mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-21 19:13:29 +01:00
two rdm seems to work with buffer, ready for openmp
This commit is contained in:
parent
59aaf3806d
commit
887afe97b4
@ -322,6 +322,7 @@ END_PROVIDER
|
||||
enddo
|
||||
print *, 'Active MOs:'
|
||||
print *, list_act(1:n_act_orb)
|
||||
print*, list_act_reverse(1:n_act_orb)
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
@ -30,6 +30,7 @@ subroutine orb_range_two_rdm_state_av(big_array,dim1,norb,list_orb,list_orb_reve
|
||||
u_t, &
|
||||
size(u_t, 1), &
|
||||
N_det, N_st)
|
||||
|
||||
|
||||
call orb_range_two_rdm_state_av_work(big_array,dim1,norb,list_orb,list_orb_reverse,state_weights,ispin,u_t,N_st,sze,1,N_det,0,1)
|
||||
deallocate(u_t)
|
||||
@ -135,6 +136,7 @@ subroutine orb_range_two_rdm_state_av_work_$N_int(big_array,dim1,norb,list_orb,l
|
||||
stop
|
||||
endif
|
||||
|
||||
|
||||
PROVIDE N_int
|
||||
|
||||
call list_to_bitstring( orb_bitmask, list_orb, norb, N_int)
|
||||
|
@ -145,7 +145,7 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
|
||||
PROVIDE N_int
|
||||
|
||||
call list_to_bitstring( orb_bitmask, list_orb, norb, N_int)
|
||||
sze_buff = norb ** 3
|
||||
sze_buff = norb ** 3 + 6 * norb
|
||||
list_orb_reverse = -1000
|
||||
do i = 1, norb
|
||||
list_orb_reverse(list_orb(i)) = i
|
||||
@ -353,13 +353,17 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
|
||||
enddo
|
||||
if(alpha_beta.or.spin_trace.or.alpha_alpha)then
|
||||
! increment the alpha/beta part for single excitations
|
||||
if (nkeys+norb .ge. size(values)) then
|
||||
call update_keys_values(keys,values,size(values),nkeys,dim1,big_array)
|
||||
nkeys = 0
|
||||
endif
|
||||
if (nkeys+ 2 * norb .ge. size(values)) then
|
||||
call update_keys_values(keys,values,size(values),nkeys,dim1,big_array)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_single_to_two_rdm_ab_dm_buffer(tmp_det, tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
! increment the alpha/alpha part for single excitations
|
||||
!!!! call orb_range_off_diagonal_single_to_two_rdm_aa_dm(tmp_det,tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
||||
if (nkeys+2 * norb .ge. size(values)) then
|
||||
call update_keys_values(keys,values,size(values),nkeys,dim1,big_array)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_single_to_two_rdm_aa_dm_buffer(tmp_det,tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
endif
|
||||
|
||||
enddo
|
||||
@ -382,7 +386,11 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
|
||||
c_2(l) = u_t(l,k_a)
|
||||
c_average += c_1(l) * c_2(l) * state_weights(l)
|
||||
enddo
|
||||
!!!! call orb_range_off_diagonal_double_to_two_rdm_aa_dm(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
||||
if (nkeys+4 .ge. size(values)) then
|
||||
call update_keys_values(keys,values,size(values),nkeys,dim1,big_array)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_double_to_two_rdm_aa_dm_buffer(tmp_det(1,1),psi_det_alpha_unique(1, lrow),c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
enddo
|
||||
endif
|
||||
|
||||
@ -455,7 +463,11 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
|
||||
endif
|
||||
call orb_range_off_diag_single_to_two_rdm_ab_dm_buffer(tmp_det, tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
! increment the beta /beta part for single excitations
|
||||
!!!! call orb_range_off_diagonal_single_to_two_rdm_bb_dm(tmp_det, tmp_det2,c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
||||
if (nkeys+norb .ge. size(values)) then
|
||||
call update_keys_values(keys,values,size(values),nkeys,dim1,big_array)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_single_to_two_rdm_bb_dm_buffer(tmp_det, tmp_det2,c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
endif
|
||||
enddo
|
||||
|
||||
