcscf_max) )
print*,'grad_hermit = ',grad_hermit
it += 1
print *, 'iteration = ', it
print *, '***'
print *, 'TC HF total energy = ', TC_HF_energy
print *, 'TC HF 1 e energy = ', TC_HF_one_e_energy
print *, 'TC HF 2 e energy = ', TC_HF_two_e_energy
print *, 'TC HF 3 body = ', diag_three_elem_hf
print *, '***'
print *, ''
call save_good_hermit_tc_eigvectors
TOUCH mo_coef
call save_mos
enddo
endif
print *, ' TCSCF Simple converged !'
call print_energy_and_mos()
deallocate(rho_old, rho_new)
end
! ---

View File

@ -0,0 +1,367 @@
! ---
program rotate_tcscf_orbitals
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
bi_ortho = .True.
touch bi_ortho
call maximize_overlap()
end
! ---
subroutine maximize_overlap()
implicit none
integer :: i, m, n
double precision :: accu_d, accu_nd
double precision, allocatable :: C(:,:), R(:,:), L(:,:), W(:,:), e(:)
double precision, allocatable :: S(:,:)
n = ao_num
m = mo_num
allocate(L(n,m), R(n,m), C(n,m), W(n,n), e(m))
L = mo_l_coef
R = mo_r_coef
C = mo_coef
W = ao_overlap
print*, ' fock matrix diag elements'
do i = 1, m
e(i) = Fock_matrix_tc_mo_tot(i,i)
print*, e(i)
enddo
! ---
print *, ' overlap before :'
print *, ' '
allocate(S(m,m))
call LTxSxR(n, m, L, W, R, S)
!print*, " L.T x R"
!do i = 1, m
! write(*, '(100(F16.10,X))') S(i,i)
!enddo
call LTxSxR(n, m, L, W, C, S)
print*, " L.T x C"
do i = 1, m
write(*, '(100(F16.10,X))') S(i,:)
enddo
call LTxSxR(n, m, C, W, R, S)
print*, " C.T x R"
do i = 1, m
write(*, '(100(F16.10,X))') S(i,:)
enddo
deallocate(S)
! ---
call rotate_degen_eigvec_to_maximize_overlap(n, m, e, C, W, L, R)
! ---
print *, ' overlap after :'
print *, ' '
allocate(S(m,m))
call LTxSxR(n, m, L, W, R, S)
!print*, " L.T x R"
!do i = 1, m
! write(*, '(100(F16.10,X))') S(i,i)
!enddo
call LTxSxR(n, m, L, W, C, S)
print*, " L.T x C"
do i = 1, m
write(*, '(100(F16.10,X))') S(i,:)
enddo
call LTxSxR(n, m, C, W, R, S)
print*, " C.T x R"
do i = 1, m
write(*, '(100(F16.10,X))') S(i,:)
enddo
deallocate(S)
! ---
mo_l_coef = L
mo_r_coef = R
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
! ---
deallocate(L, R, C, W, e)
end subroutine maximize_overlap
! ---
subroutine rotate_degen_eigvec_to_maximize_overlap(n, m, e0, C0, W0, L0, R0)
implicit none
integer, intent(in) :: n, m
double precision, intent(in) :: e0(m), W0(n,n), C0(n,m)
double precision, intent(inout) :: L0(n,m), R0(n,m)
integer :: i, j, k, kk, mm, id1, tot_deg
double precision :: ei, ej, de, de_thr
integer, allocatable :: deg_num(:)
double precision, allocatable :: L(:,:), R(:,:), C(:,:), Lnew(:,:), Rnew(:,:), tmp(:,:)
!double precision, allocatable :: S(:,:), Snew(:,:), T(:,:), Ttmp(:,:), Stmp(:,:)
double precision, allocatable :: S(:,:), Snew(:,:), T(:,:), Ttmp(:,:), Stmp(:,:)
!real*8 :: S(m,m), Snew(m,m), T(m,m)
id1 = 700
allocate(S(id1,id1), Snew(id1,id1), T(id1,id1))
! ---
allocate( deg_num(m) )
do i = 1, m
deg_num(i) = 1
enddo
de_thr = thr_degen_tc
do i = 1, m-1
ei = e0(i)
! already considered in degen vectors
if(deg_num(i).eq.0) cycle
do j = i+1, m
ej = e0(j)
de = dabs(ei - ej)
if(de .lt. de_thr) then
deg_num(i) = deg_num(i) + 1
deg_num(j) = 0
endif
enddo
enddo
tot_deg = 0
do i = 1, m
if(deg_num(i).gt.1) then
print *, ' degen on', i, deg_num(i)
tot_deg = tot_deg + 1
endif
enddo
if(tot_deg .eq. 0) then
print *, ' no degen'
return
endif
! ---
do i = 1, m
mm = deg_num(i)
if(mm .gt. 1) then
allocate(L(n,mm), R(n,mm), C(n,mm))
do j = 1, mm
L(1:n,j) = L0(1:n,i+j-1)
R(1:n,j) = R0(1:n,i+j-1)
C(1:n,j) = C0(1:n,i+j-1)
enddo
! ---
! C.T x W0 x R
allocate(tmp(mm,n), Stmp(mm,mm))
call dgemm( 'T', 'N', mm, n, n, 1.d0 &
, C, size(C, 1), W0, size(W0, 1) &
, 0.d0, tmp, size(tmp, 1) )
call dgemm( 'N', 'N', mm, mm, n, 1.d0 &
, tmp, size(tmp, 1), R, size(R, 1) &
, 0.d0, Stmp, size(Stmp, 1) )
deallocate(C, tmp)
S = 0.d0
do k = 1, mm
do kk = 1, mm
S(kk,k) = Stmp(kk,k)
enddo
enddo
deallocate(Stmp)
!print*, " overlap bef"
!do k = 1, mm
! write(*, '(100(F16.10,X))') (S(k,kk), kk=1, mm)
!enddo
T = 0.d0
Snew = 0.d0
call maxovl(mm, mm, S, T, Snew)
!print*, " overlap aft"
!do k = 1, mm
! write(*, '(100(F16.10,X))') (Snew(k,kk), kk=1, mm)
!enddo
allocate(Ttmp(mm,mm))
Ttmp(1:mm,1:mm) = T(1:mm,1:mm)
allocate(Lnew(n,mm), Rnew(n,mm))
call dgemm( 'N', 'N', n, mm, mm, 1.d0 &
, R, size(R, 1), Ttmp(1,1), size(Ttmp, 1) &
, 0.d0, Rnew, size(Rnew, 1) )
call dgemm( 'N', 'N', n, mm, mm, 1.d0 &
, L, size(L, 1), Ttmp(1,1), size(Ttmp, 1) &
, 0.d0, Lnew, size(Lnew, 1) )
deallocate(L, R)
deallocate(Ttmp)
! ---
do j = 1, mm
L0(1:n,i+j-1) = Lnew(1:n,j)
R0(1:n,i+j-1) = Rnew(1:n,j)
enddo
deallocate(Lnew, Rnew)
endif
enddo
deallocate(S, Snew, T)
end subroutine rotate_degen_eigvec_to_maximize_overlap
! ---
subroutine fix_right_to_one()
implicit none
integer :: i, j, m, n, mm, tot_deg
double precision :: accu_d, accu_nd
double precision :: de_thr, ei, ej, de
integer, allocatable :: deg_num(:)
double precision, allocatable :: R0(:,:), L0(:,:), W(:,:), e0(:)
double precision, allocatable :: R(:,:), L(:,:), S(:,:), Stmp(:,:), tmp(:,:)
n = ao_num
m = mo_num
allocate(L0(n,m), R0(n,m), W(n,n), e0(m))
L0 = mo_l_coef
R0 = mo_r_coef
W = ao_overlap
print*, ' fock matrix diag elements'
do i = 1, m
e0(i) = Fock_matrix_tc_mo_tot(i,i)
print*, e0(i)
enddo
! ---
allocate( deg_num(m) )
do i = 1, m
deg_num(i) = 1
enddo
de_thr = 1d-6
do i = 1, m-1
ei = e0(i)
! already considered in degen vectors
if(deg_num(i).eq.0) cycle
do j = i+1, m
ej = e0(j)
de = dabs(ei - ej)
if(de .lt. de_thr) then
deg_num(i) = deg_num(i) + 1
deg_num(j) = 0
endif
enddo
enddo
deallocate(e0)
tot_deg = 0
do i = 1, m
if(deg_num(i).gt.1) then
print *, ' degen on', i, deg_num(i)
tot_deg = tot_deg + 1
endif
enddo
if(tot_deg .eq. 0) then
print *, ' no degen'
return
endif
! ---
do i = 1, m
mm = deg_num(i)
if(mm .gt. 1) then
allocate(L(n,mm), R(n,mm))
do j = 1, mm
L(1:n,j) = L0(1:n,i+j-1)
R(1:n,j) = R0(1:n,i+j-1)
enddo
! ---
call impose_weighted_orthog_svd(n, mm, W, R)
call impose_weighted_biorthog_qr(n, mm, thresh_biorthog_diag, thresh_biorthog_nondiag, R, W, L)
! ---
do j = 1, mm
L0(1:n,i+j-1) = L(1:n,j)
R0(1:n,i+j-1) = R(1:n,j)
enddo
deallocate(L, R)
endif
enddo
call check_weighted_biorthog_binormalize(n, m, L0, W, R0, thresh_biorthog_diag, thresh_biorthog_nondiag, .true.)
deallocate(W, deg_num)
mo_l_coef = L0
mo_r_coef = R0
deallocate(L0, R0)
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
print *, ' orbitals are rotated '
return
end subroutine fix_right_to_one
! ---

