mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-22 11:33:29 +01:00
option to use or not trust region + hessian
This commit is contained in:
parent
0f6572bde1
commit
a119d5943b
@ -1,42 +1,48 @@
|
||||
[localization_method]
|
||||
type: character*(32)
|
||||
doc: Method for the orbital localization. boys : Foster-Boys, pipek : Pipek-Mezey
|
||||
doc: Method for the orbital localization. boys : Foster-Boys, pipek : Pipek-Mezey.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: boys
|
||||
|
||||
[localization_max_nb_iter]
|
||||
type: integer
|
||||
doc: Maximal number of iterations for the orbital localization
|
||||
doc: Maximal number of iterations for the orbital localization.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1000
|
||||
|
||||
[localization_use_hessian]
|
||||
type: logical
|
||||
doc: If true, it uses the trust region algorithm with the gradient and the diagonal of the hessian. Else it computes the rotation between each pair of MOs that should be applied to maximize/minimize the localization criterion. The last option requieres a way smaller amount of memory but is not easy to converge.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: true
|
||||
|
||||
[security_mo_class]
|
||||
type: logical
|
||||
doc: If true, call abort if the number of active orbital or the number of core + active orbitals is equal to the number of molecular orbitals, else uses the actual mo_class. It is a security if you forget to set the mo_class before the localization
|
||||
doc: If true, call abort if the number of active orbital or the number of core + active orbitals is equal to the number of molecular orbitals, else uses the actual mo_class. It is a security if you forget to set the mo_class before the localization.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: true
|
||||
|
||||
[thresh_loc_max_elem_grad]
|
||||
type: double precision
|
||||
doc: Threshold for the convergence, the localization exits when the largest element in the gradient is smaller than thresh_localization_max_elem_grad
|
||||
doc: Threshold for the convergence, the localization exits when the largest element in the gradient is smaller than thresh_localization_max_elem_grad.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 1.e-6
|
||||
|
||||
[kick_in_mos]
|
||||
type: logical
|
||||
doc: If True, apply a rotation of an angle angle_pre_rot between the MOs of a same mo_class before the localization
|
||||
doc: If True, it applies a rotation of an angle angle_pre_rot between the MOs of a same mo_class before the localization.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: true
|
||||
|
||||
[angle_pre_rot]
|
||||
type: double precision
|
||||
doc: Define the angle for the rotation of the MOs before the localization (in rad)
|
||||
doc: To define the angle for the rotation of the MOs before the localization (in rad).
|
||||
interface: ezfio,provider,ocaml
|
||||
default: 0.1
|
||||
|
||||
[sort_mos_by_e]
|
||||
type: logical
|
||||
doc: If True, sorts the MOs using the diagonal elements of the Fock matrix
|
||||
doc: If True, the MOs are sorted using the diagonal elements of the Fock matrix.
|
||||
interface: ezfio,provider,ocaml
|
||||
default: false
|
||||
|
||||
|
@ -85,6 +85,23 @@ symmetry with just a small change in the energy:
|
||||
qp set mo_localization angle_pre_rot 1e-3
|
||||
```
|
||||
|
||||
# With or without hessian + trust region
|
||||
With hessian + trust region
|
||||
```
|
||||
qp set mo_localization localisation_use_hessian true
|
||||
```
|
||||
It uses the trust region algorithm with the diagonal of the hessian of the
|
||||
localization criterion with respect to the MO rotations.
|
||||
|
||||
Without the hessian and the trust region
|
||||
```
|
||||
qp set mo_localization localisation_use_hessian false
|
||||
```
|
||||
By doing so it does not require to store the hessian but the
|
||||
convergence is not easy, in particular for virtual MOs.
|
||||
It seems that it not possible to converge with Pipek-Mezey
|
||||
localization with this approach.
|
||||
|
||||
# Further improvements:
|
||||
- Cleaner repo
|
||||
- Correction of the errors in the documentations
|
||||
|
@ -295,148 +295,223 @@ subroutine run_localization
|
||||
|
||||
! Size for the 2D -> 1D transformation
|
||||
tmp_n = tmp_list_size * (tmp_list_size - 1)/2
|
||||
|
||||
! Allocation of temporary arrays
|
||||
allocate(v_grad(tmp_n), H(tmp_n, tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_R(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_x(tmp_n), W(tmp_n,tmp_n), e_val(tmp_n), key(tmp_n))
|
||||
|
||||
! ### Initialization ###
|
||||
delta = 0d0 ! can be deleted (normally)
|
||||
nb_iter = 0 ! Must start at 0 !!!
|
||||
rho = 0.5d0 ! Must be 0.5
|
||||
! Without hessian + trust region
|
||||
if (.not. localization_use_hessian) then
|
||||
|
||||
! Allocation of temporary arrays
|
||||
allocate(v_grad(tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_R(tmp_list_size, tmp_list_size), tmp_x(tmp_n))
|
||||
|
||||
! Compute the criterion before the loop
|
||||
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
|
||||
! Criterion
|
||||
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
|
||||
|
||||
! Loop until the convergence
|
||||
do while (not_converged)
|
||||
! Init
|
||||
nb_iter = 0
|
||||
delta = 1d0
|
||||
|
||||
print*,''
|
||||
print*,'***********************'
|
||||
print*,'Iteration', nb_iter
|
||||
print*,'***********************'
|
||||
print*,''
|
||||
|
||||
! Gradient
|
||||
call gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||||
! Diagonal hessian
|
||||
call hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
|
||||
|
||||
! Diagonalization of the diagonal hessian by hands
|
||||
!call diagonalization_hessian(tmp_n,H,e_val,w)
|
||||
do i = 1, tmp_n
|
||||
e_val(i) = H(i,i)
|
||||
enddo
|
||||
!Loop
|
||||
do while (not_converged)
|
||||
|
||||
print*,''
|
||||
print*,'***********************'
|
||||
print*,'Iteration', nb_iter
|
||||
print*,'***********************'
|
||||
print*,''
|
||||
|
||||
! Angles of rotation
|
||||
call theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
|
||||
tmp_m_x = - tmp_m_x * delta
|
||||
|
||||
! Key list for dsort
|
||||
do i = 1, tmp_n
|
||||
key(i) = i
|
||||
enddo
|
||||
|
||||
! Sort of the eigenvalues
|
||||
call dsort(e_val, key, tmp_n)
|
||||
|
||||
! Eigenvectors
|
||||
W = 0d0
|
||||
do i = 1, tmp_n
|
||||
j = key(i)
|
||||
W(j,i) = 1d0
|
||||
enddo
|
||||
|
||||
! To enter in the loop just after
|
||||
cancel_step = .True.
