9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-10 20:18:12 +01:00

working on complex davidson

This commit is contained in:
Kevin Gasperich 2020-02-25 17:52:34 -06:00
parent 102d930452
commit 9ea4377f07
3 changed files with 743 additions and 30 deletions

View File

@ -104,6 +104,7 @@ subroutine davidson_slave_work(zmq_to_qp_run_socket, zmq_socket_push, N_st, sze,
! integer, external :: zmq_get_dvector ! integer, external :: zmq_get_dvector
integer, external :: zmq_get_dmatrix integer, external :: zmq_get_dmatrix
integer, external :: zmq_get_cdmatrix
if (is_complex) then if (is_complex) then
complex*16, allocatable :: v_tc(:,:), s_tc(:,:), u_tc(:,:) complex*16, allocatable :: v_tc(:,:), s_tc(:,:), u_tc(:,:)

View File

@ -33,9 +33,16 @@ BEGIN_PROVIDER [ integer, dressed_column_idx, (N_states) ]
integer :: i integer :: i
double precision :: tmp double precision :: tmp
integer, external :: idamax integer, external :: idamax
if (is_complex) then
do i=1,N_states
!todo: check for complex
dressed_column_idx(i) = idamax(N_det, cdabs(psi_coef_complex(1,i)), 1)
enddo
else
do i=1,N_states do i=1,N_states
dressed_column_idx(i) = idamax(N_det, psi_coef(1,i), 1) dressed_column_idx(i) = idamax(N_det, psi_coef(1,i), 1)
enddo enddo
endif
END_PROVIDER END_PROVIDER
subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_diag,Nint,dressing_state,converged) subroutine davidson_diag_hs2(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_diag,Nint,dressing_state,converged)
@ -721,7 +728,699 @@ end
!==============================================================================!
! !
! Complex !
! !
!==============================================================================!
subroutine davidson_diag_hs2_complex(dets_in,u_in,s2_out,dim_in,energies,sze,N_st,N_st_diag,Nint,dressing_state,converged)
print*,irp_here,' not implemented for complex'
stop -1
use bitmasks
implicit none
BEGIN_DOC
! Davidson diagonalization.
!
! dets_in : bitmasks corresponding to determinants
!
! u_in : guess coefficients on the various states. Overwritten
! on exit
!
! dim_in : leftmost dimension of u_in
!
! sze : Number of determinants
!
! N_st : Number of eigenstates
!
! Initial guess vectors are not necessarily orthonormal
END_DOC
integer, intent(in) :: dim_in, sze, N_st, N_st_diag, Nint
integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
complex*16, intent(inout) :: u_in(dim_in,N_st_diag)
double precision, intent(out) :: energies(N_st_diag), s2_out(N_st_diag)
integer, intent(in) :: dressing_state
logical, intent(out) :: converged
double precision, allocatable :: H_jj(:)
double precision, external :: diag_H_mat_elem, diag_S_mat_elem
integer :: i,k
ASSERT (N_st > 0)
ASSERT (sze > 0)
ASSERT (Nint > 0)
ASSERT (Nint == N_int)
PROVIDE mo_two_e_integrals_in_map
allocate(H_jj(sze))
H_jj(1) = diag_h_mat_elem(dets_in(1,1,1),Nint)
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP SHARED(sze,H_jj, dets_in,Nint) &
!$OMP PRIVATE(i)
!$OMP DO SCHEDULE(static)
do i=2,sze
H_jj(i) = diag_H_mat_elem(dets_in(1,1,i),Nint)
enddo
!$OMP END DO
!$OMP END PARALLEL
if (dressing_state > 0) then
print*,irp_here,' not implemented for complex if dressing_state > 0'
stop -1
do k=1,N_st
do i=1,sze
H_jj(i) += dble(u_in(i,k) * dressing_column_h(i,k))
enddo
enddo
endif
call davidson_diag_hjj_sjj_complex(dets_in,u_in,H_jj,S2_out,energies,dim_in,sze,N_st,N_st_diag,Nint,dressing_state,converged)
deallocate (H_jj)
end
subroutine davidson_diag_hjj_sjj_complex(dets_in,u_in,H_jj,s2_out,energies,dim_in,sze,N_st,N_st_diag_in,Nint,dressing_state,converged)
print*,irp_here,' not implemented for complex'
stop -1
! use bitmasks
! use mmap_module
! implicit none
! BEGIN_DOC
! ! Davidson diagonalization with specific diagonal elements of the H matrix
! !
! ! H_jj : specific diagonal H matrix elements to diagonalize de Davidson
! !
! ! S2_out : Output : s^2
! !
! ! dets_in : bitmasks corresponding to determinants
! !