View File

@ -0,0 +1,359 @@
! ---
subroutine minimize_tc_orb_angles()
implicit none
logical :: good_angles
integer :: i
double precision :: thr_deg
good_angles = .False.
thr_deg = thr_degen_tc
call print_energy_and_mos()
print *, ' Minimizing the angles between the TC orbitals'
i = 1
do while (.not. good_angles)
print *, ' iteration = ', i
call routine_save_rotated_mos(thr_deg, good_angles)
thr_deg *= 10.d0
i += 1
if(i .gt. 100) then
print *, ' minimize_tc_orb_angles does not seem to converge ..'
print *, ' Something is weird in the tc orbitals ...'
print *, ' STOPPING'
stop
endif
enddo
print *, ' Converged ANGLES MINIMIZATION !!'
call print_angles_tc()
call print_energy_and_mos()
end
! ---
subroutine routine_save_rotated_mos(thr_deg, good_angles)
implicit none
double precision, intent(in) :: thr_deg
logical, intent(out) :: good_angles
integer :: i, j, k, n_degen_list, m, n, n_degen, ilast, ifirst
double precision :: max_angle, norm
integer, allocatable :: list_degen(:,:)
double precision, allocatable :: new_angles(:)
double precision, allocatable :: mo_r_coef_good(:,:), mo_l_coef_good(:,:)
double precision, allocatable :: mo_r_coef_new(:,:)
double precision, allocatable :: fock_diag(:),s_mat(:,:)
double precision, allocatable :: stmp(:,:), T(:,:), Snew(:,:), smat2(:,:)
double precision, allocatable :: mo_l_coef_tmp(:,:), mo_r_coef_tmp(:,:), mo_l_coef_new(:,:)
good_angles = .False.
allocate(mo_l_coef_good(ao_num, mo_num), mo_r_coef_good(ao_num,mo_num))
print *, ' ***************************************'
print *, ' ***************************************'
print *, ' THRESHOLD FOR DEGENERACIES ::: ', thr_deg
print *, ' ***************************************'
print *, ' ***************************************'
print *, ' Starting with the following TC energy gradient :', grad_non_hermit
mo_r_coef_good = mo_r_coef
mo_l_coef_good = mo_l_coef
allocate(mo_r_coef_new(ao_num, mo_num))
mo_r_coef_new = mo_r_coef
do i = 1, mo_num
norm = 1.d0/dsqrt(overlap_mo_r(i,i))
do j = 1, ao_num
mo_r_coef_new(j,i) *= norm
enddo
enddo
allocate(list_degen(mo_num,0:mo_num), s_mat(mo_num,mo_num), fock_diag(mo_num))
do i = 1, mo_num
fock_diag(i) = Fock_matrix_tc_mo_tot(i,i)
enddo
! compute the overlap between the left and rescaled right
call build_s_matrix(ao_num, mo_num, mo_r_coef_new, mo_r_coef_new, ao_overlap, s_mat)
! call give_degen(fock_diag,mo_num,thr_deg,list_degen,n_degen_list)
call give_degen_full_list(fock_diag, mo_num, thr_deg, list_degen, n_degen_list)
print *, ' fock_matrix_mo'
do i = 1, mo_num
print *, i, fock_diag(i), angle_left_right(i)
enddo
do i = 1, n_degen_list
! ifirst = list_degen(1,i)
! ilast = list_degen(2,i)
! n_degen = ilast - ifirst +1
n_degen = list_degen(i,0)
if(n_degen .eq. 1) cycle
allocate(stmp(n_degen,n_degen), smat2(n_degen,n_degen))
allocate(mo_r_coef_tmp(ao_num,n_degen), mo_l_coef_tmp(ao_num,n_degen), mo_l_coef_new(ao_num,n_degen))
allocate(T(n_degen,n_degen), Snew(n_degen,n_degen))
do j = 1, n_degen
mo_r_coef_tmp(1:ao_num,j) = mo_r_coef_new(1:ao_num,list_degen(i,j))
mo_l_coef_tmp(1:ao_num,j) = mo_l_coef(1:ao_num,list_degen(i,j))
enddo
! Orthogonalization of right functions
print *, ' Orthogonalization of RIGHT functions'
print *, ' ------------------------------------'
call orthog_functions(ao_num, n_degen, mo_r_coef_tmp, ao_overlap)
! Orthogonalization of left functions
print *, ' Orthogonalization of LEFT functions'
print *, ' ------------------------------------'
call orthog_functions(ao_num, n_degen, mo_l_coef_tmp, ao_overlap)
print *, ' Overlap left-right '
call build_s_matrix(ao_num, n_degen, mo_r_coef_tmp, mo_l_coef_tmp, ao_overlap, stmp)
do j = 1, n_degen
write(*,'(100(F8.4,X))') stmp(:,j)
enddo
call build_s_matrix(ao_num, n_degen, mo_l_coef_tmp, mo_l_coef_tmp, ao_overlap, stmp)
!print*,'LEFT/LEFT OVERLAP '
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
call build_s_matrix(ao_num, n_degen, mo_r_coef_tmp, mo_r_coef_tmp, ao_overlap, stmp)
!print*,'RIGHT/RIGHT OVERLAP '
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
if(maxovl_tc) then
T = 0.d0
Snew = 0.d0
call maxovl(n_degen, n_degen, stmp, T, Snew)
!print*,'overlap after'
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')Snew(:,j)
!enddo
call dgemm( 'N', 'N', ao_num, n_degen, n_degen, 1.d0 &
, mo_l_coef_tmp, size(mo_l_coef_tmp, 1), T(1,1), size(T, 1) &
, 0.d0, mo_l_coef_new, size(mo_l_coef_new, 1) )
call build_s_matrix(ao_num, n_degen, mo_l_coef_new, mo_r_coef_tmp, ao_overlap, stmp)
!print*,'Overlap test'
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
else
mo_l_coef_new = mo_l_coef_tmp
endif
call impose_weighted_biorthog_svd(ao_num, n_degen, ao_overlap, mo_l_coef_new, mo_r_coef_tmp)
!call build_s_matrix(ao_num, n_degen, mo_l_coef_new, mo_r_coef_tmp, ao_overlap, stmp)
!print*,'LAST OVERLAP '
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
!call build_s_matrix(ao_num, n_degen, mo_l_coef_new, mo_l_coef_new, ao_overlap, stmp)
!print*,'LEFT OVERLAP '