|
||||
nb_sub_iter = 0
|
||||
|
||||
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
||||
do while (cancel_step)
|
||||
print*,'-----------------------------'
|
||||
print*, mo_class(tmp_list(1))
|
||||
print*,'Iteration:', nb_iter
|
||||
print*,'Sub iteration:', nb_sub_iter
|
||||
print*,'-----------------------------'
|
||||
|
||||
! Hessian,gradient,Criterion -> x
|
||||
call trust_region_step_w_expected_e(tmp_n, H, W, e_val, v_grad, prev_criterion, &
|
||||
rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
|
||||
|
||||
! Internal loop exit condition
|
||||
if (must_exit) then
|
||||
print*,'trust_region_step_w_expected_e sent: Exit'
|
||||
exit
|
||||
endif
|
||||
|
||||
! 1D tmp -> 2D tmp
|
||||
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
|
||||
|
||||
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
|
||||
! Rotation submatrix
|
||||
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
|
||||
info, enforce_step_cancellation)
|
||||
|
||||
! To ensure that the rotation matrix is unitary
|
||||
if (enforce_step_cancellation) then
|
||||
print*, 'Step cancellation, too large error in the rotation matrix'
|
||||
rho = 0d0
|
||||
delta = delta * 0.5d0
|
||||
cycle
|
||||
else
|
||||
delta = min(delta * 2d0, 1d0)
|
||||
endif
|
||||
|
||||
! tmp_R to R, subspace to full space
|
||||
! Full rotation matrix and application of the rotation
|
||||
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
|
||||
|
||||
! Rotation of the MOs
|
||||
call apply_mo_rotation(R, prev_mos)
|
||||
call apply_mo_rotation(R, prev_mos)
|
||||
|
||||
! Update the things related to mo_coef
|
||||
! Update the needed data
|
||||
call update_data_localization()
|
||||
|
||||
! Update the criterion
|
||||
! New criterion
|
||||
call criterion_localization(tmp_list_size, tmp_list, criterion)
|
||||
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
|
||||
print*,'Max elem :', max_elem
|
||||
print*,'Delta :', delta
|
||||
|
||||
nb_iter = nb_iter + 1
|
||||
|
||||
! Criterion -> step accepted or rejected
|
||||
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, &
|
||||
criterion_model, rho, cancel_step)
|
||||
|
||||
! Cancellation of the step, previous MOs
|
||||
if (cancel_step) then
|
||||
mo_coef = prev_mos
|
||||
! Exit
|
||||
if (nb_iter >= localization_max_nb_iter .or. dabs(max_elem) < thresh_loc_max_elem_grad) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
|
||||
nb_sub_iter = nb_sub_iter + 1
|
||||
enddo
|
||||
!call save_mos() !### depend of the time for 1 iteration
|
||||
|
||||
! To exit the external loop if must_exti = .True.
|
||||
if (must_exit) then
|
||||
exit
|
||||
endif
|
||||
! Save the changes
|
||||
call update_data_localization()
|
||||
call save_mos()
|
||||
TOUCH mo_coef
|
||||
|
||||
! Step accepted, nb iteration + 1
|
||||
nb_iter = nb_iter + 1
|
||||
! Deallocate
|
||||
deallocate(v_grad, tmp_m_x, tmp_list)
|
||||
deallocate(tmp_R, tmp_x)
|
||||
|
||||
! External loop exit conditions
|
||||
if (DABS(max_elem) < thresh_loc_max_elem_grad) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
if (nb_iter > localization_max_nb_iter) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Deallocation of temporary arrays
|
||||
deallocate(v_grad, H, tmp_m_x, tmp_R, tmp_list, tmp_x, W, e_val, key)
|
||||
! Trust region
|
||||
else
|
||||
|
||||
! Save the MOs
|
||||
call save_mos()
|
||||
TOUCH mo_coef
|
||||
! Allocation of temporary arrays
|
||||
allocate(v_grad(tmp_n), H(tmp_n, tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_R(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_x(tmp_n), W(tmp_n,tmp_n), e_val(tmp_n), key(tmp_n))
|
||||
|
||||
! ### Initialization ###
|
||||
delta = 0d0 ! can be deleted (normally)
|
||||
nb_iter = 0 ! Must start at 0 !!!
|
||||
rho = 0.5d0 ! Must be 0.5
|
||||
|
||||
! Compute the criterion before the loop
|
||||
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
|
||||
|
||||
! Loop until the convergence
|
||||
do while (not_converged)
|
||||
|
||||
print*,''
|
||||
print*,'***********************'
|
||||
print*,'Iteration', nb_iter
|
||||
print*,'***********************'
|
||||
print*,''
|
||||
|
||||
! Gradient
|
||||
call gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||||
! Diagonal hessian
|
||||
call hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
|
||||
|
||||
! Diagonalization of the diagonal hessian by hands
|
||||
!call diagonalization_hessian(tmp_n,H,e_val,w)
|
||||
do i = 1, tmp_n
|
||||
e_val(i) = H(i,i)
|
||||
enddo
|
||||
|
||||
! Key list for dsort
|
||||
do i = 1, tmp_n
|
||||
key(i) = i
|
||||
enddo
|
||||
|
||||
! Sort of the eigenvalues
|
||||
call dsort(e_val, key, tmp_n)
|
||||
|
||||
! Eigenvectors
|
||||
W = 0d0
|
||||
do i = 1, tmp_n
|
||||
j = key(i)
|
||||
W(j,i) = 1d0
|
||||
enddo
|
||||
|
||||
! To enter in the loop just after
|
||||
cancel_step = .True.
|
||||
nb_sub_iter = 0
|
||||
|
||||
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
||||
do while (cancel_step)
|
||||
print*,'-----------------------------'
|
||||
print*, mo_class(tmp_list(1))
|
||||
print*,'Iteration:', nb_iter
|
||||
print*,'Sub iteration:', nb_sub_iter
|
||||
print*,'-----------------------------'
|
||||
|
||||
! Hessian,gradient,Criterion -> x
|
||||
call trust_region_step_w_expected_e(tmp_n, H, W, e_val, v_grad, prev_criterion, &
|
||||
rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
|
||||
|
||||
! Internal loop exit condition
|
||||
if (must_exit) then
|
||||
print*,'trust_region_step_w_expected_e sent: Exit'
|
||||
exit
|
||||
endif
|
||||
|
||||
! 1D tmp -> 2D tmp
|
||||
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
|
||||
|
||||
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
|
||||
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
|
||||
info, enforce_step_cancellation)
|
||||
|
||||
if (enforce_step_cancellation) then
|
||||
print*, 'Step cancellation, too large error in the rotation matrix'
|
||||
rho = 0d0
|
||||
cycle
|
||||
endif
|
||||
|
||||
! tmp_R to R, subspace to full space
|
||||
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
|
||||
|
||||
! Rotation of the MOs
|
||||
call apply_mo_rotation(R, prev_mos)
|
||||
|
||||
! Update the things related to mo_coef
|
||||
call update_data_localization()
|
||||
|
||||
! Update the criterion
|
||||
call criterion_localization(tmp_list_size, tmp_list, criterion)
|
||||
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
|
||||
|
||||
! Criterion -> step accepted or rejected
|
||||
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, &
|
||||
criterion_model, rho, cancel_step)
|
||||
|
||||
! Cancellation of the step, previous MOs
|
||||
if (cancel_step) then
|
||||
mo_coef = prev_mos
|
||||
endif
|
||||
|
||||
nb_sub_iter = nb_sub_iter + 1
|
||||
enddo
|
||||
!call save_mos() !### depend of the time for 1 iteration
|
||||
|
||||
! To exit the external loop if must_exti = .True.
|
||||
if (must_exit) then
|
||||
exit
|
||||
endif
|
||||
|
||||
! Step accepted, nb iteration + 1
|
||||
nb_iter = nb_iter + 1
|
||||
|
||||
! External loop exit conditions
|
||||
if (DABS(max_elem) < thresh_loc_max_elem_grad) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
if (nb_iter > localization_max_nb_iter) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Deallocation of temporary arrays
|
||||
deallocate(v_grad, H, tmp_m_x, tmp_R, tmp_list, tmp_x, W, e_val, key)
|
||||
|
||||
! Save the MOs
|
||||
call save_mos()
|
||||
TOUCH mo_coef
|
||||
|
||||
! Debug
|
||||
if (debug_hf) then
|
||||
touch mo_coef
|
||||
print*,'HF energy:', HF_energy
|
||||
! Debug
|
||||
if (debug_hf) then
|
||||
touch mo_coef
|
||||
print*,'HF energy:', HF_energy
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
TOUCH mo_coef
|
||||
|
||||
! To sort the MOs using the diagonal elements of the Fock matrix
|
||||
|
@ -29,9 +29,29 @@ WARNING:
|
||||
to have the right mo class for his next calculation...
|
||||
|
||||
For more information on the mo_class:
|
||||
lpqp set_mo_class -h
|
||||
qp set_mo_class -h
|
||||
|
||||
*** Foster-Boys localization
|
||||
Boys, S. F., 1960, Rev. Mod. Phys. 32, 296.