! ! u_in : guess coefficients on the various states. Overwritten
! ! on exit
! !
! ! dim_in : leftmost dimension of u_in
! !
! ! sze : Number of determinants
! !
! ! N_st : Number of eigenstates
! !
! ! N_st_diag_in : Number of states in which H is diagonalized. Assumed > sze
! !
! ! Initial guess vectors are not necessarily orthonormal
! END_DOC
! integer, intent(in) :: dim_in, sze, N_st, N_st_diag_in, Nint
! integer(bit_kind), intent(in) :: dets_in(Nint,2,sze)
! double precision, intent(in) :: H_jj(sze)
! integer, intent(in) :: dressing_state
! double precision, intent(inout) :: s2_out(N_st_diag_in)
! complex*16, intent(inout) :: u_in(dim_in,N_st_diag_in)
! double precision, intent(out) :: energies(N_st_diag_in)
!
! integer :: iter, N_st_diag
! integer :: i,j,k,l,m
! logical, intent(inout) :: converged
!
! double precision, external :: u_dot_u_complex
! complex*16, external :: u_dot_v_complex
!
! integer :: k_pairs, kl
!
! integer :: iter2, itertot
! double precision, allocatable :: y(:,:), h(:,:), h_p(:,:), lambda(:), s2(:)
! real, allocatable :: y_s(:,:)
! double precision, allocatable :: s_(:,:), s_tmp(:,:)
! double precision :: diag_h_mat_elem
! double precision, allocatable :: residual_norm(:)
! character*(16384) :: write_buffer
! double precision :: to_print(3,N_st)
! double precision :: cpu, wall
! integer :: shift, shift2, itermax, istate
! double precision :: r1, r2, alpha
! logical :: state_ok(N_st_diag_in*davidson_sze_max)
! integer :: nproc_target
! integer :: order(N_st_diag_in)
! double precision :: cmax
! double precision, allocatable :: U(:,:), overlap(:,:), S_d(:,:)
! double precision, pointer :: W(:,:)
! real, pointer :: S(:,:)
! logical :: disk_based
! double precision :: energy_shift(N_st_diag_in*davidson_sze_max)
!
! include 'constants.include.F'
!
! N_st_diag = N_st_diag_in
! !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, W, S, y, y_s, S_d, h, lambda
! if (N_st_diag*3 > sze) then
! print *, 'error in Davidson :'
! print *, 'Increase n_det_max_full to ', N_st_diag*3
! stop -1
! endif
!
! itermax = max(2,min(davidson_sze_max, sze/N_st_diag))+1
! itertot = 0
!
! if (state_following) then
! allocate(overlap(N_st_diag*itermax, N_st_diag*itermax))
! else
! allocate(overlap(1,1)) ! avoid 'if' for deallocate
! endif
! overlap = 0.d0
!
! PROVIDE nuclear_repulsion expected_s2 psi_bilinear_matrix_order psi_bilinear_matrix_order_reverse threshold_davidson_pt2
!
! call write_time(6)
! write(6,'(A)') ''
! write(6,'(A)') 'Davidson Diagonalization'
! write(6,'(A)') '------------------------'
! write(6,'(A)') ''
!
! ! Find max number of cores to fit in memory
! ! -----------------------------------------
!
! nproc_target = nproc
! double precision :: rss
! integer :: maxab
! maxab = max(N_det_alpha_unique, N_det_beta_unique)+1
!
! m=1
! disk_based = .False.
! call resident_memory(rss)
! do
! r1 = 8.d0 * &! bytes
! ( dble(sze)*(N_st_diag*itermax) &! U
! + 1.5d0*dble(sze*m)*(N_st_diag*itermax) &! W,S
! + 1.d0*dble(sze)*(N_st_diag) &! S_d
! + 4.5d0*(N_st_diag*itermax)**2 &! h,y,y_s,s_,s_tmp
! + 2.d0*(N_st_diag*itermax) &! s2,lambda
! + 1.d0*(N_st_diag) &! residual_norm
! ! In H_S2_u_0_nstates_zmq
! + 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on collector
! + 3.d0*(N_st_diag*N_det) &! u_t, v_t, s_t on slave
! + 0.5d0*maxab &! idx0 in H_S2_u_0_nstates_openmp_work_*
! + nproc_target * &! In OMP section
! ( 1.d0*(N_int*maxab) &! buffer
! + 3.5d0*(maxab) ) &! singles_a, singles_b, doubles, idx
! ) / 1024.d0**3
!
! if (nproc_target == 0) then
! call check_mem(r1,irp_here)
! nproc_target = 1
! exit
! endif
!
! if (r1+rss < qp_max_mem) then
! exit
! endif
!
