9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-04-25 17:54:44 +02:00

renamed in mo_coef mo_cart_coef in localization_pipek_sub.irp.f

This commit is contained in:
eginer 2025-04-12 14:31:50 +02:00
parent 95e8c805b6
commit a29471dd43

View File

@ -26,12 +26,12 @@ subroutine grad_pipek(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gra
j = tmp_list(tmp_j)
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
do rho = 1, ao_num ! loop over all the AOs
do rho = 1, ao_cart_num ! loop over all the AOs
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
mu = nucl_aos(a,b) ! AO centered on atom a
tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_cart_coef(rho,i) * ao_cart_overlap(rho,mu) * mo_cart_coef(mu,j) &
+ mo_cart_coef(mu,i) * ao_cart_overlap(mu,rho) * mo_cart_coef(rho,j))
enddo
enddo
@ -112,12 +112,12 @@ end subroutine grad_pipek
! | tmp_int(tmp_list_size,tmp_list_size) | | Temporary array to store the integrals |
! | tmp_accu(tmp_list_size,tmp_list_size) | | Temporary array to store a matrix |
! | | | product and compute tmp_int |
! | CS(tmp_list_size,ao_num) | | Array to store the result of mo_coef * ao_overlap |
! | tmp_mo_coef(ao_num,tmp_list_size) | | Array to store just the useful MO coefficients |
! | CS(tmp_list_size,ao_cart_num) | | Array to store the result of mo_cart_coef * ao_cart_overlap |
! | tmp_mo_cart_coef(ao_cart_num,tmp_list_size) | | Array to store just the useful MO coefficients |
! | | | depending of the mo_class |
! | tmp_mo_coef2(nucl_n_aos(a),tmp_list_size) | | Array to store just the useful MO coefficients |
! | tmp_mo_cart_coef2(nucl_n_aos(a),tmp_list_size) | | Array to store just the useful MO coefficients |
! | | | depending of the nuclei |
! | tmp_CS(tmp_list_size,nucl_n_aos(a)) | | Array to store just the useful mo_coef * ao_overlap |
! | tmp_CS(tmp_list_size,nucl_n_aos(a)) | | Array to store just the useful mo_cart_coef * ao_cart_overlap |
! | | | values depending of the nuclei |
! | a | | index to loop over the nuclei |
! | b | | index to loop over the AOs which belongs to the nuclei a |
@ -135,7 +135,7 @@ subroutine gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gr
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
double precision, allocatable :: m_grad(:,:), tmp_int(:,:), CS(:,:), tmp_mo_coef(:,:), tmp_mo_coef2(:,:),tmp_accu(:,:),tmp_CS(:,:)
double precision, allocatable :: m_grad(:,:), tmp_int(:,:), CS(:,:), tmp_mo_cart_coef(:,:), tmp_mo_cart_coef2(:,:),tmp_accu(:,:),tmp_CS(:,:)
integer :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho
double precision :: t1,t2,t3
@ -146,20 +146,20 @@ subroutine gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gr
! Allocation
allocate(m_grad(tmp_list_size, tmp_list_size), tmp_int(tmp_list_size, tmp_list_size),tmp_accu(tmp_list_size, tmp_list_size))
allocate(CS(tmp_list_size,ao_num),tmp_mo_coef(ao_num,tmp_list_size))
allocate(CS(tmp_list_size,ao_cart_num),tmp_mo_cart_coef(ao_cart_num,tmp_list_size))
! submatrix of the mo_coef
! submatrix of the mo_cart_coef