|
||||
DOI:https://doi.org/10.1103/RevModPhys.32.300
|
||||
Boys, S. F., 1966, in Quantum Theory of Atoms, Molecules,
|
||||
and the Solid State, edited by P.-O. Löwdin (Academic
|
||||
Press, New York), p. 253.
|
||||
Daniel A. Kleier, Thomas A. Halgren, John H. Hall Jr., and William
|
||||
N. Lipscomb, J. Chem. Phys. 61, 3905 (1974)
|
||||
doi: 10.1063/1.1681683
|
||||
Høyvik, I.-M., Jansik, B., Jørgensen, P., J. Comput. Chem. 2013, 34,
|
||||
1456– 1462. DOI: 10.1002/jcc.23281
|
||||
Høyvik, I.-M., Jansik, B., Jørgensen, P., J. Chem. Theory
|
||||
Comput. 2012, 8, 9, 3137–3146
|
||||
DOI: https://doi.org/10.1021/ct300473g
|
||||
Høyvik, I.-M., Jansik, B., Jørgensen, P., J. Chem. Phys. 137, 224114
|
||||
(2012)
|
||||
DOI: https://doi.org/10.1063/1.4769866
|
||||
Nicola Marzari, Arash A. Mostofi, Jonathan R. Yates, Ivo Souza, and David Vanderbilt
|
||||
Rev. Mod. Phys. 84, 1419
|
||||
https://doi.org/10.1103/RevModPhys.84.1419
|
||||
|
||||
The Foster-Boys localization is a method to generate localized MOs
|
||||
(LMOs) by minimizing the Foster-Boys criterion:
|
||||
$$ C_{FB} = \sum_{i=1}^N \left[ < \phi_i | r^2 | \phi_i > - < \phi_i | r |
|
||||
@ -481,148 +501,223 @@ subroutine run_localization
|
||||
|
||||
! Size for the 2D -> 1D transformation
|
||||
tmp_n = tmp_list_size * (tmp_list_size - 1)/2
|
||||
|
||||
! Allocation of temporary arrays
|
||||
allocate(v_grad(tmp_n), H(tmp_n, tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_R(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_x(tmp_n), W(tmp_n,tmp_n), e_val(tmp_n), key(tmp_n))
|
||||
|
||||
! ### Initialization ###
|
||||
delta = 0d0 ! can be deleted (normally)
|
||||
nb_iter = 0 ! Must start at 0 !!!
|
||||
rho = 0.5d0 ! Must be 0.5
|
||||
! Without hessian + trust region
|
||||
if (.not. localization_use_hessian) then
|
||||
|
||||
! Allocation of temporary arrays
|
||||
allocate(v_grad(tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_R(tmp_list_size, tmp_list_size), tmp_x(tmp_n))
|
||||
|
||||
! Compute the criterion before the loop
|
||||
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
|
||||
! Criterion
|
||||
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
|
||||
|
||||
! Loop until the convergence
|
||||
do while (not_converged)
|
||||
! Init
|
||||
nb_iter = 0
|
||||
delta = 1d0
|
||||
|
||||
print*,''
|
||||
print*,'***********************'
|
||||
print*,'Iteration', nb_iter
|
||||
print*,'***********************'
|
||||
print*,''
|
||||
|
||||
! Gradient
|
||||
call gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||||
! Diagonal hessian
|
||||
call hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
|
||||
|
||||
! Diagonalization of the diagonal hessian by hands
|
||||
!call diagonalization_hessian(tmp_n,H,e_val,w)
|
||||
do i = 1, tmp_n
|
||||
e_val(i) = H(i,i)
|
||||
enddo
|
||||
!Loop
|
||||
do while (not_converged)
|
||||
|
||||
print*,''
|
||||
print*,'***********************'
|
||||
print*,'Iteration', nb_iter
|
||||
print*,'***********************'
|
||||
print*,''
|
||||
|
||||
! Angles of rotation
|
||||
call theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
|
||||
tmp_m_x = - tmp_m_x * delta
|
||||
|
||||
! Key list for dsort
|
||||
do i = 1, tmp_n
|
||||
key(i) = i
|
||||
enddo
|
||||
|
||||
! Sort of the eigenvalues
|
||||
call dsort(e_val, key, tmp_n)
|
||||
|
||||
! Eigenvectors
|
||||
W = 0d0
|
||||
do i = 1, tmp_n
|
||||
j = key(i)
|
||||
W(j,i) = 1d0
|
||||
enddo
|
||||
|
||||
! To enter in the loop just after
|
||||
cancel_step = .True.
|
||||
nb_sub_iter = 0
|
||||
|
||||
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
||||
do while (cancel_step)
|
||||
print*,'-----------------------------'
|
||||
print*, mo_class(tmp_list(1))
|
||||
print*,'Iteration:', nb_iter
|
||||
print*,'Sub iteration:', nb_sub_iter
|
||||
print*,'-----------------------------'
|
||||
|
||||
! Hessian,gradient,Criterion -> x
|
||||
call trust_region_step_w_expected_e(tmp_n, H, W, e_val, v_grad, prev_criterion, &
|
||||
rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
|
||||
|
||||
! Internal loop exit condition
|
||||
if (must_exit) then
|
||||
print*,'trust_region_step_w_expected_e sent: Exit'
|
||||
exit
|
||||
endif
|
||||
|
||||
! 1D tmp -> 2D tmp
|
||||
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
|
||||
|
||||
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
|
||||
! Rotation submatrix
|
||||
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
|
||||
info, enforce_step_cancellation)
|
||||
|
||||
! To ensure that the rotation matrix is unitary
|
||||
if (enforce_step_cancellation) then
|
||||
print*, 'Step cancellation, too large error in the rotation matrix'
|
||||
rho = 0d0
|
||||
delta = delta * 0.5d0
|
||||
cycle
|
||||
else
|
||||
delta = min(delta * 2d0, 1d0)
|
||||
endif
|
||||
|
||||
! tmp_R to R, subspace to full space
|
||||
! Full rotation matrix and application of the rotation
|
||||
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
|
||||
|
||||
! Rotation of the MOs
|
||||
call apply_mo_rotation(R, prev_mos)
|
||||
call apply_mo_rotation(R, prev_mos)
|
||||
|
||||
! Update the things related to mo_coef
|
||||
! Update the needed data
|
||||
call update_data_localization()
|
||||
|
||||
! Update the criterion
|
||||
! New criterion
|
||||
call criterion_localization(tmp_list_size, tmp_list, criterion)
|
||||
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
|
||||
print*,'Max elem :', max_elem
|
||||
print*,'Delta :', delta
|
||||
|
||||
nb_iter = nb_iter + 1
|
||||
|
||||
! Criterion -> step accepted or rejected
|
||||
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, &
|
||||
criterion_model, rho, cancel_step)
|
||||
|
||||
! Cancellation of the step, previous MOs
|
||||
if (cancel_step) then
|
||||
mo_coef = prev_mos
|
||||
! Exit
|
||||
if (nb_iter >= localization_max_nb_iter .or. dabs(max_elem) < thresh_loc_max_elem_grad) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
|
||||
nb_sub_iter = nb_sub_iter + 1
|
||||
enddo
|
||||
!call save_mos() !### depend of the time for 1 iteration
|
||||
|
||||
! To exit the external loop if must_exti = .True.
