mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-09-16 12:45:31 +02:00
Merge pull request #187 from v1j4y/csf_verified
Some checks failed
continuous-integration/drone/push Build is failing
Some checks failed
continuous-integration/drone/push Build is failing
CSF-CIPSI with native Sigma-Vector in CFG basis
This commit is contained in:
commit
a1bf11620d
@ -46,6 +46,24 @@ module cfunctions
|
||||
real (kind=C_DOUBLE ),intent(out) :: csftodetmatrix(rowsmax,colsmax)
|
||||
end subroutine getCSFtoDETTransformationMatrix
|
||||
end interface
|
||||
interface
|
||||
subroutine gramSchmidt(A, m, n, B) bind(C, name='gramSchmidt')
|
||||
import C_INT32_T, C_INT64_T, C_DOUBLE
|
||||
integer(kind=C_INT32_T),value,intent(in) :: m
|
||||
integer(kind=C_INT32_T),value,intent(in) :: n
|
||||
real (kind=C_DOUBLE ),intent(in) :: A(m,n)
|
||||
real (kind=C_DOUBLE ),intent(out) :: B(m,n)
|
||||
end subroutine gramSchmidt
|
||||
end interface
|
||||
interface
|
||||
subroutine gramSchmidt_qp(A, m, n, B) bind(C, name='gramSchmidt_qp')
|
||||
import C_INT32_T, C_INT64_T, C_DOUBLE
|
||||
integer(kind=C_INT32_T),value,intent(in) :: m
|
||||
integer(kind=C_INT32_T),value,intent(in) :: n
|
||||
real (kind=C_DOUBLE ),intent(in) :: A(m,n)
|
||||
real (kind=C_DOUBLE ),intent(out) :: B(m,n)
|
||||
end subroutine gramSchmidt_qp
|
||||
end interface
|
||||
end module cfunctions
|
||||
|
||||
subroutine f_dgemm(TRANSA, TRANSB, M, N, K, ALPHA, A, LDA, B, LDB, BETA, C, LDC) &
|
||||
|
@ -1,5 +1,6 @@
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include <assert.h>
|
||||
#include "tree_utils.h"
|
||||
|
||||
void int_to_bin_digit(int64_t in, int count, int* out)
|
||||
@ -28,19 +29,19 @@ void getncsfs1(int *inpnsomo, int *inpms, int *outncsfs){
|
||||
int nsomo = *inpnsomo;
|
||||
int ms = *inpms;
|
||||
int nparcoupl = (nsomo + ms)/2;
|
||||
*outncsfs = binom(nsomo, nparcoupl);
|
||||
*outncsfs = binom((double)nsomo, (double)nparcoupl);
|
||||
}
|
||||
|
||||
void getncsfs(int NSOMO, int MS, int *outncsfs){
|
||||
int nparcoupl = (NSOMO + MS)/2;
|
||||
int nparcouplp1 = ((NSOMO + MS)/2)+1;
|
||||
int nparcoupl = (NSOMO + MS)/2; // n_alpha
|
||||
int nparcouplp1 = ((NSOMO + MS)/2)+1; // n_alpha + 1
|
||||
double tmpndets=0.0;
|
||||
if(NSOMO == 0){
|
||||
(*outncsfs) = 1;
|
||||
return;
|
||||
}
|
||||
tmpndets = binom(NSOMO, nparcoupl);
|
||||
(*outncsfs) = round(tmpndets - binom(NSOMO, nparcouplp1));
|
||||
tmpndets = binom((double)NSOMO, (double)nparcoupl);
|
||||
(*outncsfs) = round(tmpndets - binom((double)NSOMO, (double)nparcouplp1));
|
||||
}
|
||||
|
||||
#include <stdint.h>
|
||||
@ -252,6 +253,26 @@ void generateAllBFs(int64_t Isomo, int64_t MS, Tree *bftree, int *NBF, int *NSOM
|
||||
buildTreeDriver(bftree, *NSOMO, MS, NBF);
|
||||
}
|
||||
|
||||
void ortho_qr_csf(double *overlapMatrix, int lda, double *orthoMatrix, int rows, int cols);
|
||||
|
||||
void gramSchmidt_qp(double *overlapMatrix, int rows, int cols, double *orthoMatrix){
|
||||
int i,j;
|
||||
//for(j=0;j<cols;++j){
|
||||
// for(i=0;i<rows;++i){
|
||||
// printf(" %3.2f ",overlapMatrix[j*rows + i]);
|
||||
// }
|
||||
// printf("\n");
|
||||
//}
|
||||
// Call the function ortho_qr from qp
|
||||
ortho_qr_csf(overlapMatrix, rows, orthoMatrix, rows, cols);
|
||||
//for(j=0;j<cols;++j){
|
||||
// for(i=0;i<rows;++i){
|
||||
// printf(" %3.2f ",orthoMatrix[j*rows + i]);
|
||||
// }
|
||||
// printf("\n");
|
||||
//}
|
||||
}
|
||||
|
||||
void gramSchmidt(double *overlapMatrix, int rows, int cols, double *orthoMatrix){
|
||||
|
||||
// vector
|
||||
@ -341,8 +362,12 @@ void convertCSFtoDetBasis(int64_t Isomo, int MS, int rowsmax, int colsmax, doubl
|
||||
Get BFtoDeterminant Matrix
|
||||
************************************/
|
||||
|
||||
printf("In convertcsftodet\n");
|
||||
|
||||
//printf(" --- In convet ----\n");
|
||||
convertBFtoDetBasis(Isomo, MS, &bftodetmatrixI, &rowsbftodetI, &colsbftodetI);
|
||||
//printf(" --- done bf det basis ---- row=%d col=%d\n",rowsbftodetI,colsbftodetI);
|
||||
|
||||
//printRealMatrix(bftodetmatrixI,rowsbftodetI,colsbftodetI);
|
||||
|
||||
int rowsI = 0;
|
||||
int colsI = 0;
|
||||
@ -350,6 +375,8 @@ void convertCSFtoDetBasis(int64_t Isomo, int MS, int rowsmax, int colsmax, doubl
|
||||
//getOverlapMatrix(Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
|
||||
getOverlapMatrix_withDet(bftodetmatrixI, rowsbftodetI, colsbftodetI, Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
|
||||
|
||||
//printf("Overlap matrix\n");
|
||||
//printRealMatrix(overlapMatrixI,rowsI,colsI);
|
||||
|
||||
/***********************************
|
||||
Get Orthonormalization Matrix
|
||||
@ -359,6 +386,9 @@ void convertCSFtoDetBasis(int64_t Isomo, int MS, int rowsmax, int colsmax, doubl
|
||||
|
||||
gramSchmidt(overlapMatrixI, rowsI, colsI, orthoMatrixI);
|
||||
|
||||
//printf("Ortho matrix\n");
|
||||
//printRealMatrix(orthoMatrixI,rowsI,colsI);
|
||||
|
||||
/***********************************
|
||||
Get Final CSF to Det Matrix
|
||||
************************************/
|
||||
@ -1340,11 +1370,11 @@ void getbftodetfunction(Tree *dettree, int NSOMO, int MS, int *BF1, double *rowv
