9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-23 03:53:29 +01:00

rm deb code from HF module

This commit is contained in:
AbdAmmar 2024-10-21 18:16:09 +02:00
parent 398ca5ceb7
commit 9071a64ce1

View File

@ -1,909 +0,0 @@
program deb_ao_2e_int
implicit none
!call main()
call check_ao_one_e_integral_cgtos()
!call check_ao_two_e_integral_cgtos()
!call check_crint1()
!call check_crint2()
!call check_crint3()
!call check_crint4()
!call check_crint5()
!call check_crint6()
end
! ---
subroutine main()
implicit none
integer :: i, j
PROVIDE ao_overlap
PROVIDE ao_kinetic_integrals
PROVIDE ao_integrals_n_e
print*, "ao_overlap:"
do i = 1, ao_num
print*, (ao_overlap(i,j), j=1, ao_num)
enddo
print*, "ao_kinetic_integrals:"
do i = 1, ao_num
print*, (ao_kinetic_integrals(i,j), j=1, ao_num)
enddo
print*, "ao_integrals_n_e:"
do i = 1, ao_num
print*, (ao_integrals_n_e(i,j), j=1, ao_num)
enddo
return
end
! ---
subroutine check_ao_one_e_integral_cgtos()
implicit none
integer :: i, j
double precision :: acc, nrm, dif
double precision :: tmp1, tmp2
double precision :: t1, t2, tt
PROVIDE ao_overlap ao_overlap_cgtos
PROVIDE ao_integrals_n_e ao_integrals_n_e_cgtos
PROVIDE ao_kinetic_integrals ao_kinetic_integrals_cgtos
! ---
! print *, "overlap:"
! acc = 0.d0
! nrm = 0.d0
! do i = 1, ao_num
! do j = 1, ao_num
! tmp1 = ao_overlap (i,j)
! tmp2 = ao_overlap_cgtos(i,j)
! dif = abs(tmp1 - tmp2)
! if(dif .gt. 1d-10) then
! print*, ' error on:', i, j
! print*, tmp1, tmp2, dif
! !stop
! endif
! acc += dif
! nrm += abs(tmp1)
! enddo
! enddo
! print *, ' acc (%) = ', 100.d0 * acc / nrm
!
! ! ---
!
! print *, "kinetic:"
! acc = 0.d0
! nrm = 0.d0
! do i = 1, ao_num
! do j = 1, ao_num
! tmp1 = ao_kinetic_integrals (i,j)
! tmp2 = ao_kinetic_integrals_cgtos(i,j)
! dif = abs(tmp1 - tmp2)
! if(dif .gt. 1d-10) then
! print*, ' error on:', i, j
! print*, tmp1, tmp2, dif
! !stop
! endif
! acc += dif
! nrm += abs(tmp1)
! enddo
! enddo
! print *, ' acc (%) = ', 100.d0 * acc / nrm
! ---
print *, "NAI:"
acc = 0.d0
nrm = 0.d0
do i = 1, ao_num
!do i = 9, 9
do j = 1, ao_num
!do j = 16, 16
tmp1 = ao_integrals_n_e (i,j)
tmp2 = ao_integrals_n_e_cgtos(i,j)
dif = dabs(tmp1 - tmp2)
if(dif .gt. 1d-10) then
print*, ' error on:', i, j
print*, tmp1, tmp2, dif
stop
endif
acc += dif
nrm += dabs(tmp1)
enddo
enddo
print *, ' acc (%) = ', 100.d0 * acc / nrm
end
! ---
subroutine check_ao_two_e_integral_cgtos()
implicit none
integer :: i, j, k, l
double precision :: acc, nrm, dif
double precision :: tmp1, tmp2
double precision :: t1, t2, tt
double precision, external :: ao_two_e_integral
double precision, external :: ao_two_e_integral_cgtos
acc = 0.d0
nrm = 0.d0
tt = 0.d0
do i = 1, ao_num
!do i = 1, 1
call wall_time(t1)
do j = 1, ao_num
!do j = 1, 1
do k = 1, ao_num
!do k = 1, 1
do l = 1, ao_num
!do l = 21, 21
!call deb_ao_2eint_cgtos(i, j, k, l)
