9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-21 19:13:29 +01:00

modifs in json and diagonalize_ci for fci tc bi

This commit is contained in:
eginer 2024-03-12 14:05:38 +01:00
parent 2ea789bee9
commit 9175fb21c9
5 changed files with 82 additions and 97 deletions

View File

@ -980,8 +980,11 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
psi_h_alpha = mat_l(istate, p1, p2)
pt2_data % overlap(:,istate) = pt2_data % overlap(:,istate) + coef(:) * coef(istate)
pt2_data % variance(istate) = pt2_data % variance(istate) + dabs(e_pert(istate))
if(e_pert(istate).gt.0.d0)then! accumulate the positive part of the pt2
pt2_data % variance(istate) = pt2_data % variance(istate) + e_pert(istate)
else ! accumulate the negative part of the pt2
pt2_data % pt2(istate) = pt2_data % pt2(istate) + e_pert(istate)
endif
select case (weight_selection)
case(5)

View File

@ -57,7 +57,6 @@ subroutine run_stochastic_cipsi
! endif
print_pt2 = .False.
call diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm, pt2_data, print_pt2)
! call routine_save_right
! if (N_det > N_det_max) then

View File

@ -9,6 +9,8 @@ subroutine write_cipsi_json(pt2_data, pt2_data_err)
call lock_io
character*(64), allocatable :: fmtk(:)
double precision:: pt2_minus,pt2_plus,pt2_tot, pt2_abs
double precision :: error_pt2_minus, error_pt2_plus, error_pt2_tot, error_pt2_abs
integer :: N_states_p, N_iter_p
N_states_p = min(N_states,N_det)
N_iter_p = min(N_iter,8)
@ -26,15 +28,34 @@ subroutine write_cipsi_json(pt2_data, pt2_data_err)
endif
write(json_unit, json_array_open_fmt) 'states'
do k=1,N_states_p
pt2_plus = pt2_data % variance(k)
pt2_minus = pt2_data % pt2(k)
pt2_abs = pt2_plus - pt2_minus
pt2_tot = pt2_plus + pt2_minus
error_pt2_minus = pt2_data_err % pt2(k)
error_pt2_plus = pt2_data_err % variance(k)
error_pt2_tot = dsqrt(error_pt2_minus**2+error_pt2_plus**2)
error_pt2_abs = error_pt2_tot ! same variance because independent variables
write(json_unit, json_dict_uopen_fmt)
write(json_unit, json_real_fmt) 'energy', psi_energy_with_nucl_rep(k)
write(json_unit, json_real_fmt) 's2', psi_s2(k)
write(json_unit, json_real_fmt) 'pt2', pt2_data % pt2(k)
write(json_unit, json_real_fmt) 'pt2_err', pt2_data_err % pt2(k)
write(json_unit, json_real_fmt) 'pt2', pt2_tot
write(json_unit, json_real_fmt) 'pt2_err', error_pt2_tot
write(json_unit, json_real_fmt) 'pt2_minus', pt2_minus
write(json_unit, json_real_fmt) 'pt2_minus_err', error_pt2_minus
write(json_unit, json_real_fmt) 'pt2_abs', pt2_abs
write(json_unit, json_real_fmt) 'pt2_abs_err', error_pt2_abs
write(json_unit, json_real_fmt) 'pt2_plus', pt2_plus
write(json_unit, json_real_fmt) 'pt2_plus_err', error_pt2_plus
write(json_unit, json_real_fmt) 'rpt2', pt2_data % rpt2(k)
write(json_unit, json_real_fmt) 'rpt2_err', pt2_data_err % rpt2(k)
write(json_unit, json_real_fmt) 'variance', pt2_data % variance(k)
write(json_unit, json_real_fmt) 'variance_err', pt2_data_err % variance(k)
! write(json_unit, json_real_fmt) 'variance', pt2_data % variance(k)
! write(json_unit, json_real_fmt) 'variance_err', pt2_data_err % variance(k)
write(json_unit, json_array_open_fmt) 'ex_energy'
do i=2,N_iter_p
write(json_unit, fmtk(i)) extrapolated_energy(i,k)