@ -477,7 +489,12 @@ subroutine orb_range_two_rdm_state_av_openmp_work_$N_int(big_array,dim1,norb,lis
|
||||
c_2(l) = u_t(l,k_a)
|
||||
c_average += c_1(l) * c_2(l) * state_weights(l)
|
||||
enddo
|
||||
!!!! call orb_range_off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
||||
! call orb_range_off_diagonal_double_to_two_rdm_bb_dm(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_average,big_array,dim1,orb_bitmask,list_orb_reverse,ispin)
|
||||
if (nkeys+4 .ge. size(values)) then
|
||||
call update_keys_values(keys,values,size(values),nkeys,dim1,big_array)
|
||||
nkeys = 0
|
||||
endif
|
||||
call orb_range_off_diag_double_to_two_rdm_bb_dm_buffer(tmp_det(1,2),psi_det_alpha_unique(1, lcol),c_average,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
ASSERT (l_a <= N_det)
|
||||
|
||||
enddo
|
||||
|
@ -13,7 +13,7 @@
|
||||
double precision, intent(in) :: c_1
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,istate
|
||||
integer :: i,j,h1,h2
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
do i = 1, n_occ_ab(1)
|
||||
h1 = occ(i,1)
|
||||
@ -53,7 +53,7 @@
|
||||
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,istate
|
||||
integer :: i,j,h1,h2
|
||||
integer(bit_kind) :: det_1_act(N_int,2)
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
do i = 1, N_int
|
||||
@ -193,7 +193,7 @@
|
||||
integer(bit_kind), intent(in) :: orb_bitmask(N_int)
|
||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
double precision, intent(in) :: c_1
|
||||
integer :: i,j,h1,h2,p1,p2,istate
|
||||
integer :: i,j,h1,h2,p1,p2
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
@ -278,7 +278,7 @@
|
||||
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,istate,p1
|
||||
integer :: i,j,h1,h2,p1
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
|
||||
@ -397,7 +397,7 @@
|
||||
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,istate,p1
|
||||
integer :: i,j,h1,h2,p1
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
|
||||
@ -477,7 +477,7 @@
|
||||
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,istate,p1
|
||||
integer :: i,j,h1,h2,p1
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
@ -510,18 +510,16 @@
|
||||
p1 = exc(1,2,2)
|
||||
if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
||||
p1 = list_orb_reverse(p1)
|
||||
do istate = 1, N_states
|
||||
do i = 1, n_occ_ab(2)
|
||||
h2 = occ(i,2)
|
||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
||||
h2 = list_orb_reverse(h2)
|
||||
big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
|
||||
big_array(h1,h2,h2,p1) -= 0.5d0 * c_1 * phase
|
||||
do i = 1, n_occ_ab(2)
|
||||
h2 = occ(i,2)
|
||||
if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
||||
h2 = list_orb_reverse(h2)
|
||||
big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
|
||||
big_array(h1,h2,h2,p1) -= 0.5d0 * c_1 * phase
|
||||
|
||||
big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
|
||||
big_array(h2,h1,p1,h2) -= 0.5d0 * c_1 * phase
|
||||
enddo
|
||||
enddo
|
||||
big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
|
||||
big_array(h2,h1,p1,h2) -= 0.5d0 * c_1 * phase
|
||||
enddo
|
||||
endif
|
||||
endif
|
||||
end
|
||||
@ -557,7 +555,7 @@
|
||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
double precision, intent(in) :: c_1
|
||||
|
||||
integer :: i,j,h1,h2,p1,p2,istate
|
||||
integer :: i,j,h1,h2,p1,p2
|
||||
integer :: exc(0:2,2)
|
||||
double precision :: phase
|
||||
|
||||
@ -590,13 +588,11 @@
|
||||
if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return
|
||||
p2 = list_orb_reverse(p2)
|
||||
if(alpha_alpha.or.spin_trace)then
|
||||
do istate = 1, N_states
|
||||
big_array(h1,h2,p1,p2) += 0.5d0 * c_1 * phase
|
||||
big_array(h1,h2,p2,p1) -= 0.5d0 * c_1 * phase
|
||||
|
||||
big_array(h2,h1,p2,p1) += 0.5d0 * c_1 * phase
|
||||
big_array(h2,h1,p1,p2) -= 0.5d0 * c_1 * phase
|
||||
enddo
|
||||
