9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-08 19:32:58 +01:00

option to use or not trust region + hessian

This commit is contained in:
Yann Damour 2022-11-10 09:31:33 +01:00
parent 0f6572bde1
commit a119d5943b
5 changed files with 1068 additions and 304 deletions

View File

@ -1,42 +1,48 @@
[localization_method] [localization_method]
type: character*(32) type: character*(32)
doc: Method for the orbital localization. boys : Foster-Boys, pipek : Pipek-Mezey doc: Method for the orbital localization. boys : Foster-Boys, pipek : Pipek-Mezey.
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: boys default: boys
[localization_max_nb_iter] [localization_max_nb_iter]
type: integer type: integer
doc: Maximal number of iterations for the orbital localization doc: Maximal number of iterations for the orbital localization.
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: 1000 default: 1000
[localization_use_hessian]
type: logical
doc: If true, it uses the trust region algorithm with the gradient and the diagonal of the hessian. Else it computes the rotation between each pair of MOs that should be applied to maximize/minimize the localization criterion. The last option requieres a way smaller amount of memory but is not easy to converge.
interface: ezfio,provider,ocaml
default: true
[security_mo_class] [security_mo_class]
type: logical type: logical
doc: If true, call abort if the number of active orbital or the number of core + active orbitals is equal to the number of molecular orbitals, else uses the actual mo_class. It is a security if you forget to set the mo_class before the localization doc: If true, call abort if the number of active orbital or the number of core + active orbitals is equal to the number of molecular orbitals, else uses the actual mo_class. It is a security if you forget to set the mo_class before the localization.
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: true default: true
[thresh_loc_max_elem_grad] [thresh_loc_max_elem_grad]
type: double precision type: double precision
doc: Threshold for the convergence, the localization exits when the largest element in the gradient is smaller than thresh_localization_max_elem_grad doc: Threshold for the convergence, the localization exits when the largest element in the gradient is smaller than thresh_localization_max_elem_grad.
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: 1.e-6 default: 1.e-6
[kick_in_mos] [kick_in_mos]
type: logical type: logical
doc: If True, apply a rotation of an angle angle_pre_rot between the MOs of a same mo_class before the localization doc: If True, it applies a rotation of an angle angle_pre_rot between the MOs of a same mo_class before the localization.
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: true default: true
[angle_pre_rot] [angle_pre_rot]
type: double precision type: double precision
doc: Define the angle for the rotation of the MOs before the localization (in rad) doc: To define the angle for the rotation of the MOs before the localization (in rad).
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: 0.1 default: 0.1
[sort_mos_by_e] [sort_mos_by_e]
type: logical type: logical
doc: If True, sorts the MOs using the diagonal elements of the Fock matrix doc: If True, the MOs are sorted using the diagonal elements of the Fock matrix.
interface: ezfio,provider,ocaml interface: ezfio,provider,ocaml
default: false default: false

View File

@ -85,6 +85,23 @@ symmetry with just a small change in the energy:
qp set mo_localization angle_pre_rot 1e-3 qp set mo_localization angle_pre_rot 1e-3
``` ```
# With or without hessian + trust region
With hessian + trust region
```
qp set mo_localization localisation_use_hessian true
```
It uses the trust region algorithm with the diagonal of the hessian of the
localization criterion with respect to the MO rotations.
Without the hessian and the trust region
```
qp set mo_localization localisation_use_hessian false
```
By doing so it does not require to store the hessian but the
convergence is not easy, in particular for virtual MOs.
It seems that it not possible to converge with Pipek-Mezey
localization with this approach.
# Further improvements: # Further improvements:
- Cleaner repo - Cleaner repo
- Correction of the errors in the documentations - Correction of the errors in the documentations

View File

@ -296,147 +296,222 @@ subroutine run_localization
! Size for the 2D -> 1D transformation ! Size for the 2D -> 1D transformation
tmp_n = tmp_list_size * (tmp_list_size - 1)/2 tmp_n = tmp_list_size * (tmp_list_size - 1)/2
! Allocation of temporary arrays ! Without hessian + trust region
allocate(v_grad(tmp_n), H(tmp_n, tmp_n), tmp_m_x(tmp_list_size, tmp_list_size)) if (.not. localization_use_hessian) then
allocate(tmp_R(tmp_list_size, tmp_list_size))
allocate(tmp_x(tmp_n), W(tmp_n,tmp_n), e_val(tmp_n), key(tmp_n))
! ### Initialization ### ! Allocation of temporary arrays
delta = 0d0 ! can be deleted (normally) allocate(v_grad(tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
nb_iter = 0 ! Must start at 0 !!! allocate(tmp_R(tmp_list_size, tmp_list_size), tmp_x(tmp_n))
rho = 0.5d0 ! Must be 0.5
! Compute the criterion before the loop ! Criterion
call criterion_localization(tmp_list_size, tmp_list, prev_criterion) call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
! Loop until the convergence ! Init
do while (not_converged) nb_iter = 0
delta = 1d0
print*,'' !Loop
print*,'***********************' do while (not_converged)
print*,'Iteration', nb_iter
print*,'***********************'
print*,''
! Gradient print*,''
call gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad) print*,'***********************'
! Diagonal hessian print*,'Iteration', nb_iter
call hessian_localization(tmp_n, tmp_list_size, tmp_list, H) print*,'***********************'
print*,''
! Diagonalization of the diagonal hessian by hands ! Angles of rotation
!call diagonalization_hessian(tmp_n,H,e_val,w) call theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
do i = 1, tmp_n tmp_m_x = - tmp_m_x * delta
e_val(i) = H(i,i)
enddo
! Key list for dsort ! Rotation submatrix
do i = 1, tmp_n
key(i) = i
enddo
! Sort of the eigenvalues
call dsort(e_val, key, tmp_n)
! Eigenvectors
W = 0d0
do i = 1, tmp_n
j = key(i)
W(j,i) = 1d0
enddo
! To enter in the loop just after
cancel_step = .True.