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
!call build_s_matrix(ao_num, n_degen, mo_r_coef_tmp, mo_r_coef_tmp, ao_overlap, stmp)
!print*,'RIGHT OVERLAP '
!do j = 1, n_degen
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
do j = 1, n_degen
!!! mo_l_coef_good(1:ao_num,j+ifirst-1) = mo_l_coef_new(1:ao_num,j)
!!! mo_r_coef_good(1:ao_num,j+ifirst-1) = mo_r_coef_tmp(1:ao_num,j)
mo_l_coef_good(1:ao_num,list_degen(i,j)) = mo_l_coef_new(1:ao_num,j)
mo_r_coef_good(1:ao_num,list_degen(i,j)) = mo_r_coef_tmp(1:ao_num,j)
enddo
deallocate(stmp, smat2)
deallocate(mo_r_coef_tmp, mo_l_coef_tmp, mo_l_coef_new)
deallocate(T, Snew)
enddo
!allocate(stmp(mo_num, mo_num))
!call build_s_matrix(ao_num, mo_num, mo_l_coef_good, mo_r_coef_good, ao_overlap, stmp)
!print*,'LEFT/RIGHT OVERLAP '
!do j = 1, mo_num
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
!call build_s_matrix(ao_num, mo_num, mo_l_coef_good, mo_l_coef_good, ao_overlap, stmp)
!print*,'LEFT/LEFT OVERLAP '
!do j = 1, mo_num
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
!call build_s_matrix(ao_num, mo_num, mo_r_coef_good, mo_r_coef_good, ao_overlap, stmp)
!print*,'RIGHT/RIGHT OVERLAP '
!do j = 1, mo_num
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
mo_r_coef = mo_r_coef_good
mo_l_coef = mo_l_coef_good
call ezfio_set_bi_ortho_mos_mo_l_coef(mo_l_coef)
call ezfio_set_bi_ortho_mos_mo_r_coef(mo_r_coef)
TOUCH mo_l_coef mo_r_coef
allocate(new_angles(mo_num))
new_angles(1:mo_num) = dabs(angle_left_right(1:mo_num))
max_angle = maxval(new_angles)
good_angles = max_angle.lt.45.d0
print *, ' max_angle = ', max_angle
end
! ---
subroutine build_s_matrix(m, n, C1, C2, overlap, smat)
implicit none
integer, intent(in) :: m, n
double precision, intent(in) :: C1(m,n), C2(m,n), overlap(m,m)
double precision, intent(out) :: smat(n,n)
integer :: i, j, k, l
double precision, allocatable :: S_tmp(:,:)
smat = 0.d0
!do i = 1, n
! do j = 1, n
! do k = 1, m
! do l = 1, m
! smat(i,j) += C1(k,i) * overlap(l,k) * C2(l,j)
! enddo
! enddo
! enddo
!enddo
! C1.T x overlap
allocate(S_tmp(n,m))
call dgemm( 'T', 'N', n, m, m, 1.d0 &
, C1, size(C1, 1), overlap, size(overlap, 1) &
, 0.d0, S_tmp, size(S_tmp, 1) )
! C1.T x overlap x C2
call dgemm( 'N', 'N', n, n, m, 1.d0 &
, S_tmp, size(S_tmp, 1), C2(1,1), size(C2, 1) &
, 0.d0, smat, size(smat, 1) )
deallocate(S_tmp)
end
! ---
subroutine orthog_functions(m, n, coef, overlap)
implicit none
integer, intent(in) :: m, n
double precision, intent(in) :: overlap(m,m)
double precision, intent(inout) :: coef(m,n)
double precision, allocatable :: stmp(:,:)
integer :: j, k
allocate(stmp(n,n))
call build_s_matrix(m, n, coef, coef, overlap, stmp)
! print*,'overlap before'
! do j = 1, n
! write(*,'(100(F16.10,X))')stmp(:,j)
! enddo
call impose_orthog_svd_overlap(m, n, coef, overlap)
call build_s_matrix(m, n, coef, coef, overlap, stmp)
do j = 1, n
! ---
! TODO: MANU check ici
!coef(1,:m) *= 1.d0/dsqrt(stmp(j,j))
do k = 1, m
coef(k,j) *= 1.d0/dsqrt(stmp(j,j))
enddo
! ---
enddo
call build_s_matrix(m, n, coef, coef, overlap, stmp)
!print*,'overlap after'
!do j = 1, n
! write(*,'(100(F16.10,X))')stmp(:,j)
!enddo
deallocate(stmp)
end
! ---
subroutine print_angles_tc()
implicit none
integer :: i, j
double precision :: left, right
print *, ' product of norms, angle between vectors'
do i = 1, mo_num
left = overlap_mo_l(i,i)
right = overlap_mo_r(i,i)
! print*,Fock_matrix_tc_mo_tot(i,i),left*right,angle_left_right(i)
print *, left*right, angle_left_right(i)
enddo
end
! ---
subroutine print_energy_and_mos()
implicit none
integer :: i
print *, ' '
print *, ' TC energy = ', TC_HF_energy
print *, ' TC SCF energy gradient = ', grad_non_hermit
print *, ' Max angle Left/right = ', max_angle_left_right
if(max_angle_left_right .lt. 45.d0) then
print *, ' Maximum angle BELOW 45 degrees, everthing is OK !'
else if(max_angle_left_right .gt. 45.d0 .and. max_angle_left_right .lt. 75.d0) then
print *, ' Maximum angle between 45 and 75 degrees, this is not the best for TC-CI calculations ...'
else if(max_angle_left_right .gt. 75.d0) then
print *, ' Maximum angle between ABOVE 75 degrees, YOU WILL CERTAINLY FIND TROUBLES IN TC-CI calculations ...'
endif
print *, ' Diag Fock elem, product of left/right norm, angle left/right '
do i = 1, mo_num
write(*, '(I3,X,100(F16.10,X))') i, Fock_matrix_tc_mo_tot(i,i), overlap_mo_l(i,i)*overlap_mo_r(i,i), angle_left_right(i)
enddo
end
! ---
subroutine sort_by_tc_fock
implicit none
integer, allocatable :: iorder(:)
double precision, allocatable :: mo_l_tmp(:,:), mo_r_tmp(:,:),fock(:)
allocate(iorder(mo_num),fock(mo_num),mo_l_tmp(ao_num, mo_num),mo_r_tmp(ao_num,mo_num))
integer :: i
mo_l_tmp = mo_l_coef
mo_r_tmp = mo_r_coef
do i = 1, mo_num
iorder(i) = i
fock(i) = Fock_matrix_tc_mo_tot(i,i)
enddo
call dsort(fock,iorder,mo_num)
do i = 1, mo_num
mo_l_coef(1:ao_num,i) = mo_l_tmp(1:ao_num,iorder(i))
mo_r_coef(1:ao_num,i) = mo_r_tmp(1:ao_num,iorder(i))
enddo
touch mo_l_coef mo_r_coef
end