endif
|
||||
end
|
||||
|
||||
@ -631,7 +627,7 @@
|
||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
double precision, intent(in) :: c_1
|
||||
|
||||
integer :: i,j,h1,h2,p1,p2,istate
|
||||
integer :: i,j,h1,h2,p1,p2
|
||||
integer :: exc(0:2,2)
|
||||
double precision :: phase
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
|
@ -26,7 +26,7 @@
|
||||
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,istate
|
||||
integer :: i,j,h1,h2
|
||||
integer(bit_kind) :: det_1_act(N_int,2)
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
do i = 1, N_int
|
||||
@ -201,7 +201,7 @@
|
||||
double precision, intent(out) :: values(sze_buff)
|
||||
integer , intent(out) :: keys(4,sze_buff)
|
||||
integer , intent(inout):: nkeys
|
||||
integer :: i,j,h1,h2,p1,p2,istate
|
||||
integer :: i,j,h1,h2,p1,p2
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
@ -288,7 +288,7 @@
|
||||
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,istate,p1
|
||||
integer :: i,j,h1,h2,p1
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
|
||||
@ -409,310 +409,399 @@
|
||||
endif
|
||||
end
|
||||
|
||||
! subroutine orb_range_off_diagonal_single_to_two_rdm_aa_dm(det_1,det_2,c_1,gorb_bitmask,list_orb_reverse,ispin)
|
||||
! BEGIN_DOC
|
||||
!! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!!
|
||||
!! a given couple of determinant det_1, det_2 being a ALPHA SINGLE excitation with respect to one another
|
||||
!!
|
||||
!! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
||||
!!
|
||||
!! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
||||
!!
|
||||
!! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
||||
!!
|
||||
!! ispin determines which spin-spin component of the two-rdm you will update
|
||||
!!
|
||||
!! ispin == 1 :: alpha/ alpha
|
||||
!! ispin == 2 :: beta / beta
|
||||
!! ispin == 3 :: alpha/ beta
|
||||
!! ispin == 4 :: spin traced <=> total two-rdm
|
||||
!!
|
||||
!! here, only ispin == 1 or 4 will do something
|
||||
! END_DOC
|
||||
! use bitmasks
|
||||
! implicit none
|
||||
! integer, intent(in) :: dim1,ispin
|
||||
! double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
||||
! integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
! integer(bit_kind), intent(in) :: orb_bitmask(N_int)
|
||||
! integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
! double precision, intent(in) :: c_1
|
||||
!
|
||||
! integer :: occ(N_int*bit_kind_size,2)
|
||||
! integer :: n_occ_ab(2)
|
||||
! integer :: i,j,h1,h2,istate,p1
|
||||
! integer :: exc(0:2,2,2)
|
||||
! double precision :: phase
|
||||
!
|
||||
! logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
! logical :: is_integer_in_string
|
||||
! alpha_alpha = .False.
|
||||
! beta_beta = .False.
|
||||
! alpha_beta = .False.
|
||||
! spin_trace = .False.
|
||||
! if( ispin == 1)then
|
||||
! alpha_alpha = .True.
|
||||
! else if(ispin == 2)then
|
||||
! beta_beta = .True.
|
||||
! else if(ispin == 3)then
|
||||
! alpha_beta = .True.
|
||||
! else if(ispin == 4)then
|
||||
! spin_trace = .True.
|
||||
! endif
|
||||
!
|
||||
! call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
! call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
||||
! if(alpha_alpha.or.spin_trace)then
|
||||
! if (exc(0,1,1) == 1) then
|
||||
! ! Mono alpha
|
||||
! h1 = exc(1,1,1)
|
||||
! if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
||||
! h1 = list_orb_reverse(h1)
|
||||
! p1 = exc(1,2,1)
|
||||
! if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
||||
! p1 = list_orb_reverse(p1)
|
||||
! do i = 1, n_occ_ab(1)
|
||||
! h2 = occ(i,1)
|
||||
! if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
||||
! h2 = list_orb_reverse(h2)
|
||||
! big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
|
||||
! big_array(h1,h2,h2,p1) -= 0.5d0 * c_1 * phase
|
||||
!