nb_sub_iter = 0
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
do while (cancel_step)
print*,'-----------------------------'
print*, mo_class(tmp_list(1))
print*,'Iteration:', nb_iter
print*,'Sub iteration:', nb_sub_iter
print*,'-----------------------------'
! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n, H, W, e_val, v_grad, prev_criterion, &
rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
! Internal loop exit condition
if (must_exit) then
print*,'trust_region_step_w_expected_e sent: Exit'
exit
endif
! 1D tmp -> 2D tmp
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, & call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
info, enforce_step_cancellation) info, enforce_step_cancellation)
! To ensure that the rotation matrix is unitary
if (enforce_step_cancellation) then if (enforce_step_cancellation) then
print*, 'Step cancellation, too large error in the rotation matrix' print*, 'Step cancellation, too large error in the rotation matrix'
rho = 0d0 delta = delta * 0.5d0
cycle cycle
else
delta = min(delta * 2d0, 1d0)
endif endif
! tmp_R to R, subspace to full space ! Full rotation matrix and application of the rotation
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R) call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
! Rotation of the MOs
call apply_mo_rotation(R, prev_mos) call apply_mo_rotation(R, prev_mos)
! Update the things related to mo_coef ! Update the needed data
call update_data_localization() call update_data_localization()
! Update the criterion ! New criterion
call criterion_localization(tmp_list_size, tmp_list, criterion) call criterion_localization(tmp_list_size, tmp_list, criterion)
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
print*,'Max elem :', max_elem
print*,'Delta :', delta
! Criterion -> step accepted or rejected nb_iter = nb_iter + 1
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, &
criterion_model, rho, cancel_step)
! Cancellation of the step, previous MOs ! Exit
if (cancel_step) then if (nb_iter >= localization_max_nb_iter .or. dabs(max_elem) < thresh_loc_max_elem_grad) then
mo_coef = prev_mos not_converged = .False.
endif
enddo
! Save the changes
call update_data_localization()
call save_mos()
TOUCH mo_coef
! Deallocate
deallocate(v_grad, tmp_m_x, tmp_list)
deallocate(tmp_R, tmp_x)
! Trust region
else
! Allocation of temporary arrays
allocate(v_grad(tmp_n), H(tmp_n, tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
allocate(tmp_R(tmp_list_size, tmp_list_size))
allocate(tmp_x(tmp_n), W(tmp_n,tmp_n), e_val(tmp_n), key(tmp_n))
! ### Initialization ###
delta = 0d0 ! can be deleted (normally)
nb_iter = 0 ! Must start at 0 !!!
rho = 0.5d0 ! Must be 0.5
! Compute the criterion before the loop
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
! Loop until the convergence
do while (not_converged)
print*,''
print*,'***********************'
print*,'Iteration', nb_iter
print*,'***********************'
print*,''
! Gradient
call gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
! Diagonal hessian
call hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
! Diagonalization of the diagonal hessian by hands
!call diagonalization_hessian(tmp_n,H,e_val,w)
do i = 1, tmp_n
e_val(i) = H(i,i)
enddo
! Key list for dsort
do i = 1, tmp_n
key(i) = i
enddo
! Sort of the eigenvalues
call dsort(e_val, key, tmp_n)
! Eigenvectors
W = 0d0
do i = 1, tmp_n
j = key(i)
W(j,i) = 1d0
enddo
! To enter in the loop just after
cancel_step = .True.
nb_sub_iter = 0
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
do while (cancel_step)
print*,'-----------------------------'
print*, mo_class(tmp_list(1))
print*,'Iteration:', nb_iter
print*,'Sub iteration:', nb_sub_iter
print*,'-----------------------------'
! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n, H, W, e_val, v_grad, prev_criterion, &
rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
! Internal loop exit condition
if (must_exit) then
print*,'trust_region_step_w_expected_e sent: Exit'
exit
endif
! 1D tmp -> 2D tmp
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
info, enforce_step_cancellation)
if (enforce_step_cancellation) then
print*, 'Step cancellation, too large error in the rotation matrix'
rho = 0d0
cycle
endif
! tmp_R to R, subspace to full space
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
! Rotation of the MOs
call apply_mo_rotation(R, prev_mos)
! Update the things related to mo_coef
call update_data_localization()
! Update the criterion
call criterion_localization(tmp_list_size, tmp_list, criterion)
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
! Criterion -> step accepted or rejected
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, &
criterion_model, rho, cancel_step)
! Cancellation of the step, previous MOs
if (cancel_step) then
mo_coef = prev_mos
endif
nb_sub_iter = nb_sub_iter + 1
enddo
!call save_mos() !### depend of the time for 1 iteration
! To exit the external loop if must_exti = .True.
if (must_exit) then
exit
endif endif
nb_sub_iter = nb_sub_iter + 1 ! Step accepted, nb iteration + 1
nb_iter = nb_iter + 1
! External loop exit conditions
if (DABS(max_elem) < thresh_loc_max_elem_grad) then
not_converged = .False.
endif
if (nb_iter > localization_max_nb_iter) then
not_converged = .False.
endif
enddo enddo
!call save_mos() !### depend of the time for 1 iteration
! To exit the external loop if must_exti = .True. ! Deallocation of temporary arrays
if (must_exit) then deallocate(v_grad, H, tmp_m_x, tmp_R, tmp_list, tmp_x, W, e_val, key)
exit
! Save the MOs
call save_mos()
TOUCH mo_coef
! Debug
if (debug_hf) then
touch mo_coef
print*,'HF energy:', HF_energy
endif endif
! Step accepted, nb iteration + 1
nb_iter = nb_iter + 1
! External loop exit conditions
if (DABS(max_elem) < thresh_loc_max_elem_grad) then
not_converged = .False.
endif
if (nb_iter > localization_max_nb_iter) then
not_converged = .False.
endif
enddo
! Deallocation of temporary arrays
deallocate(v_grad, H, tmp_m_x, tmp_R, tmp_list, tmp_x, W, e_val, key)
! Save the MOs
call save_mos()
TOUCH mo_coef
! Debug
if (debug_hf) then
touch mo_coef
print*,'HF energy:', HF_energy
endif endif
enddo enddo
TOUCH mo_coef TOUCH mo_coef
! To sort the MOs using the diagonal elements of the Fock matrix ! To sort the MOs using the diagonal elements of the Fock matrix

View File

@ -29,9 +29,29 @@ WARNING:
to have the right mo class for his next calculation... to have the right mo class for his next calculation...
For more information on the mo_class: For more information on the mo_class:
lpqp set_mo_class -h qp set_mo_class -h
*** Foster-Boys localization *** Foster-Boys localization
Boys, S. F., 1960, Rev. Mod. Phys. 32, 296.