|
||||
if (must_exit) then
|
||||
exit
|
||||
endif
|
||||
! Save the changes
|
||||
call update_data_localization()
|
||||
call save_mos()
|
||||
TOUCH mo_coef
|
||||
|
||||
! Step accepted, nb iteration + 1
|
||||
nb_iter = nb_iter + 1
|
||||
! Deallocate
|
||||
deallocate(v_grad, tmp_m_x, tmp_list)
|
||||
deallocate(tmp_R, tmp_x)
|
||||
|
||||
! External loop exit conditions
|
||||
if (DABS(max_elem) < thresh_loc_max_elem_grad) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
if (nb_iter > localization_max_nb_iter) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Deallocation of temporary arrays
|
||||
deallocate(v_grad, H, tmp_m_x, tmp_R, tmp_list, tmp_x, W, e_val, key)
|
||||
! Trust region
|
||||
else
|
||||
|
||||
! Save the MOs
|
||||
call save_mos()
|
||||
TOUCH mo_coef
|
||||
! Allocation of temporary arrays
|
||||
allocate(v_grad(tmp_n), H(tmp_n, tmp_n), tmp_m_x(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_R(tmp_list_size, tmp_list_size))
|
||||
allocate(tmp_x(tmp_n), W(tmp_n,tmp_n), e_val(tmp_n), key(tmp_n))
|
||||
|
||||
! ### Initialization ###
|
||||
delta = 0d0 ! can be deleted (normally)
|
||||
nb_iter = 0 ! Must start at 0 !!!
|
||||
rho = 0.5d0 ! Must be 0.5
|
||||
|
||||
! Compute the criterion before the loop
|
||||
call criterion_localization(tmp_list_size, tmp_list, prev_criterion)
|
||||
|
||||
! Loop until the convergence
|
||||
do while (not_converged)
|
||||
|
||||
print*,''
|
||||
print*,'***********************'
|
||||
print*,'Iteration', nb_iter
|
||||
print*,'***********************'
|
||||
print*,''
|
||||
|
||||
! Gradient
|
||||
call gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||||
! Diagonal hessian
|
||||
call hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
|
||||
|
||||
! Diagonalization of the diagonal hessian by hands
|
||||
!call diagonalization_hessian(tmp_n,H,e_val,w)
|
||||
do i = 1, tmp_n
|
||||
e_val(i) = H(i,i)
|
||||
enddo
|
||||
|
||||
! Key list for dsort
|
||||
do i = 1, tmp_n
|
||||
key(i) = i
|
||||
enddo
|
||||
|
||||
! Sort of the eigenvalues
|
||||
call dsort(e_val, key, tmp_n)
|
||||
|
||||
! Eigenvectors
|
||||
W = 0d0
|
||||
do i = 1, tmp_n
|
||||
j = key(i)
|
||||
W(j,i) = 1d0
|
||||
enddo
|
||||
|
||||
! To enter in the loop just after
|
||||
cancel_step = .True.
|
||||
nb_sub_iter = 0
|
||||
|
||||
! Loop to reduce the trust radius until the criterion decreases and rho >= thresh_rho
|
||||
do while (cancel_step)
|
||||
print*,'-----------------------------'
|
||||
print*, mo_class(tmp_list(1))
|
||||
print*,'Iteration:', nb_iter
|
||||
print*,'Sub iteration:', nb_sub_iter
|
||||
print*,'-----------------------------'
|
||||
|
||||
! Hessian,gradient,Criterion -> x
|
||||
call trust_region_step_w_expected_e(tmp_n, H, W, e_val, v_grad, prev_criterion, &
|
||||
rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
|
||||
|
||||
! Internal loop exit condition
|
||||
if (must_exit) then
|
||||
print*,'trust_region_step_w_expected_e sent: Exit'
|
||||
exit
|
||||
endif
|
||||
|
||||
! 1D tmp -> 2D tmp
|
||||
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
|
||||
|
||||
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
|
||||
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, &
|
||||
info, enforce_step_cancellation)
|
||||
|
||||
if (enforce_step_cancellation) then
|
||||
print*, 'Step cancellation, too large error in the rotation matrix'
|
||||
rho = 0d0
|
||||
cycle
|
||||
endif
|
||||
|
||||
! tmp_R to R, subspace to full space
|
||||
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
|
||||
|
||||
! Rotation of the MOs
|
||||
call apply_mo_rotation(R, prev_mos)
|
||||
|
||||
! Update the things related to mo_coef
|
||||
call update_data_localization()
|
||||
|
||||
! Update the criterion
|
||||
call criterion_localization(tmp_list_size, tmp_list, criterion)
|
||||
print*,'Criterion:', trim(mo_class(tmp_list(1))), nb_iter, criterion
|
||||
|
||||
! Criterion -> step accepted or rejected
|
||||
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, &
|
||||
criterion_model, rho, cancel_step)
|
||||
|
||||
! Cancellation of the step, previous MOs
|
||||
if (cancel_step) then
|
||||
mo_coef = prev_mos
|
||||
endif
|
||||
|
||||
nb_sub_iter = nb_sub_iter + 1
|
||||
enddo
|
||||
!call save_mos() !### depend of the time for 1 iteration
|
||||
|
||||
! To exit the external loop if must_exti = .True.
|
||||
if (must_exit) then
|
||||
exit
|
||||
endif
|
||||
|
||||
! Step accepted, nb iteration + 1
|
||||
nb_iter = nb_iter + 1
|
||||
|
||||
! External loop exit conditions
|
||||
if (DABS(max_elem) < thresh_loc_max_elem_grad) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
if (nb_iter > localization_max_nb_iter) then
|
||||
not_converged = .False.
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Deallocation of temporary arrays
|
||||
deallocate(v_grad, H, tmp_m_x, tmp_R, tmp_list, tmp_x, W, e_val, key)
|
||||
|
||||
! Save the MOs
|
||||
call save_mos()
|
||||
TOUCH mo_coef
|
||||
|
||||
! Debug
|
||||
if (debug_hf) then
|
||||
touch mo_coef
|
||||
print*,'HF energy:', HF_energy
|
||||
! Debug
|
||||
if (debug_hf) then
|
||||
touch mo_coef
|
||||
print*,'HF energy:', HF_energy
|
||||
endif
|
||||
|
||||
endif
|
||||
|
||||
enddo
|
||||
|
||||
|
||||
TOUCH mo_coef
|
||||
|
||||
! To sort the MOs using the diagonal elements of the Fock matrix
|
||||
@ -682,9 +777,8 @@ subroutine gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_ele
|
||||
elseif (localization_method== 'pipek') then
|
||||
call gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||||
else
|
||||
v_grad = 0d0
|
||||
max_elem = 0d0
|
||||
norm_grad = 0d0
|
||||
print*,'Unkown method:'//localization_method
|
||||
call abort
|
||||
endif
|
||||
|
||||
end
|
||||
@ -717,7 +811,8 @@ subroutine hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
|
||||
elseif (localization_method == 'pipek') then
|
||||
call hessian_PM(tmp_n, tmp_list_size, tmp_list, H)
|
||||
else
|
||||
H = 0d0
|
||||
print*,'Unkown method: '//localization_method
|
||||
call abort
|
||||
endif
|
||||
|
||||
end
|
||||
@ -748,7 +843,8 @@ subroutine criterion_localization(tmp_list_size, tmp_list,criterion)
|
||||
!call criterion_PM(tmp_list_size, tmp_list,criterion)
|
||||
call criterion_PM_v3(tmp_list_size, tmp_list, criterion)
|
||||
else
|
||||
criterion = 0d0
|
||||
print*,'Unkown method: '//localization_method