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
do j = 1, ao_num
do j = 1, ao_cart_num
tmp_mo_coef(j,tmp_i) = mo_coef(j,i)
tmp_mo_cart_coef(j,tmp_i) = mo_cart_coef(j,i)
enddo
enddo
call dgemm('T','N',tmp_list_size,ao_num,ao_num,1d0,tmp_mo_coef,size(tmp_mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
call dgemm('T','N',tmp_list_size,ao_cart_num,ao_cart_num,1d0,tmp_mo_cart_coef,size(tmp_mo_cart_coef,1),ao_cart_overlap,size(ao_cart_overlap,1),0d0,CS,size(CS,1))
m_grad = 0d0
@ -171,22 +171,22 @@ subroutine gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gr
! do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
! mu = nucl_aos(a,b)
! tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (CS(tmp_i,mu) * tmp_mo_coef(mu,tmp_j) + tmp_mo_coef(mu,tmp_i) * CS(tmp_j,mu))
! tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (CS(tmp_i,mu) * tmp_mo_cart_coef(mu,tmp_j) + tmp_mo_cart_coef(mu,tmp_i) * CS(tmp_j,mu))
! ! (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
! !+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
! ! (mo_cart_coef(rho,i) * ao_cart_overlap(rho,mu) * mo_cart_coef(mu,j) &
! !+ mo_cart_coef(mu,i) * ao_cart_overlap(mu,rho) * mo_cart_coef(rho,j))
! enddo
! enddo
!enddo
allocate(tmp_mo_coef2(nucl_n_aos(a),tmp_list_size),tmp_CS(tmp_list_size,nucl_n_aos(a)))
allocate(tmp_mo_cart_coef2(nucl_n_aos(a),tmp_list_size),tmp_CS(tmp_list_size,nucl_n_aos(a)))
do tmp_i = 1, tmp_list_size
do b = 1, nucl_n_aos(a)
mu = nucl_aos(a,b)
tmp_mo_coef2(b,tmp_i) = tmp_mo_coef(mu,tmp_i)
tmp_mo_cart_coef2(b,tmp_i) = tmp_mo_cart_coef(mu,tmp_i)
enddo
enddo
@ -200,7 +200,7 @@ subroutine gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gr
enddo
enddo
call dgemm('N','N',tmp_list_size,tmp_list_size,nucl_n_aos(a),1d0,tmp_CS,size(tmp_CS,1),tmp_mo_coef2,size(tmp_mo_coef2,1),0d0,tmp_accu,size(tmp_accu,1))
call dgemm('N','N',tmp_list_size,tmp_list_size,nucl_n_aos(a),1d0,tmp_CS,size(tmp_CS,1),tmp_mo_cart_coef2,size(tmp_mo_cart_coef2,1),0d0,tmp_accu,size(tmp_accu,1))
do tmp_j = 1, tmp_list_size
do tmp_i = 1, tmp_list_size
@ -210,7 +210,7 @@ subroutine gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gr
enddo
enddo
deallocate(tmp_mo_coef2,tmp_CS)
deallocate(tmp_mo_cart_coef2,tmp_CS)
do tmp_j = 1, tmp_list_size
do tmp_i = 1, tmp_list_size
@ -247,7 +247,7 @@ subroutine gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gr
print*, 'Norm of the gradient:', norm_grad
! Deallocation
deallocate(m_grad,tmp_int,CS,tmp_mo_coef)
deallocate(m_grad,tmp_int,CS,tmp_mo_cart_coef)
call wall_time(t2)
t3 = t2 - t1
@ -285,12 +285,12 @@ subroutine hess_pipek(tmp_n, tmp_list_size, tmp_list, H)
j = tmp_list(tmp_j)
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
do rho = 1, ao_num
do rho = 1, ao_cart_num
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
mu = nucl_aos(a,b)
tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_cart_coef(rho,i) * ao_cart_overlap(rho,mu) * mo_cart_coef(mu,j) &
+ mo_cart_coef(mu,i) * ao_cart_overlap(mu,rho) * mo_cart_coef(rho,j))
enddo
enddo