DOI:https://doi.org/10.1103/RevModPhys.32.300
Boys, S. F., 1966, in Quantum Theory of Atoms, Molecules,
and the Solid State, edited by P.-O. Löwdin (Academic
Press, New York), p. 253.
Daniel A. Kleier, Thomas A. Halgren, John H. Hall Jr., and William
N. Lipscomb, J. Chem. Phys. 61, 3905 (1974)
doi: 10.1063/1.1681683
Høyvik, I.-M., Jansik, B., Jørgensen, P., J. Comput. Chem. 2013, 34,
1456 1462. DOI: 10.1002/jcc.23281
Høyvik, I.-M., Jansik, B., Jørgensen, P., J. Chem. Theory
Comput. 2012, 8, 9, 31373146
DOI: https://doi.org/10.1021/ct300473g
Høyvik, I.-M., Jansik, B., Jørgensen, P., J. Chem. Phys. 137, 224114
(2012)
DOI: https://doi.org/10.1063/1.4769866
Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David Vanderbilt
Rev. Mod. Phys. 84, 1419
https://doi.org/10.1103/RevModPhys.84.1419
The Foster-Boys localization is a method to generate localized MOs The Foster-Boys localization is a method to generate localized MOs
(LMOs) by minimizing the Foster-Boys criterion: (LMOs) by minimizing the Foster-Boys criterion:
$$ C_{FB} = \sum_{i=1}^N \left[ < \phi_i | r^2 | \phi_i > - < \phi_i | r | $$ C_{FB} = \sum_{i=1}^N \left[ < \phi_i | r^2 | \phi_i > - < \phi_i | r |
@ -482,147 +502,222 @@ subroutine run_localization
! Size for the 2D -> 1D transformation ! Size for the 2D -> 1D transformation
tmp_n = tmp_list_size * (tmp_list_size - 1)/2 tmp_n = tmp_list_size * (tmp_list_size - 1)/2
! Allocation of temporary arrays ! Without hessian + trust region
allocate(v_grad(tmp_n), H(tmp_n, tmp_n), tmp_m_x(tmp_list_size, tmp_list_size)) if (.not. localization_use_hessian) then
allocate(tmp_R(tmp_list_size, tmp_list_size))
allocate(tmp_x(tmp_n), W(tmp_n,tmp_n), e_val(tmp_n), key(tmp_n))
! ### Initialization ### ! Allocation of temporary arrays
delta = 0d0 ! can be deleted (normally) allocate(v_grad(tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
nb_iter = 0 ! Must start at 0 !!! allocate(tmp_R(tmp_list_size, tmp_list_size), tmp_x(tmp_n))
rho = 0.5d0 ! Must be 0.5
! Compute the criterion before the loop ! Criterion
call criterion_localization(tmp_list_size, tmp_list, prev_criterion) call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
! Loop until the convergence ! Init
do while (not_converged) nb_iter = 0
delta = 1d0
print*,'' !Loop
print*,'***********************' do while (not_converged)
print*,'Iteration', nb_iter
print*,'***********************'
print*,''
! Gradient print*,''
call gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad) print*,'***********************'
! Diagonal hessian print*,'Iteration', nb_iter
call hessian_localization(tmp_n, tmp_list_size, tmp_list, H) print*,'***********************'
print*,''
! Diagonalization of the diagonal hessian by hands ! Angles of rotation
!call diagonalization_hessian(tmp_n,H,e_val,w) call theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
do i = 1, tmp_n tmp_m_x = - tmp_m_x * delta
e_val(i) = H(i,i)
enddo
! Key list for dsort ! Rotation submatrix
do i = 1, tmp_n
key(i) = i
enddo
! Sort of the eigenvalues
call dsort(e_val, key, tmp_n)
! Eigenvectors
W = 0d0
do i = 1, tmp_n
j = key(i)
W(j,i) = 1d0
enddo
! To enter in the loop just after
cancel_step = .True.
nb_sub_iter = 0
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
do while (cancel_step)
print*,'-----------------------------'
print*, mo_class(tmp_list(1))
print*,'Iteration:', nb_iter
print*,'Sub iteration:', nb_sub_iter
print*,'-----------------------------'
! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n, H, W, e_val, v_grad, prev_criterion, &
rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
! Internal loop exit condition
if (must_exit) then
print*,'trust_region_step_w_expected_e sent: Exit'
exit
endif
! 1D tmp -> 2D tmp
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, & call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
info, enforce_step_cancellation) info, enforce_step_cancellation)
! To ensure that the rotation matrix is unitary
if (enforce_step_cancellation) then if (enforce_step_cancellation) then
print*, 'Step cancellation, too large error in the rotation matrix' print*, 'Step cancellation, too large error in the rotation matrix'
rho = 0d0 delta = delta * 0.5d0
cycle cycle
else
delta = min(delta * 2d0, 1d0)
endif endif
! tmp_R to R, subspace to full space ! Full rotation matrix and application of the rotation
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R) call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
! Rotation of the MOs
call apply_mo_rotation(R, prev_mos) call apply_mo_rotation(R, prev_mos)
! Update the things related to mo_coef ! Update the needed data
call update_data_localization() call update_data_localization()
! Update the criterion ! New criterion
call criterion_localization(tmp_list_size, tmp_list, criterion) call criterion_localization(tmp_list_size, tmp_list, criterion)
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
print*,'Max elem :', max_elem
print*,'Delta :', delta
! Criterion -> step accepted or rejected nb_iter = nb_iter + 1
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, &
criterion_model, rho, cancel_step)
! Cancellation of the step, previous MOs ! Exit
if (cancel_step) then if (nb_iter >= localization_max_nb_iter .or. dabs(max_elem) < thresh_loc_max_elem_grad) then
mo_coef = prev_mos not_converged = .False.
endif
enddo
! Save the changes
call update_data_localization()
call save_mos()
TOUCH mo_coef
! Deallocate
deallocate(v_grad, tmp_m_x, tmp_list)
deallocate(tmp_R, tmp_x)
! Trust region
else
! Allocation of temporary arrays
allocate(v_grad(tmp_n), H(tmp_n, tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
allocate(tmp_R(tmp_list_size, tmp_list_size))
allocate(tmp_x(tmp_n), W(tmp_n,tmp_n), e_val(tmp_n), key(tmp_n))
! ### Initialization ###
delta = 0d0 ! can be deleted (normally)
nb_iter = 0 ! Must start at 0 !!!