! if (itermax > 4) then
! itermax = itermax - 1
! else if (m==1.and.disk_based_davidson) then
! m=0
! disk_based = .True.
! itermax = 6
! else
! nproc_target = nproc_target - 1
! endif
!
! enddo
! nthreads_davidson = nproc_target
! TOUCH nthreads_davidson
! call write_int(6,N_st,'Number of states')
! call write_int(6,N_st_diag,'Number of states in diagonalization')
! call write_int(6,sze,'Number of determinants')
! call write_int(6,nproc_target,'Number of threads for diagonalization')
! call write_double(6, r1, 'Memory(Gb)')
! if (disk_based) then
! print *, 'Using swap space to reduce RAM'
! endif
!
! !---------------
!
! write(6,'(A)') ''
! write_buffer = '====='
! do i=1,N_st
! write_buffer = trim(write_buffer)//' ================ =========== ==========='
! enddo
! write(6,'(A)') write_buffer(1:6+41*N_st)
! write_buffer = 'Iter'
! do i=1,N_st
! write_buffer = trim(write_buffer)//' Energy S^2 Residual '
! enddo
! write(6,'(A)') write_buffer(1:6+41*N_st)
! write_buffer = '====='
! do i=1,N_st
! write_buffer = trim(write_buffer)//' ================ =========== ==========='
! enddo
! write(6,'(A)') write_buffer(1:6+41*N_st)
!
!
! if (disk_based) then
! ! Create memory-mapped files for W and S
! type(c_ptr) :: ptr_w, ptr_s
! integer :: fd_s, fd_w
! call mmap(trim(ezfio_work_dir)//'davidson_w', (/int(sze,8),int(N_st_diag*itermax,8)/),&
! 8, fd_w, .False., ptr_w)
! call mmap(trim(ezfio_work_dir)//'davidson_s', (/int(sze,8),int(N_st_diag*itermax,8)/),&
! 4, fd_s, .False., ptr_s)
! call c_f_pointer(ptr_w, w, (/sze,N_st_diag*itermax/))
! call c_f_pointer(ptr_s, s, (/sze,N_st_diag*itermax/))
! else
! allocate(W(sze,N_st_diag*itermax), S(sze,N_st_diag*itermax))
! endif
!
! allocate( &
! ! Large
! U(sze,N_st_diag*itermax), &
! S_d(sze,N_st_diag), &
!
! ! Small
! h(N_st_diag*itermax,N_st_diag*itermax), &
! h_p(N_st_diag*itermax,N_st_diag*itermax), &
! y(N_st_diag*itermax,N_st_diag*itermax), &
! s_(N_st_diag*itermax,N_st_diag*itermax), &
! s_tmp(N_st_diag*itermax,N_st_diag*itermax), &
! residual_norm(N_st_diag), &
! s2(N_st_diag*itermax), &
! y_s(N_st_diag*itermax,N_st_diag*itermax), &
! lambda(N_st_diag*itermax))
!
! h = 0.d0
! U = 0.d0
! y = 0.d0
! s_ = 0.d0
! s_tmp = 0.d0
!
!
! ASSERT (N_st > 0)
! ASSERT (N_st_diag >= N_st)
! ASSERT (sze > 0)
! ASSERT (Nint > 0)
! ASSERT (Nint == N_int)
!
! ! Davidson iterations
! ! ===================
!
! converged = .False.
!
! do k=N_st+1,N_st_diag
! u_in(k,k) = 10.d0
! do i=1,sze
! call random_number(r1)
! call random_number(r2)
! r1 = dsqrt(-2.d0*dlog(r1))
! r2 = dtwo_pi*r2
! !u_in(i,k) = dcmplx(r1*dcos(r2),0.d0)
! u_in(i,k) = dcmplx(r1*dcos(r2),r1*dsin(r2))
! enddo
! enddo
! do k=1,N_st_diag
! call normalize_complex(u_in(1,k),sze)
! enddo
!
! do k=1,N_st_diag
! do i=1,sze
! U(i,k) = u_in(i,k)
! enddo
! enddo
!
!
! do while (.not.converged)
! itertot = itertot+1
! if (itertot == 8) then
! exit
! endif
!
! do iter=1,itermax-1
!
! shift = N_st_diag*(iter-1)
! shift2 = N_st_diag*iter
!
! if ((iter > 1).or.(itertot == 1)) then
! ! Compute |W_k> = \sum_i |i><i|H|u_k>
! ! -----------------------------------
!
! if (disk_based) then
! call ortho_qr_unblocked(U,size(U,1),sze,shift2)
! call ortho_qr_unblocked(U,size(U,1),sze,shift2)
! else
! call ortho_qr(U,size(U,1),sze,shift2)
! call ortho_qr(U,size(U,1),sze,shift2)
! endif
!