View File

@ -0,0 +1,78 @@
! ---
program tc_petermann_factor
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
implicit none
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
call main()
end
! ---
subroutine main()
implicit none
integer :: i, j
double precision :: Pf_diag_av
double precision, allocatable :: Sl(:,:), Sr(:,:), Pf(:,:)
allocate(Sl(mo_num,mo_num), Sr(mo_num,mo_num), Pf(mo_num,mo_num))
call dgemm( "T", "N", mo_num, mo_num, ao_num, 1.d0 &
, mo_l_coef, size(mo_l_coef, 1), mo_l_coef, size(mo_l_coef, 1) &
, 0.d0, Sl, size(Sl, 1) )
print *, ''
print *, ' left-orthog matrix:'
do i = 1, mo_num
write(*,'(100(F8.4,X))') Sl(:,i)
enddo
call dgemm( "T", "N", mo_num, mo_num, ao_num, 1.d0 &
, mo_r_coef, size(mo_r_coef, 1), mo_r_coef, size(mo_r_coef, 1) &
, 0.d0, Sr, size(Sr, 1) )
print *, ''
print *, ' right-orthog matrix:'
do i = 1, mo_num
write(*,'(100(F8.4,X))') Sr(:,i)
enddo
print *, ''
print *, ' Petermann matrix:'
do i = 1, mo_num
do j = 1, mo_num
Pf(j,i) = Sl(j,i) * Sr(j,i)
enddo
write(*,'(100(F8.4,X))') Pf(:,i)
enddo
Pf_diag_av = 0.d0
do i = 1, mo_num
Pf_diag_av = Pf_diag_av + Pf(i,i)
enddo
Pf_diag_av = Pf_diag_av / dble(mo_num)
print *, ''
print *, ' mean of the diagonal Petermann factor = ', Pf_diag_av
deallocate(Sl, Sr, Pf)
return
end subroutine
! ---

75
src/tc_scf/tc_scf.irp.f Normal file
View File

@ -0,0 +1,75 @@
! ---
program tc_scf
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
implicit none
print *, 'starting ...'
my_grid_becke = .True.
my_n_pt_r_grid = 30
my_n_pt_a_grid = 50
! my_n_pt_r_grid = 10 ! small grid for quick debug
! my_n_pt_a_grid = 26 ! small grid for quick debug
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
PROVIDE mu_erf
print *, ' mu = ', mu_erf
PROVIDE j1b_type
print *, ' j1b_type = ', j1b_type
print *, j1b_pen
!call create_guess()
!call orthonormalize_mos()
PROVIDE tcscf_algorithm
if(tcscf_algorithm == 'DIIS') then
call rh_tcscf_diis()
elseif(tcscf_algorithm == 'Simple') then
call rh_tcscf_simple()
else
print *, ' not implemented yet', tcscf_algorithm
stop
endif
call minimize_tc_orb_angles()
call print_energy_and_mos()
end
! ---
subroutine create_guess()
implicit none
logical :: exists
PROVIDE ezfio_filename
!call ezfio_has_mo_basis_mo_coef(exists)
exists = .false.
if(.not.exists) then
mo_label = 'Guess'
if(mo_guess_type == "HCore") then
mo_coef = ao_ortho_lowdin_coef
call restore_symmetry(ao_num, mo_num, mo_coef, size(mo_coef, 1), 1.d-10)
TOUCH mo_coef
call mo_as_eigvectors_of_mo_matrix(mo_one_e_integrals, size(mo_one_e_integrals, 1), size(mo_one_e_integrals, 2), mo_label, 1, .false.)
call restore_symmetry(ao_num, mo_num, mo_coef, size(mo_coef, 1), 1.d-10)
SOFT_TOUCH mo_coef
elseif (mo_guess_type == "Huckel") then
call huckel_guess
else
print *, 'Unrecognized MO guess type : '//mo_guess_type
stop 1
endif
SOFT_TOUCH mo_label
endif
end subroutine create_guess
! ---