View File

@ -11,25 +11,36 @@ subroutine diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm, pt2_data, print_pt2)
use selection_types
implicit none
integer, intent(inout) :: ndet ! number of determinants from before
double precision, intent(inout) :: E_tc, norm ! E and norm from previous wave function
double precision, intent(inout) :: E_tc(N_states), norm(N_states) ! E and norm from previous wave function
type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function
logical, intent(in) :: print_pt2
integer :: i, j
double precision :: pt2_tmp, pt1_norm, rpt2_tmp, abs_pt2
integer :: i, j,k
double precision:: pt2_minus,pt2_plus,pt2_tot, pt2_abs,pt1_norm,rpt2_tot
double precision :: error_pt2_minus, error_pt2_plus, error_pt2_tot, error_pt2_abs
PROVIDE mo_l_coef mo_r_coef
pt2_tmp = pt2_data % pt2(1)
abs_pt2 = pt2_data % variance(1)
pt1_norm = pt2_data % overlap(1,1)
rpt2_tmp = pt2_tmp/(1.d0 + pt1_norm)
print*,'*****'
print*,'New wave function information'
print*,'N_det tc = ',N_det
print*,'norm_ground_left_right_bi_orth = ',norm_ground_left_right_bi_orth
print*,'eigval_right_tc = ',eigval_right_tc_bi_orth(1)
print*,'Ndet, E_tc = ',N_det,eigval_right_tc_bi_orth(1)
do k = 1, N_states
print*,'************'
print*,'State ',k
pt2_plus = pt2_data % variance(k)
pt2_minus = pt2_data % pt2(k)
pt2_abs = pt2_plus - pt2_minus
pt2_tot = pt2_plus + pt2_minus
! error_pt2_minus = pt2_data_err % pt2(k)
! error_pt2_plus = pt2_data_err % variance(k)
! error_pt2_tot = dsqrt(error_pt2_minus**2+error_pt2_plus**2)
! error_pt2_abs = error_pt2_tot ! same variance because independent variables
pt1_norm = pt2_data % overlap(k,k)
rpt2_tot = pt2_tot / (1.d0 + pt1_norm)
print*,'norm_ground_left_right_bi_orth = ',norm_ground_left_right_bi_orth(k)
print*,'eigval_right_tc = ',eigval_right_tc_bi_orth(k)
print*,'*****'
if(print_pt2) then
@ -38,22 +49,23 @@ subroutine diagonalize_CI_tc_bi_ortho(ndet, E_tc, norm, pt2_data, print_pt2)
print*,'norm(before) = ',norm
print*,'E(before) = ',E_tc
print*,'PT1 norm = ',dsqrt(pt1_norm)
print*,'PT2 = ',pt2_tmp
print*,'rPT2 = ',rpt2_tmp
print*,'|PT2| = ',abs_pt2
print*,'Positive PT2 = ',(pt2_tmp + abs_pt2)*0.5d0
print*,'Negative PT2 = ',(pt2_tmp - abs_pt2)*0.5d0
print*,'E(before) + PT2 = ',E_tc + pt2_tmp/norm
print*,'E(before) +rPT2 = ',E_tc + rpt2_tmp/norm
write(*,'(A28,X,I10,X,100(F16.8,X))')'Ndet,E,E+PT2,E+RPT2,|PT2|=',ndet,E_tc ,E_tc + pt2_tmp/norm,E_tc + rpt2_tmp/norm,abs_pt2
print*,'PT2 = ',pt2_tot
print*,'rPT2 = ',rpt2_tot
print*,'|PT2| = ',pt2_abs
print*,'Positive PT2 = ',pt2_plus
print*,'Negative PT2 = ',pt2_minus
print*,'E(before) + PT2 = ',E_tc + pt2_tot/norm
print*,'E(before) +rPT2 = ',E_tc + rpt2_tot/norm
write(*,'(A28,X,I10,X,100(F16.8,X))')'Ndet,E,E+PT2,E+RPT2,|PT2|=',ndet,E_tc ,E_tc + pt2_tot/norm,E_tc + rpt2_tot/norm,pt2_minus, pt2_plus
print*,'*****'
endif
E_tc(k) = eigval_right_tc_bi_orth(k)
norm(k) = norm_ground_left_right_bi_orth(k)
enddo
psi_energy(1:N_states) = eigval_right_tc_bi_orth(1:N_states) - nuclear_repulsion
psi_s2(1:N_states) = s2_eigvec_tc_bi_orth(1:N_states)
E_tc = eigval_right_tc_bi_orth(1)
norm = norm_ground_left_right_bi_orth
ndet = N_det
do j = 1, N_states
do i = 1, N_det
@ -71,53 +83,3 @@ end
! ---
subroutine print_CI_dressed(ndet, E_tc, norm, pt2_data, print_pt2)
BEGIN_DOC
! Replace the coefficients of the CI states by the coefficients of the
! eigenstates of the CI matrix
END_DOC
use selection_types
implicit none
integer, intent(inout) :: ndet ! number of determinants from before
double precision, intent(inout) :: E_tc,norm ! E and norm from previous wave function
type(pt2_type) , intent(in) :: pt2_data ! PT2 from previous wave function
logical, intent(in) :: print_pt2
integer :: i, j
print*,'*****'
print*,'New wave function information'
print*,'N_det tc = ',N_det
print*,'norm_ground_left_right_bi_orth = ',norm_ground_left_right_bi_orth
print*,'eigval_right_tc = ',eigval_right_tc_bi_orth(1)
print*,'Ndet, E_tc = ',N_det,eigval_right_tc_bi_orth(1)
print*,'*****'
if(print_pt2) then
print*,'*****'
print*,'previous wave function info'
print*,'norm(before) = ',norm
print*,'E(before) = ',E_tc
print*,'PT1 norm = ',dsqrt(pt2_data % overlap(1,1))
print*,'E(before) + PT2 = ',E_tc + (pt2_data % pt2(1))/norm
print*,'PT2 = ',pt2_data % pt2(1)
print*,'Ndet, E_tc, E+PT2 = ',ndet,E_tc,E_tc + (pt2_data % pt2(1))/norm,dsqrt(pt2_data % overlap(1,1))
print*,'*****'
endif
E_tc = eigval_right_tc_bi_orth(1)
norm = norm_ground_left_right_bi_orth
ndet = N_det
do j = 1, N_states
do i = 1, N_det
psi_coef(i,j) = reigvec_tc_bi_orth(i,j)
enddo
enddo
SOFT_TOUCH eigval_left_tc_bi_orth eigval_right_tc_bi_orth leigvec_tc_bi_orth norm_ground_left_right_bi_orth psi_coef reigvec_tc_bi_orth
end
! ---