! if ((sze > 100000).and.distributed_davidson) then
! call H_S2_u_0_nstates_zmq (W(1,shift+1),S_d,U(1,shift+1),N_st_diag,sze)
! else
! call H_S2_u_0_nstates_openmp(W(1,shift+1),S_d,U(1,shift+1),N_st_diag,sze)
! endif
! S(1:sze,shift+1:shift+N_st_diag) = real(S_d(1:sze,1:N_st_diag))
! else
! ! Already computed in update below
! continue
! endif
!
! if (dressing_state > 0) then
!
! if (N_st == 1) then
!
! l = dressed_column_idx(1)
! double precision :: f
! f = 1.0d0/psi_coef(l,1)
! do istate=1,N_st_diag
! do i=1,sze
! W(i,shift+istate) += dressing_column_h(i,1) *f * U(l,shift+istate)
! W(l,shift+istate) += dressing_column_h(i,1) *f * U(i,shift+istate)
! S(i,shift+istate) += real(dressing_column_s(i,1) *f * U(l,shift+istate))
! S(l,shift+istate) += real(dressing_column_s(i,1) *f * U(i,shift+istate))
! enddo
!
! enddo
!
! else
!
! call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
! psi_coef, size(psi_coef,1), &
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
! dressing_column_h, size(dressing_column_h,1), s_tmp, size(s_tmp,1), &
! 1.d0, W(1,shift+1), size(W,1))
!
! call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
! dressing_column_s, size(dressing_column_s,1), s_tmp, size(s_tmp,1), &
! 1.d0, S_d, size(S_d,1))
!
!
! call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
! dressing_column_h, size(dressing_column_h,1), &
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
! psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
! 1.d0, W(1,shift+1), size(W,1))
!
! call dgemm('T','N', N_st, N_st_diag, sze, 1.d0, &
! dressing_column_s, size(dressing_column_s,1), &
! U(1,shift+1), size(U,1), 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('N','N', sze, N_st_diag, N_st, 1.0d0, &
! psi_coef, size(psi_coef,1), s_tmp, size(s_tmp,1), &
! 1.d0, S_d, size(S_d,1))
!
! endif
! endif
!
! ! Compute s_kl = <u_k | S_l> = <u_k| S2 |u_l>
! ! -------------------------------------------
!
! !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,j,k) COLLAPSE(2)
! do j=1,shift2
! do i=1,shift2
! s_(i,j) = 0.d0
! do k=1,sze
! s_(i,j) = s_(i,j) + U(k,i) * dble(S(k,j))
! enddo
! enddo
! enddo
! !$OMP END PARALLEL DO
!
! ! Compute h_kl = <u_k | W_l> = <u_k| H |u_l>
! ! -------------------------------------------
!
! call dgemm('T','N', shift2, shift2, sze, &
! 1.d0, U, size(U,1), W, size(W,1), &
! 0.d0, h, size(h_p,1))
!
! ! Penalty method
! ! --------------
!
! if (s2_eig) then
! h_p = s_
! do k=1,shift2
! h_p(k,k) = h_p(k,k) + S_z2_Sz - expected_s2
! enddo
! if (only_expected_s2) then
! alpha = 0.1d0
! h_p = h + alpha*h_p
! else
! alpha = 0.0001d0
! h_p = h + alpha*h_p
! endif
! else
! h_p = h
! alpha = 0.d0
! endif
!
! ! Diagonalize h_p
! ! ---------------
!
! call lapack_diag(lambda,y,h_p,size(h_p,1),shift2)
!
! ! Compute Energy for each eigenvector
! ! -----------------------------------
!
! call dgemm('N','N',shift2,shift2,shift2, &
! 1.d0, h, size(h,1), y, size(y,1), &
! 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('T','N',shift2,shift2,shift2, &
! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
! 0.d0, h, size(h,1))
!
! do k=1,shift2
! lambda(k) = h(k,k)
! enddo
!
! ! Compute S2 for each eigenvector
! ! -------------------------------
!
! call dgemm('N','N',shift2,shift2,shift2, &
! 1.d0, s_, size(s_,1), y, size(y,1), &
! 0.d0, s_tmp, size(s_tmp,1))
!
! call dgemm('T','N',shift2,shift2,shift2, &
! 1.d0, y, size(y,1), s_tmp, size(s_tmp,1), &
! 0.d0, s_, size(s_,1))
!
! do k=1,shift2
! s2(k) = s_(k,k) + S_z2_Sz
! enddo
!