|
||||
for(int i = 0; i < npairs; i++){
|
||||
for(int j = 0; j < NSOMO; j++) {
|
||||
inpdet[j] = detslist[i*NSOMO + j];
|
||||
printf(" %d ",inpdet[j]);
|
||||
//printf(" %d ",inpdet[j]);
|
||||
}
|
||||
printf("\n");
|
||||
//printf("\n");
|
||||
findAddofDetDriver(dettree, NSOMO, inpdet, &addr);
|
||||
printf("(%d) - addr = %d\n",i,addr);
|
||||
//printf("(%d) - addr = %d\n",i,addr);
|
||||
// Calculate the phase for cfg to QP2 conversion
|
||||
//get_phase_cfg_to_qp_inpList(inpdet, NSOMO, &phase_cfg_to_qp);
|
||||
//rowvec[addr] = 1.0 * phaselist[i]*phase_cfg_to_qp/sqrt(fac);
|
||||
@ -1363,12 +1393,23 @@ void getbftodetfunction(Tree *dettree, int NSOMO, int MS, int *BF1, double *rowv
|
||||
void convertBFtoDetBasis(int64_t Isomo, int MS, double **bftodetmatrixptr, int *rows, int *cols){
|
||||
|
||||
int NSOMO=0;
|
||||
//printf("before getSetBits Isomo=%ld, NSOMO=%ld\n",Isomo,NSOMO);
|
||||
getSetBits(Isomo, &NSOMO);
|
||||
//printf("Isomo=%ld, NSOMO=%ld\n",Isomo,NSOMO);
|
||||
int ndets = 0;
|
||||
int NBF = 0;
|
||||
double dNSOMO = NSOMO*1.0;
|
||||
double nalpha = (NSOMO + MS)/2.0;
|
||||
ndets = (int)binom(dNSOMO, nalpha);
|
||||
//double dNSOMO = NSOMO*1.0;
|
||||
// MS = alpha_num - beta_num
|
||||
int nalpha = (NSOMO + MS)/2;
|
||||
//printf(" in convertbftodet : MS=%d nalpha=%3.2f\n",MS,nalpha);
|
||||
//ndets = (int)binom(dNSOMO, nalpha);
|
||||
if(NSOMO > 0){
|
||||
ndets = (int)binom((double)NSOMO, (double)nalpha);
|
||||
}
|
||||
else if(NSOMO == 0){
|
||||
ndets = 1;
|
||||
}
|
||||
else printf("Something is wrong in calcMEdetpair\n");
|
||||
|
||||
Tree dettree = (Tree){ .rootNode = NULL, .NBF = -1 };
|
||||
dettree.rootNode = malloc(sizeof(Node));
|
||||
@ -1389,16 +1430,6 @@ void convertBFtoDetBasis(int64_t Isomo, int MS, double **bftodetmatrixptr, int *
|
||||
}
|
||||
else{
|
||||
|
||||
//int addr = -1;
|
||||
//int inpdet[NSOMO];
|
||||
//inpdet[0] = 1;
|
||||
//inpdet[1] = 1;
|
||||
//inpdet[2] = 1;
|
||||
//inpdet[3] = 0;
|
||||
//inpdet[4] = 0;
|
||||
//inpdet[5] = 0;
|
||||
|
||||
//findAddofDetDriver(&dettree, NSOMO, inpdet, &addr);
|
||||
|
||||
int detlist[ndets];
|
||||
getDetlistDriver(&dettree, NSOMO, detlist);
|
||||
@ -1411,6 +1442,9 @@ void convertBFtoDetBasis(int64_t Isomo, int MS, double **bftodetmatrixptr, int *
|
||||
generateAllBFs(Isomo, MS, &bftree, &NBF, &NSOMO);
|
||||
|
||||
// Initialize transformation matrix
|
||||
//printf("MS=%d NBF=%d ndets=%d NSOMO=%d\n",MS,NBF,ndets,NSOMO);
|
||||
assert( NBF > 0);
|
||||
assert( ndets > 0);
|
||||
(*bftodetmatrixptr) = malloc(NBF*ndets*sizeof(double));
|
||||
(*rows) = NBF;
|
||||
(*cols) = ndets;
|
||||
@ -1465,9 +1499,10 @@ void convertBFtoDetBasisWithArrayDims(int64_t Isomo, int MS, int rowsmax, int co
|
||||
getSetBits(Isomo, &NSOMO);
|
||||
int ndets = 0;
|
||||
int NBF = 0;
|
||||
double dNSOMO = NSOMO*1.0;
|
||||
double nalpha = (NSOMO + MS)/2.0;
|
||||
ndets = (int)binom(dNSOMO, nalpha);
|
||||
//double dNSOMO = NSOMO*1.0;
|
||||
//double nalpha = (NSOMO + MS)/2.0;
|
||||
int nalpha = (NSOMO + MS)/2;
|
||||
ndets = (int)binom((double)NSOMO, (double)nalpha);
|
||||
|
||||
Tree dettree = (Tree){ .rootNode = NULL, .NBF = -1 };
|
||||
dettree.rootNode = malloc(sizeof(Node));
|
||||
@ -1551,6 +1586,7 @@ void getApqIJMatrixDims(int64_t Isomo, int64_t Jsomo, int64_t MS, int32_t *rowso
|
||||
getncsfs(NSOMOJ, MS, &NBFJ);
|
||||
(*rowsout) = NBFI;
|
||||
(*colsout) = NBFJ;
|
||||
//exit(0);
|
||||
}
|
||||
|
||||
void getApqIJMatrixDriver(int64_t Isomo, int64_t Jsomo, int orbp, int orbq, int64_t MS, int64_t NMO, double **CSFICSFJApqIJptr, int *rowsout, int *colsout){
|
||||
@ -1669,6 +1705,7 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
|
||||
int rowsbftodetI, colsbftodetI;
|
||||
|
||||
//printf(" 1Calling convertBFtoDetBasis Isomo=%ld MS=%ld\n",Isomo,MS);
|
||||
convertBFtoDetBasis(Isomo, MS, &bftodetmatrixI, &rowsbftodetI, &colsbftodetI);
|
||||
|
||||
// Fill matrix
|
||||
@ -1676,8 +1713,14 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
int colsI = 0;
|
||||
|
||||
//getOverlapMatrix(Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
|
||||
//getOverlapMatrix(Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
|
||||
//printf("Isomo=%ld\n",Isomo);
|
||||
getOverlapMatrix_withDet(bftodetmatrixI, rowsbftodetI, colsbftodetI, Isomo, MS, &overlapMatrixI, &rowsI, &colsI, &NSOMO);
|
||||
if(Isomo == 0){
|
||||
rowsI = 1;
|
||||
colsI = 1;
|
||||
}
|
||||
|
||||
//printf("Isomo=%ld\n",Isomo);
|
||||
|
||||
orthoMatrixI = malloc(rowsI*colsI*sizeof(double));
|
||||
|
||||
@ -1689,6 +1732,7 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
|
||||
int rowsbftodetJ, colsbftodetJ;
|
||||
|
||||
//printf(" 2Calling convertBFtoDetBasis Jsomo=%ld MS=%ld\n",Jsomo,MS);
|
||||
convertBFtoDetBasis(Jsomo, MS, &bftodetmatrixJ, &rowsbftodetJ, &colsbftodetJ);
|
||||
|
||||
int rowsJ = 0;
|
||||
@ -1696,6 +1740,10 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
// Fill matrix
|
||||
//getOverlapMatrix(Jsomo, MS, &overlapMatrixJ, &rowsJ, &colsJ, &NSOMO);
|
||||