tmp1 = ao_two_e_integral (i, j, k, l)
tmp2 = ao_two_e_integral_cgtos(i, j, k, l)
dif = abs(tmp1 - tmp2)
if(dif .gt. 1d-10) then
print*, ' error on:', i, j, k, l
print*, tmp1, tmp2, dif
!stop
endif
acc += dif
nrm += abs(tmp1)
enddo
enddo
enddo
call wall_time(t2)
tt += t2 - t1
print*, " % done = ", 100.d0 * dble(i) / ao_num
print*, ' ellapsed time (sec) =', tt
enddo
!print *, ' acc (%) = ', 100.d0 * acc / nrm
end
! ---
subroutine check_crint1()
implicit none
integer :: i, n, i_rho
double precision :: dif_thr
double precision :: dif_re, dif_im, acc_re, nrm_re, acc_im, nrm_im
complex*16 :: rho_test(1:10) = (/ (1d-12, 0.d0), &
(+1d-9, +1d-6), &
(-1d-6, -1d-5), &
(+1d-3, -1d-2), &
(-1d-1, +1d-1), &
(+1d-0, +1d-1), &
(-1d+1, +1d+1), &
(+1d+2, +1d+1), &
(-1d+3, +1d+2), &
(+1d+4, +1d+4) /)
complex*16 :: rho
complex*16 :: int_an, int_nm
double precision, external :: rint
complex*16, external :: crint_1, crint_2
n = 10
dif_thr = 1d-7
do i_rho = 8, 10
!do i_rho = 7, 7
!rho = (-10.d0, 0.1d0)
!rho = (+10.d0, 0.1d0)
rho = rho_test(i_rho)
print*, "rho = ", real(rho), aimag(rho)
acc_re = 0.d0
nrm_re = 0.d0
acc_im = 0.d0
nrm_im = 0.d0
do i = 0, n
!int_an = crint_1(i, rho)
int_an = crint_2(i, rho)
call crint_quad_1(i, rho, 100000000, int_nm)
dif_re = dabs(real(int_an) - real(int_nm))
dif_im = dabs(aimag(int_an) - aimag(int_nm))
if((dif_re .gt. dif_thr) .or. (dif_im .gt. dif_thr)) then
print*, ' error on i =', i
print*, real(int_an), real(int_nm), dif_re
print*, aimag(int_an), aimag(int_nm), dif_im
!print*, rint(i, real(rho))
print*, crint_1(i, rho)
!print*, crint_2(i, rho)
stop
endif
acc_re += dif_re
nrm_re += dabs(real(int_nm))
acc_im += dif_im
nrm_im += dabs(aimag(int_nm))
enddo
print*, "accuracy on real part (%):", 100.d0 * acc_re / (nrm_re+1d-15)
print*, "accuracy on imag part (%):", 100.d0 * acc_im / (nrm_im+1d-15)
enddo
end
! ---
subroutine check_crint2()
implicit none
integer :: i, n, i_rho
double precision :: dif_thr
double precision :: dif_re, dif_im, acc_re, nrm_re, acc_im, nrm_im
complex*16 :: rho_test(1:10) = (/ (1d-12, 0.d0), &
(+1d-9, +1d-6), &
(-1d-6, -1d-5), &
(+1d-3, -1d-2), &
(-1d-1, +1d-1), &
(+1d-0, +1d-1), &
(-1d+1, +1d+1), &
(+1d+2, +1d+1), &
(-1d+3, +1d+2), &
(+1d+4, +1d+4) /)
complex*16 :: rho
complex*16 :: int_an, int_nm
complex*16, external :: crint_1, crint_2
n = 30
dif_thr = 1d-12
do i_rho = 1, 10
rho = rho_test(i_rho)
print*, "rho = ", real(rho), aimag(rho)
acc_re = 0.d0
nrm_re = 0.d0
acc_im = 0.d0
nrm_im = 0.d0
do i = 0, n
int_an = crint_1(i, rho)
int_nm = crint_2(i, rho)
dif_re = dabs(real(int_an) - real(int_nm))
!if(dif_re .gt. dif_thr) then
! print*, ' error in real part:', i
! print*, real(int_an), real(int_nm), dif_re
! stop
!endif
acc_re += dif_re
nrm_re += dabs(real(int_nm))
dif_im = dabs(aimag(int_an) - aimag(int_nm))
!if(dif_im .gt. dif_thr) then