View File

@ -0,0 +1,37 @@
! ---
BEGIN_PROVIDER [ double precision, TCSCF_density_matrix_ao_beta, (ao_num, ao_num) ]
implicit none
if(bi_ortho) then
PROVIDE mo_l_coef mo_r_coef
TCSCF_density_matrix_ao_beta = TCSCF_bi_ort_dm_ao_beta
else
TCSCF_density_matrix_ao_beta = SCF_density_matrix_ao_beta
endif
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, TCSCF_density_matrix_ao_alpha, (ao_num, ao_num) ]
implicit none
if(bi_ortho) then
PROVIDE mo_l_coef mo_r_coef
TCSCF_density_matrix_ao_alpha = TCSCF_bi_ort_dm_ao_alpha
else
TCSCF_density_matrix_ao_alpha = SCF_density_matrix_ao_alpha
endif
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, TCSCF_density_matrix_ao_tot, (ao_num, ao_num) ]
implicit none
TCSCF_density_matrix_ao_tot = TCSCF_density_matrix_ao_beta + TCSCF_density_matrix_ao_alpha
END_PROVIDER

View File

@ -0,0 +1,34 @@
BEGIN_PROVIDER [ double precision, TC_HF_energy]
&BEGIN_PROVIDER [ double precision, TC_HF_one_e_energy]
&BEGIN_PROVIDER [ double precision, TC_HF_two_e_energy]
BEGIN_DOC
! TC Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components.
END_DOC
implicit none
integer :: i, j
PROVIDE mo_l_coef mo_r_coef
TC_HF_energy = nuclear_repulsion
TC_HF_one_e_energy = 0.d0
TC_HF_two_e_energy = 0.d0
do j = 1, ao_num
do i = 1, ao_num
TC_HF_two_e_energy += 0.5d0 * ( two_e_tc_non_hermit_integral_alpha(i,j) * TCSCF_density_matrix_ao_alpha(i,j) &
+ two_e_tc_non_hermit_integral_beta (i,j) * TCSCF_density_matrix_ao_beta (i,j) )
TC_HF_one_e_energy += ao_one_e_integrals_tc_tot(i,j) &
* (TCSCF_density_matrix_ao_alpha(i,j) + TCSCF_density_matrix_ao_beta (i,j) )
enddo
enddo
TC_HF_energy += TC_HF_one_e_energy + TC_HF_two_e_energy
TC_HF_energy += diag_three_elem_hf
END_PROVIDER
! ---

View File

@ -0,0 +1,43 @@
! ---
subroutine LTxSxR(n, m, L, S, R, C)
implicit none
integer, intent(in) :: n, m
double precision, intent(in) :: L(n,m), S(n,n), R(n,m)
double precision, intent(out) :: C(m,m)
integer :: i, j
double precision :: accu_d, accu_nd
double precision, allocatable :: tmp(:,:)
! L.T x S x R
allocate(tmp(m,n))
call dgemm( 'T', 'N', m, n, n, 1.d0 &
, L, size(L, 1), S, size(S, 1) &
, 0.d0, tmp, size(tmp, 1) )
call dgemm( 'N', 'N', m, m, n, 1.d0 &
, tmp, size(tmp, 1), R, size(R, 1) &
, 0.d0, C, size(C, 1) )
deallocate(tmp)
accu_d = 0.d0
accu_nd = 0.d0
do i = 1, m
do j = 1, m
if(j.eq.i) then
accu_d += dabs(C(j,i))
else
accu_nd += C(j,i) * C(j,i)
endif
enddo
enddo
accu_nd = dsqrt(accu_nd)
print*, ' accu_d = ', accu_d
print*, ' accu_nd = ', accu_nd
end subroutine LTxR
! ---

13
src/tc_scf/test_Ne.sh Executable file
View File

@ -0,0 +1,13 @@
QP_ROOT=/home/eginer/new_qp2/qp2
source ${QP_ROOT}/quantum_package.rc
echo Ne > Ne.xyz
echo $QP_ROOT
qp create_ezfio -b cc-pcvdz Ne.xyz
qp run scf
qp set tc_keywords bi_ortho True
qp set ao_two_e_erf_ints mu_erf 0.87
qp set tc_keywords j1b_pen [1.5]
qp set tc_keywords j1b_type 3
qp run tc_scf | tee Ne.ezfio.tc_scf.out
grep "TC energy =" Ne.ezfio.tc_scf.out | tail -1
eref=-128.552134