getOverlapMatrix_withDet(bftodetmatrixJ, rowsbftodetJ, colsbftodetJ, Jsomo, MS, &overlapMatrixJ, &rowsJ, &colsJ, &NSOMO);
|
||||
if(Jsomo == 0){
|
||||
rowsJ = 1;
|
||||
colsJ = 1;
|
||||
}
|
||||
|
||||
orthoMatrixJ = malloc(rowsJ*colsJ*sizeof(double));
|
||||
|
||||
@ -1713,18 +1761,25 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
|
||||
int transA=false;
|
||||
int transB=false;
|
||||
//printf("1Calling blas\n");
|
||||
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsbftodetI,colsbftodetI,rowsA,colsA);
|
||||
callBlasMatxMat(bftodetmatrixI, rowsbftodetI, colsbftodetI, ApqIJ, rowsA, colsA, bfIApqIJ, transA, transB);
|
||||
//printf("done\n");
|
||||
|
||||
// now transform I in csf basis
|
||||
double *CSFIApqIJ = malloc(rowsI*colsA*sizeof(double));
|
||||
transA = false;
|
||||
transB = false;
|
||||
//printf("2Calling blas\n");
|
||||
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsI,colsI,colsI,colsA);
|
||||
callBlasMatxMat(orthoMatrixI, rowsI, colsI, bfIApqIJ, colsI, colsA, CSFIApqIJ, transA, transB);
|
||||
|
||||
// now transform J in BF basis
|
||||
double *CSFIbfJApqIJ = malloc(rowsI*rowsbftodetJ*sizeof(double));
|
||||
transA = false;
|
||||
transB = true;
|
||||
//printf("3Calling blas\n");
|
||||
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsI,colsA,rowsbftodetJ,colsbftodetJ);
|
||||
callBlasMatxMat(CSFIApqIJ, rowsI, colsA, bftodetmatrixJ, rowsbftodetJ, colsbftodetJ, CSFIbfJApqIJ, transA, transB);
|
||||
|
||||
// now transform J in CSF basis
|
||||
@ -1735,13 +1790,14 @@ void getApqIJMatrixDriverArrayInp(int64_t Isomo, int64_t Jsomo, int32_t orbp, in
|
||||
double *tmpCSFICSFJApqIJ = malloc(rowsI*rowsJ*sizeof(double));
|
||||
transA = false;
|
||||
transB = true;
|
||||
//printf("4Calling blas\n");
|
||||
//printf("rowsA=%d colsA=%d\nrowB=%d colB=%d\n",rowsI,rowsbftodetJ,rowsJ,colsJ);
|
||||
callBlasMatxMat(CSFIbfJApqIJ, rowsI, rowsbftodetJ, orthoMatrixJ, rowsJ, colsJ, tmpCSFICSFJApqIJ, transA, transB);
|
||||
// Transfer to actual buffer in Fortran order
|
||||
for(int i = 0; i < rowsI; i++)
|
||||
for(int j = 0; j < rowsJ; j++)
|
||||
CSFICSFJApqIJ[j*rowsI + i] = tmpCSFICSFJApqIJ[i*rowsJ + j];
|
||||
|
||||
|
||||
// Garbage collection
|
||||
free(overlapMatrixI);
|
||||
free(overlapMatrixJ);
|
||||
|
@ -1,3 +1,592 @@
|
||||
use bitmasks
|
||||
|
||||
BEGIN_PROVIDER [ integer(bit_kind), alphasIcfg_list , (N_int,2,N_configuration,mo_num*(mo_num))]
|
||||
&BEGIN_PROVIDER [ integer, NalphaIcfg_list, (N_configuration) ]
|
||||
implicit none
|
||||
!use bitmasks
|
||||
BEGIN_DOC
|
||||
! Documentation for alphasI
|
||||
! Returns the associated alpha's for
|
||||
! the input configuration Icfg.
|
||||
END_DOC
|
||||
|
||||
integer :: idxI ! The id of the Ith CFG
|
||||
integer(bit_kind) :: Icfg(N_int,2)
|
||||
integer :: NalphaIcfg
|
||||
logical,dimension(:,:),allocatable :: tableUniqueAlphas
|
||||
integer :: listholes(mo_num)
|
||||
integer :: holetype(mo_num) ! 1-> SOMO 2->DOMO
|
||||
integer :: nholes
|
||||
integer :: nvmos
|
||||
integer :: listvmos(mo_num)
|
||||
integer :: vmotype(mo_num) ! 1 -> VMO 2 -> SOMO
|
||||
integer*8 :: Idomo
|
||||
integer*8 :: Isomo
|
||||
integer*8 :: Jdomo
|
||||
integer*8 :: Jsomo
|
||||
integer*8 :: diffSOMO
|
||||
integer*8 :: diffDOMO
|
||||
integer*8 :: xordiffSOMODOMO
|
||||
integer :: ndiffSOMO
|
||||
integer :: ndiffDOMO
|
||||
integer :: nxordiffSOMODOMO
|
||||
integer :: ndiffAll
|
||||
integer :: i,ii
|
||||
integer :: j,jj
|
||||
integer :: k,kk
|
||||
integer :: kstart
|
||||
integer :: kend
|
||||
integer :: Nsomo_I
|
||||
integer :: hole
|
||||
integer :: p
|
||||
integer :: q
|
||||
integer :: countalphas
|
||||
logical :: pqAlreadyGenQ
|
||||
logical :: pqExistsQ
|
||||
logical :: ppExistsQ
|
||||
integer*8 :: MS
|
||||
|
||||
double precision :: t0, t1
|
||||
call wall_time(t0)
|
||||
|
||||
MS = elec_alpha_num-elec_beta_num
|
||||
|
||||
allocate(tableUniqueAlphas(mo_num,mo_num))
|
||||
NalphaIcfg_list = 0
|
||||
|
||||
do idxI = 1, N_configuration
|
||||
|
||||
Icfg = psi_configuration(:,:,idxI)
|
||||
|
||||
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
|
||||
|
||||
! find out all pq holes possible
|
||||
nholes = 0
|
||||
! holes in SOMO
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
if(POPCNT(IAND(Isomo,IBSET(0_8,i-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = i
|
||||
holetype(nholes) = 1
|
||||
endif
|
||||
end do
|
||||
! holes in DOMO
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
if(POPCNT(IAND(Idomo,IBSET(0_8,i-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = i
|
||||
holetype(nholes) = 2
|
||||
endif
|
||||
end do
|
||||
|
||||
! find vmos
|
||||
listvmos = -1
|
||||
vmotype = -1
|
||||
nvmos = 0
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
if(IAND(Idomo,(IBSET(0_8,i-1))) .EQ. 0) then
|
||||
if(IAND(Isomo,(IBSET(0_8,i-1))) .EQ. 0) then
|
||||
nvmos += 1
|
||||
listvmos(nvmos) = i
|
||||
vmotype(nvmos) = 1
|
||||
else if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 1) then
|
||||
nvmos += 1
|
||||
listvmos(nvmos) = i
|
||||
vmotype(nvmos) = 2
|
||||
end if
|
||||
end if
|
||||
end do
|
||||
|
||||
tableUniqueAlphas = .FALSE.