|
||||
call abort
|
||||
endif
|
||||
|
||||
end
|
||||
@ -770,10 +866,45 @@ subroutine update_data_localization()
|
||||
elseif (localization_method == 'pipek') then
|
||||
! Nothing required
|
||||
else
|
||||
print*,'Unkown method: '//localization_method
|
||||
call abort
|
||||
endif
|
||||
end
|
||||
#+END_SRC
|
||||
|
||||
Angles:
|
||||
|
||||
Output:
|
||||
| tmp_m_x(tmp_list_size, tmp_list_size) | double precision | Angles for the rotations in the subspace |
|
||||
| max_elem | double precision | Maximal angle |
|
||||
|
||||
|
||||
#+BEGIN_SRC f90 :comments org :tangle localization_sub.irp.f
|
||||
subroutine theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the rotation angles between the MOs for the chosen localization method
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: tmp_list_size, tmp_list(tmp_list_size)
|
||||
double precision, intent(out) :: tmp_m_x(tmp_list_size,tmp_list_size), max_elem
|
||||
|
||||
if (localization_method == 'boys') then
|
||||
call theta_FB(tmp_list, tmp_list_size, tmp_m_x, max_elem)
|
||||
elseif (localization_method== 'pipek') then
|
||||
call theta_PM(tmp_list, tmp_list_size, tmp_m_x, max_elem)
|
||||
else
|
||||
print*,'Unkown method: '//localization_method
|
||||
call abort
|
||||
endif
|
||||
|
||||
end
|
||||
#+END_SRC
|
||||
|
||||
** Foster-Boys
|
||||
*** Gradient
|
||||
Input:
|
||||
@ -1174,7 +1305,7 @@ subroutine grad_pipek(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gra
|
||||
BEGIN_DOC
|
||||
! Compute gradient for the Pipek-Mezey localization
|
||||
END_DOC
|
||||
|
||||
|
||||
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
|
||||
double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
|
||||
double precision, allocatable :: m_grad(:,:), tmp_int(:,:)
|
||||
@ -1187,54 +1318,54 @@ subroutine grad_pipek(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gra
|
||||
m_grad = 0d0
|
||||
|
||||
do a = 1, nucl_num ! loop over the nuclei
|
||||
tmp_int = 0d0 ! Initialization for each nuclei
|
||||
tmp_int = 0d0 ! Initialization for each nuclei
|
||||
|
||||
! Loop over the MOs of the a given mo_class to compute <i|Q_a|j>
|
||||
do tmp_j = 1, tmp_list_size
|
||||
j = tmp_list(tmp_j)
|
||||
do tmp_i = 1, tmp_list_size
|
||||
i = tmp_list(tmp_i)
|
||||
do rho = 1, ao_num ! loop over all the AOs
|
||||
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
|
||||
mu = nucl_aos(a,b) ! AO centered on atom a
|
||||
! Loop over the MOs of the a given mo_class to compute <i|P_a|j>
|
||||
do tmp_j = 1, tmp_list_size
|
||||
j = tmp_list(tmp_j)
|
||||
do tmp_i = 1, tmp_list_size
|
||||
i = tmp_list(tmp_i)
|
||||
do rho = 1, ao_num ! loop over all the AOs
|
||||
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
|
||||
mu = nucl_aos(a,b) ! AO centered on atom a
|
||||
|
||||
tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
|
||||
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
|
||||
tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
|
||||
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Gradient
|
||||
do tmp_j = 1, tmp_list_size
|
||||
do tmp_i = 1, tmp_list_size
|
||||
! Gradient
|
||||
do tmp_j = 1, tmp_list_size
|
||||
do tmp_i = 1, tmp_list_size
|
||||
|
||||
m_grad(tmp_i,tmp_j) = m_grad(tmp_i,tmp_j) + 4d0 * tmp_int(tmp_i,tmp_j) * (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))
|
||||
m_grad(tmp_i,tmp_j) = m_grad(tmp_i,tmp_j) + 4d0 * tmp_int(tmp_i,tmp_j) * (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
! 2D -> 1D
|
||||
do tmp_k = 1, tmp_n
|
||||
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
|
||||
v_grad(tmp_k) = m_grad(tmp_i,tmp_j)
|
||||
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
|
||||
v_grad(tmp_k) = m_grad(tmp_i,tmp_j)
|
||||
enddo
|
||||
|
||||
! Maximum element in the gradient
|
||||
max_elem = 0d0
|
||||
do tmp_k = 1, tmp_n
|
||||
if (ABS(v_grad(tmp_k)) > max_elem) then
|
||||
max_elem = ABS(v_grad(tmp_k))
|
||||
endif
|
||||
enddo
|
||||
|
||||
if (ABS(v_grad(tmp_k)) > max_elem) then
|
||||
max_elem = ABS(v_grad(tmp_k))
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Norm of the gradient
|
||||
norm_grad = 0d0
|
||||
do tmp_k = 1, tmp_n
|
||||
norm_grad = norm_grad + v_grad(tmp_k)**2
|
||||
norm_grad = norm_grad + v_grad(tmp_k)**2
|
||||
enddo
|
||||
norm_grad = dsqrt(norm_grad)
|
||||
|
||||
@ -1244,7 +1375,7 @@ subroutine grad_pipek(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gra
|
||||
! Deallocation
|
||||
deallocate(m_grad,tmp_int)
|
||||
|
||||
end
|
||||
end subroutine grad_pipek
|
||||
#+END_SRC
|
||||
|
||||
*** Gradient
|
||||
@ -1971,6 +2102,274 @@ subroutine criterion_FB(tmp_list_size, tmp_list, criterion)
|
||||
end subroutine
|
||||
#+END_SRC
|
||||
|
||||
** Theta
|
||||
|
||||
In:
|
||||
| n | integer | number of MOs in the considered MO class |
|
||||
| l | integer | list of MOs of the considered class |
|
||||
|
||||
Out:
|
||||
| m_x(n,n) | double precision | Matrix containing the rotation angle between all the different |
|
||||
| | | pairs of MOs to apply the rotations (need a minus sign) |
|
||||
| max_elem | double precision | Maximal angle in absolute value |
|
||||
|
||||
$$\cos(4 \theta) = \frac{-A{ij}}{\sqrt{(A_{ij}^2 + B_{ij}^2)} $$
|
||||
$$\sin(4 \theta) = \frac{B{ij}}{\sqrt{(A_{ij}^2 + B_{ij}^2)} $$
|
||||
$$\tan(4 \theta) = \frac{\sin(4 \theta)}{\cos(4 \theta)}$$
|
||||
where $\theta$ is in fact $\theta_{ij}$
|
||||
|
||||
For Foster-Boys localization:
|
||||
$$A_{ij} = <i|r|j>^2 - \frac{1}{4} (<i|r|i> - <j|r|j>)^2$$
|
||||
$$B_{ij} = <i|r|j> (<i|r|i> - <j|r|j>)$$
|
||||
|
||||
|
||||
For Pipek-Mezey localization:
|
||||
$$A_{ij} = \sum_A <i|P_A|j>^2 - \frac{1}{4} (<i|P_A|i> - <j|P_A|j>)^2$$
|
||||
$$B_{ij} = \sum_A <i|P_A|j> (<i|P_A|i> - <j|P_A|j>)$$
|
||||
with
|
||||
$$<i|P_A|j> = \frac{1}{2} \sum_\rho \sum_{\mu \in A} ( c_\rho^{i*} S_{\rho
|
||||
\mu} c_\mu^j + c_\mu^{i*} S_{\mu \rho} c_\rho^j)$$
|
||||
$i,j$ MOs
|
||||
$\mu, \rho$ AOs
|
||||
$A$ nucleus
|
||||
$S$ overlap matrix
|
||||
$c$ MO coefficient
|
||||
$r$ position operator
|
||||
|
||||
#+begin_src f90 :tangle localization_sub.irp.f
|
||||
subroutine theta_FB(l, n, m_x, max_elem)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the angles to minimize the Foster-Boys criterion by using pairwise rotations of the MOs
|
||||
! Warning: you must give - the angles to build the rotation matrix...