! if (only_expected_s2) then
! do k=1,shift2
! state_ok(k) = (dabs(s2(k)-expected_s2) < 0.6d0)
! enddo
! else
! do k=1,size(state_ok)
! state_ok(k) = .True.
! enddo
! endif
!
! do k=1,shift2
! if (.not. state_ok(k)) then
! do l=k+1,shift2
! if (state_ok(l)) then
! call dswap(shift2, y(1,k), 1, y(1,l), 1)
! call dswap(1, s2(k), 1, s2(l), 1)
! call dswap(1, lambda(k), 1, lambda(l), 1)
! state_ok(k) = .True.
! state_ok(l) = .False.
! exit
! endif
! enddo
! endif
! enddo
!
! if (state_following) then
!
! overlap = -1.d0
! do k=1,shift2
! do i=1,shift2
! overlap(k,i) = dabs(y(k,i))
! enddo
! enddo
! do k=1,N_st
! cmax = -1.d0
! do i=1,N_st
! if (overlap(i,k) > cmax) then
! cmax = overlap(i,k)
! order(k) = i
! endif
! enddo
! do i=1,N_st_diag
! overlap(order(k),i) = -1.d0
! enddo
! enddo
! overlap = y
! do k=1,N_st
! l = order(k)
! if (k /= l) then
! y(1:shift2,k) = overlap(1:shift2,l)
! endif
! enddo
! do k=1,N_st
! overlap(k,1) = lambda(k)
! overlap(k,2) = s2(k)
! enddo
! do k=1,N_st
! l = order(k)
! if (k /= l) then
! lambda(k) = overlap(l,1)
! s2(k) = overlap(l,2)
! endif
! enddo
!
! endif
!
!
! ! Express eigenvectors of h in the determinant basis
! ! --------------------------------------------------
!
! call dgemm('N','N', sze, N_st_diag, shift2, &
! 1.d0, U, size(U,1), y, size(y,1), 0.d0, U(1,shift2+1), size(U,1))
! call dgemm('N','N', sze, N_st_diag, shift2, &
! 1.d0, W, size(W,1), y, size(y,1), 0.d0, W(1,shift2+1), size(W,1))
!
! y_s(:,:) = real(y(:,:))
! call sgemm('N','N', sze, N_st_diag, shift2, &
! 1., S, size(S,1), y_s, size(y_s,1), 0., S(1,shift2+1), size(S,1))
!
! ! Compute residual vector and davidson step
! ! -----------------------------------------
!
! !$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(i,k)
! do k=1,N_st_diag
! do i=1,sze
! U(i,shift2+k) = &
! (lambda(k) * U(i,shift2+k) - W(i,shift2+k) ) &
! /max(H_jj(i) - lambda (k),1.d-2)
! enddo
!
! if (k <= N_st) then
! residual_norm(k) = u_dot_u_complex(U(1,shift2+k),sze)
! to_print(1,k) = lambda(k) + nuclear_repulsion
! to_print(2,k) = s2(k)
! to_print(3,k) = residual_norm(k)
! endif
! enddo
! !$OMP END PARALLEL DO
!
!
! if ((itertot>1).and.(iter == 1)) then
! !don't print
! continue
! else
! write(*,'(1X,I3,1X,100(1X,F16.10,1X,F11.6,1X,E11.3))') iter-1, to_print(1:3,1:N_st)
! endif
!
! ! Check convergence
! if (iter > 1) then
! converged = dabs(maxval(residual_norm(1:N_st))) < threshold_davidson_pt2
! endif
!
!
! do k=1,N_st
! if (residual_norm(k) > 1.e8) then
! print *, 'Davidson failed'
! stop -1
! endif
! enddo
! if (converged) then
! exit
! endif
!
! logical, external :: qp_stop
! if (qp_stop()) then
! converged = .True.
! exit
! endif
!
!
! enddo
!
! ! Re-contract U and update S and W
! ! --------------------------------
!
! call sgemm('N','N', sze, N_st_diag, shift2, 1., &
! S, size(S,1), y_s, size(y_s,1), 0., S(1,shift2+1), size(S,1))
! do k=1,N_st_diag
! do i=1,sze
! S(i,k) = S(i,shift2+k)
! enddo
! enddo
!
! call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
! W, size(W,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
! do k=1,N_st_diag
! do i=1,sze
! W(i,k) = u_in(i,k)
! enddo
! enddo
!