! print*, ' error in imag part:', i
! print*, aimag(int_an), aimag(int_nm), dif_im
! stop
!endif
acc_im += dif_im
nrm_im += dabs(aimag(int_nm))
enddo
print*, "accuracy on real part (%):", 100.d0 * acc_re / (nrm_re+1d-15)
print*, "accuracy on imag part (%):", 100.d0 * acc_im / (nrm_im+1d-15)
enddo
end
! ---
subroutine check_crint3()
implicit none
integer :: i_test, n_test
integer :: nx, ny, n, n_quad
integer :: i, seed_size, clock_time
double precision :: xr(1:4), x
double precision :: yr(1:4), y
double precision :: dif_re, dif_im, acc_re, nrm_re, acc_im, nrm_im
double precision :: delta_ref
double precision :: t1, t2, t_int1, t_int2
complex*16 :: rho
complex*16 :: int1_old, int1_ref, int2_old, int2_ref
integer, allocatable :: seed(:)
complex*16, external :: crint_2
call random_seed(size=seed_size)
allocate(seed(seed_size))
call system_clock(count=clock_time)
seed = clock_time + 37 * (/ (i, i=0, seed_size-1) /)
!seed = 123456789
call random_seed(put=seed)
t_int1 = 0.d0
t_int2 = 0.d0
n_test = 1
acc_re = 0.d0
nrm_re = 0.d0
acc_im = 0.d0
nrm_im = 0.d0
do i_test = 1, n_test
! Re(rho)
call random_number(xr)
x = xr(1)
if(xr(2) .gt. 0.5d0) x = -x
nx = int(15.d0 * xr(3))
if(xr(4) .gt. 0.5d0) nx = -nx
x = x * 10.d0**nx
! Im(rho)
call random_number(yr)
y = yr(1)
if(yr(2) .gt. 0.5d0) y = -y
ny = int(5.d0 * yr(3))
if(yr(4) .gt. 0.5d0) ny = -ny
y = y * 10.d0**ny
rho = x + (0.d0, 1.d0) * y
call random_number(x)
x = 31.d0 * x
n = int(x)
!if(n.eq.0) cycle
n = 0
!rho = (-6.83897018210218d0, -7.24479852507338d0)
rho = (-9.83206247355480d0, 0.445269582329036d0)
print*, " n = ", n
print*, " rho = ", real(rho), aimag(rho)
call wall_time(t1)
int1_old = crint_2(n, rho)
!n_quad = 10000000
!call crint_quad_1(n, rho, n_quad, int1_old)
!!delta_ref = 1.d0
!!do while(delta_ref .gt. 1d-12)
!! n_quad = n_quad * 10
!! !print*, " delta = ", delta_ref
!! !print*, " increasing n_quad to:", n_quad
!! call crint_quad_1(n, rho, n_quad, int1_ref)
!! delta_ref = abs(int1_ref - int1_old)
!! int1_old = int1_ref
!! if(n_quad .ge. 1000000000) then
!! print*, ' convergence was not reached for crint_quad_1'
!! print*, " delta = ", delta_ref
!! exit
!! endif
!!enddo
call wall_time(t2)
t_int1 = t_int1 + t2 - t1
!print*, " n_quad for crint_quad_1:", n_quad
call wall_time(t1)
n_quad = 10000000
call crint_quad_12(n, rho, n_quad, int2_old)
!delta_ref = 1.d0
!do while(delta_ref .gt. 1d-12)
! n_quad = n_quad * 10
! !print*, " delta = ", delta_ref
! !print*, " increasing n_quad to:", n_quad
! call crint_quad_12(n, rho, n_quad, int2_ref)
! delta_ref = abs(int2_ref - int2_old)
! int2_old = int2_ref
! if(n_quad .ge. 1000000000) then
! print*, ' convergence was not reached for crint_quad_2'
! print*, " delta = ", delta_ref
! exit
! endif
!enddo
call wall_time(t2)
t_int2 = t_int2 + t2 - t1
!print*, " n_quad for crint_quad_2:", n_quad