rho = 0.5d0 ! Must be 0.5
! Compute the criterion before the loop
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
! Loop until the convergence
do while (not_converged)
print*,''
print*,'***********************'
print*,'Iteration', nb_iter
print*,'***********************'
print*,''
! Gradient
call gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
! Diagonal hessian
call hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
! Diagonalization of the diagonal hessian by hands
!call diagonalization_hessian(tmp_n,H,e_val,w)
do i = 1, tmp_n
e_val(i) = H(i,i)
enddo
! Key list for dsort
do i = 1, tmp_n
key(i) = i
enddo
! Sort of the eigenvalues
call dsort(e_val, key, tmp_n)
! Eigenvectors
W = 0d0
do i = 1, tmp_n
j = key(i)
W(j,i) = 1d0
enddo
! To enter in the loop just after
cancel_step = .True.
nb_sub_iter = 0
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
do while (cancel_step)
print*,'-----------------------------'
print*, mo_class(tmp_list(1))
print*,'Iteration:', nb_iter
print*,'Sub iteration:', nb_sub_iter
print*,'-----------------------------'
! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n, H, W, e_val, v_grad, prev_criterion, &
rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
! Internal loop exit condition
if (must_exit) then
print*,'trust_region_step_w_expected_e sent: Exit'
exit
endif
! 1D tmp -> 2D tmp
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
info, enforce_step_cancellation)
if (enforce_step_cancellation) then
print*, 'Step cancellation, too large error in the rotation matrix'
rho = 0d0
cycle
endif
! tmp_R to R, subspace to full space
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
! Rotation of the MOs
call apply_mo_rotation(R, prev_mos)
! Update the things related to mo_coef
call update_data_localization()
! Update the criterion
call criterion_localization(tmp_list_size, tmp_list, criterion)
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
! Criterion -> step accepted or rejected
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, &
criterion_model, rho, cancel_step)
! Cancellation of the step, previous MOs
if (cancel_step) then
mo_coef = prev_mos
endif
nb_sub_iter = nb_sub_iter + 1
enddo
!call save_mos() !### depend of the time for 1 iteration
! To exit the external loop if must_exti = .True.
if (must_exit) then
exit
endif endif
nb_sub_iter = nb_sub_iter + 1 ! Step accepted, nb iteration + 1
nb_iter = nb_iter + 1
! External loop exit conditions
if (DABS(max_elem) < thresh_loc_max_elem_grad) then
not_converged = .False.
endif
if (nb_iter > localization_max_nb_iter) then
not_converged = .False.
endif
enddo enddo
!call save_mos() !### depend of the time for 1 iteration
! To exit the external loop if must_exti = .True. ! Deallocation of temporary arrays
if (must_exit) then deallocate(v_grad, H, tmp_m_x, tmp_R, tmp_list, tmp_x, W, e_val, key)
exit
! Save the MOs
call save_mos()
TOUCH mo_coef
! Debug
if (debug_hf) then
touch mo_coef
print*,'HF energy:', HF_energy
endif endif
! Step accepted, nb iteration + 1
nb_iter = nb_iter + 1
! External loop exit conditions
if (DABS(max_elem) < thresh_loc_max_elem_grad) then
not_converged = .False.
endif
if (nb_iter > localization_max_nb_iter) then
not_converged = .False.
endif
enddo
! Deallocation of temporary arrays
deallocate(v_grad, H, tmp_m_x, tmp_R, tmp_list, tmp_x, W, e_val, key)
! Save the MOs
call save_mos()
TOUCH mo_coef
! Debug
if (debug_hf) then
touch mo_coef
print*,'HF energy:', HF_energy
endif endif
enddo enddo
TOUCH mo_coef TOUCH mo_coef
! To sort the MOs using the diagonal elements of the Fock matrix ! To sort the MOs using the diagonal elements of the Fock matrix
@ -682,9 +777,8 @@ subroutine gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_ele
elseif (localization_method== 'pipek') then elseif (localization_method== 'pipek') then
call gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad) call gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
else else
v_grad = 0d0 print*,'Unkown method:'//localization_method
max_elem = 0d0 call abort
norm_grad = 0d0
endif endif
end end
@ -717,7 +811,8 @@ subroutine hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
elseif (localization_method == 'pipek') then elseif (localization_method == 'pipek') then
call hessian_PM(tmp_n, tmp_list_size, tmp_list, H) call hessian_PM(tmp_n, tmp_list_size, tmp_list, H)
else else
H = 0d0 print*,'Unkown method: '//localization_method
call abort
endif endif
end end
@ -748,7 +843,8 @@ subroutine criterion_localization(tmp_list_size, tmp_list,criterion)
!call criterion_PM(tmp_list_size, tmp_list,criterion) !call criterion_PM(tmp_list_size, tmp_list,criterion)
call criterion_PM_v3(tmp_list_size, tmp_list, criterion) call criterion_PM_v3(tmp_list_size, tmp_list, criterion)
else else
criterion = 0d0 print*,'Unkown method: '//localization_method
call abort
endif endif
end end
@ -770,10 +866,45 @@ subroutine update_data_localization()
elseif (localization_method == 'pipek') then elseif (localization_method == 'pipek') then
! Nothing required ! Nothing required
else else