|
||||
|
||||
! Now find the allowed (p,q) excitations
|
||||
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
|
||||
Nsomo_I = POPCNT(Isomo)
|
||||
if(Nsomo_I .EQ. 0) then
|
||||
kstart = 1
|
||||
else
|
||||
kstart = cfg_seniority_index(max(NSOMOMin,Nsomo_I-2))
|
||||
endif
|
||||
kend = idxI-1
|
||||
|
||||
do i = 1,nholes
|
||||
p = listholes(i)
|
||||
do j = 1,nvmos
|
||||
q = listvmos(j)
|
||||
if(p .EQ. q) cycle
|
||||
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
|
||||
! SOMO -> VMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = Idomo
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
|
||||
kend = idxI-1
|
||||
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
|
||||
! SOMO -> SOMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBSET(Idomo,q-1)
|
||||
! Check for Minimal alpha electrons (MS)
|
||||
if(POPCNT(Jsomo).ge.MS)then
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-4)))
|
||||
kend = idxI-1
|
||||
else
|
||||
cycle
|
||||
endif
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
|
||||
! DOMO -> VMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
kstart = cfg_seniority_index(Nsomo_I)
|
||||
kend = idxI-1
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
|
||||
! DOMO -> SOMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
Jdomo = IBSET(Jdomo,q-1)
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
|
||||
kend = idxI-1
|
||||
else
|
||||
print*,"Something went wrong in obtain_associated_alphaI"
|
||||
endif
|
||||
! Check for Minimal alpha electrons (MS)
|
||||
if(POPCNT(Jsomo).lt.MS)then
|
||||
cycle
|
||||
endif
|
||||
|
||||
! Again, we don't have to search from 1
|
||||
! we just use seniority to find the
|
||||
! first index with NSOMO - 2 to NSOMO + 2
|
||||
! this is what is done in kstart, kend
|
||||
|
||||
pqAlreadyGenQ = .FALSE.
|
||||
! First check if it can be generated before
|
||||
do k = kstart, kend
|
||||
diffSOMO = IEOR(Jsomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)))
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
if((ndiffSOMO .NE. 0) .AND. (ndiffSOMO .NE. 2)) cycle
|
||||
diffDOMO = IEOR(Jdomo,iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)))
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
|
||||
!if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
|
||||
if((ndiffSOMO+ndiffDOMO) .EQ. 0) then
|
||||
pqAlreadyGenQ = .TRUE.
|
||||
ppExistsQ = .TRUE.
|
||||
EXIT
|
||||
endif
|
||||
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
|
||||
pqAlreadyGenQ = .TRUE.
|
||||
EXIT
|
||||
endif
|
||||
end do
|
||||
|
||||
if(pqAlreadyGenQ) cycle
|
||||
|
||||
pqExistsQ = .FALSE.
|
||||
|
||||
if(.NOT. pqExistsQ) then
|
||||
tableUniqueAlphas(p,q) = .TRUE.
|
||||
endif
|
||||
end do
|
||||
end do
|
||||
|
||||
!print *,tableUniqueAlphas(:,:)
|
||||
|
||||
! prune list of alphas
|
||||
Isomo = Icfg(1,1)
|
||||
Idomo = Icfg(1,2)
|
||||
Jsomo = Icfg(1,1)
|
||||
Jdomo = Icfg(1,2)
|
||||
NalphaIcfg = 0
|
||||
do i = 1, nholes
|
||||
p = listholes(i)
|
||||
do j = 1, nvmos
|
||||
q = listvmos(j)
|
||||
if(p .EQ. q) cycle
|
||||
if(tableUniqueAlphas(p,q)) then
|
||||
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
|
||||
! SOMO -> VMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = Idomo
|
||||
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
|
||||
! SOMO -> SOMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBSET(Idomo,q-1)
|
||||
if(POPCNT(Jsomo).ge.MS)then
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-4)))
|
||||
kend = idxI-1
|
||||
else
|
||||
cycle
|
||||
endif
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
|
||||
! DOMO -> VMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
|
||||
! DOMO -> SOMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
Jdomo = IBSET(Jdomo,q-1)
|
||||
else
|
||||
print*,"Something went wrong in obtain_associated_alphaI"
|
||||
endif
|
||||
|
||||
! SOMO
|
||||
!print *,i,j,"|",NalphaIcfg, Jsomo, IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
|
||||
if(POPCNT(Jsomo) .ge. NSOMOMin) then
|
||||
NalphaIcfg += 1
|
||||
alphasIcfg_list(1,1,idxI,NalphaIcfg) = Jsomo
|
||||
alphasIcfg_list(1,2,idxI,NalphaIcfg) = IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
|
||||
NalphaIcfg_list(idxI) = NalphaIcfg
|
||||
endif
|
||||
endif
|
||||
end do
|
||||
end do
|
||||
|
||||
! Check if this Icfg has been previously generated as a mono
|
||||
ppExistsQ = .False.
|
||||
Isomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(reunion_of_act_virt_bitmask(1,1),Icfg(1,2))
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
|
||||
do k = kstart, idxI-1
|
||||
diffSOMO = IEOR(Isomo,iand(act_bitmask(1,1),psi_configuration(1,1,k)))
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
if (ndiffSOMO /= 2) cycle
|
||||
diffDOMO = IEOR(Idomo,iand(act_bitmask(1,1),psi_configuration(1,2,k)))
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4)) then
|
||||
ppExistsQ = .TRUE.
|
||||
EXIT
|
||||
endif
|
||||
end do
|
||||
! Diagonal part (pp,qq)
|
||||
if(nholes > 0 .AND. (.NOT. ppExistsQ))then
|
||||
! SOMO
|
||||
if(POPCNT(Jsomo) .ge. NSOMOMin) then
|
||||
NalphaIcfg += 1
|
||||
alphasIcfg_list(1,1,idxI,NalphaIcfg) = Icfg(1,1)
|
||||
alphasIcfg_list(1,2,idxI,NalphaIcfg) = Icfg(1,2)
|
||||
NalphaIcfg_list(idxI) = NalphaIcfg
|
||||
endif
|
||||
endif
|
||||
|
||||
NalphaIcfg = 0
|
||||
enddo ! end loop idxI
|
||||
call wall_time(t1)
|
||||
print *, 'Preparation : ', t1 - t0
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
subroutine obtain_associated_alphaI(idxI, Icfg, alphasIcfg, NalphaIcfg)
|
||||
implicit none
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! Documentation for alphasI
|
||||
! Returns the associated alpha's for
|
||||
! the input configuration Icfg.