View File

@ -45,12 +45,12 @@ end
! ---
BEGIN_PROVIDER [double precision, eigval_right_tc_bi_orth, (N_states) ]
BEGIN_PROVIDER [double precision, eigval_right_tc_bi_orth , (N_states) ]
&BEGIN_PROVIDER [double precision, eigval_left_tc_bi_orth , (N_states) ]
&BEGIN_PROVIDER [double precision, reigvec_tc_bi_orth , (N_det,N_states)]
&BEGIN_PROVIDER [double precision, leigvec_tc_bi_orth , (N_det,N_states)]
&BEGIN_PROVIDER [double precision, s2_eigvec_tc_bi_orth , (N_states) ]
&BEGIN_PROVIDER [double precision, norm_ground_left_right_bi_orth ]
&BEGIN_PROVIDER [double precision, norm_ground_left_right_bi_orth , (N_states) ]
BEGIN_DOC
! eigenvalues, right and left eigenvectors of the transcorrelated Hamiltonian on the BI-ORTHO basis
@ -309,13 +309,13 @@ end
deallocate(Stmp)
print*,'leigvec_tc_bi_orth(1,1),reigvec_tc_bi_orth(1,1) = ', leigvec_tc_bi_orth(1,1), reigvec_tc_bi_orth(1,1)
do i = 1, N_states
norm_ground_left_right_bi_orth = 0.d0
do i = 1, N_states
do j = 1, N_det
norm_ground_left_right_bi_orth += leigvec_tc_bi_orth(j,i) * reigvec_tc_bi_orth(j,i)
norm_ground_left_right_bi_orth(i) += leigvec_tc_bi_orth(j,i) * reigvec_tc_bi_orth(j,i)
enddo
print*,' state ', i
print*,' norm l/r = ', norm_ground_left_right_bi_orth
print*,' norm l/r = ', norm_ground_left_right_bi_orth(i)
print*,' <S2> = ', s2_eigvec_tc_bi_orth(i)
enddo