|
||||
! big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
|
||||
! big_array(h2,h1,p1,h2) -= 0.5d0 * c_1 * phase
|
||||
! enddo
|
||||
! else
|
||||
! return
|
||||
! endif
|
||||
! endif
|
||||
! end
|
||||
subroutine orb_range_off_diag_single_to_two_rdm_aa_dm_buffer(det_1,det_2,c_1,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!
|
||||
! a given couple of determinant det_1, det_2 being a ALPHA SINGLE excitation with respect to one another
|
||||
!
|
||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
||||
!
|
||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
||||
!
|
||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
||||
!
|
||||
! ispin determines which spin-spin component of the two-rdm you will update
|
||||
!
|
||||
! ispin == 1 :: alpha/ alpha
|
||||
! ispin == 2 :: beta / beta
|
||||
! ispin == 3 :: alpha/ beta
|
||||
! ispin == 4 :: spin traced <=> total two-rdm
|
||||
!
|
||||
! here, only ispin == 1 or 4 will do something
|
||||
END_DOC
|
||||
use bitmasks
|
||||
implicit none
|
||||
integer, intent(in) :: ispin,sze_buff
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
double precision, intent(in) :: c_1
|
||||
double precision, intent(out) :: values(sze_buff)
|
||||
integer , intent(out) :: keys(4,sze_buff)
|
||||
integer , intent(inout):: nkeys
|
||||
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,p1
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
endif
|
||||
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
||||
if(alpha_alpha.or.spin_trace)then
|
||||
if (exc(0,1,1) == 1) then
|
||||
! Mono alpha
|
||||
h1 = exc(1,1,1)
|
||||
if(list_orb_reverse(h1).lt.0)return
|
||||
h1 = list_orb_reverse(h1)
|
||||
p1 = exc(1,2,1)
|
||||
if(list_orb_reverse(p1).lt.0)return
|
||||
p1 = list_orb_reverse(p1)
|
||||
do i = 1, n_occ_ab(1)
|
||||
h2 = occ(i,1)
|
||||
if(list_orb_reverse(h2).lt.0)return
|
||||
h2 = list_orb_reverse(h2)
|
||||
|
||||
! subroutine orb_range_off_diagonal_single_to_two_rdm_bb_dm(det_1,det_2,c_1,gorb_bitmask,list_orb_reverse,ispin)
|
||||
! use bitmasks
|
||||
! BEGIN_DOC
|
||||
!! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!!
|
||||
!! a given couple of determinant det_1, det_2 being a BETA SINGLE excitation with respect to one another
|
||||
!!
|
||||
!! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
||||
!!
|
||||
!! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
||||
!!
|
||||
!! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
||||
!!
|
||||
!! ispin determines which spin-spin component of the two-rdm you will update
|
||||
!!
|
||||
!! ispin == 1 :: alpha/ alpha
|
||||
!! ispin == 2 :: beta / beta
|
||||
!! ispin == 3 :: alpha/ beta
|
||||
!! ispin == 4 :: spin traced <=> total two-rdm
|
||||
!!
|
||||
!! here, only ispin == 2 or 4 will do something
|
||||
! END_DOC
|
||||
! implicit none
|
||||
! integer, intent(in) :: dim1,ispin
|
||||
! double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
||||
! integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
! integer(bit_kind), intent(in) :: orb_bitmask(N_int)
|
||||
! integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
! double precision, intent(in) :: c_1
|
||||
!
|
||||
!
|
||||
! integer :: occ(N_int*bit_kind_size,2)
|
||||
! integer :: n_occ_ab(2)
|
||||
! integer :: i,j,h1,h2,istate,p1
|
||||
! integer :: exc(0:2,2,2)
|
||||
! double precision :: phase
|
||||
! logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
! logical :: is_integer_in_string
|
||||
! alpha_alpha = .False.
|
||||
! beta_beta = .False.
|
||||
! alpha_beta = .False.
|
||||
! spin_trace = .False.
|
||||
! if( ispin == 1)then
|
||||
! alpha_alpha = .True.
|
||||
! else if(ispin == 2)then
|
||||
! beta_beta = .True.