|
||||
END_DOC
|
||||
|
||||
integer,intent(in) :: idxI ! The id of the Ith CFG
|
||||
integer(bit_kind),intent(in) :: Icfg(N_int,2)
|
||||
integer,intent(out) :: NalphaIcfg
|
||||
integer(bit_kind),intent(out) :: alphasIcfg(N_int,2,*)
|
||||
logical,dimension(:,:),allocatable :: tableUniqueAlphas
|
||||
integer :: listholes(mo_num)
|
||||
integer :: holetype(mo_num) ! 1-> SOMO 2->DOMO
|
||||
integer :: nholes
|
||||
integer :: nvmos
|
||||
integer :: listvmos(mo_num)
|
||||
integer :: vmotype(mo_num) ! 1 -> VMO 2 -> SOMO
|
||||
integer*8 :: Idomo
|
||||
integer*8 :: Isomo
|
||||
integer*8 :: Jdomo
|
||||
integer*8 :: Jsomo
|
||||
integer*8 :: diffSOMO
|
||||
integer*8 :: diffDOMO
|
||||
integer*8 :: xordiffSOMODOMO
|
||||
integer :: ndiffSOMO
|
||||
integer :: ndiffDOMO
|
||||
integer :: nxordiffSOMODOMO
|
||||
integer :: ndiffAll
|
||||
integer :: i, ii
|
||||
integer :: j, jj
|
||||
integer :: k, kk
|
||||
integer :: kstart
|
||||
integer :: kend
|
||||
integer :: Nsomo_I
|
||||
integer :: hole
|
||||
integer :: p
|
||||
integer :: q
|
||||
integer :: countalphas
|
||||
logical :: pqAlreadyGenQ
|
||||
logical :: pqExistsQ
|
||||
logical :: ppExistsQ
|
||||
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
|
||||
!print*,"Input cfg"
|
||||
!call debug_spindet(Isomo,1)
|
||||
!call debug_spindet(Idomo,1)
|
||||
|
||||
! find out all pq holes possible
|
||||
nholes = 0
|
||||
! holes in SOMO
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
if(POPCNT(IAND(Isomo,IBSET(0_8,i-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = i
|
||||
holetype(nholes) = 1
|
||||
endif
|
||||
end do
|
||||
! holes in DOMO
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
if(POPCNT(IAND(Idomo,IBSET(0_8,i-1))) .EQ. 1) then
|
||||
nholes += 1
|
||||
listholes(nholes) = i
|
||||
holetype(nholes) = 2
|
||||
endif
|
||||
end do
|
||||
|
||||
! find vmos
|
||||
listvmos = -1
|
||||
vmotype = -1
|
||||
nvmos = 0
|
||||
do ii = 1,n_act_orb
|
||||
i = list_act(ii)
|
||||
!print *,i,IBSET(0,i-1),POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))), POPCNT(IAND(Idomo,(IBSET(0_8,i-1))))
|
||||
if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 0 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,i-1)))) .EQ. 0) then
|
||||
nvmos += 1
|
||||
listvmos(nvmos) = i
|
||||
vmotype(nvmos) = 1
|
||||
else if(POPCNT(IAND(Isomo,(IBSET(0_8,i-1)))) .EQ. 1 .AND. POPCNT(IAND(Idomo,(IBSET(0_8,i-1)))) .EQ. 0 ) then
|
||||
nvmos += 1
|
||||
listvmos(nvmos) = i
|
||||
vmotype(nvmos) = 2
|
||||
end if
|
||||
end do
|
||||
|
||||
!print *,"Nvmo=",nvmos
|
||||
!print *,listvmos
|
||||
!print *,vmotype
|
||||
|
||||
allocate(tableUniqueAlphas(mo_num,mo_num))
|
||||
tableUniqueAlphas = .FALSE.
|
||||
|
||||
! Now find the allowed (p,q) excitations
|
||||
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
|
||||
Nsomo_I = POPCNT(Isomo)
|
||||
if(Nsomo_I .EQ. 0) then
|
||||
kstart = 1
|
||||
else
|
||||
kstart = cfg_seniority_index(max(NSOMOMin,Nsomo_I-2))
|
||||
endif
|
||||
kend = idxI-1
|
||||
!print *,"Isomo"
|
||||
!call debug_spindet(Isomo,1)
|
||||
!call debug_spindet(Idomo,1)
|
||||
|
||||
!print *,"Nholes=",nholes," Nvmos=",nvmos, " idxi=",idxI
|
||||
!do i = 1,nholes
|
||||
! print *,i,"->",listholes(i)
|
||||
!enddo
|
||||
!do i = 1,nvmos
|
||||
! print *,i,"->",listvmos(i)
|
||||
!enddo
|
||||
|
||||
do i = 1,nholes
|
||||
p = listholes(i)
|
||||
do j = 1,nvmos
|
||||
q = listvmos(j)
|
||||
if(p .EQ. q) cycle
|
||||
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
|
||||
! SOMO -> VMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = Idomo
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
|
||||
kend = idxI-1
|
||||
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
|
||||
! SOMO -> SOMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBSET(Idomo,q-1)
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-4)))
|
||||
kend = idxI-1
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
|
||||
! DOMO -> VMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
kstart = cfg_seniority_index(Nsomo_I)
|
||||
kend = idxI-1
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
|
||||
! DOMO -> SOMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
Jdomo = IBSET(Jdomo,q-1)
|
||||
kstart = max(1,cfg_seniority_index(max(NSOMOMin,Nsomo_I-2)))
|
||||
kend = idxI-1
|
||||
else
|
||||
print*,"Something went wrong in obtain_associated_alphaI"
|
||||
endif
|
||||
|
||||
! Again, we don't have to search from 1
|
||||
! we just use seniortiy to find the
|
||||
! first index with NSOMO - 2 to NSOMO + 2
|
||||
! this is what is done in kstart, kend
|
||||
|
||||
pqAlreadyGenQ = .FALSE.
|
||||
! First check if it can be generated before
|
||||
do k = kstart, kend
|
||||
diffSOMO = IEOR(Jsomo,iand(act_bitmask(1,1),psi_configuration(1,1,k)))
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
if((ndiffSOMO .NE. 0) .AND. (ndiffSOMO .NE. 2)) cycle
|
||||
diffDOMO = IEOR(Jdomo,iand(act_bitmask(1,1),psi_configuration(1,2,k)))
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
nxordiffSOMODOMO += ndiffSOMO + ndiffDOMO
|
||||
!if(POPCNT(IEOR(diffSOMO,diffDOMO)) .LE. 1 .AND. ndiffDOMO .LT. 3) then
|
||||
if((ndiffSOMO+ndiffDOMO) .EQ. 0) then
|
||||
pqAlreadyGenQ = .TRUE.
|
||||
ppExistsQ = .TRUE.
|
||||
EXIT
|
||||
endif
|
||||
if((nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
|
||||
pqAlreadyGenQ = .TRUE.
|
||||
!EXIT
|
||||
!ppExistsQ = .TRUE.
|
||||
!print *,i,k,ndiffSOMO,ndiffDOMO
|
||||
!call debug_spindet(Jsomo,1)
|
||||
!call debug_spindet(Jdomo,1)
|
||||
!call debug_spindet(iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,1,k)),1)
|
||||
!call debug_spindet(iand(reunion_of_act_virt_bitmask(1,1),psi_configuration(1,2,k)),1)
|
||||
EXIT
|
||||
endif
|
||||
end do
|
||||
|
||||
!print *,"(,",p,",",q,")",pqAlreadyGenQ
|
||||
|
||||
if(pqAlreadyGenQ) cycle
|
||||
|
||||
pqExistsQ = .FALSE.