print*,'Unkown method: '//localization_method
call abort
endif endif
end end
#+END_SRC #+END_SRC
Angles:
Output:
| tmp_m_x(tmp_list_size, tmp_list_size) | double precision | Angles for the rotations in the subspace |
| max_elem | double precision | Maximal angle |
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
subroutine theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
include 'pi.h'
implicit none
BEGIN_DOC
! Compute the rotation angles between the MOs for the chosen localization method
END_DOC
integer, intent(in) :: tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: tmp_m_x(tmp_list_size,tmp_list_size), max_elem
if (localization_method == 'boys') then
call theta_FB(tmp_list, tmp_list_size, tmp_m_x, max_elem)
elseif (localization_method== 'pipek') then
call theta_PM(tmp_list, tmp_list_size, tmp_m_x, max_elem)
else
print*,'Unkown method: '//localization_method
call abort
endif
end
#+END_SRC
** Foster-Boys ** Foster-Boys
*** Gradient *** Gradient
Input: Input:
@ -1187,54 +1318,54 @@ subroutine grad_pipek(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gra
m_grad = 0d0 m_grad = 0d0
do a = 1, nucl_num ! loop over the nuclei do a = 1, nucl_num ! loop over the nuclei
tmp_int = 0d0 ! Initialization for each nuclei tmp_int = 0d0 ! Initialization for each nuclei
! Loop over the MOs of the a given mo_class to compute <i|Q_a|j> ! Loop over the MOs of the a given mo_class to compute <i|P_a|j>
do tmp_j = 1, tmp_list_size do tmp_j = 1, tmp_list_size
j = tmp_list(tmp_j) j = tmp_list(tmp_j)
do tmp_i = 1, tmp_list_size do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i) i = tmp_list(tmp_i)
do rho = 1, ao_num ! loop over all the AOs do rho = 1, ao_num ! loop over all the AOs
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
mu = nucl_aos(a,b) ! AO centered on atom a mu = nucl_aos(a,b) ! AO centered on atom a
tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) & tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j)) + mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
enddo enddo
enddo
enddo enddo
enddo enddo
enddo
! Gradient ! Gradient
do tmp_j = 1, tmp_list_size do tmp_j = 1, tmp_list_size
do tmp_i = 1, tmp_list_size do tmp_i = 1, tmp_list_size
m_grad(tmp_i,tmp_j) = m_grad(tmp_i,tmp_j) + 4d0 * tmp_int(tmp_i,tmp_j) * (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j)) m_grad(tmp_i,tmp_j) = m_grad(tmp_i,tmp_j) + 4d0 * tmp_int(tmp_i,tmp_j) * (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))
enddo enddo
enddo enddo
enddo enddo
! 2D -> 1D ! 2D -> 1D
do tmp_k = 1, tmp_n do tmp_k = 1, tmp_n
call vec_to_mat_index(tmp_k,tmp_i,tmp_j) call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
v_grad(tmp_k) = m_grad(tmp_i,tmp_j) v_grad(tmp_k) = m_grad(tmp_i,tmp_j)
enddo enddo
! Maximum element in the gradient ! Maximum element in the gradient
max_elem = 0d0 max_elem = 0d0
do tmp_k = 1, tmp_n do tmp_k = 1, tmp_n
if (ABS(v_grad(tmp_k)) > max_elem) then if (ABS(v_grad(tmp_k)) > max_elem) then
max_elem = ABS(v_grad(tmp_k)) max_elem = ABS(v_grad(tmp_k))
endif endif
enddo enddo
! Norm of the gradient ! Norm of the gradient
norm_grad = 0d0 norm_grad = 0d0
do tmp_k = 1, tmp_n do tmp_k = 1, tmp_n
norm_grad = norm_grad + v_grad(tmp_k)**2 norm_grad = norm_grad + v_grad(tmp_k)**2
enddo enddo
norm_grad = dsqrt(norm_grad) norm_grad = dsqrt(norm_grad)
@ -1244,7 +1375,7 @@ subroutine grad_pipek(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gra
! Deallocation ! Deallocation
deallocate(m_grad,tmp_int) deallocate(m_grad,tmp_int)
end end subroutine grad_pipek
#+END_SRC #+END_SRC
*** Gradient *** Gradient
@ -1971,6 +2102,274 @@ subroutine criterion_FB(tmp_list_size, tmp_list, criterion)
end subroutine end subroutine
#+END_SRC #+END_SRC
** Theta
In:
| n | integer | number of MOs in the considered MO class |
| l | integer | list of MOs of the considered class |
Out:
| m_x(n,n) | double precision | Matrix containing the rotation angle between all the different |
| | | pairs of MOs to apply the rotations (need a minus sign) |
| max_elem | double precision | Maximal angle in absolute value |
$$\cos(4 \theta) = \frac{-A{ij}}{\sqrt{(A_{ij}^2 + B_{ij}^2)} $$
$$\sin(4 \theta) = \frac{B{ij}}{\sqrt{(A_{ij}^2 + B_{ij}^2)} $$
$$\tan(4 \theta) = \frac{\sin(4 \theta)}{\cos(4 \theta)}$$
where $\theta$ is in fact $\theta_{ij}$
For Foster-Boys localization:
$$A_{ij} = <i|r|j>^2 - \frac{1}{4} (<i|r|i> - <j|r|j>)^2$$
$$B_{ij} = <i|r|j> (<i|r|i> - <j|r|j>)$$
For Pipek-Mezey localization:
$$A_{ij} = \sum_A <i|P_A|j>^2 - \frac{1}{4} (<i|P_A|i> - <j|P_A|j>)^2$$
$$B_{ij} = \sum_A <i|P_A|j> (<i|P_A|i> - <j|P_A|j>)$$
with
$$<i|P_A|j> = \frac{1}{2} \sum_\rho \sum_{\mu \in A} ( c_\rho^{i*} S_{\rho
\mu} c_\mu^j + c_\mu^{i*} S_{\mu \rho} c_\rho^j)$$
$i,j$ MOs
$\mu, \rho$ AOs
$A$ nucleus
$S$ overlap matrix
$c$ MO coefficient
$r$ position operator
#+begin_src f90 :tangle localization_sub.irp.f
subroutine theta_FB(l, n, m_x, max_elem)
include 'pi.h'
BEGIN_DOC
! Compute the angles to minimize the Foster-Boys criterion by using pairwise rotations of the MOs
! Warning: you must give - the angles to build the rotation matrix...