1003
src/tc_scf/test_int.irp.f Normal file

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,174 @@
subroutine contrib_3e_diag_sss(i,j,k,integral)
implicit none
integer, intent(in) :: i,j,k
BEGIN_DOC
! returns the pure same spin contribution to diagonal matrix element of 3e term
END_DOC
double precision, intent(out) :: integral
double precision :: direct_int, exch_13_int, exch_23_int, exch_12_int, c_3_int, c_minus_3_int
call give_integrals_3_body_bi_ort(i, k, j, i, k, j, direct_int )!!! < i k j | i k j >
call give_integrals_3_body_bi_ort(i, k, j, j, i, k, c_3_int) ! < i k j | j i k >
call give_integrals_3_body_bi_ort(i, k, j, k, j, i, c_minus_3_int)! < i k j | k j i >
integral = direct_int + c_3_int + c_minus_3_int
! negative terms :: exchange contrib
call give_integrals_3_body_bi_ort(i, k, j, j, k, i, exch_13_int)!!! < i k j | j k i > : E_13
call give_integrals_3_body_bi_ort(i, k, j, i, j, k, exch_23_int)!!! < i k j | i j k > : E_23
call give_integrals_3_body_bi_ort(i, k, j, k, i, j, exch_12_int)!!! < i k j | k i j > : E_12
integral += - exch_13_int - exch_23_int - exch_12_int
integral = -integral
end
subroutine contrib_3e_diag_soo(i,j,k,integral)
implicit none
integer, intent(in) :: i,j,k
BEGIN_DOC
! returns the pure same spin contribution to diagonal matrix element of 3e term
END_DOC
double precision, intent(out) :: integral
double precision :: direct_int, exch_23_int
call give_integrals_3_body_bi_ort(i, k, j, i, k, j, direct_int) ! < i k j | i k j >
call give_integrals_3_body_bi_ort(i, k, j, i, j, k, exch_23_int)! < i k j | i j k > : E_23
integral = direct_int - exch_23_int
integral = -integral
end
subroutine give_aaa_contrib_bis(integral_aaa)
implicit none
double precision, intent(out) :: integral_aaa
double precision :: integral
integer :: i,j,k
integral_aaa = 0.d0
do i = 1, elec_alpha_num
do j = i+1, elec_alpha_num
do k = j+1, elec_alpha_num
call contrib_3e_diag_sss(i,j,k,integral)
integral_aaa += integral
enddo
enddo
enddo
end
subroutine give_aaa_contrib(integral_aaa)
implicit none
double precision, intent(out) :: integral_aaa
double precision :: integral
integer :: i,j,k
integral_aaa = 0.d0
do i = 1, elec_alpha_num
do j = 1, elec_alpha_num
do k = 1, elec_alpha_num
call contrib_3e_diag_sss(i,j,k,integral)
integral_aaa += integral
enddo
enddo
enddo
integral_aaa *= 1.d0/6.d0
end
subroutine give_aab_contrib(integral_aab)
implicit none
double precision, intent(out) :: integral_aab
double precision :: integral
integer :: i,j,k
integral_aab = 0.d0
do i = 1, elec_beta_num
do j = 1, elec_alpha_num
do k = 1, elec_alpha_num
call contrib_3e_diag_soo(i,j,k,integral)
integral_aab += integral
enddo
enddo
enddo
integral_aab *= 0.5d0
end
subroutine give_aab_contrib_bis(integral_aab)
implicit none
double precision, intent(out) :: integral_aab
double precision :: integral
integer :: i,j,k
integral_aab = 0.d0
do i = 1, elec_beta_num
do j = 1, elec_alpha_num
do k = j+1, elec_alpha_num
call contrib_3e_diag_soo(i,j,k,integral)
integral_aab += integral
enddo
enddo
enddo
end
subroutine give_abb_contrib(integral_abb)
implicit none
double precision, intent(out) :: integral_abb
double precision :: integral
integer :: i,j,k
integral_abb = 0.d0
do i = 1, elec_alpha_num
do j = 1, elec_beta_num
do k = 1, elec_beta_num
call contrib_3e_diag_soo(i,j,k,integral)
integral_abb += integral
enddo
enddo
enddo
integral_abb *= 0.5d0
end
subroutine give_abb_contrib_bis(integral_abb)
implicit none
double precision, intent(out) :: integral_abb
double precision :: integral
integer :: i,j,k
integral_abb = 0.d0
do i = 1, elec_alpha_num
do j = 1, elec_beta_num
do k = j+1, elec_beta_num
call contrib_3e_diag_soo(i,j,k,integral)
integral_abb += integral
enddo
enddo
enddo
end
subroutine give_bbb_contrib_bis(integral_bbb)
implicit none
double precision, intent(out) :: integral_bbb
double precision :: integral
integer :: i,j,k
integral_bbb = 0.d0
do i = 1, elec_beta_num
do j = i+1, elec_beta_num
do k = j+1, elec_beta_num
call contrib_3e_diag_sss(i,j,k,integral)
integral_bbb += integral
enddo
enddo
enddo
end
subroutine give_bbb_contrib(integral_bbb)
implicit none
double precision, intent(out) :: integral_bbb
double precision :: integral
integer :: i,j,k
integral_bbb = 0.d0
do i = 1, elec_beta_num
do j = 1, elec_beta_num
do k = 1, elec_beta_num
call contrib_3e_diag_sss(i,j,k,integral)
integral_bbb += integral
enddo
enddo
enddo
integral_bbb *= 1.d0/6.d0
end