|
||||
! now check if this exists in the selected list
|
||||
!do k = idxI+1, N_configuration
|
||||
! diffSOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jsomo),psi_configuration(1,1,k))
|
||||
! diffDOMO = IEOR(OR(reunion_of_act_virt_bitmask(1,1),Jdomo),psi_configuration(1,2,k))
|
||||
! ndiffSOMO = POPCNT(diffSOMO)
|
||||
! ndiffDOMO = POPCNT(diffDOMO)
|
||||
! if((ndiffSOMO + ndiffDOMO) .EQ. 0) then
|
||||
! pqExistsQ = .TRUE.
|
||||
! EXIT
|
||||
! endif
|
||||
!end do
|
||||
|
||||
if(.NOT. pqExistsQ) then
|
||||
tableUniqueAlphas(p,q) = .TRUE.
|
||||
!print *,p,q
|
||||
!call debug_spindet(Jsomo,1)
|
||||
!call debug_spindet(Jdomo,1)
|
||||
endif
|
||||
end do
|
||||
end do
|
||||
|
||||
!print *,tableUniqueAlphas(:,:)
|
||||
|
||||
! prune list of alphas
|
||||
Isomo = Icfg(1,1)
|
||||
Idomo = Icfg(1,2)
|
||||
Jsomo = Icfg(1,1)
|
||||
Jdomo = Icfg(1,2)
|
||||
NalphaIcfg = 0
|
||||
do i = 1, nholes
|
||||
p = listholes(i)
|
||||
do j = 1, nvmos
|
||||
q = listvmos(j)
|
||||
if(p .EQ. q) cycle
|
||||
if(tableUniqueAlphas(p,q)) then
|
||||
if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 1) then
|
||||
! SOMO -> VMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = Idomo
|
||||
else if(holetype(i) .EQ. 1 .AND. vmotype(j) .EQ. 2) then
|
||||
! SOMO -> SOMO
|
||||
Jsomo = IBCLR(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBSET(Idomo,q-1)
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 1) then
|
||||
! DOMO -> VMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBSET(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
else if(holetype(i) .EQ. 2 .AND. vmotype(j) .EQ. 2) then
|
||||
! DOMO -> SOMO
|
||||
Jsomo = IBSET(Isomo,p-1)
|
||||
Jsomo = IBCLR(Jsomo,q-1)
|
||||
Jdomo = IBCLR(Idomo,p-1)
|
||||
Jdomo = IBSET(Jdomo,q-1)
|
||||
else
|
||||
print*,"Something went wrong in obtain_associated_alphaI"
|
||||
endif
|
||||
|
||||
! SOMO
|
||||
NalphaIcfg += 1
|
||||
!print *,i,j,"|",NalphaIcfg
|
||||
alphasIcfg(1,1,NalphaIcfg) = Jsomo
|
||||
alphasIcfg(1,2,NalphaIcfg) = IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
|
||||
!print *,"I = ",idxI, " Na=",NalphaIcfg," - ",Jsomo, IOR(Jdomo,ISHFT(1_8,n_core_orb)-1)
|
||||
endif
|
||||
end do
|
||||
end do
|
||||
|
||||
! Check if this Icfg has been previously generated as a mono
|
||||
ppExistsQ = .False.
|
||||
Isomo = iand(act_bitmask(1,1),Icfg(1,1))
|
||||
Idomo = iand(act_bitmask(1,1),Icfg(1,2))
|
||||
do k = 1, idxI-1
|
||||
diffSOMO = IEOR(Isomo,iand(act_bitmask(1,1),psi_configuration(1,1,k)))
|
||||
diffDOMO = IEOR(Idomo,iand(act_bitmask(1,1),psi_configuration(1,2,k)))
|
||||
xordiffSOMODOMO = IEOR(diffSOMO,diffDOMO)
|
||||
ndiffSOMO = POPCNT(diffSOMO)
|
||||
ndiffDOMO = POPCNT(diffDOMO)
|
||||
nxordiffSOMODOMO = POPCNT(xordiffSOMODOMO)
|
||||
if((ndiffSOMO+ndiffDOMO+nxordiffSOMODOMO .EQ. 4) .AND. ndiffSOMO .EQ. 2) then
|
||||
ppExistsQ = .TRUE.
|
||||
EXIT
|
||||
endif
|
||||
end do
|
||||
! Diagonal part (pp,qq)
|
||||
if(nholes > 0 .AND. (.NOT. ppExistsQ))then
|
||||
! SOMO
|
||||
NalphaIcfg += 1
|
||||
!print *,p,q,"|",holetype(i),vmotype(j),NalphaIcfg
|
||||
!call debug_spindet(Idomo,1)
|
||||
!call debug_spindet(Jdomo,1)
|
||||
alphasIcfg(1,1,NalphaIcfg) = Icfg(1,1)
|
||||
alphasIcfg(1,2,NalphaIcfg) = Icfg(1,2)
|
||||
endif
|
||||
|
||||
end subroutine
|
||||
|
||||
function getNSOMO(Icfg) result(NSOMO)
|
||||
implicit none
|
||||
integer(bit_kind),intent(in) :: Icfg(N_int,2)
|
||||
@ -8,98 +597,3 @@
|
||||
NSOMO += POPCNT(Icfg(i,1))
|
||||
enddo
|
||||
end function getNSOMO
|
||||
|
||||
subroutine convertOrbIdsToModelSpaceIds(Ialpha, Jcfg, p, q, extype, pmodel, qmodel)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! This function converts the orbital ids
|
||||
! in real space to those used in model space
|
||||
! in order to identify the matrices required
|
||||
! for the calculation of MEs.
|
||||
!