! call dgemm('N','N', sze, N_st_diag, shift2, 1.d0, &
! U, size(U,1), y, size(y,1), 0.d0, u_in, size(u_in,1))
! do k=1,N_st_diag
! do i=1,sze
! U(i,k) = u_in(i,k)
! enddo
! enddo
! if (disk_based) then
! call ortho_qr_unblocked(U,size(U,1),sze,N_st_diag)
! call ortho_qr_unblocked(U,size(U,1),sze,N_st_diag)
! else
! call ortho_qr(U,size(U,1),sze,N_st_diag)
! call ortho_qr(U,size(U,1),sze,N_st_diag)
! endif
! do j=1,N_st_diag
! k=1
! do while ((k<sze).and.(U(k,j) == 0.d0))
! k = k+1
! enddo
! if (U(k,j) * u_in(k,j) < 0.d0) then
! do i=1,sze
! W(i,j) = -W(i,j)
! S(i,j) = -S(i,j)
! enddo
! endif
! enddo
! do j=1,N_st_diag
! do i=1,sze
! S_d(i,j) = dble(S(i,j))
! enddo
! enddo
!
! enddo
!
! do k=1,N_st_diag
! energies(k) = lambda(k)
! s2_out(k) = s2(k)
! enddo
! write_buffer = '======'
! do i=1,N_st
! write_buffer = trim(write_buffer)//' ================ =========== ==========='
! enddo
! write(6,'(A)') trim(write_buffer)
! write(6,'(A)') ''
! call write_time(6)
!
! if (disk_based)then
! ! Remove temp files
! integer, external :: getUnitAndOpen
! call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 8, fd_w, ptr_w )
! fd_w = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_w','r')
! close(fd_w,status='delete')
! call munmap( (/int(sze,8),int(N_st_diag*itermax,8)/), 4, fd_s, ptr_s )
! fd_s = getUnitAndOpen(trim(ezfio_work_dir)//'davidson_s','r')
! close(fd_s,status='delete')
! else
! deallocate(W,S)
! endif
!
! deallocate ( &
! residual_norm, &
! U, overlap, &
! h, y_s, S_d, &
! y, s_, s_tmp, &
! lambda &
! )
! FREE nthreads_davidson
end

View File

@ -746,12 +746,12 @@ subroutine u_0_H_u_0_complex(e_0,s_0,u_0,n,keys_tmp,Nint,N_st,sze)
allocate (v_0(n,N_states_diag),s_vec(n,N_states_diag), u_1(n,N_states_diag)) allocate (v_0(n,N_states_diag),s_vec(n,N_states_diag), u_1(n,N_states_diag))
u_1(:,:) = (0.d0,0.d0) u_1(:,:) = (0.d0,0.d0)
u_1(1:n,1:N_st) = u_0(1:n,1:N_st) u_1(1:n,1:N_st) = u_0(1:n,1:N_st)
call h_s2_u_0_nstates_zmq(v_0,s_vec,u_1,N_states_diag,n) call h_s2_u_0_nstates_zmq_complex(v_0,s_vec,u_1,N_states_diag,n)
else if (n < n_det_max_full) then else if (n < n_det_max_full) then
allocate (v_0(n,N_st),s_vec(n,N_st), u_1(n,N_st)) allocate (v_0(n,N_st),s_vec(n,N_st), u_1(n,N_st))
v_0(:,:) = 0.d0 v_0(:,:) = (0.d0,0.d0)
u_1(:,:) = 0.d0 u_1(:,:) = (0.d0,0.d0)
s_vec(:,:) = 0.d0 s_vec(:,:) = (0.d0,0.d0)
u_1(1:n,1:N_st) = u_0(1:n,1:N_st) u_1(1:n,1:N_st) = u_0(1:n,1:N_st)
do istate = 1,N_st do istate = 1,N_st
do j=1,n do j=1,n
@ -763,19 +763,20 @@ subroutine u_0_H_u_0_complex(e_0,s_0,u_0,n,keys_tmp,Nint,N_st,sze)
enddo enddo
else else
allocate (v_0(n,N_st),s_vec(n,N_st),u_1(n,N_st)) allocate (v_0(n,N_st),s_vec(n,N_st),u_1(n,N_st))
u_1(:,:) = 0.d0 u_1(:,:) = (0.d0,0.d0)
u_1(1:n,1:N_st) = u_0(1:n,1:N_st) u_1(1:n,1:N_st) = u_0(1:n,1:N_st)
call H_S2_u_0_nstates_openmp(v_0,s_vec,u_1,N_st,n) call h_s2_u_0_nstates_openmp_complex(v_0,s_vec,u_1,N_st,n)
endif endif
u_0(1:n,1:N_st) = u_1(1:n,1:N_st) u_0(1:n,1:N_st) = u_1(1:n,1:N_st)
deallocate(u_1) deallocate(u_1)
double precision :: norm double precision :: norm
!$OMP PARALLEL DO PRIVATE(i,norm) DEFAULT(SHARED) !$OMP PARALLEL DO PRIVATE(i,norm) DEFAULT(SHARED)
do i=1,N_st do i=1,N_st
norm = u_dot_u(u_0(1,i),n) norm = u_dot_u_complex(u_0(1,i),n)
if (norm /= 0.d0) then if (norm /= 0.d0) then
e_0(i) = u_dot_v(v_0(1,i),u_0(1,i),n) !todo: should these be normalized? is u_0 already normalized? (if so, where?)