View File

@ -0,0 +1,218 @@
subroutine diag_mat_per_fock_degen(fock_diag, mat_ref, n, thr_d, thr_nd, thr_deg, leigvec, reigvec, eigval)
BEGIN_DOC
!
! subroutine that diagonalizes a matrix mat_ref BY BLOCK
!
! the blocks are defined by the elements having the SAME DEGENERACIES in the entries "fock_diag"
!
! examples : all elements having degeneracy 1 in fock_diag (i.e. not being degenerated) will be treated together
!
! : all elements having degeneracy 2 in fock_diag (i.e. two elements are equal) will be treated together
!
! : all elements having degeneracy 3 in fock_diag (i.e. two elements are equal) will be treated together
!
! etc... the advantage is to guarentee no spurious mixing because of numerical problems.
!
END_DOC
implicit none
integer, intent(in) :: n
double precision, intent(in) :: fock_diag(n), mat_ref(n,n), thr_d, thr_nd, thr_deg
double precision, intent(out) :: leigvec(n,n), reigvec(n,n), eigval(n)
integer :: n_degen_list, n_degen,size_mat, i, j, k, icount, m, index_degen
integer :: ii, jj, i_good, j_good, n_real
integer :: icount_eigval
logical, allocatable :: is_ok(:)
integer, allocatable :: list_degen(:,:), list_same_degen(:)
integer, allocatable :: iorder(:), list_degen_sorted(:)
double precision, allocatable :: leigvec_unsrtd(:,:), reigvec_unsrtd(:,:), eigval_unsrtd(:)
double precision, allocatable :: mat_tmp(:,:), eigval_tmp(:), leigvec_tmp(:,:), reigvec_tmp(:,:)
allocate(leigvec_unsrtd(n,n), reigvec_unsrtd(n,n), eigval_unsrtd(n))
leigvec_unsrtd = 0.d0
reigvec_unsrtd = 0.d0
eigval_unsrtd = 0.d0
! obtain degeneracies
allocate(list_degen(n,0:n))
call give_degen_full_list(fock_diag, n, thr_deg, list_degen, n_degen_list)
allocate(iorder(n_degen_list), list_degen_sorted(n_degen_list))
do i = 1, n_degen_list
n_degen = list_degen(i,0)
list_degen_sorted(i) = n_degen
iorder(i) = i
enddo
! sort by number of degeneracies
call isort(list_degen_sorted, iorder, n_degen_list)
allocate(is_ok(n_degen_list))
is_ok = .True.
icount_eigval = 0
! loop over degeneracies
do i = 1, n_degen_list
if(.not.is_ok(i)) cycle
is_ok(i) = .False.
n_degen = list_degen_sorted(i)
print *, ' diagonalizing for n_degen = ', n_degen
k = 1
! group all the entries having the same degeneracies
!! do while (list_degen_sorted(i+k)==n_degen)
do m = i+1, n_degen_list
if(list_degen_sorted(m)==n_degen) then
is_ok(i+k) = .False.
k += 1
endif
enddo
print *, ' number of identical degeneracies = ', k
size_mat = k*n_degen
print *, ' size_mat = ', size_mat
allocate(mat_tmp(size_mat,size_mat), list_same_degen(size_mat))
allocate(eigval_tmp(size_mat), leigvec_tmp(size_mat,size_mat), reigvec_tmp(size_mat,size_mat))
! group all the elements sharing the same degeneracy
icount = 0
do j = 1, k ! jth set of degeneracy
index_degen = iorder(i+j-1)
do m = 1, n_degen
icount += 1
list_same_degen(icount) = list_degen(index_degen,m)
enddo
enddo
print *, ' list of elements '
do icount = 1, size_mat
print *, icount, list_same_degen(icount)
enddo
! you copy subset of matrix elements having all the same degeneracy in mat_tmp
do ii = 1, size_mat
i_good = list_same_degen(ii)
do jj = 1, size_mat
j_good = list_same_degen(jj)
mat_tmp(jj,ii) = mat_ref(j_good,i_good)
enddo
enddo
call non_hrmt_bieig( size_mat, mat_tmp, thr_d, thr_nd &
, leigvec_tmp, reigvec_tmp &
, n_real, eigval_tmp )
do ii = 1, size_mat
icount_eigval += 1
eigval_unsrtd(icount_eigval) = eigval_tmp(ii) ! copy eigenvalues
do jj = 1, size_mat ! copy the eigenvectors
j_good = list_same_degen(jj)
leigvec_unsrtd(j_good,icount_eigval) = leigvec_tmp(jj,ii)
reigvec_unsrtd(j_good,icount_eigval) = reigvec_tmp(jj,ii)
enddo
enddo
deallocate(mat_tmp, list_same_degen)
deallocate(eigval_tmp, leigvec_tmp, reigvec_tmp)
enddo
if(icount_eigval .ne. n) then
print *, ' pb !! (icount_eigval.ne.n)'
print *, ' icount_eigval,n', icount_eigval, n
stop
endif
deallocate(iorder)
allocate(iorder(n))
do i = 1, n
iorder(i) = i
enddo
call dsort(eigval_unsrtd, iorder, n)
do i = 1, n
print*,'sorted eigenvalues '
i_good = iorder(i)
eigval(i) = eigval_unsrtd(i)
print*,'i,eigval(i) = ',i,eigval(i)
do j = 1, n
leigvec(j,i) = leigvec_unsrtd(j,i_good)
reigvec(j,i) = reigvec_unsrtd(j,i_good)
enddo
enddo
deallocate(leigvec_unsrtd, reigvec_unsrtd, eigval_unsrtd)
deallocate(list_degen)
deallocate(iorder, list_degen_sorted)
deallocate(is_ok)
end
! ---
subroutine give_degen_full_list(A, n, thr, list_degen, n_degen_list)
BEGIN_DOC
! you enter with an array A(n) and spits out all the elements degenerated up to thr
!
! the elements of A(n) DON'T HAVE TO BE SORTED IN THE ENTRANCE: TOTALLY GENERAL
!
! list_degen(i,0) = number of degenerate entries
!
! list_degen(i,1) = index of the first degenerate entry
!
! list_degen(i,2:list_degen(i,0)) = list of all other dengenerate entries
!
! if list_degen(i,0) == 1 it means that there is no degeneracy for that element
END_DOC
implicit none
double precision, intent(in) :: A(n)
double precision, intent(in) :: thr
integer, intent(in) :: n
integer, intent(out) :: list_degen(n,0:n), n_degen_list
integer :: i, j, icount, icheck
logical, allocatable :: is_ok(:)
allocate(is_ok(n))
n_degen_list = 0
is_ok = .True.
do i = 1, n
if(.not.is_ok(i)) cycle
n_degen_list +=1
is_ok(i) = .False.
list_degen(n_degen_list,1) = i
icount = 1
do j = i+1, n
if(dabs(A(i)-A(j)).lt.thr.and.is_ok(j)) then
is_ok(j) = .False.
icount += 1
list_degen(n_degen_list,icount) = j
endif
enddo
list_degen(n_degen_list,0) = icount
enddo
icheck = 0
do i = 1, n_degen_list
icheck += list_degen(i,0)
enddo
if(icheck.ne.n)then
print *, ' pb ! :: icheck.ne.n'
print *, icheck, n
stop
endif
end
! ---