dif_re = dabs(real(int1_old) - real(int2_old))
dif_im = dabs(aimag(int1_old) - aimag(int2_old))
if((dif_re .gt. 1d-10) .or. (dif_im .gt. 1d-10)) then
print*, ' important error found: '
print*, " n = ", n
print*, " rho = ", real(rho), aimag(rho)
print*, real(int1_old), real(int2_old), dif_re
print*, aimag(int1_old), aimag(int2_old), dif_im
!stop
endif
if((real(int1_old) /= real(int1_old)) .or. (aimag(int1_old) /= aimag(int1_old)) .or. &
(real(int2_old) /= real(int2_old)) .or. (aimag(int2_old) /= aimag(int2_old)) ) then
cycle
else
acc_re += dif_re
acc_im += dif_im
nrm_re += dabs(real(int1_old))
nrm_im += dabs(aimag(int1_old))
endif
enddo
print*, "accuracy on real part (%):", 100.d0 * acc_re / (nrm_re + 1d-15)
print*, "accuracy on imag part (%):", 100.d0 * acc_im / (nrm_im + 1d-15)
print*, "crint_quad_1 wall time (sec) = ", t_int1
print*, "crint_quad_2 wall time (sec) = ", t_int2
deallocate(seed)
end
! ---
subroutine check_crint4()
implicit none
integer :: i_test, n_test
integer :: i, seed_size, clock_time
double precision :: xr(1), x, shift
double precision :: yr(1), y
double precision :: dif_re, dif_im, acc_re, nrm_re, acc_im, nrm_im
double precision :: t1, t2, t_int1, t_int2
complex*16 :: rho
complex*16 :: int1, int2, int3
integer, allocatable :: seed(:)
call random_seed(size=seed_size)
allocate(seed(seed_size))
call system_clock(count=clock_time)
seed = clock_time + 37 * (/ (i, i=0, seed_size-1) /)
!seed = 123456789
call random_seed(put=seed)
t_int1 = 0.d0
t_int2 = 0.d0
n_test = 100
shift = 15.d0
acc_re = 0.d0
nrm_re = 0.d0
acc_im = 0.d0
nrm_im = 0.d0
do i_test = 1, n_test
call random_number(xr)
call random_number(yr)
x = 1.d0 * (2.d0 * shift * xr(1) - shift)
y = 1.d0 * (2.d0 * shift * yr(1) - shift)
rho = x + (0.d0, 1.d0) * y
call wall_time(t1)
call zboysfun00_1(rho, int1)
call wall_time(t2)
t_int1 = t_int1 + t2 - t1
call wall_time(t1)
call zboysfun00_2(rho, int2)
call wall_time(t2)
t_int2 = t_int2 + t2 - t1
dif_re = dabs(real(int1) - real(int2))
dif_im = dabs(aimag(int1) - aimag(int2))
if((dif_re .gt. 1d-10) .or. (dif_im .gt. 1d-10)) then
print*, ' important error found: '
print*, " rho = ", x, y
print*, real(int1), real(int2), dif_re
print*, aimag(int1), aimag(int2), dif_im
call crint_quad_12(0, rho, 10000000, int3)
if(zabs(int1 - int3) .lt. zabs(int2 - int3)) then
print*, ' implementation 2 seems to be wrong'
else
print*, ' implementation 1 seems to be wrong'
print*, ' quad 10000000:', real(int3), aimag(int3)
call crint_quad_12(0, rho, 100000000, int3)
print*, ' quad 100000000:', real(int3), aimag(int3)
endif
!print*, ' quad:', real(int3), aimag(int3)
!stop
endif
if((real(int1) /= real(int1)) .or. (aimag(int1) /= aimag(int1)) .or. &
(real(int2) /= real(int2)) .or. (aimag(int2) /= aimag(int2)) ) then
cycle
else
acc_re += dif_re
acc_im += dif_im
nrm_re += dabs(real(int1))