|
||||
! The type of excitations are ordered as follows:
|
||||
! Type 1 - SOMO -> SOMO
|
||||
! Type 2 - DOMO -> VMO
|
||||
! Type 3 - SOMO -> VMO
|
||||
! Type 4 - DOMO -> SOMO
|
||||
END_DOC
|
||||
integer(bit_kind),intent(in) :: Ialpha(N_int,2)
|
||||
integer(bit_kind),intent(in) :: Jcfg(N_int,2)
|
||||
integer,intent(in) :: p,q
|
||||
integer,intent(in) :: extype
|
||||
integer,intent(out) :: pmodel,qmodel
|
||||
integer*8 :: Isomo
|
||||
integer*8 :: Idomo
|
||||
integer*8 :: Jsomo
|
||||
integer*8 :: Jdomo
|
||||
integer*8 :: mask
|
||||
integer*8 :: Isomotmp
|
||||
integer*8 :: Jsomotmp
|
||||
integer :: pos0,pos0prev
|
||||
|
||||
! TODO Flag (print) when model space indices is > 64
|
||||
Isomo = Ialpha(1,1)
|
||||
Idomo = Ialpha(1,2)
|
||||
Jsomo = Jcfg(1,1)
|
||||
Jdomo = Jcfg(1,2)
|
||||
pos0prev = 0
|
||||
pmodel = p
|
||||
qmodel = q
|
||||
|
||||
if(p .EQ. q) then
|
||||
pmodel = 1
|
||||
qmodel = 1
|
||||
else
|
||||
!print *,"input pq=",p,q,"extype=",extype
|
||||
!call debug_spindet(Isomo,1)
|
||||
!call debug_spindet(Idomo,1)
|
||||
!call debug_spindet(Jsomo,1)
|
||||
!call debug_spindet(Jdomo,1)
|
||||
select case(extype)
|
||||
case (1)
|
||||
! SOMO -> SOMO
|
||||
! remove all domos
|
||||
!print *,"type -> SOMO -> SOMO"
|
||||
mask = ISHFT(1_8,p) - 1
|
||||
Isomotmp = IAND(Isomo,mask)
|
||||
pmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
|
||||
mask = ISHFT(1_8,q) - 1
|
||||
Isomotmp = IAND(Isomo,mask)
|
||||
qmodel = POPCNT(mask) - POPCNT(XOR(Isomotmp,mask))
|
||||
case (2)
|
||||
! DOMO -> VMO
|
||||
! remove all domos except one at p
|
||||
!print *,"type -> DOMO -> VMO"
|
||||
mask = ISHFT(1_8,p) - 1
|
||||
Jsomotmp = IAND(Jsomo,mask)
|
||||
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
|
||||
mask = ISHFT(1_8,q) - 1
|
||||
Jsomotmp = IAND(Jsomo,mask)
|
||||
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomotmp,mask))
|
||||
case (3)
|
||||
! SOMO -> VMO
|
||||
!print *,"type -> SOMO -> VMO"
|
||||
!Isomo = IEOR(Isomo,Jsomo)
|
||||
mask = ISHFT(1_8,p) - 1
|
||||
Isomo = IAND(Isomo,mask)
|
||||
pmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
|
||||
mask = ISHFT(1_8,q) - 1
|
||||
Jsomo = IAND(Jsomo,mask)
|
||||
qmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
|
||||
case (4)
|
||||
! DOMO -> SOMO
|
||||
! remove all domos except one at p
|
||||
!print *,"type -> DOMO -> SOMO"
|
||||
!Isomo = IEOR(Isomo,Jsomo)
|
||||
mask = ISHFT(1_8,p) - 1
|
||||
Jsomo = IAND(Jsomo,mask)
|
||||
pmodel = POPCNT(mask) - POPCNT(XOR(Jsomo,mask))
|
||||
mask = ISHFT(1_8,q) - 1
|
||||
Isomo = IAND(Isomo,mask)
|
||||
qmodel = POPCNT(mask) - POPCNT(XOR(Isomo,mask))
|
||||
case default
|
||||
print *,"something is wrong in convertOrbIdsToModelSpaceIds"
|
||||
end select
|
||||
endif
|
||||
!print *,p,q,"model ids=",pmodel,qmodel
|
||||
end subroutine convertOrbIdsToModelSpaceIds
|
||||
|
@ -458,8 +458,9 @@ end
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
BEGIN_PROVIDER [ integer, cfg_seniority_index, (0:elec_num) ]
|
||||
BEGIN_PROVIDER [ integer, cfg_seniority_index, (0:elec_num+2) ]
|
||||
&BEGIN_PROVIDER [ integer, cfg_nsomo_max ]
|
||||
&BEGIN_PROVIDER [ integer, cfg_nsomo_min ]
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Returns the index in psi_configuration of the first cfg with
|
||||
@ -467,9 +468,10 @@ END_PROVIDER
|
||||
!
|
||||
! cfg_nsomo_max : Max number of SOMO in the current wave function
|
||||
END_DOC
|
||||
integer :: i, k, s, sold
|
||||
integer :: i, k, s, sold, soldmin
|
||||
cfg_seniority_index(:) = -1
|
||||
sold = -1
|
||||
soldmin = 2000
|
||||
cfg_nsomo_max = 0
|
||||
do i=1,N_configuration
|
||||
s = 0
|
||||
@ -482,6 +484,10 @@ END_PROVIDER
|
||||
cfg_seniority_index(s) = i
|
||||
cfg_nsomo_max = s
|
||||
endif
|
||||
if (soldmin .GT. s ) then
|
||||
soldmin = s
|
||||
cfg_nsomo_min = s
|
||||
endif
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
@ -743,41 +749,112 @@ BEGIN_PROVIDER [ integer(bit_kind), dominant_dets_of_cfgs, (N_int,2,N_dominant_d
|
||||
enddo
|
||||
END_PROVIDER
|
||||
|
||||
subroutine binary_search_cfg(cfgInp,addcfg)
|
||||
subroutine binary_search_cfg(cfgInp,addcfg,bit_tmp)
|
||||
use bitmasks
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Documentation for binary_search
|
||||
!
|
||||
! Does a binary search to find
|
||||
!
|
||||
! Does a binary search to find
|
||||
! the address of a configuration in a list of
|
||||
! configurations.
|
||||
END_DOC
|
||||
integer(bit_kind), intent(in) :: cfgInp(N_int,2)
|
||||
integer , intent(out) :: addcfg
|
||||
integer :: i,j,k,r,l
|
||||
integer*8 :: key, key2
|
||||
logical :: found
|
||||
!integer*8, allocatable :: bit_tmp(:)
|
||||
!integer*8, external :: configuration_search_key
|
||||
integer*8, intent(in) :: bit_tmp(0:N_configuration+1)
|
||||
|
||||
!allocate(bit_tmp(0:N_configuration))
|
||||
!bit_tmp(0) = 0
|
||||
do i=1,N_configuration
|
||||
!bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int)
|
||||
found = .True.
|
||||
do k=1,N_int
|
||||
found = found .and. (psi_configuration(k,1,i) == cfgInp(k,1)) &
|
||||
.and. (psi_configuration(k,2,i) == cfgInp(k,2))
|
||||
enddo
|
||||
if (found) then
|
||||
addcfg = i
|
||||
exit
|
||||
logical :: found
|
||||
integer :: l, r, j, k
|
||||
integer*8 :: key
|
||||
|
||||
integer*8, external :: configuration_search_key
|
||||
|
||||
key = configuration_search_key(cfgInp,N_int)
|
||||
|
||||
! Binary search
|
||||
l = 0
|
||||
r = N_configuration+1
|
||||
IRP_IF WITHOUT_SHIFTRL
|
||||
j = ishft(r-l,-1)
|
||||
IRP_ELSE
|
||||
j = shiftr(r-l,1)
|
||||
IRP_ENDIF
|
||||
do while (j>=1)
|
||||
j = j+l
|
||||
if (bit_tmp(j) == key) then
|
||||
! Find 1st element which matches the key
|
||||
if (j > 1) then
|
||||
do while (j>1 .and. bit_tmp(j-1) == key)
|
||||
j = j-1
|
||||
enddo
|
||||
endif
|
||||
! Find correct element matching the key
|
||||
do while (bit_tmp(j) == key)
|
||||
found = .True.