END_DOC
implicit none
integer, intent(in) :: n, l(n)
double precision, intent(out) :: m_x(n,n), max_elem
integer :: i,j, tmp_i, tmp_j
double precision, allocatable :: cos4theta(:,:), sin4theta(:,:)
double precision, allocatable :: A(:,:), B(:,:), beta(:,:), gamma(:,:)
integer :: idx_i,idx_j
allocate(cos4theta(n, n), sin4theta(n, n))
allocate(A(n,n), B(n,n), beta(n,n), gamma(n,n))
do tmp_j = 1, n
j = l(tmp_j)
do tmp_i = 1, n
i = l(tmp_i)
A(tmp_i,tmp_j) = mo_dipole_x(i,j)**2 - 0.25d0 * (mo_dipole_x(i,i) - mo_dipole_x(j,j))**2 &
+ mo_dipole_y(i,j)**2 - 0.25d0 * (mo_dipole_y(i,i) - mo_dipole_y(j,j))**2 &
+ mo_dipole_z(i,j)**2 - 0.25d0 * (mo_dipole_z(i,i) - mo_dipole_z(j,j))**2
enddo
A(j,j) = 0d0
enddo
do tmp_j = 1, n
j = l(tmp_j)
do tmp_i = 1, n
i = l(tmp_i)
B(tmp_i,tmp_j) = mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
+ mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
+ mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j))
enddo
enddo
!do tmp_j = 1, n
! j = l(tmp_j)
! do tmp_i = 1, n
! i = l(tmp_i)
! beta(tmp_i,tmp_j) = (mo_dipole_x(i,i) - mo_dipole_x(j,j)) - 4d0 * mo_dipole_x(i,j)**2 &
! + (mo_dipole_y(i,i) - mo_dipole_y(j,j)) - 4d0 * mo_dipole_y(i,j)**2 &
! + (mo_dipole_z(i,i) - mo_dipole_z(j,j)) - 4d0 * mo_dipole_z(i,j)**2
! enddo
!enddo
!do tmp_j = 1, n
! j = l(tmp_j)
! do tmp_i = 1, n
! i = l(tmp_i)
! gamma(tmp_i,tmp_j) = 4d0 * ( mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
! + mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
! + mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j)))
! enddo
!enddo
!
!do j = 1, n
! do i = 1, n
! cos4theta(i,j) = - A(i,j) / dsqrt(A(i,j)**2 + B(i,j)**2)
! enddo
!enddo
!do j = 1, n
! do i = 1, n
! sin4theta(i,j) = B(i,j) / dsqrt(A(i,j)**2 + B(i,j)**2)
! enddo
!enddo
! Theta
do j = 1, n
do i = 1, n
m_x(i,j) = 0.25d0 * atan2(B(i,j), -A(i,j))
!m_x(i,j) = 0.25d0 * atan2(sin4theta(i,j), cos4theta(i,j))
enddo
enddo
! Enforce a perfect antisymmetry
do j = 1, n-1
do i = j+1, n
m_x(j,i) = - m_x(i,j)
enddo
enddo
do i = 1, n
m_x(i,i) = 0d0
enddo
! Max
max_elem = 0d0
do j = 1, n-1
do i = j+1, n
if (dabs(m_x(i,j)) > dabs(max_elem)) then
max_elem = m_x(i,j)
!idx_i = i
!idx_j = j
endif
enddo
enddo
! Debug
!print*,''
!print*,'sin/B'
!do i = 1, n
! write(*,'(100F10.4)') sin4theta(i,:)
! !B(i,:)
!enddo
!print*,'cos/A'
!do i = 1, n
! write(*,'(100F10.4)') cos4theta(i,:)
! !A(i,:)
!enddo
!print*,'X'
!!m_x = 0d0
!!m_x(idx_i,idx_j) = max_elem
!!m_x(idx_j,idx_i) = -max_elem
!do i = 1, n
! write(*,'(100F10.4)') m_x(i,:)
!enddo
!print*,idx_i,idx_j,max_elem
max_elem = dabs(max_elem)
deallocate(cos4theta, sin4theta)
deallocate(A,B,beta,gamma)
end
#+end_src
#+begin_src f90 :comments org :tangle localization_sub.irp.f
subroutine theta_PM(l, n, m_x, max_elem)
include 'pi.h'
BEGIN_DOC
! Compute the angles to minimize the Foster-Boys criterion by using pairwise rotations of the MOs
! Warning: you must give - the angles to build the rotation matrix...
END_DOC
implicit none
integer, intent(in) :: n, l(n)
double precision, intent(out) :: m_x(n,n), max_elem
integer :: a,b,i,j,tmp_i,tmp_j,rho,mu,nu,idx_i,idx_j
double precision, allocatable :: Aij(:,:), Bij(:,:), Pa(:,:)
allocate(Aij(n,n), Bij(n,n), Pa(n,n))
do a = 1, nucl_num ! loop over the nuclei
Pa = 0d0 ! Initialization for each nuclei
! Loop over the MOs of the a given mo_class to compute <i|P_a|j>
do tmp_j = 1, n
j = l(tmp_j)
do tmp_i = 1, n
i = l(tmp_i)
do rho = 1, ao_num ! loop over all the AOs
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
mu = nucl_aos(a,b) ! AO centered on atom a
Pa(tmp_i,tmp_j) = Pa(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
enddo
enddo
enddo
enddo
! A
do j = 1, n
do i = 1, n
Aij(i,j) = Aij(i,j) + Pa(i,j)**2 - 0.25d0 * (Pa(i,i) - Pa(j,j))**2
enddo
enddo
! B
do j = 1, n
do i = 1, n
Bij(i,j) = Bij(i,j) + Pa(i,j) * (Pa(i,i) - Pa(j,j))
enddo
enddo
enddo
! Theta
do j = 1, n
do i = 1, n
m_x(i,j) = 0.25d0 * atan2(Bij(i,j), -Aij(i,j))
enddo
enddo
! Enforce a perfect antisymmetry
do j = 1, n-1
do i = j+1, n
m_x(j,i) = - m_x(i,j)
enddo
enddo
do i = 1, n
m_x(i,i) = 0d0
enddo
! Max
max_elem = 0d0
do j = 1, n-1
do i = j+1, n
if (dabs(m_x(i,j)) > dabs(max_elem)) then
max_elem = m_x(i,j)
idx_i = i
idx_j = j
endif
enddo
enddo
! Debug
!do i = 1, n
! write(*,'(100F10.4)') m_x(i,:)
!enddo
!print*,'Max',idx_i,idx_j,max_elem
max_elem = dabs(max_elem)
deallocate(Aij,Bij,Pa)
end
#+end_src
** Spatial extent ** Spatial extent
The spatial extent of an orbital $i$ is computed as The spatial extent of an orbital $i$ is computed as

View File

@ -38,9 +38,8 @@ subroutine gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_ele
elseif (localization_method== 'pipek') then elseif (localization_method== 'pipek') then
call gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad) call gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
else else
v_grad = 0d0 print*,'Unkown method:'//localization_method
max_elem = 0d0 call abort
norm_grad = 0d0