s_0(i) = u_dot_v(s_vec(1,i),u_0(1,i),n) e_0(i) = dble(u_dot_v_complex(v_0(1,i),u_0(1,i),n))
s_0(i) = dble(u_dot_v_complex(s_vec(1,i),u_0(1,i),n))
else else
e_0(i) = 0.d0 e_0(i) = 0.d0
s_0(i) = 0.d0 s_0(i) = 0.d0
@ -800,34 +801,36 @@ subroutine H_S2_u_0_nstates_openmp_complex(v_0,s_0,u_0,N_st,sze)
! istart, iend, ishift, istep are used in ZMQ parallelization. ! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC END_DOC
integer, intent(in) :: N_st,sze integer, intent(in) :: N_st,sze
double precision, intent(inout) :: v_0(sze,N_st), s_0(sze,N_st), u_0(sze,N_st) complex*16, intent(inout) :: v_0(sze,N_st), s_0(sze,N_st), u_0(sze,N_st)
integer :: k integer :: k
double precision, allocatable :: u_t(:,:), v_t(:,:), s_t(:,:) complex*16, allocatable :: u_t(:,:), v_t(:,:), s_t(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t !DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: u_t
allocate(u_t(N_st,N_det),v_t(N_st,N_det),s_t(N_st,N_det)) allocate(u_t(N_st,N_det),v_t(N_st,N_det),s_t(N_st,N_det))
do k=1,N_st do k=1,N_st
call dset_order(u_0(1,k),psi_bilinear_matrix_order,N_det) call cdset_order(u_0(1,k),psi_bilinear_matrix_order,N_det)
enddo enddo
v_t = 0.d0 v_t = (0.d0,0.d0)
s_t = 0.d0 s_t = (0.d0,0.d0)
call dtranspose( & !todo: just transpose, no conjg?
call cdtranspose( &
u_0, & u_0, &
size(u_0, 1), & size(u_0, 1), &
u_t, & u_t, &
size(u_t, 1), & size(u_t, 1), &
N_det, N_st) N_det, N_st)
call H_S2_u_0_nstates_openmp_work(v_t,s_t,u_t,N_st,sze,1,N_det,0,1) call h_s2_u_0_nstates_openmp_work_complex(v_t,s_t,u_t,N_st,sze,1,N_det,0,1)
deallocate(u_t) deallocate(u_t)
call dtranspose( & !todo: just transpose, no conjg?
call cdtranspose( &
v_t, & v_t, &
size(v_t, 1), & size(v_t, 1), &
v_0, & v_0, &
size(v_0, 1), & size(v_0, 1), &
N_st, N_det) N_st, N_det)
call dtranspose( & call cdtranspose( &
s_t, & s_t, &
size(s_t, 1), & size(s_t, 1), &
s_0, & s_0, &
@ -836,13 +839,13 @@ subroutine H_S2_u_0_nstates_openmp_complex(v_0,s_0,u_0,N_st,sze)
deallocate(v_t,s_t) deallocate(v_t,s_t)
do k=1,N_st do k=1,N_st
call dset_order(v_0(1,k),psi_bilinear_matrix_order_reverse,N_det) call cdset_order(v_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
call dset_order(s_0(1,k),psi_bilinear_matrix_order_reverse,N_det) call cdset_order(s_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
call dset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det) call cdset_order(u_0(1,k),psi_bilinear_matrix_order_reverse,N_det)
enddo enddo
end end
subroutine H_S2_u_0_nstates_openmp_work_complex(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep) subroutine h_s2_u_0_nstates_openmp_work_complex(v_t,s_t,u_t,N_st,sze,istart,iend,ishift,istep)
!todo: implement for complex !todo: implement for complex
print*,irp_here,' not implemented for complex' print*,irp_here,' not implemented for complex'
stop -1 stop -1
@ -1123,10 +1126,12 @@ compute_singles=.True.