@ -348,7 +348,7 @@ subroutine hessian_PM(tmp_n, tmp_list_size, tmp_list, H)
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: H(tmp_n)
double precision, allocatable :: beta(:,:),tmp_int(:,:),CS(:,:),tmp_mo_coef(:,:),tmp_mo_coef2(:,:),tmp_accu(:,:),tmp_CS(:,:)
double precision, allocatable :: beta(:,:),tmp_int(:,:),CS(:,:),tmp_mo_cart_coef(:,:),tmp_mo_cart_coef2(:,:),tmp_accu(:,:),tmp_CS(:,:)
integer :: i,j,tmp_k,tmp_i, tmp_j, a,b,rho,mu
double precision :: max_elem, t1,t2,t3
@ -359,20 +359,20 @@ subroutine hessian_PM(tmp_n, tmp_list_size, tmp_list, H)
! Allocation
allocate(beta(tmp_list_size,tmp_list_size),tmp_int(tmp_list_size,tmp_list_size),tmp_accu(tmp_list_size,tmp_list_size))
allocate(CS(tmp_list_size,ao_num),tmp_mo_coef(ao_num,tmp_list_size))
allocate(CS(tmp_list_size,ao_cart_num),tmp_mo_cart_coef(ao_cart_num,tmp_list_size))
beta = 0d0
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
do j = 1, ao_num
do j = 1, ao_cart_num
tmp_mo_coef(j,tmp_i) = mo_coef(j,i)
tmp_mo_cart_coef(j,tmp_i) = mo_cart_coef(j,i)
enddo
enddo
call dgemm('T','N',tmp_list_size,ao_num,ao_num,1d0,tmp_mo_coef,size(tmp_mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
call dgemm('T','N',tmp_list_size,ao_cart_num,ao_cart_num,1d0,tmp_mo_cart_coef,size(tmp_mo_cart_coef,1),ao_cart_overlap,size(ao_cart_overlap,1),0d0,CS,size(CS,1))
do a = 1, nucl_num ! loop over the nuclei
tmp_int = 0d0
@ -382,22 +382,22 @@ subroutine hessian_PM(tmp_n, tmp_list_size, tmp_list, H)
! do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
! mu = nucl_aos(a,b)
! tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (CS(tmp_i,mu) * tmp_mo_coef(mu,tmp_j) + tmp_mo_coef(mu,tmp_i) * CS(tmp_j,mu))
! tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (CS(tmp_i,mu) * tmp_mo_cart_coef(mu,tmp_j) + tmp_mo_cart_coef(mu,tmp_i) * CS(tmp_j,mu))
! ! (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
! !+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
! ! (mo_cart_coef(rho,i) * ao_cart_overlap(rho,mu) * mo_cart_coef(mu,j) &
! !+ mo_cart_coef(mu,i) * ao_cart_overlap(mu,rho) * mo_cart_coef(rho,j))
! enddo
! enddo
!enddo
allocate(tmp_mo_coef2(nucl_n_aos(a),tmp_list_size),tmp_CS(tmp_list_size,nucl_n_aos(a)))
allocate(tmp_mo_cart_coef2(nucl_n_aos(a),tmp_list_size),tmp_CS(tmp_list_size,nucl_n_aos(a)))
do tmp_i = 1, tmp_list_size
do b = 1, nucl_n_aos(a)
mu = nucl_aos(a,b)
tmp_mo_coef2(b,tmp_i) = tmp_mo_coef(mu,tmp_i)
tmp_mo_cart_coef2(b,tmp_i) = tmp_mo_cart_coef(mu,tmp_i)
enddo
enddo
@ -411,7 +411,7 @@ subroutine hessian_PM(tmp_n, tmp_list_size, tmp_list, H)
enddo
enddo
call dgemm('N','N',tmp_list_size,tmp_list_size,nucl_n_aos(a),1d0,tmp_CS,size(tmp_CS,1),tmp_mo_coef2,size(tmp_mo_coef2,1),0d0,tmp_accu,size(tmp_accu,1))
call dgemm('N','N',tmp_list_size,tmp_list_size,nucl_n_aos(a),1d0,tmp_CS,size(tmp_CS,1),tmp_mo_cart_coef2,size(tmp_mo_cart_coef2,1),0d0,tmp_accu,size(tmp_accu,1))
do tmp_j = 1, tmp_list_size
do tmp_i = 1, tmp_list_size
@ -421,7 +421,7 @@ subroutine hessian_PM(tmp_n, tmp_list_size, tmp_list, H)
enddo
enddo