|
||||
! else if(ispin == 3)then
|
||||
! alpha_beta = .True.
|
||||
! else if(ispin == 4)then
|
||||
! spin_trace = .True.
|
||||
! endif
|
||||
!
|
||||
!
|
||||
! call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
! call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
||||
! if(beta_beta.or.spin_trace)then
|
||||
! if (exc(0,1,1) == 1) then
|
||||
! return
|
||||
! else
|
||||
! ! Mono beta
|
||||
! h1 = exc(1,1,2)
|
||||
! if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
||||
! h1 = list_orb_reverse(h1)
|
||||
! p1 = exc(1,2,2)
|
||||
! if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
||||
! p1 = list_orb_reverse(p1)
|
||||
! do istate = 1, N_states
|
||||
! do i = 1, n_occ_ab(2)
|
||||
! h2 = occ(i,2)
|
||||
! if(.not.is_integer_in_string(h2,orb_bitmask,N_int))cycle
|
||||
! h2 = list_orb_reverse(h2)
|
||||
! big_array(h1,h2,p1,h2) += 0.5d0 * c_1 * phase
|
||||
! big_array(h1,h2,h2,p1) -= 0.5d0 * c_1 * phase
|
||||
!
|
||||
! big_array(h2,h1,h2,p1) += 0.5d0 * c_1 * phase
|
||||
! big_array(h2,h1,p1,h2) -= 0.5d0 * c_1 * phase
|
||||
! enddo
|
||||
! enddo
|
||||
! endif
|
||||
! endif
|
||||
! end
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
enddo
|
||||
else
|
||||
return
|
||||
endif
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine orb_range_off_diag_single_to_two_rdm_bb_dm_buffer(det_1,det_2,c_1,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!
|
||||
! a given couple of determinant det_1, det_2 being a BETA SINGLE excitation with respect to one another
|
||||
!
|
||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
||||
!
|
||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
||||
!
|
||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
||||
!
|
||||
! ispin determines which spin-spin component of the two-rdm you will update
|
||||
!
|
||||
! ispin == 1 :: alpha/ alpha
|
||||
! ispin == 2 :: beta / beta
|
||||
! ispin == 3 :: alpha/ beta
|
||||
! ispin == 4 :: spin traced <=> total two-rdm
|
||||
!
|
||||
! here, only ispin == 2 or 4 will do something
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: ispin,sze_buff
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
double precision, intent(in) :: c_1
|
||||
double precision, intent(out) :: values(sze_buff)
|
||||
integer , intent(out) :: keys(4,sze_buff)
|
||||
integer , intent(inout):: nkeys
|
||||
|
||||
integer :: occ(N_int*bit_kind_size,2)
|
||||
integer :: n_occ_ab(2)
|
||||
integer :: i,j,h1,h2,p1
|
||||
integer :: exc(0:2,2,2)
|
||||
double precision :: phase
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
endif
|
||||
|
||||
|
||||
call bitstring_to_list_ab(det_1, occ, n_occ_ab, N_int)
|
||||
call get_single_excitation(det_1,det_2,exc,phase,N_int)
|
||||
if(beta_beta.or.spin_trace)then
|
||||
if (exc(0,1,1) == 1) then
|
||||
return
|
||||
else
|
||||
! Mono beta
|
||||
h1 = exc(1,1,2)
|
||||
if(list_orb_reverse(h1).lt.0)return
|
||||
h1 = list_orb_reverse(h1)
|
||||
p1 = exc(1,2,2)
|
||||
if(list_orb_reverse(p1).lt.0)return
|
||||
p1 = list_orb_reverse(p1)
|
||||
do i = 1, n_occ_ab(2)
|
||||
h2 = occ(i,2)
|
||||
if(list_orb_reverse(h2).lt.0)return
|
||||
h2 = list_orb_reverse(h2)
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = h2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = h2
|
||||
enddo
|
||||
endif
|
||||
endif
|
||||
end
|
||||
|
||||
|
||||
! subroutine orb_range_off_diagonal_double_to_two_rdm_aa_dm(det_1,det_2,c_1,gorb_bitmask,list_orb_reverse,ispin)
|
||||
! use bitmasks
|
||||
! BEGIN_DOC
|
||||
!! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!!