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n, l(n)
|
||||
double precision, intent(out) :: m_x(n,n), max_elem
|
||||
|
||||
integer :: i,j, tmp_i, tmp_j
|
||||
double precision, allocatable :: cos4theta(:,:), sin4theta(:,:)
|
||||
double precision, allocatable :: A(:,:), B(:,:), beta(:,:), gamma(:,:)
|
||||
integer :: idx_i,idx_j
|
||||
|
||||
allocate(cos4theta(n, n), sin4theta(n, n))
|
||||
allocate(A(n,n), B(n,n), beta(n,n), gamma(n,n))
|
||||
|
||||
do tmp_j = 1, n
|
||||
j = l(tmp_j)
|
||||
do tmp_i = 1, n
|
||||
i = l(tmp_i)
|
||||
A(tmp_i,tmp_j) = mo_dipole_x(i,j)**2 - 0.25d0 * (mo_dipole_x(i,i) - mo_dipole_x(j,j))**2 &
|
||||
+ mo_dipole_y(i,j)**2 - 0.25d0 * (mo_dipole_y(i,i) - mo_dipole_y(j,j))**2 &
|
||||
+ mo_dipole_z(i,j)**2 - 0.25d0 * (mo_dipole_z(i,i) - mo_dipole_z(j,j))**2
|
||||
enddo
|
||||
A(j,j) = 0d0
|
||||
enddo
|
||||
|
||||
do tmp_j = 1, n
|
||||
j = l(tmp_j)
|
||||
do tmp_i = 1, n
|
||||
i = l(tmp_i)
|
||||
B(tmp_i,tmp_j) = mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
|
||||
+ mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
|
||||
+ mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!do tmp_j = 1, n
|
||||
! j = l(tmp_j)
|
||||
! do tmp_i = 1, n
|
||||
! i = l(tmp_i)
|
||||
! beta(tmp_i,tmp_j) = (mo_dipole_x(i,i) - mo_dipole_x(j,j)) - 4d0 * mo_dipole_x(i,j)**2 &
|
||||
! + (mo_dipole_y(i,i) - mo_dipole_y(j,j)) - 4d0 * mo_dipole_y(i,j)**2 &
|
||||
! + (mo_dipole_z(i,i) - mo_dipole_z(j,j)) - 4d0 * mo_dipole_z(i,j)**2
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
!do tmp_j = 1, n
|
||||
! j = l(tmp_j)
|
||||
! do tmp_i = 1, n
|
||||
! i = l(tmp_i)
|
||||
! gamma(tmp_i,tmp_j) = 4d0 * ( mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
|
||||
! + mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
|
||||
! + mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j)))
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
!
|
||||
!do j = 1, n
|
||||
! do i = 1, n
|
||||
! cos4theta(i,j) = - A(i,j) / dsqrt(A(i,j)**2 + B(i,j)**2)
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
!do j = 1, n
|
||||
! do i = 1, n
|
||||
! sin4theta(i,j) = B(i,j) / dsqrt(A(i,j)**2 + B(i,j)**2)
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
! Theta
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
m_x(i,j) = 0.25d0 * atan2(B(i,j), -A(i,j))
|
||||
!m_x(i,j) = 0.25d0 * atan2(sin4theta(i,j), cos4theta(i,j))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Enforce a perfect antisymmetry
|
||||
do j = 1, n-1
|
||||
do i = j+1, n
|
||||
m_x(j,i) = - m_x(i,j)
|
||||
enddo
|
||||
enddo
|
||||
do i = 1, n
|
||||
m_x(i,i) = 0d0
|
||||
enddo
|
||||
|
||||
! Max
|
||||
max_elem = 0d0
|
||||
do j = 1, n-1
|
||||
do i = j+1, n
|
||||
if (dabs(m_x(i,j)) > dabs(max_elem)) then
|
||||
max_elem = m_x(i,j)
|
||||
!idx_i = i
|
||||
!idx_j = j
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Debug
|
||||
!print*,''
|
||||
!print*,'sin/B'
|
||||
!do i = 1, n
|
||||
! write(*,'(100F10.4)') sin4theta(i,:)
|
||||
! !B(i,:)
|
||||
!enddo
|
||||
!print*,'cos/A'
|
||||
!do i = 1, n
|
||||
! write(*,'(100F10.4)') cos4theta(i,:)
|
||||
! !A(i,:)
|
||||
!enddo
|
||||
!print*,'X'
|
||||
!!m_x = 0d0
|
||||
!!m_x(idx_i,idx_j) = max_elem
|
||||
!!m_x(idx_j,idx_i) = -max_elem
|
||||
!do i = 1, n
|
||||
! write(*,'(100F10.4)') m_x(i,:)
|
||||
!enddo
|
||||
!print*,idx_i,idx_j,max_elem
|
||||
|
||||
max_elem = dabs(max_elem)
|
||||
|
||||
deallocate(cos4theta, sin4theta)
|
||||
deallocate(A,B,beta,gamma)
|
||||
|
||||
end
|
||||
#+end_src
|
||||
|
||||
#+begin_src f90 :comments org :tangle localization_sub.irp.f
|
||||
subroutine theta_PM(l, n, m_x, max_elem)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the angles to minimize the Foster-Boys criterion by using pairwise rotations of the MOs
|
||||
! Warning: you must give - the angles to build the rotation matrix...
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n, l(n)
|
||||
double precision, intent(out) :: m_x(n,n), max_elem
|
||||
|
||||
integer :: a,b,i,j,tmp_i,tmp_j,rho,mu,nu,idx_i,idx_j
|
||||
double precision, allocatable :: Aij(:,:), Bij(:,:), Pa(:,:)
|
||||
|
||||
allocate(Aij(n,n), Bij(n,n), Pa(n,n))
|
||||
|
||||
do a = 1, nucl_num ! loop over the nuclei
|
||||
Pa = 0d0 ! Initialization for each nuclei
|
||||
|
||||
! Loop over the MOs of the a given mo_class to compute <i|P_a|j>
|
||||
do tmp_j = 1, n
|
||||
j = l(tmp_j)
|
||||
do tmp_i = 1, n
|
||||
i = l(tmp_i)
|
||||
do rho = 1, ao_num ! loop over all the AOs
|
||||
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
|
||||
mu = nucl_aos(a,b) ! AO centered on atom a
|
||||
|
||||
Pa(tmp_i,tmp_j) = Pa(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
|
||||
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! A
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
Aij(i,j) = Aij(i,j) + Pa(i,j)**2 - 0.25d0 * (Pa(i,i) - Pa(j,j))**2
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! B
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
Bij(i,j) = Bij(i,j) + Pa(i,j) * (Pa(i,i) - Pa(j,j))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
! Theta
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
m_x(i,j) = 0.25d0 * atan2(Bij(i,j), -Aij(i,j))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Enforce a perfect antisymmetry
|
||||
do j = 1, n-1
|
||||
do i = j+1, n
|
||||
m_x(j,i) = - m_x(i,j)
|
||||
enddo
|
||||
enddo
|
||||
do i = 1, n
|
||||
m_x(i,i) = 0d0
|
||||
enddo
|
||||
|
||||
! Max
|
||||
max_elem = 0d0
|
||||
do j = 1, n-1
|
||||
do i = j+1, n
|
||||
if (dabs(m_x(i,j)) > dabs(max_elem)) then
|
||||
max_elem = m_x(i,j)
|
||||
idx_i = i
|
||||
idx_j = j
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Debug
|
||||
!do i = 1, n
|
||||
! write(*,'(100F10.4)') m_x(i,:)
|
||||
!enddo
|
||||
!print*,'Max',idx_i,idx_j,max_elem
|
||||
|
||||
max_elem = dabs(max_elem)
|
||||
|
||||
deallocate(Aij,Bij,Pa)
|
||||
|
||||
end
|
||||
#+end_src
|
||||
|
||||
** Spatial extent
|
||||
|
||||
The spatial extent of an orbital $i$ is computed as
|
||||
|