nrm_im += dabs(aimag(int1))
endif
enddo
print*, "accuracy on real part (%):", 100.d0 * acc_re / (nrm_re + 1d-15)
print*, "accuracy on imag part (%):", 100.d0 * acc_im / (nrm_im + 1d-15)
print*, "zerf_1 wall time (sec) = ", t_int1
print*, "zerf_2 wall time (sec) = ", t_int2
deallocate(seed)
end
! ---
subroutine check_crint5()
implicit none
integer :: i_test, n_test
integer :: i, seed_size, clock_time
integer :: n
double precision :: xr(1), yr(1), nr(1), x, shift, y
double precision :: dif1_re, dif1_im, acc1_re, acc1_im
double precision :: dif2_re, dif2_im, acc2_re, acc2_im
double precision :: nrm_re, nrm_im
double precision :: t1, t2, t_int1, t_int2
complex*16 :: rho
complex*16 :: int1, int2, int_ref
integer, allocatable :: seed(:)
complex*16, external :: crint_1, crint_2
call random_seed(size=seed_size)
allocate(seed(seed_size))
call system_clock(count=clock_time)
seed = clock_time + 37 * (/ (i, i=0, seed_size-1) /)
!seed = 123456789
call random_seed(put=seed)
t_int1 = 0.d0
t_int2 = 0.d0
n_test = 100
acc1_re = 0.d0
acc1_im = 0.d0
acc2_re = 0.d0
acc2_im = 0.d0
nrm_re = 0.d0
nrm_im = 0.d0
do i_test = 1, n_test
call random_number(xr)
call random_number(yr)
call random_number(nr)
x = 1.d+1 * (30.d0 * xr(1) - 15.d0)
y = 1.d+1 * (30.d0 * yr(1) - 15.d0)
n = int(16.d0 * nr(1))
rho = x + (0.d0, 1.d0) * y
call wall_time(t1)
int1 = crint_1(n, rho)
call wall_time(t2)
t_int1 = t_int1 + t2 - t1
call wall_time(t1)
int2 = crint_2(n, rho)
call wall_time(t2)
t_int2 = t_int2 + t2 - t1
call crint_quad_12(n, rho, 10000000, int_ref)
dif1_re = dabs(real(int1) - real(int_ref))
dif1_im = dabs(aimag(int1) - aimag(int_ref))
dif2_re = dabs(real(int2) - real(int_ref))
dif2_im = dabs(aimag(int2) - aimag(int_ref))
if((dif2_re .gt. 1d-7) .or. (dif2_im .gt. 1d-7)) then
print*, ' important error found: '
print*, " n, rho = ", n, x, y
print*, real(int1), real(int2), real(int_ref)
print*, aimag(int1), aimag(int2), aimag(int_ref)
!stop
endif
acc1_re += dif1_re
acc1_im += dif1_im
acc2_re += dif2_re
acc2_im += dif2_im
nrm_re += dabs(real(int_ref))
nrm_im += dabs(aimag(int_ref))
enddo
print*, "accuracy on boys_1 (%):", 100.d0 * acc1_re / (nrm_re + 1d-15), 100.d0 * acc1_im / (nrm_im + 1d-15)
print*, "accuracy on boys_2 (%):", 100.d0 * acc1_re / (nrm_re + 1d-15), 100.d0 * acc2_im / (nrm_im + 1d-15)
print*, "boys_1 wall time (sec) = ", t_int1
print*, "boys_2 wall time (sec) = ", t_int2
deallocate(seed)
end
! ---
subroutine check_crint6()
implicit none
integer :: i_test, n_test
integer :: i, seed_size, clock_time
integer :: n
double precision :: xr(1), yr(1), nr(1), x, shift, y
double precision :: dif_re, dif_im, acc_re, acc_im
double precision :: nrm_re, nrm_im
double precision :: t1, t2, t_int1, t_int2
complex*16 :: rho
complex*16 :: int1, int2, int3
integer, allocatable :: seed(:)
complex*16, external :: crint_1, crint_2