|
||||
!! a given couple of determinant det_1, det_2 being a ALPHA/ALPHA DOUBLE excitation with respect to one another
|
||||
!!
|
||||
!! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
||||
!!
|
||||
!! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
||||
!!
|
||||
!! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
||||
!!
|
||||
!! ispin determines which spin-spin component of the two-rdm you will update
|
||||
!!
|
||||
!! ispin == 1 :: alpha/ alpha
|
||||
!! ispin == 2 :: beta / beta
|
||||
!! ispin == 3 :: alpha/ beta
|
||||
!! ispin == 4 :: spin traced <=> total two-rdm
|
||||
!!
|
||||
!! here, only ispin == 1 or 4 will do something
|
||||
! END_DOC
|
||||
! implicit none
|
||||
! integer, intent(in) :: dim1,ispin
|
||||
! double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
||||
! integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
|
||||
! integer(bit_kind), intent(in) :: orb_bitmask(N_int)
|
||||
! integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
! double precision, intent(in) :: c_1
|
||||
!
|
||||
! integer :: i,j,h1,h2,p1,p2,istate
|
||||
! integer :: exc(0:2,2)
|
||||
! double precision :: phase
|
||||
!
|
||||
! logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
! logical :: is_integer_in_string
|
||||
! alpha_alpha = .False.
|
||||
! beta_beta = .False.
|
||||
! alpha_beta = .False.
|
||||
! spin_trace = .False.
|
||||
! if( ispin == 1)then
|
||||
! alpha_alpha = .True.
|
||||
! else if(ispin == 2)then
|
||||
! beta_beta = .True.
|
||||
! else if(ispin == 3)then
|
||||
! alpha_beta = .True.
|
||||
! else if(ispin == 4)then
|
||||
! spin_trace = .True.
|
||||
! endif
|
||||
! call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
|
||||
! h1 =exc(1,1)
|
||||
! if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
||||
! h1 = list_orb_reverse(h1)
|
||||
! h2 =exc(2,1)
|
||||
! if(.not.is_integer_in_string(h2,orb_bitmask,N_int))return
|
||||
! h2 = list_orb_reverse(h2)
|
||||
! p1 =exc(1,2)
|
||||
! if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
||||
! p1 = list_orb_reverse(p1)
|
||||
! p2 =exc(2,2)
|
||||
! if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return
|
||||
! p2 = list_orb_reverse(p2)
|
||||
! if(alpha_alpha.or.spin_trace)then
|
||||
! do istate = 1, N_states
|
||||
! big_array(h1,h2,p1,p2) += 0.5d0 * c_1 * phase
|
||||
! big_array(h1,h2,p2,p1) -= 0.5d0 * c_1 * phase
|
||||
!
|
||||
! big_array(h2,h1,p2,p1) += 0.5d0 * c_1 * phase
|
||||
! big_array(h2,h1,p1,p2) -= 0.5d0 * c_1 * phase
|
||||
! enddo
|
||||
! endif
|
||||
! end
|
||||
subroutine orb_range_off_diag_double_to_two_rdm_aa_dm_buffer(det_1,det_2,c_1,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!
|
||||
! a given couple of determinant det_1, det_2 being a ALPHA/ALPHA DOUBLE excitation with respect to one another
|
||||
!
|
||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
||||
!
|
||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
||||
!
|
||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
||||
!
|
||||
! ispin determines which spin-spin component of the two-rdm you will update
|
||||
!
|
||||
! ispin == 1 :: alpha/ alpha
|
||||
! ispin == 2 :: beta / beta
|
||||
! ispin == 3 :: alpha/ beta
|
||||
! ispin == 4 :: spin traced <=> total two-rdm
|
||||
!