@ -38,9 +38,8 @@ subroutine gradient_localization(tmp_n, tmp_list_size, tmp_list, v_grad, max_ele
|
||||
elseif (localization_method== 'pipek') then
|
||||
call gradient_PM(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_grad)
|
||||
else
|
||||
v_grad = 0d0
|
||||
max_elem = 0d0
|
||||
norm_grad = 0d0
|
||||
print*,'Unkown method:'//localization_method
|
||||
call abort
|
||||
endif
|
||||
|
||||
end
|
||||
@ -74,7 +73,8 @@ subroutine hessian_localization(tmp_n, tmp_list_size, tmp_list, H)
|
||||
elseif (localization_method == 'pipek') then
|
||||
call hessian_PM(tmp_n, tmp_list_size, tmp_list, H)
|
||||
else
|
||||
H = 0d0
|
||||
print*,'Unkown method: '//localization_method
|
||||
call abort
|
||||
endif
|
||||
|
||||
end
|
||||
@ -106,7 +106,8 @@ subroutine criterion_localization(tmp_list_size, tmp_list,criterion)
|
||||
!call criterion_PM(tmp_list_size, tmp_list,criterion)
|
||||
call criterion_PM_v3(tmp_list_size, tmp_list, criterion)
|
||||
else
|
||||
criterion = 0d0
|
||||
print*,'Unkown method: '//localization_method
|
||||
call abort
|
||||
endif
|
||||
|
||||
end
|
||||
@ -129,9 +130,45 @@ subroutine update_data_localization()
|
||||
elseif (localization_method == 'pipek') then
|
||||
! Nothing required
|
||||
else
|
||||
print*,'Unkown method: '//localization_method
|
||||
call abort
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
|
||||
! Angles:
|
||||
|
||||
! Output:
|
||||
! | tmp_m_x(tmp_list_size, tmp_list_size) | double precision | Angles for the rotations in the subspace |
|
||||
! | max_elem | double precision | Maximal angle |
|
||||
|
||||
|
||||
|
||||
subroutine theta_localization(tmp_list, tmp_list_size, tmp_m_x, max_elem)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the rotation angles between the MOs for the chosen localization method
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: tmp_list_size, tmp_list(tmp_list_size)
|
||||
double precision, intent(out) :: tmp_m_x(tmp_list_size,tmp_list_size), max_elem
|
||||
|
||||
if (localization_method == 'boys') then
|
||||
call theta_FB(tmp_list, tmp_list_size, tmp_m_x, max_elem)
|
||||
elseif (localization_method== 'pipek') then
|
||||
call theta_PM(tmp_list, tmp_list_size, tmp_m_x, max_elem)
|
||||
else
|
||||
print*,'Unkown method: '//localization_method
|
||||
call abort
|
||||
endif
|
||||
|
||||
end
|
||||
|
||||
! Gradient
|
||||
! Input:
|
||||
! | tmp_n | integer | Number of parameters in the MO subspace |
|
||||
@ -526,7 +563,7 @@ subroutine grad_pipek(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gra
|
||||
BEGIN_DOC
|
||||
! Compute gradient for the Pipek-Mezey localization
|
||||
END_DOC
|
||||
|
||||
|
||||
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
|
||||
double precision, intent(out) :: v_grad(tmp_n), max_elem, norm_grad
|
||||
double precision, allocatable :: m_grad(:,:), tmp_int(:,:)
|
||||
@ -539,54 +576,54 @@ subroutine grad_pipek(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gra
|
||||
m_grad = 0d0
|
||||
|
||||
do a = 1, nucl_num ! loop over the nuclei
|
||||
tmp_int = 0d0 ! Initialization for each nuclei
|
||||
tmp_int = 0d0 ! Initialization for each nuclei
|
||||
|
||||
! Loop over the MOs of the a given mo_class to compute <i|Q_a|j>
|
||||
do tmp_j = 1, tmp_list_size
|
||||
j = tmp_list(tmp_j)
|
||||
do tmp_i = 1, tmp_list_size
|
||||
i = tmp_list(tmp_i)
|
||||
do rho = 1, ao_num ! loop over all the AOs
|
||||
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
|
||||
mu = nucl_aos(a,b) ! AO centered on atom a
|
||||
! Loop over the MOs of the a given mo_class to compute <i|P_a|j>
|
||||
do tmp_j = 1, tmp_list_size
|
||||
j = tmp_list(tmp_j)
|
||||
do tmp_i = 1, tmp_list_size
|
||||
i = tmp_list(tmp_i)
|
||||
do rho = 1, ao_num ! loop over all the AOs
|
||||
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
|
||||
mu = nucl_aos(a,b) ! AO centered on atom a
|
||||
|
||||
tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
|
||||
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
|
||||
tmp_int(tmp_i,tmp_j) = tmp_int(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
|
||||
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Gradient
|
||||
do tmp_j = 1, tmp_list_size
|
||||
do tmp_i = 1, tmp_list_size
|
||||
! Gradient
|
||||
do tmp_j = 1, tmp_list_size
|
||||
do tmp_i = 1, tmp_list_size
|
||||
|
||||
m_grad(tmp_i,tmp_j) = m_grad(tmp_i,tmp_j) + 4d0 * tmp_int(tmp_i,tmp_j) * (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))
|
||||
m_grad(tmp_i,tmp_j) = m_grad(tmp_i,tmp_j) + 4d0 * tmp_int(tmp_i,tmp_j) * (tmp_int(tmp_i,tmp_i) - tmp_int(tmp_j,tmp_j))
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
! 2D -> 1D
|
||||
do tmp_k = 1, tmp_n
|
||||
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
|
||||
v_grad(tmp_k) = m_grad(tmp_i,tmp_j)
|
||||
call vec_to_mat_index(tmp_k,tmp_i,tmp_j)
|
||||
v_grad(tmp_k) = m_grad(tmp_i,tmp_j)
|
||||
enddo
|
||||
|
||||
! Maximum element in the gradient
|
||||
max_elem = 0d0
|
||||
do tmp_k = 1, tmp_n
|
||||
if (ABS(v_grad(tmp_k)) > max_elem) then
|
||||
max_elem = ABS(v_grad(tmp_k))
|
||||
endif
|
||||
enddo
|
||||
|
||||
if (ABS(v_grad(tmp_k)) > max_elem) then
|
||||
max_elem = ABS(v_grad(tmp_k))
|
||||
endif
|
||||
enddo
|
||||
|
||||
! Norm of the gradient
|
||||
norm_grad = 0d0
|
||||
do tmp_k = 1, tmp_n
|
||||
norm_grad = norm_grad + v_grad(tmp_k)**2
|
||||
norm_grad = norm_grad + v_grad(tmp_k)**2
|
||||
enddo
|
||||
norm_grad = dsqrt(norm_grad)
|
||||
|
||||
@ -596,7 +633,7 @@ subroutine grad_pipek(tmp_n, tmp_list_size, tmp_list, v_grad, max_elem, norm_gra
|
||||
! Deallocation
|
||||
deallocate(m_grad,tmp_int)
|
||||
|
||||
end
|
||||
end subroutine grad_pipek
|
||||
|
||||
! Gradient
|
||||
|
||||
@ -1312,6 +1349,236 @@ subroutine criterion_FB(tmp_list_size, tmp_list, criterion)
|
||||
|
||||
end subroutine
|
||||
|
||||
subroutine theta_FB(l, n, m_x, max_elem)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the angles to minimize the Foster-Boys criterion by using pairwise rotations of the MOs
|
||||
! Warning: you must give - the angles to build the rotation matrix...