ASSERT (lrow <= N_det_alpha_unique) ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
call i_H_j_double_alpha_beta(tmp_det,tmp_det2,$N_int,hij) !todo: check arg order conjg/noconjg
call get_s2(tmp_det,tmp_det2,$N_int,sij) call i_h_j_double_alpha_beta_complex(tmp_det,tmp_det2,$N_int,hij)
call get_s2_complex(tmp_det,tmp_det2,$N_int,sij)
!DIR$ LOOP COUNT AVG(4) !DIR$ LOOP COUNT AVG(4)
do l=1,N_st do l=1,N_st
!todo: check arg order conjg/noconjg
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1) v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
s_t(l,k_a) = s_t(l,k_a) + sij * utl(l,kk+1) s_t(l,k_a) = s_t(l,k_a) + sij * utl(l,kk+1)
enddo enddo
@ -1212,10 +1217,12 @@ compute_singles=.True.
ASSERT (lrow <= N_det_alpha_unique) ASSERT (lrow <= N_det_alpha_unique)
tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow) tmp_det2(1:$N_int,1) = psi_det_alpha_unique(1:$N_int, lrow)
call i_h_j_single_spin( tmp_det, tmp_det2, $N_int, 1, hij) !todo: check arg order conjg/noconjg
call i_h_j_single_spin_complex( tmp_det, tmp_det2, $N_int, 1, hij)
!DIR$ LOOP COUNT AVG(4) !DIR$ LOOP COUNT AVG(4)
do l=1,N_st do l=1,N_st
!todo: check arg order conjg/noconjg
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1) v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
! single => sij = 0 ! single => sij = 0
enddo enddo
@ -1245,9 +1252,11 @@ compute_singles=.True.
lrow = psi_bilinear_matrix_rows(l_a) lrow = psi_bilinear_matrix_rows(l_a)
ASSERT (lrow <= N_det_alpha_unique) ASSERT (lrow <= N_det_alpha_unique)
call i_H_j_double_spin( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij) !todo: check arg order conjg/noconjg
call i_h_j_double_spin_complex( tmp_det(1,1), psi_det_alpha_unique(1, lrow), $N_int, hij)
!DIR$ LOOP COUNT AVG(4) !DIR$ LOOP COUNT AVG(4)
do l=1,N_st do l=1,N_st
!todo: check arg order conjg/noconjg
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1) v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
! same spin => sij = 0 ! same spin => sij = 0
enddo enddo
@ -1324,9 +1333,10 @@ compute_singles=.True.
ASSERT (lcol <= N_det_beta_unique) ASSERT (lcol <= N_det_beta_unique)
tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol) tmp_det2(1:$N_int,2) = psi_det_beta_unique (1:$N_int, lcol)
call i_h_j_single_spin( tmp_det, tmp_det2, $N_int, 2, hij) call i_h_j_single_spin_complex( tmp_det, tmp_det2, $N_int, 2, hij)
!DIR$ LOOP COUNT AVG(4) !DIR$ LOOP COUNT AVG(4)
do l=1,N_st do l=1,N_st
!todo: check arg order conjg/noconjg
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1) v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
! single => sij = 0 ! single => sij = 0
enddo enddo
@ -1357,10 +1367,12 @@ compute_singles=.True.
lcol = psi_bilinear_matrix_transp_columns(l_b) lcol = psi_bilinear_matrix_transp_columns(l_b)
ASSERT (lcol <= N_det_beta_unique) ASSERT (lcol <= N_det_beta_unique)
call i_H_j_double_spin( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij) !todo: check arg order conjg/noconjg
call i_h_j_double_spin_complex( tmp_det(1,2), psi_det_beta_unique(1, lcol), $N_int, hij)
!DIR$ LOOP COUNT AVG(4) !DIR$ LOOP COUNT AVG(4)
do l=1,N_st do l=1,N_st
!todo: check arg order conjg/noconjg
v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1) v_t(l,k_a) = v_t(l,k_a) + hij * utl(l,kk+1)
! same spin => sij = 0 ! same spin => sij = 0
enddo enddo
@ -1386,10 +1398,11 @@ compute_singles=.True.
double precision, external :: diag_H_mat_elem, diag_S_mat_elem double precision, external :: diag_H_mat_elem, diag_S_mat_elem
hij = diag_H_mat_elem(tmp_det,$N_int) hij = dcmplx(diag_H_mat_elem(tmp_det,$N_int),0.d0)
sij = diag_S_mat_elem(tmp_det,$N_int) sij = dcmplx(diag_S_mat_elem(tmp_det,$N_int),0.d0)
!DIR$ LOOP COUNT AVG(4) !DIR$ LOOP COUNT AVG(4)
do l=1,N_st do l=1,N_st
!todo: check arg order conjg/noconjg
v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,k_a) v_t(l,k_a) = v_t(l,k_a) + hij * u_t(l,k_a)
s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,k_a) s_t(l,k_a) = s_t(l,k_a) + sij * u_t(l,k_a)
enddo enddo