|
||||
! here, only ispin == 1 or 4 will do something
|
||||
END_DOC
|
||||
implicit none
|
||||
integer, intent(in) :: ispin,sze_buff
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
double precision, intent(in) :: c_1
|
||||
double precision, intent(out) :: values(sze_buff)
|
||||
integer , intent(out) :: keys(4,sze_buff)
|
||||
integer , intent(inout):: nkeys
|
||||
|
||||
|
||||
integer :: i,j,h1,h2,p1,p2
|
||||
integer :: exc(0:2,2)
|
||||
double precision :: phase
|
||||
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
endif
|
||||
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
|
||||
h1 =exc(1,1)
|
||||
if(list_orb_reverse(h1).lt.0)return
|
||||
h1 = list_orb_reverse(h1)
|
||||
h2 =exc(2,1)
|
||||
if(list_orb_reverse(h2).lt.0)return
|
||||
h2 = list_orb_reverse(h2)
|
||||
p1 =exc(1,2)
|
||||
if(list_orb_reverse(p1).lt.0)return
|
||||
p1 = list_orb_reverse(p1)
|
||||
p2 =exc(2,2)
|
||||
if(list_orb_reverse(p2).lt.0)return
|
||||
p2 = list_orb_reverse(p2)
|
||||
if(alpha_alpha.or.spin_trace)then
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
|
||||
! subroutine orb_range_off_diagonal_double_to_two_rdm_bb_dm(det_1,det_2,c_1,gorb_bitmask,list_orb_reverse,ispin)
|
||||
! use bitmasks
|
||||
! BEGIN_DOC
|
||||
!! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!!
|
||||
!! a given couple of determinant det_1, det_2 being a BETA /BETA DOUBLE excitation with respect to one another
|
||||
!!
|
||||
!! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
||||
!!
|
||||
!! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
||||
!!
|
||||
!! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
||||
!!
|
||||
!! ispin determines which spin-spin component of the two-rdm you will update
|
||||
!!
|
||||
!! ispin == 1 :: alpha/ alpha
|
||||
!! ispin == 2 :: beta / beta
|
||||
!! ispin == 3 :: alpha/ beta
|
||||
!! ispin == 4 :: spin traced <=> total two-rdm
|
||||
!!
|
||||
!! here, only ispin == 2 or 4 will do something
|
||||
! END_DOC
|
||||
! implicit none
|
||||
!
|
||||
! integer, intent(in) :: dim1,ispin
|
||||
! double precision, intent(inout) :: big_array(dim1,dim1,dim1,dim1)
|
||||
! integer(bit_kind), intent(in) :: det_1(N_int),det_2(N_int)
|
||||
! integer(bit_kind), intent(in) :: orb_bitmask(N_int)
|
||||
! integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
! double precision, intent(in) :: c_1
|
||||
!
|
||||
! integer :: i,j,h1,h2,p1,p2,istate
|
||||
! integer :: exc(0:2,2)
|
||||
! double precision :: phase
|
||||
! logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
! logical :: is_integer_in_string
|
||||
! alpha_alpha = .False.
|
||||
! beta_beta = .False.
|
||||
! alpha_beta = .False.
|
||||
! spin_trace = .False.
|
||||
! if( ispin == 1)then
|
||||
! alpha_alpha = .True.
|
||||
! else if(ispin == 2)then
|
||||
! beta_beta = .True.
|
||||
! else if(ispin == 3)then
|
||||
! alpha_beta = .True.
|
||||
! else if(ispin == 4)then
|
||||
! spin_trace = .True.
|
||||
! endif
|
||||
!
|
||||
! call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
|
||||
! h1 =exc(1,1)
|
||||
! if(.not.is_integer_in_string(h1,orb_bitmask,N_int))return
|
||||
! h1 = list_orb_reverse(h1)
|
||||
! h2 =exc(2,1)
|
||||
! if(.not.is_integer_in_string(h2,orb_bitmask,N_int))return
|
||||
! h2 = list_orb_reverse(h2)
|
||||
! p1 =exc(1,2)
|
||||
! if(.not.is_integer_in_string(p1,orb_bitmask,N_int))return
|
||||
! p1 = list_orb_reverse(p1)
|
||||
! p2 =exc(2,2)
|
||||
! if(.not.is_integer_in_string(p2,orb_bitmask,N_int))return
|
||||
! p2 = list_orb_reverse(p2)
|
||||
! if(beta_beta.or.spin_trace)then
|
||||
! big_array(h1,h2,p1,p2) += 0.5d0 * c_1* phase
|
||||
! big_array(h1,h2,p2,p1) -= 0.5d0 * c_1* phase
|
||||
!