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n, l(n)
|
||||
double precision, intent(out) :: m_x(n,n), max_elem
|
||||
|
||||
integer :: i,j, tmp_i, tmp_j
|
||||
double precision, allocatable :: cos4theta(:,:), sin4theta(:,:)
|
||||
double precision, allocatable :: A(:,:), B(:,:), beta(:,:), gamma(:,:)
|
||||
integer :: idx_i,idx_j
|
||||
|
||||
allocate(cos4theta(n, n), sin4theta(n, n))
|
||||
allocate(A(n,n), B(n,n), beta(n,n), gamma(n,n))
|
||||
|
||||
do tmp_j = 1, n
|
||||
j = l(tmp_j)
|
||||
do tmp_i = 1, n
|
||||
i = l(tmp_i)
|
||||
A(tmp_i,tmp_j) = mo_dipole_x(i,j)**2 - 0.25d0 * (mo_dipole_x(i,i) - mo_dipole_x(j,j))**2 &
|
||||
+ mo_dipole_y(i,j)**2 - 0.25d0 * (mo_dipole_y(i,i) - mo_dipole_y(j,j))**2 &
|
||||
+ mo_dipole_z(i,j)**2 - 0.25d0 * (mo_dipole_z(i,i) - mo_dipole_z(j,j))**2
|
||||
enddo
|
||||
A(j,j) = 0d0
|
||||
enddo
|
||||
|
||||
do tmp_j = 1, n
|
||||
j = l(tmp_j)
|
||||
do tmp_i = 1, n
|
||||
i = l(tmp_i)
|
||||
B(tmp_i,tmp_j) = mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
|
||||
+ mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
|
||||
+ mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!do tmp_j = 1, n
|
||||
! j = l(tmp_j)
|
||||
! do tmp_i = 1, n
|
||||
! i = l(tmp_i)
|
||||
! beta(tmp_i,tmp_j) = (mo_dipole_x(i,i) - mo_dipole_x(j,j)) - 4d0 * mo_dipole_x(i,j)**2 &
|
||||
! + (mo_dipole_y(i,i) - mo_dipole_y(j,j)) - 4d0 * mo_dipole_y(i,j)**2 &
|
||||
! + (mo_dipole_z(i,i) - mo_dipole_z(j,j)) - 4d0 * mo_dipole_z(i,j)**2
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
!do tmp_j = 1, n
|
||||
! j = l(tmp_j)
|
||||
! do tmp_i = 1, n
|
||||
! i = l(tmp_i)
|
||||
! gamma(tmp_i,tmp_j) = 4d0 * ( mo_dipole_x(i,j) * (mo_dipole_x(i,i) - mo_dipole_x(j,j)) &
|
||||
! + mo_dipole_y(i,j) * (mo_dipole_y(i,i) - mo_dipole_y(j,j)) &
|
||||
! + mo_dipole_z(i,j) * (mo_dipole_z(i,i) - mo_dipole_z(j,j)))
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
!
|
||||
!do j = 1, n
|
||||
! do i = 1, n
|
||||
! cos4theta(i,j) = - A(i,j) / dsqrt(A(i,j)**2 + B(i,j)**2)
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
!do j = 1, n
|
||||
! do i = 1, n
|
||||
! sin4theta(i,j) = B(i,j) / dsqrt(A(i,j)**2 + B(i,j)**2)
|
||||
! enddo
|
||||
!enddo
|
||||
|
||||
! Theta
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
m_x(i,j) = 0.25d0 * atan2(B(i,j), -A(i,j))
|
||||
!m_x(i,j) = 0.25d0 * atan2(sin4theta(i,j), cos4theta(i,j))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Enforce a perfect antisymmetry
|
||||
do j = 1, n-1
|
||||
do i = j+1, n
|
||||
m_x(j,i) = - m_x(i,j)
|
||||
enddo
|
||||
enddo
|
||||
do i = 1, n
|
||||
m_x(i,i) = 0d0
|
||||
enddo
|
||||
|
||||
! Max
|
||||
max_elem = 0d0
|
||||
do j = 1, n-1
|
||||
do i = j+1, n
|
||||
if (dabs(m_x(i,j)) > dabs(max_elem)) then
|
||||
max_elem = m_x(i,j)
|
||||
!idx_i = i
|
||||
!idx_j = j
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Debug
|
||||
!print*,''
|
||||
!print*,'sin/B'
|
||||
!do i = 1, n
|
||||
! write(*,'(100F10.4)') sin4theta(i,:)
|
||||
! !B(i,:)
|
||||
!enddo
|
||||
!print*,'cos/A'
|
||||
!do i = 1, n
|
||||
! write(*,'(100F10.4)') cos4theta(i,:)
|
||||
! !A(i,:)
|
||||
!enddo
|
||||
!print*,'X'
|
||||
!!m_x = 0d0
|
||||
!!m_x(idx_i,idx_j) = max_elem
|
||||
!!m_x(idx_j,idx_i) = -max_elem
|
||||
!do i = 1, n
|
||||
! write(*,'(100F10.4)') m_x(i,:)
|
||||
!enddo
|
||||
!print*,idx_i,idx_j,max_elem
|
||||
|
||||
max_elem = dabs(max_elem)
|
||||
|
||||
deallocate(cos4theta, sin4theta)
|
||||
deallocate(A,B,beta,gamma)
|
||||
|
||||
end
|
||||
|
||||
subroutine theta_PM(l, n, m_x, max_elem)
|
||||
|
||||
include 'pi.h'
|
||||
|
||||
BEGIN_DOC
|
||||
! Compute the angles to minimize the Foster-Boys criterion by using pairwise rotations of the MOs
|
||||
! Warning: you must give - the angles to build the rotation matrix...
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: n, l(n)
|
||||
double precision, intent(out) :: m_x(n,n), max_elem
|
||||
|
||||
integer :: a,b,i,j,tmp_i,tmp_j,rho,mu,nu,idx_i,idx_j
|
||||
double precision, allocatable :: Aij(:,:), Bij(:,:), Pa(:,:)
|
||||
|
||||
allocate(Aij(n,n), Bij(n,n), Pa(n,n))
|
||||
|
||||
do a = 1, nucl_num ! loop over the nuclei
|
||||
Pa = 0d0 ! Initialization for each nuclei
|
||||
|
||||
! Loop over the MOs of the a given mo_class to compute <i|P_a|j>
|
||||
do tmp_j = 1, n
|
||||
j = l(tmp_j)
|
||||
do tmp_i = 1, n
|
||||
i = l(tmp_i)
|
||||
do rho = 1, ao_num ! loop over all the AOs
|
||||
do b = 1, nucl_n_aos(a) ! loop over the number of AOs which belongs to the nuclei a
|
||||
mu = nucl_aos(a,b) ! AO centered on atom a
|
||||
|
||||
Pa(tmp_i,tmp_j) = Pa(tmp_i,tmp_j) + 0.5d0 * (mo_coef(rho,i) * ao_overlap(rho,mu) * mo_coef(mu,j) &
|
||||
+ mo_coef(mu,i) * ao_overlap(mu,rho) * mo_coef(rho,j))
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! A
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
Aij(i,j) = Aij(i,j) + Pa(i,j)**2 - 0.25d0 * (Pa(i,i) - Pa(j,j))**2
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! B
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
Bij(i,j) = Bij(i,j) + Pa(i,j) * (Pa(i,i) - Pa(j,j))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
enddo
|
||||
|
||||
! Theta
|
||||
do j = 1, n
|
||||
do i = 1, n
|
||||
m_x(i,j) = 0.25d0 * atan2(Bij(i,j), -Aij(i,j))
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Enforce a perfect antisymmetry
|
||||
do j = 1, n-1
|
||||
do i = j+1, n
|
||||
m_x(j,i) = - m_x(i,j)
|
||||
enddo
|
||||
enddo
|
||||
do i = 1, n
|
||||
m_x(i,i) = 0d0
|
||||
enddo
|
||||
|
||||
! Max
|
||||
max_elem = 0d0
|
||||
do j = 1, n-1
|
||||
do i = j+1, n
|
||||
if (dabs(m_x(i,j)) > dabs(max_elem)) then
|
||||
max_elem = m_x(i,j)
|
||||
idx_i = i
|
||||
idx_j = j
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
! Debug
|
||||
!do i = 1, n
|
||||
! write(*,'(100F10.4)') m_x(i,:)
|
||||
!enddo
|
||||
!print*,'Max',idx_i,idx_j,max_elem
|
||||
|
||||
max_elem = dabs(max_elem)
|
||||
|
||||
deallocate(Aij,Bij,Pa)
|
||||
|
||||
end
|
||||
|
||||
! Spatial extent
|
||||
|
||||
! The spatial extent of an orbital $i$ is computed as
|
||||
|
Loading…
Reference in New Issue
Block a user