|
||||
do k=1,N_int
|
||||
found = found .and. (psi_configuration(k,1,j) == cfgInp(k,1))&
|
||||
.and. (psi_configuration(k,2,j) == cfgInp(k,2))
|
||||
enddo
|
||||
if (found) then
|
||||
addcfg = j
|
||||
return
|
||||
endif
|
||||
j = j+1
|
||||
enddo
|
||||
addcfg = -1
|
||||
return
|
||||
else if (bit_tmp(j) > key) then
|
||||
r = j
|
||||
else
|
||||
l = j
|
||||
endif
|
||||
IRP_IF WITHOUT_SHIFTRL
|
||||
j = ishft(r-l,-1)
|
||||
IRP_ELSE
|
||||
j = shiftr(r-l,1)
|
||||
IRP_ENDIF
|
||||
enddo
|
||||
|
||||
addcfg = -1
|
||||
return
|
||||
|
||||
end subroutine
|
||||
|
||||
!subroutine binary_search_cfg(cfgInp,addcfg)
|
||||
! use bitmasks
|
||||
! implicit none
|
||||
! BEGIN_DOC
|
||||
! ! Documentation for binary_search
|
||||
! !
|
||||
! ! Does a binary search to find
|
||||
! ! the address of a configuration in a list of
|
||||
! ! configurations.
|
||||
! END_DOC
|
||||
! integer(bit_kind), intent(in) :: cfgInp(N_int,2)
|
||||
! integer , intent(out) :: addcfg
|
||||
! integer :: i,j,k,r,l
|
||||
! integer*8 :: key, key2
|
||||
! logical :: found
|
||||
! !integer*8, allocatable :: bit_tmp(:)
|
||||
! !integer*8, external :: configuration_search_key
|
||||
!
|
||||
! !allocate(bit_tmp(0:N_configuration))
|
||||
! !bit_tmp(0) = 0
|
||||
! do i=1,N_configuration
|
||||
! !bit_tmp(i) = configuration_search_key(psi_configuration(1,1,i),N_int)
|
||||
! found = .True.
|
||||
! do k=1,N_int
|
||||
! found = found .and. (psi_configuration(k,1,i) == cfgInp(k,1)) &
|
||||
! .and. (psi_configuration(k,2,i) == cfgInp(k,2))
|
||||
! enddo
|
||||
! if (found) then
|
||||
! addcfg = i
|
||||
! exit
|
||||
! endif
|
||||
! enddo
|
||||
!
|
||||
!end subroutine
|
||||
!
|
||||
BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det, (2,N_configuration) ]
|
||||
&BEGIN_PROVIDER [ integer, psi_configuration_n_det, (N_configuration) ]
|
||||
&BEGIN_PROVIDER [ integer, psi_configuration_to_psi_det_data, (N_det) ]
|
||||
|
@ -24,7 +24,7 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
|
||||
double precision, intent(out) :: psi_coef_cfg_out(n_CSF,N_st)
|
||||
integer*8 :: Isomo, Idomo, mask
|
||||
integer(bit_kind) :: Ialpha(N_int) ,Ibeta(N_int)
|
||||
integer :: rows, cols, i, j, k
|
||||
integer :: rows, cols, i, j, k, salpha
|
||||
integer :: startdet, enddet
|
||||
integer :: ndetI
|
||||
integer :: getNSOMO
|
||||
@ -65,9 +65,11 @@ subroutine convertWFfromDETtoCSF(N_st,psi_coef_det_in, psi_coef_cfg_out)
|
||||
enddo
|
||||
|
||||
if(iand(s,1) .EQ. 0) then
|
||||
bfIcfg = max(1,nint((binom(s,s/2)-binom(s,(s/2)+1))))
|
||||
salpha = (s + MS)/2
|
||||
bfIcfg = max(1,nint((binom(s,salpha)-binom(s,salpha+1))))
|
||||
else
|
||||
bfIcfg = max(1,nint((binom(s,(s+1)/2)-binom(s,((s+1)/2)+1))))
|
||||
salpha = (s + MS)/2
|
||||
bfIcfg = max(1,nint((binom(s,salpha)-binom(s,salpha+1))))
|
||||
endif
|
||||
|
||||
! perhaps blocking with CFGs of same seniority
|
||||
@ -99,7 +101,7 @@ subroutine convertWFfromCSFtoDET(N_st,psi_coef_cfg_in, psi_coef_det)
|
||||
double precision,intent(in) :: psi_coef_cfg_in(n_CSF,N_st)
|
||||
double precision,intent(out) :: psi_coef_det(N_det,N_st)
|
||||
double precision :: tmp_psi_coef_det(maxDetDimPerBF,N_st)
|
||||
integer :: s, bfIcfg
|
||||
integer :: s, bfIcfg, salpha
|
||||
integer :: countcsf
|
||||
integer(bit_kind) :: Ialpha(N_int), Ibeta(N_int)
|
||||
integer :: rows, cols, i, j, k
|
||||
@ -110,6 +112,8 @@ subroutine convertWFfromCSFtoDET(N_st,psi_coef_cfg_in, psi_coef_det)
|
||||
double precision,allocatable :: tempCoeff (:,:)
|
||||
double precision :: phasedet
|
||||
integer :: idx
|
||||
integer MS
|
||||
MS = elec_alpha_num-elec_beta_num
|
||||
|
||||
countcsf = 0
|
||||
|
||||
@ -123,7 +127,8 @@ subroutine convertWFfromCSFtoDET(N_st,psi_coef_cfg_in, psi_coef_det)
|
||||
if (psi_configuration(k,1,i) == 0_bit_kind) cycle
|
||||
s = s + popcnt(psi_configuration(k,1,i))
|
||||
enddo
|
||||
bfIcfg = max(1,nint((binom(s,(s+1)/2)-binom(s,((s+1)/2)+1))))
|
||||
salpha = (s + MS)/2
|
||||
bfIcfg = max(1,nint((binom(s,salpha)-binom(s,salpha+1))))
|
||||
|
||||
allocate(tempCoeff(bfIcfg,N_st))
|
||||
|
||||
|
@ -226,7 +226,7 @@ subroutine generate_all_singles_cfg(cfg,singles,n_singles,Nint)
|
||||
enddo
|
||||
end
|
||||
|
||||
subroutine generate_all_singles_cfg_with_type(cfgInp,singles,idxs_singles,pq_singles,ex_type_singles,n_singles,Nint)
|
||||
subroutine generate_all_singles_cfg_with_type(bit_tmp,cfgInp,singles,idxs_singles,pq_singles,ex_type_singles,n_singles,Nint)
|
||||
implicit none
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
@ -238,6 +238,7 @@ subroutine generate_all_singles_cfg_with_type(cfgInp,singles,idxs_singles,pq_sin
|
||||
! ex_type_singles : on output contains type of excitations :
|
||||
!
|
||||
END_DOC
|
||||
integer*8, intent(in) :: bit_tmp(0:N_configuration+1)
|
||||
integer, intent(in) :: Nint
|
||||
integer, intent(inout) :: n_singles
|
||||
integer, intent(out) :: idxs_singles(*)
|
||||
@ -248,20 +249,26 @@ subroutine generate_all_singles_cfg_with_type(cfgInp,singles,idxs_singles,pq_sin
|
||||
integer(bit_kind) :: Jdet(Nint,2)
|
||||
|
||||
integer :: i,k, n_singles_ma, i_hole, i_particle, ex_type, addcfg
|
||||
integer :: ii,kk
|
||||
integer(bit_kind) :: single(Nint,2)
|
||||
logical :: i_ok
|
||||
|
||||
|
||||
n_singles = 0
|
||||
!TODO
|
||||
!Make list of Somo and Domo for holes
|
||||
!Make list of Unocc and Somo for particles
|
||||