deallocate(tmp_mo_coef2,tmp_CS)
deallocate(tmp_mo_cart_coef2,tmp_CS)
! Calculation
do tmp_j = 1, tmp_list_size
@ -474,12 +474,12 @@ subroutine compute_crit_pipek(criterion)
tmp_int = 0d0
do i = 1, mo_num
do rho = 1, ao_num ! loop over all the AOs
do rho = 1, ao_cart_num ! loop over all the AOs
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
mu = nucl_aos(a,b)
tmp_int(i,i) = tmp_int(i,i) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,i) &
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,i))
tmp_int(i,i) = tmp_int(i,i) + 0.5d0 * (mo_cart_coef(rho,i) * ao_cart_overlap(rho,mu) * mo_cart_coef(mu,i) &
+ mo_cart_coef(mu,i) * ao_cart_overlap(mu,rho) * mo_cart_coef(rho,i))
enddo
enddo
@ -526,12 +526,12 @@ subroutine criterion_PM(tmp_list_size,tmp_list,criterion)
print*,'---criterion_PM---'
! Allocation
allocate(tmp_int(tmp_list_size, tmp_list_size),CS(mo_num,ao_num))
allocate(tmp_int(tmp_list_size, tmp_list_size),CS(mo_num,ao_cart_num))
! Initialization
criterion = 0d0
call dgemm('T','N',mo_num,ao_num,ao_num,1d0,mo_coef,size(mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
call dgemm('T','N',mo_num,ao_cart_num,ao_cart_num,1d0,mo_cart_coef,size(mo_cart_coef,1),ao_cart_overlap,size(ao_cart_overlap,1),0d0,CS,size(CS,1))
do a = 1, nucl_num ! loop over the nuclei
tmp_int = 0d0
@ -541,10 +541,10 @@ subroutine criterion_PM(tmp_list_size,tmp_list,criterion)
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
mu = nucl_aos(a,b)
tmp_int(tmp_i,tmp_i) = tmp_int(tmp_i,tmp_i) + 0.5d0 * (CS(i,mu) * mo_coef(mu,i) + mo_coef(mu,i) * CS(i,mu))
tmp_int(tmp_i,tmp_i) = tmp_int(tmp_i,tmp_i) + 0.5d0 * (CS(i,mu) * mo_cart_coef(mu,i) + mo_cart_coef(mu,i) * CS(i,mu))
! (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
!+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
! (mo_cart_coef(rho,i) * ao_cart_overlap(rho,mu) * mo_cart_coef(mu,j) &
!+ mo_cart_coef(mu,i) * ao_cart_overlap(mu,rho) * mo_cart_coef(rho,j))
enddo
enddo
@ -575,7 +575,7 @@ subroutine criterion_PM_v3(tmp_list_size,tmp_list,criterion)
integer, intent(in) :: tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: criterion
double precision, allocatable :: tmp_int(:,:), CS(:,:), tmp_mo_coef(:,:), tmp_mo_coef2(:,:),tmp_accu(:,:),tmp_CS(:,:)
double precision, allocatable :: tmp_int(:,:), CS(:,:), tmp_mo_cart_coef(:,:), tmp_mo_cart_coef2(:,:),tmp_accu(:,:),tmp_CS(:,:)
integer :: i,j,k,tmp_i,tmp_j,tmp_k, a, b, mu ,rho,nu,c
double precision :: t1,t2,t3
@ -586,23 +586,23 @@ subroutine criterion_PM_v3(tmp_list_size,tmp_list,criterion)
! Allocation
allocate(tmp_int(tmp_list_size, tmp_list_size),tmp_accu(tmp_list_size, tmp_list_size))
allocate(CS(tmp_list_size,ao_num),tmp_mo_coef(ao_num,tmp_list_size))
allocate(CS(tmp_list_size,ao_cart_num),tmp_mo_cart_coef(ao_cart_num,tmp_list_size))
criterion = 0d0
! submatrix of the mo_coef
! submatrix of the mo_cart_coef
do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i)
do j = 1, ao_num
do j = 1, ao_cart_num
tmp_mo_coef(j,tmp_i) = mo_coef(j,i)
tmp_mo_cart_coef(j,tmp_i) = mo_cart_coef(j,i)