endif endif
end end
@ -74,7 +73,8 @@ subroutine hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
elseif (localization_method == 'pipek') then elseif (localization_method == 'pipek') then
call hessian_PM(tmp_n, tmp_list_size, tmp_list, H) call hessian_PM(tmp_n, tmp_list_size, tmp_list, H)
else else
H = 0d0 print*,'Unkown method: '//localization_method
call abort
endif endif
end end
@ -106,7 +106,8 @@ subroutine criterion_localization(tmp_list_size, tmp_list,criterion)
!call criterion_PM(tmp_list_size, tmp_list,criterion) !call criterion_PM(tmp_list_size, tmp_list,criterion)
call criterion_PM_v3(tmp_list_size, tmp_list, criterion) call criterion_PM_v3(tmp_list_size, tmp_list, criterion)
else else
criterion = 0d0 print*,'Unkown method: '//localization_method
call abort
endif endif
end end
@ -129,9 +130,45 @@ subroutine update_data_localization()
elseif (localization_method == 'pipek') then elseif (localization_method == 'pipek') then
! Nothing required ! Nothing required
else else
print*,'Unkown method: '//localization_method
call abort
endif endif
end end
! Angles:
! Output:
! | tmp_m_x(tmp_list_size, tmp_list_size) | double precision | Angles for the rotations in the subspace |
! | max_elem | double precision | Maximal angle |
subroutine theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
include 'pi.h'
implicit none
BEGIN_DOC
! Compute the rotation angles between the MOs for the chosen localization method
END_DOC
integer, intent(in) :: tmp_list_size, tmp_list(tmp_list_size)
double precision, intent(out) :: tmp_m_x(tmp_list_size,tmp_list_size), max_elem
if (localization_method == 'boys') then
call theta_FB(tmp_list, tmp_list_size, tmp_m_x, max_elem)
elseif (localization_method== 'pipek') then
call theta_PM(tmp_list, tmp_list_size, tmp_m_x, max_elem)
else
print*,'Unkown method: '//localization_method
call abort
endif
end
! Gradient ! Gradient
! Input: ! Input:
! | tmp_n | integer | Number of parameters in the MO subspace | ! | tmp_n | integer | Number of parameters in the MO subspace |
@ -539,54 +576,54 @@ subroutine grad_pipek(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gra
m_grad = 0d0 m_grad = 0d0
do a = 1, nucl_num ! loop over the nuclei do a = 1, nucl_num ! loop over the nuclei
tmp_int = 0d0 ! Initialization for each nuclei tmp_int = 0d0 ! Initialization for each nuclei
! Loop over the MOs of the a given mo_class to compute <i|Q_a|j> ! Loop over the MOs of the a given mo_class to compute <i|P_a|j>
do tmp_j = 1, tmp_list_size do tmp_j = 1, tmp_list_size
j = tmp_list(tmp_j) j = tmp_list(tmp_j)
do tmp_i = 1, tmp_list_size do tmp_i = 1, tmp_list_size
i = tmp_list(tmp_i) i = tmp_list(tmp_i)
do rho = 1, ao_num ! loop over all the AOs do rho = 1, ao_num ! loop over all the AOs
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
mu = nucl_aos(a,b) ! AO centered on atom a mu = nucl_aos(a,b) ! AO centered on atom a
tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) & tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j)) + mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
enddo enddo
enddo
enddo enddo
enddo enddo
enddo
! Gradient ! Gradient
do tmp_j = 1, tmp_list_size do tmp_j = 1, tmp_list_size
do tmp_i = 1, tmp_list_size do tmp_i = 1, tmp_list_size
m_grad(tmp_i,tmp_j) = m_grad(tmp_i,tmp_j) + 4d0 * tmp_int(tmp_i,tmp_j) * (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j)) m_grad(tmp_i,tmp_j) = m_grad(tmp_i,tmp_j) + 4d0 * tmp_int(tmp_i,tmp_j) * (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))
enddo enddo
enddo enddo
enddo enddo
! 2D -> 1D ! 2D -> 1D
do tmp_k = 1, tmp_n do tmp_k = 1, tmp_n
call vec_to_mat_index(tmp_k,tmp_i,tmp_j) call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
v_grad(tmp_k) = m_grad(tmp_i,tmp_j) v_grad(tmp_k) = m_grad(tmp_i,tmp_j)
enddo enddo
! Maximum element in the gradient ! Maximum element in the gradient
max_elem = 0d0 max_elem = 0d0
do tmp_k = 1, tmp_n do tmp_k = 1, tmp_n
if (ABS(v_grad(tmp_k)) > max_elem) then if (ABS(v_grad(tmp_k)) > max_elem) then
max_elem = ABS(v_grad(tmp_k)) max_elem = ABS(v_grad(tmp_k))
endif endif
enddo enddo
! Norm of the gradient ! Norm of the gradient
norm_grad = 0d0 norm_grad = 0d0
do tmp_k = 1, tmp_n do tmp_k = 1, tmp_n
norm_grad = norm_grad + v_grad(tmp_k)**2 norm_grad = norm_grad + v_grad(tmp_k)**2
enddo enddo
norm_grad = dsqrt(norm_grad) norm_grad = dsqrt(norm_grad)
@ -596,7 +633,7 @@ subroutine grad_pipek(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gra
! Deallocation ! Deallocation
deallocate(m_grad,tmp_int) deallocate(m_grad,tmp_int)
end end subroutine grad_pipek
! Gradient ! Gradient
@ -1312,6 +1349,236 @@ subroutine criterion_FB(tmp_list_size, tmp_list, criterion)
end subroutine end subroutine
subroutine theta_FB(l, n, m_x, max_elem)
include 'pi.h'
BEGIN_DOC
! Compute the angles to minimize the Foster-Boys criterion by using pairwise rotations of the MOs
! Warning: you must give - the angles to build the rotation matrix...