call random_seed(size=seed_size)
allocate(seed(seed_size))
call system_clock(count=clock_time)
seed = clock_time + 37 * (/ (i, i=0, seed_size-1) /)
!seed = 123456789
call random_seed(put=seed)
t_int1 = 0.d0
t_int2 = 0.d0
n_test = 100
acc_re = 0.d0
acc_im = 0.d0
nrm_re = 0.d0
nrm_im = 0.d0
do i_test = 1, n_test
call random_number(xr)
call random_number(yr)
call random_number(nr)
x = 1.d0 * (30.d0 * xr(1) - 15.d0)
y = 1.d0 * (30.d0 * yr(1) - 15.d0)
n = int(16.d0 * nr(1))
rho = x + (0.d0, 1.d0) * y
call wall_time(t1)
int1 = crint_1(n, rho)
call wall_time(t2)
t_int1 = t_int1 + t2 - t1
call wall_time(t1)
int2 = crint_2(n, rho)
call wall_time(t2)
t_int2 = t_int2 + t2 - t1
dif_re = dabs(real(int1) - real(int2))
dif_im = dabs(aimag(int1) - aimag(int2))
if((dif_re .gt. 1d-10) .or. (dif_im .gt. 1d-10)) then
print*, ' important error found: '
print*, " n, rho = ", n, x, y
print*, real(int1), real(int2), dif_re
print*, aimag(int1), aimag(int2), dif_im
call crint_quad_12(n, rho, 100000000, int3)
print*, ' quad 100000000:', real(int3), aimag(int3)
!print*, ' quad 100000000:', dabs(real(int1) - real(int3)), dabs(aimag(int1) - aimag(int3))
!stop
endif
acc_re += dif_re
acc_im += dif_im
nrm_re += dabs(real(int1))
nrm_im += dabs(aimag(int1))
enddo
print*, "diff (%):", 100.d0 * acc_re / (nrm_re + 1d-15), 100.d0 * acc_im / (nrm_im + 1d-15)
print*, "boys_1 wall time (sec) = ", t_int1
print*, "boys_2 wall time (sec) = ", t_int2
deallocate(seed)
end
! ---
! ---
subroutine deb_ao_2eint_cgtos(i, j, k, l)
BEGIN_DOC
! integral of the AO basis <ik|jl> or (ij|kl)
! i(r1) j(r1) 1/r12 k(r2) l(r2)
END_DOC
implicit none
include 'utils/constants.include.F'
integer, intent(in) :: i, j, k, l
integer :: p, q, r, s
integer :: num_i, num_j, num_k, num_l, dim1, I_power(3), J_power(3), K_power(3), L_power(3)
integer :: iorder_p1(3), iorder_p2(3), iorder_q1(3), iorder_q2(3)
complex*16 :: I_center(3), J_center(3), K_center(3), L_center(3)
complex*16 :: expo1, expo2, expo3, expo4
complex*16 :: P1_center(3), pp1
complex*16 :: P2_center(3), pp2
complex*16 :: Q1_center(3), qq1
complex*16 :: Q2_center(3), qq2
dim1 = n_pt_max_integrals
num_i = ao_nucl(i)
num_j = ao_nucl(j)
num_k = ao_nucl(k)
num_l = ao_nucl(l)
if(num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k) then
!print*, ao_prim_num(i), ao_prim_num(j), ao_prim_num(k), ao_prim_num(l)
do p = 1, 3
I_power(p) = ao_power(i,p)
J_power(p) = ao_power(j,p)
K_power(p) = ao_power(k,p)
L_power(p) = ao_power(l,p)
I_center(p) = nucl_coord(num_i,p) * (1.d0, 0.d0)
J_center(p) = nucl_coord(num_j,p) * (1.d0, 0.d0)
K_center(p) = nucl_coord(num_k,p) * (1.d0, 0.d0)
L_center(p) = nucl_coord(num_l,p) * (1.d0, 0.d0)
enddo
do p = 1, ao_prim_num(i)
expo1 = ao_expo_cgtos_ord_transp(p,i)
!print*, "expo1 = ", expo1
!print*, "center1 = ", I_center
do q = 1, ao_prim_num(j)