enddo
enddo
! ao_overlap(ao_num,ao_num)
! mo_coef(ao_num,mo_num)
call dgemm('T','N',tmp_list_size,ao_num,ao_num,1d0,tmp_mo_coef,size(tmp_mo_coef,1),ao_overlap,size(ao_overlap,1),0d0,CS,size(CS,1))
! ao_cart_overlap(ao_cart_num,ao_cart_num)
! mo_cart_coef(ao_cart_num,mo_num)
call dgemm('T','N',tmp_list_size,ao_cart_num,ao_cart_num,1d0,tmp_mo_cart_coef,size(tmp_mo_cart_coef,1),ao_cart_overlap,size(ao_cart_overlap,1),0d0,CS,size(CS,1))
do a = 1, nucl_num ! loop over the nuclei
@ -617,22 +617,22 @@ subroutine criterion_PM_v3(tmp_list_size,tmp_list,criterion)
! do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
! mu = nucl_aos(a,b)
! tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (CS(tmp_i,mu) * tmp_mo_coef(mu,tmp_j) + tmp_mo_coef(mu,tmp_i) * CS(tmp_j,mu))
! tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (CS(tmp_i,mu) * tmp_mo_cart_coef(mu,tmp_j) + tmp_mo_cart_coef(mu,tmp_i) * CS(tmp_j,mu))
! ! (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
! !+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
! ! (mo_cart_coef(rho,i) * ao_cart_overlap(rho,mu) * mo_cart_coef(mu,j) &
! !+ mo_cart_coef(mu,i) * ao_cart_overlap(mu,rho) * mo_cart_coef(rho,j))
! enddo
! enddo
!enddo
allocate(tmp_mo_coef2(nucl_n_aos(a),tmp_list_size),tmp_CS(tmp_list_size,nucl_n_aos(a)))
allocate(tmp_mo_cart_coef2(nucl_n_aos(a),tmp_list_size),tmp_CS(tmp_list_size,nucl_n_aos(a)))
do tmp_i = 1, tmp_list_size
do b = 1, nucl_n_aos(a)
mu = nucl_aos(a,b)
tmp_mo_coef2(b,tmp_i) = tmp_mo_coef(mu,tmp_i)
tmp_mo_cart_coef2(b,tmp_i) = tmp_mo_cart_coef(mu,tmp_i)
enddo
enddo
@ -646,7 +646,7 @@ subroutine criterion_PM_v3(tmp_list_size,tmp_list,criterion)
enddo
enddo
call dgemm('N','N',tmp_list_size,tmp_list_size,nucl_n_aos(a),1d0,tmp_CS,size(tmp_CS,1),tmp_mo_coef2,size(tmp_mo_coef2,1),0d0,tmp_accu,size(tmp_accu,1))
call dgemm('N','N',tmp_list_size,tmp_list_size,nucl_n_aos(a),1d0,tmp_CS,size(tmp_CS,1),tmp_mo_cart_coef2,size(tmp_mo_cart_coef2,1),0d0,tmp_accu,size(tmp_accu,1))
! Integrals
do tmp_j = 1, tmp_list_size
@ -657,7 +657,7 @@ subroutine criterion_PM_v3(tmp_list_size,tmp_list,criterion)
enddo
enddo
deallocate(tmp_mo_coef2,tmp_CS)
deallocate(tmp_mo_cart_coef2,tmp_CS)
! Criterion
do tmp_i = 1, tmp_list_size
@ -668,7 +668,7 @@ subroutine criterion_PM_v3(tmp_list_size,tmp_list,criterion)
criterion = - criterion
deallocate(tmp_int,CS,tmp_accu,tmp_mo_coef)
deallocate(tmp_int,CS,tmp_accu,tmp_mo_cart_coef)
call wall_time(t2)
t3 = t2 - t1
@ -705,12 +705,12 @@ subroutine theta_PM(l, n, m_x, max_elem)
j = l(tmp_j)
do tmp_i = 1, n
i = l(tmp_i)
do rho = 1, ao_num ! loop over all the AOs
do rho = 1, ao_cart_num ! loop over all the AOs
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
mu = nucl_aos(a,b) ! AO centered on atom a
Pa(tmp_i,tmp_j) = Pa(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
Pa(tmp_i,tmp_j) = Pa(tmp_i,tmp_j) + 0.5d0 * (mo_cart_coef(rho,i) * ao_cart_overlap(rho,mu) * mo_cart_coef(mu,j) &
+ mo_cart_coef(mu,i) * ao_cart_overlap(mu,rho) * mo_cart_coef(rho,j))
enddo
enddo