327
src/utils/loc.f Normal file
View File

@ -0,0 +1,327 @@
c************************************************************************
subroutine maxovl(n,m,s,t,w)
C
C This subprogram contains an iterative procedure to find the
C unitary transformation of a set of n vectors which maximizes
C the sum of their square overlaps with a set of m reference
C vectors (m.le.n)
C
C S: overlap matrix <ref|vec>
C T: rotation matrix
C W: new overlap matrix
C
C
implicit real*8(a-h,o-y),logical*1(z)
! parameter (id1=700)
! dimension s(id1,id1),t(id1,id1),w(id1,id1)
double precision, intent(inout) :: s(n,n)
double precision, intent(out) :: t(n,n),w(n,n)
data small/1.d-6/
zprt=.true.
niter=1000000
conv=1.d-12
C niter=1000000
C conv=1.d-6
write (6,5) n,m,conv
5 format (//5x,'Unitary transformation of',i3,' vectors'/
* 5x,'following the principle of maximum overlap with a set of',
* i3,' reference vectors'/5x,'required convergence on rotation ',
* 'angle =',f13.10///5x,'Starting overlap matrix'/)
do i=1,m
write (6,145) i
write (6,150) (s(i,j),j=1,n)
end do
8 mm=m-1
if (m.lt.n) mm=m
iter=0
do j=1,n
do i=1,n
t(i,j)=0.d0
end do
do i=1,m
w(i,j)=s(i,j)
enddo
t(j,j)=1.d0
enddo
sum=0.d0
do i=1,m
sum=sum+s(i,i)*s(i,i)
end do
sum=sum/m
if (zprt) write (6,12) sum
12 format (//5x,'Average square overlap =',f10.6)
if (n.eq.1) goto 100
last=n
j=1
21 if (j.ge.last) goto 30
sum=0.d0
do i=1,n
sum=sum+s(i,j)*s(i,j)
enddo
if (sum.gt.small) goto 28
do i=1,n
sij=s(i,j)
s(i,j)=-s(i,last)
s(i,last)=sij
tij=t(i,j)
t(i,j)=-t(i,last)
t(i,last)=tij
end do
last=last-1
goto 21
28 j=j+1
goto 21
30 iter=iter+1
imax=0
jmax=0
dmax=0.d0
amax=0.d0
do 60 i=1,mm
ip=i+1
do 50 j=ip,n
a=s(i,j)*s(i,j)-s(i,i)*s(i,i)
b=-s(i,i)*s(i,j)
if (j.gt.m) goto 31
a=a+s(j,i)*s(j,i)-s(j,j)*s(j,j)
b=b+s(j,i)*s(j,j)
31 b=b+b
if (a.eq.0.d0) goto 32
ba=b/a
if (dabs(ba).gt.small) goto 32
if (a.gt.0.d0) goto 33
tang=-0.5d0*ba
cosine=1.d0/dsqrt(1.d0+tang*tang)
sine=tang*cosine
goto 34
32 tang=0.d0
if (b.ne.0.d0) tang=(a+dsqrt(a*a+b*b))/b
cosine=1.d0/dsqrt(1.d0+tang*tang)
sine=tang*cosine
goto 34
33 cosine=0.d0
sine=1.d0
34 delta=sine*(a*sine+b*cosine)
if (zprt.and.delta.lt.0.d0) write (6,71) i,j,a,b,sine,cosine,delta
do k=1,m
p=s(k,i)*cosine-s(k,j)*sine
q=s(k,i)*sine+s(k,j)*cosine
s(k,i)=p
s(k,j)=q
enddo
do k=1,n
p=t(k,i)*cosine-t(k,j)*sine
q=t(k,i)*sine+t(k,j)*cosine
t(k,i)=p
t(k,j)=q
enddo
45 d=dabs(sine)
if (d.le.amax) goto 50
imax=i
jmax=j
amax=d
dmax=delta
50 continue
60 continue
if (zprt) write (6,70) iter,amax,imax,jmax,dmax
70 format (' iter=',i4,' largest rotation=',f12.8,
* ', vectors',i3,' and',i3,', incr. of diag. squares=',g12.5)
71 format (' i,j,a,b,sin,cos,delta =',2i3,5f10.5)
if (amax.lt.conv) goto 100
if (iter.lt.niter) goto 30
write (6,80)
write (6,*) 'niter=',niter
80 format (//5x,'*** maximum number of cycles exceeded ',
* 'in subroutine maxovl ***'//)
stop
100 continue
do j=1,n
if (s(j,j).gt.0.d0) cycle
do i=1,m
s(i,j)=-s(i,j)
enddo
do i=1,n
t(i,j)=-t(i,j)
enddo
enddo
sum=0.d0
do i=1,m
sum=sum+s(i,i)*s(i,i)
enddo
sum=sum/m
do i=1,m
do j=1,n
sw=s(i,j)
s(i,j)=w(i,j)
w(i,j)=sw
enddo
enddo
if (.not.zprt) return
write (6,12) sum
write (6,130)
130 format (//5x,'transformation matrix')
do i=1,n
write (6,145) i
write (6,150) (t(i,j),j=1,n)
enddo
145 format (i8)
150 format (2x,10f12.8)
write (6,160)
160 format (//5x,'new overlap matrix'/)
do i=1,m
write (6,145) i
write (6,150) (w(i,j),j=1,n)
enddo
return
end
c************************************************************************
subroutine maxovl_no_print(n,m,s,t,w)
C
C This subprogram contains an iterative procedure to find the
C unitary transformation of a set of n vectors which maximizes
C the sum of their square overlaps with a set of m reference
C vectors (m.le.n)
C
C S: overlap matrix <ref|vec>
C T: rotation matrix
C W: new overlap matrix
C
C
implicit real*8(a-h,o-y),logical*1(z)
parameter (id1=300)
dimension s(id1,id1),t(id1,id1),w(id1,id1)
data small/1.d-6/
zprt=.false.
niter=1000000
conv=1.d-8
C niter=1000000
C conv=1.d-6
8 mm=m-1
if (m.lt.n) mm=m
iter=0
do j=1,n
do i=1,n
t(i,j)=0.d0
enddo
do i=1,m
w(i,j)=s(i,j)
enddo
t(j,j)=1.d0
enddo
sum=0.d0
do i=1,m
sum=sum+s(i,i)*s(i,i)
enddo
sum=sum/m
12 format (//5x,'Average square overlap =',f10.6)
if (n.eq.1) goto 100
last=n
j=1
21 if (j.ge.last) goto 30
sum=0.d0
do i=1,n
sum=sum+s(i,j)*s(i,j)
enddo
if (sum.gt.small) goto 28
do i=1,n
sij=s(i,j)
s(i,j)=-s(i,last)
s(i,last)=sij
tij=t(i,j)
t(i,j)=-t(i,last)
t(i,last)=tij
end do
last=last-1
goto 21
28 j=j+1
goto 21
30 iter=iter+1
imax=0
jmax=0
dmax=0.d0
amax=0.d0
do i=1,mm
ip=i+1
do j=ip,n
a=s(i,j)*s(i,j)-s(i,i)*s(i,i)
b=-s(i,i)*s(i,j)
if (j.gt.m) goto 31
a=a+s(j,i)*s(j,i)-s(j,j)*s(j,j)
b=b+s(j,i)*s(j,j)
31 b=b+b
if (a.eq.0.d0) goto 32
ba=b/a
if (dabs(ba).gt.small) goto 32
if (a.gt.0.d0) goto 33
tang=-0.5d0*ba
cosine=1.d0/dsqrt(1.d0+tang*tang)
sine=tang*cosine
goto 34
32 tang=0.d0
if (b.ne.0.d0) tang=(a+dsqrt(a*a+b*b))/b
cosine=1.d0/dsqrt(1.d0+tang*tang)
sine=tang*cosine
goto 34
33 cosine=0.d0
sine=1.d0
34 delta=sine*(a*sine+b*cosine)
do k=1,m
p=s(k,i)*cosine-s(k,j)*sine
q=s(k,i)*sine+s(k,j)*cosine
s(k,i)=p
s(k,j)=q
enddo
do k=1,n
p=t(k,i)*cosine-t(k,j)*sine
q=t(k,i)*sine+t(k,j)*cosine
t(k,i)=p
t(k,j)=q
enddo
45 d=dabs(sine)
if (d.le.amax) goto 50
imax=i
jmax=j
amax=d
dmax=delta
50 continue
end do
end do
70 format (' iter=',i4,' largest rotation=',f12.8,
* ', vectors',i3,' and',i3,', incr. of diag. squares=',g12.5)
71 format (' i,j,a,b,sin,cos,delta =',2i3,5f10.5)
if (amax.lt.conv) goto 100
if (iter.lt.niter) goto 30
80 format (//5x,'*** maximum number of cycles exceeded ',
* 'in subroutine maxovl ***'//)
stop
100 continue
do j=1,n
if (s(j,j).gt.0.d0) cycle
do i=1,m
s(i,j)=-s(i,j)
enddo
do i=1,n
t(i,j)=-t(i,j)
enddo
enddo
sum=0.d0
do i=1,m
sum=sum+s(i,i)*s(i,i)
enddo
sum=sum/m
do i=1,m
do j=1,n
sw=s(i,j)
s(i,j)=w(i,j)
w(i,j)=sw
enddo
enddo
return
end