|
||||
! big_array(h2,h1,p2,p1) += 0.5d0 * c_1* phase
|
||||
! big_array(h2,h1,p1,p2) -= 0.5d0 * c_1* phase
|
||||
! endif
|
||||
! end
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
endif
|
||||
end
|
||||
|
||||
subroutine orb_range_off_diag_double_to_two_rdm_bb_dm_buffer(det_1,det_2,c_1,list_orb_reverse,ispin,sze_buff,nkeys,keys,values)
|
||||
use bitmasks
|
||||
BEGIN_DOC
|
||||
! routine that update the OFF DIAGONAL PART of the two body rdms in a specific range of orbitals for
|
||||
!
|
||||
! a given couple of determinant det_1, det_2 being a BETA /BETA DOUBLE excitation with respect to one another
|
||||
!
|
||||
! c_1 is supposed to be a scalar quantity, such as state averaged coef of the determinant det_1
|
||||
!
|
||||
! big_array(dim1,dim1,dim1,dim1) is the two-body rdm to be updated in physicist notation
|
||||
!
|
||||
! orb_bitmask(N_int) is the bitmask for the orbital range, list_orb_reverse(mo_num) is the inverse range of orbitals
|
||||
!
|
||||
! ispin determines which spin-spin component of the two-rdm you will update
|
||||
!
|
||||
! ispin == 1 :: alpha/ alpha
|
||||
! ispin == 2 :: beta / beta
|
||||
! ispin == 3 :: alpha/ beta
|
||||
! ispin == 4 :: spin traced <=> total two-rdm
|
||||
!
|
||||
! here, only ispin == 2 or 4 will do something
|
||||
END_DOC
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: ispin,sze_buff
|
||||
integer(bit_kind), intent(in) :: det_1(N_int,2),det_2(N_int,2)
|
||||
integer, intent(in) :: list_orb_reverse(mo_num)
|
||||
double precision, intent(in) :: c_1
|
||||
double precision, intent(out) :: values(sze_buff)
|
||||
integer , intent(out) :: keys(4,sze_buff)
|
||||
integer , intent(inout):: nkeys
|
||||
|
||||
integer :: i,j,h1,h2,p1,p2
|
||||
integer :: exc(0:2,2)
|
||||
double precision :: phase
|
||||
logical :: alpha_alpha,beta_beta,alpha_beta,spin_trace
|
||||
logical :: is_integer_in_string
|
||||
alpha_alpha = .False.
|
||||
beta_beta = .False.
|
||||
alpha_beta = .False.
|
||||
spin_trace = .False.
|
||||
if( ispin == 1)then
|
||||
alpha_alpha = .True.
|
||||
else if(ispin == 2)then
|
||||
beta_beta = .True.
|
||||
else if(ispin == 3)then
|
||||
alpha_beta = .True.
|
||||
else if(ispin == 4)then
|
||||
spin_trace = .True.
|
||||
endif
|
||||
|
||||
call get_double_excitation_spin(det_1,det_2,exc,phase,N_int)
|
||||
h1 =exc(1,1)
|
||||
if(list_orb_reverse(h1).lt.0)return
|
||||
h1 = list_orb_reverse(h1)
|
||||
h2 =exc(2,1)
|
||||
if(list_orb_reverse(h2).lt.0)return
|
||||
h2 = list_orb_reverse(h2)
|
||||
p1 =exc(1,2)
|
||||
if(list_orb_reverse(p1).lt.0)return
|
||||
p1 = list_orb_reverse(p1)
|
||||
p2 =exc(2,2)
|
||||
if(list_orb_reverse(p2).lt.0)return
|
||||
p2 = list_orb_reverse(p2)
|
||||
if(beta_beta.or.spin_trace)then
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h1
|
||||
keys(2,nkeys) = h2
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p2
|
||||
keys(4,nkeys) = p1
|
||||
|
||||
nkeys += 1
|
||||
values(nkeys) = - 0.5d0 * c_1 * phase
|
||||
keys(1,nkeys) = h2
|
||||
keys(2,nkeys) = h1
|
||||
keys(3,nkeys) = p1
|
||||
keys(4,nkeys) = p2
|
||||
endif
|
||||
end
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user