END_DOC
implicit none
integer, intent(in) :: n, l(n)
double precision, intent(out) :: m_x(n,n), max_elem
integer :: i,j, tmp_i, tmp_j
double precision, allocatable :: cos4theta(:,:), sin4theta(:,:)
double precision, allocatable :: A(:,:), B(:,:), beta(:,:), gamma(:,:)
integer :: idx_i,idx_j
allocate(cos4theta(n, n), sin4theta(n, n))
allocate(A(n,n), B(n,n), beta(n,n), gamma(n,n))
do tmp_j = 1, n
j = l(tmp_j)
do tmp_i = 1, n
i = l(tmp_i)
A(tmp_i,tmp_j) = mo_dipole_x(i,j)**2 - 0.25d0 * (mo_dipole_x(i,i) - mo_dipole_x(j,j))**2 &
+ mo_dipole_y(i,j)**2 - 0.25d0 * (mo_dipole_y(i,i) - mo_dipole_y(j,j))**2 &
+ mo_dipole_z(i,j)**2 - 0.25d0 * (mo_dipole_z(i,i) - mo_dipole_z(j,j))**2
enddo
A(j,j) = 0d0
enddo
do tmp_j = 1, n
j = l(tmp_j)
do tmp_i = 1, n
i = l(tmp_i)
B(tmp_i,tmp_j) = mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
+ mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
+ mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j))
enddo
enddo
!do tmp_j = 1, n
! j = l(tmp_j)
! do tmp_i = 1, n
! i = l(tmp_i)
! beta(tmp_i,tmp_j) = (mo_dipole_x(i,i) - mo_dipole_x(j,j)) - 4d0 * mo_dipole_x(i,j)**2 &
! + (mo_dipole_y(i,i) - mo_dipole_y(j,j)) - 4d0 * mo_dipole_y(i,j)**2 &
! + (mo_dipole_z(i,i) - mo_dipole_z(j,j)) - 4d0 * mo_dipole_z(i,j)**2
! enddo
!enddo
!do tmp_j = 1, n
! j = l(tmp_j)
! do tmp_i = 1, n
! i = l(tmp_i)
! gamma(tmp_i,tmp_j) = 4d0 * ( mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
! + mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
! + mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j)))
! enddo
!enddo
!
!do j = 1, n
! do i = 1, n
! cos4theta(i,j) = - A(i,j) / dsqrt(A(i,j)**2 + B(i,j)**2)
! enddo
!enddo
!do j = 1, n
! do i = 1, n
! sin4theta(i,j) = B(i,j) / dsqrt(A(i,j)**2 + B(i,j)**2)
! enddo
!enddo
! Theta
do j = 1, n
do i = 1, n
m_x(i,j) = 0.25d0 * atan2(B(i,j), -A(i,j))
!m_x(i,j) = 0.25d0 * atan2(sin4theta(i,j), cos4theta(i,j))
enddo
enddo
! Enforce a perfect antisymmetry
do j = 1, n-1
do i = j+1, n
m_x(j,i) = - m_x(i,j)
enddo
enddo
do i = 1, n
m_x(i,i) = 0d0
enddo
! Max
max_elem = 0d0
do j = 1, n-1
do i = j+1, n
if (dabs(m_x(i,j)) > dabs(max_elem)) then
max_elem = m_x(i,j)
!idx_i = i
!idx_j = j
endif
enddo
enddo
! Debug
!print*,''
!print*,'sin/B'
!do i = 1, n
! write(*,'(100F10.4)') sin4theta(i,:)
! !B(i,:)
!enddo
!print*,'cos/A'
!do i = 1, n
! write(*,'(100F10.4)') cos4theta(i,:)
! !A(i,:)
!enddo
!print*,'X'
!!m_x = 0d0
!!m_x(idx_i,idx_j) = max_elem
!!m_x(idx_j,idx_i) = -max_elem
!do i = 1, n
! write(*,'(100F10.4)') m_x(i,:)
!enddo
!print*,idx_i,idx_j,max_elem
max_elem = dabs(max_elem)
deallocate(cos4theta, sin4theta)
deallocate(A,B,beta,gamma)
end
subroutine theta_PM(l, n, m_x, max_elem)
include 'pi.h'
BEGIN_DOC
! Compute the angles to minimize the Foster-Boys criterion by using pairwise rotations of the MOs
! Warning: you must give - the angles to build the rotation matrix...
END_DOC
implicit none
integer, intent(in) :: n, l(n)
double precision, intent(out) :: m_x(n,n), max_elem
integer :: a,b,i,j,tmp_i,tmp_j,rho,mu,nu,idx_i,idx_j
double precision, allocatable :: Aij(:,:), Bij(:,:), Pa(:,:)
allocate(Aij(n,n), Bij(n,n), Pa(n,n))
do a = 1, nucl_num ! loop over the nuclei
Pa = 0d0 ! Initialization for each nuclei
! Loop over the MOs of the a given mo_class to compute <i|P_a|j>
do tmp_j = 1, n
j = l(tmp_j)
do tmp_i = 1, n
i = l(tmp_i)
do rho = 1, ao_num ! loop over all the AOs
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
mu = nucl_aos(a,b) ! AO centered on atom a
Pa(tmp_i,tmp_j) = Pa(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
enddo
enddo
enddo
enddo
! A
do j = 1, n
do i = 1, n
Aij(i,j) = Aij(i,j) + Pa(i,j)**2 - 0.25d0 * (Pa(i,i) - Pa(j,j))**2
enddo
enddo
! B
do j = 1, n
do i = 1, n
Bij(i,j) = Bij(i,j) + Pa(i,j) * (Pa(i,i) - Pa(j,j))
enddo
enddo
enddo
! Theta
do j = 1, n
do i = 1, n
m_x(i,j) = 0.25d0 * atan2(Bij(i,j), -Aij(i,j))
enddo
enddo
! Enforce a perfect antisymmetry
do j = 1, n-1
do i = j+1, n
m_x(j,i) = - m_x(i,j)
enddo
enddo
do i = 1, n
m_x(i,i) = 0d0
enddo
! Max
max_elem = 0d0
do j = 1, n-1
do i = j+1, n
if (dabs(m_x(i,j)) > dabs(max_elem)) then
max_elem = m_x(i,j)
idx_i = i
idx_j = j
endif
enddo
enddo
! Debug
!do i = 1, n
! write(*,'(100F10.4)') m_x(i,:)
!enddo
!print*,'Max',idx_i,idx_j,max_elem
max_elem = dabs(max_elem)
deallocate(Aij,Bij,Pa)
end
! Spatial extent ! Spatial extent
! The spatial extent of an orbital $i$ is computed as ! The spatial extent of an orbital $i$ is computed as