expo2 = ao_expo_cgtos_ord_transp(q,j)
!print*, "expo2 = ", expo2
!print*, "center2 = ", J_center
pp1 = expo1 + expo2
P1_center(1:3) = (expo1 * I_center(1:3) + expo2 * J_center(1:3)) / pp1
iorder_p1(1:3) = I_power(1:3) + J_power(1:3)
pp2 = conjg(expo1) + expo2
P2_center(1:3) = (conjg(expo1) * I_center(1:3) + expo2 * J_center(1:3)) / pp2
iorder_p2(1:3) = I_power(1:3) + J_power(1:3)
do r = 1, ao_prim_num(k)
expo3 = ao_expo_cgtos_ord_transp(r,k)
!print*, "expo3 = ", expo3
!print*, "center3 = ", K_center
do s = 1, ao_prim_num(l)
expo4 = ao_expo_cgtos_ord_transp(s,l)
!print*, "expo4 = ", expo4
!print*, "center4 = ", L_center
qq1 = expo3 + expo4
Q1_center(1:3) = (expo3 * K_center(1:3) + expo4 * L_center(1:3)) / qq1
iorder_q1(1:3) = K_power(1:3) + L_power(1:3)
qq2 = conjg(expo3) + expo4
Q2_center(1:3) = (conjg(expo3) * K_center(1:3) + expo4 * L_center(1:3)) / qq2
iorder_q2(1:3) = K_power(1:3) + L_power(1:3)
call deb_cboys(P1_center, pp1, iorder_p1, Q1_center, qq1, iorder_q1)
call deb_cboys(P1_center, pp1, iorder_p1, Q2_center, qq2, iorder_q2)
call deb_cboys(P2_center, pp2, iorder_p2, Q1_center, qq1, iorder_q1)
call deb_cboys(P2_center, pp2, iorder_p2, Q2_center, qq2, iorder_q2)
call deb_cboys(conjg(P2_center), conjg(pp2), iorder_p2, Q1_center, qq1, iorder_q1)
call deb_cboys(conjg(P2_center), conjg(pp2), iorder_p2, Q2_center, qq2, iorder_q2)
call deb_cboys(conjg(P1_center), conjg(pp1), iorder_p1, Q1_center, qq1, iorder_q1)
call deb_cboys(conjg(P1_center), conjg(pp1), iorder_p1, Q2_center, qq2, iorder_q2)
enddo ! s
enddo ! r
enddo ! q
enddo ! p
endif ! same centers
return
end
! ---
subroutine deb_cboys(P_center, p, iorder_p, Q_center, q, iorder_q)
implicit none
include 'utils/constants.include.F'
integer, intent(in) :: iorder_p(3), iorder_q(3)
complex*16, intent(in) :: P_center(3), p
complex*16, intent(in) :: Q_center(3), q
integer :: iorder, n
complex*16 :: dist, rho
complex*16 :: int1, int2
complex*16, external :: crint_2
dist = (P_center(1) - Q_center(1)) * (P_center(1) - Q_center(1)) &
+ (P_center(2) - Q_center(2)) * (P_center(2) - Q_center(2)) &
+ (P_center(3) - Q_center(3)) * (P_center(3) - Q_center(3))
rho = dist * p * q / (p + q)
if(real(rho) .lt. -5.d0) then
print*, 'warning ! impotant negative rho: ', rho
endif
!if(abs(rho) .lt. 1d-15) return
iorder = 2*iorder_p(1)+2*iorder_q(1) + 2*iorder_p(2)+2*iorder_q(2) + 2*iorder_p(3)+2*iorder_q(3)
n = shiftr(iorder, 1)
!write(33,*) n, real(rho), aimag(rho)
!print*, n, real(rho), aimag(rho)
int1 = crint_2(n, rho)
call crint_quad_12(n, rho, 1000000, int2)
if(abs(int1 - int2) .gt. 1d-5) then
print*, ' important error found: '
print*, p!, P_center
print*, q!, Q_center
print*, dist
print*, " n, tho = ", n, real(rho), aimag(rho)
print*, real(int1), real(int2), dabs(real(int1-int2))
print*, aimag(int1), aimag(int2), dabs(aimag(int1-int2))
stop
endif
end
! ---