9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-10 20:18:12 +01:00

updated converters and fixed ao df ints

This commit is contained in:
Kevin Gasperich 2020-02-17 16:16:46 -06:00
parent c847d63f2c
commit 8794296f37
11 changed files with 187 additions and 42 deletions

View File

@ -260,7 +260,7 @@ BEGIN_PROVIDER [ complex*16, S_half_inv_complex, (AO_num,AO_num) ]
integer :: info, i, j, k
double precision, parameter :: threshold_overlap_AO_eigenvalues = 1.d-6
LDA = size(AO_overlap,1)
LDA = size(AO_overlap_complex,1)
LDC = size(S_half_inv_complex,1)
allocate( &

View File

@ -116,8 +116,18 @@ subroutine ao_map_fill_from_df
do kl=1, kpt_num
do kj=1, kl
call idx2_tri_int(kj,kl,kjkl2)
print*,'kj,kl,kjkl2',kj,kl,kjkl2
!print*,'kj,kl,kjkl2',kj,kl,kjkl2
if (kj < kl) then
do i_ao=1,ao_num_per_kpt
do j_ao=1,ao_num_per_kpt
do i_df=1,df_num
ints_jl(i_ao,j_ao,i_df) = dconjg(df_ao_integrals_complex(j_ao,i_ao,i_df,kjkl2))
enddo
enddo
enddo
else
ints_jl = df_ao_integrals_complex(:,:,:,kjkl2)
endif
!$OMP PARALLEL PRIVATE(i,k,j,l,ki,kk,ii,ik,ij,il,kikk2,jl2,ik2, &
!$OMP ints_ik, ints_ikjl, i_ao, j_ao, i_df, &
@ -143,15 +153,12 @@ subroutine ao_map_fill_from_df
ki=kconserv(kl,kk,kj)
if ((kl == kj) .and. (ki > kk)) cycle
call idx2_tri_int(ki,kk,kikk2)
print*,'ki,kk,kikk2',ki,kk,kikk2
if (kikk2 > kjkl2) cycle
if (ki >= kk) then
!if (ki < kk) then !this didn't fix the problem
if (ki < kk) then
do i_ao=1,ao_num_per_kpt
do j_ao=1,ao_num_per_kpt
do i_df=1,df_num
ints_ik(i_ao,j_ao,i_df) = dconjg(df_ao_integrals_complex(j_ao,i_ao,i_df,kikk2))
!ints_ik(j_ao,i_ao,i_df) = dconjg(df_ao_integrals_complex(j_ao,i_ao,i_df,kikk2))
enddo
enddo
enddo

View File

@ -11,50 +11,50 @@ BEGIN_PROVIDER [double precision, extra_e_contrib_density]
END_PROVIDER
BEGIN_PROVIDER [ double precision, HF_energy]
&BEGIN_PROVIDER [ double precision, HF_two_electron_energy]
&BEGIN_PROVIDER [ double precision, HF_one_electron_energy]
BEGIN_PROVIDER [ double precision, hf_energy]
&BEGIN_PROVIDER [ double precision, hf_two_electron_energy]
&BEGIN_PROVIDER [ double precision, hf_one_electron_energy]
implicit none
BEGIN_DOC
! Hartree-Fock energy containing the nuclear repulsion, and its one- and two-body components.
END_DOC
integer :: i,j
HF_energy = nuclear_repulsion
HF_two_electron_energy = 0.d0
HF_one_electron_energy = 0.d0
hf_energy = nuclear_repulsion
hf_two_electron_energy = 0.d0
hf_one_electron_energy = 0.d0
if (is_complex) then
complex*16 :: hf_1e_tmp, hf_2e_tmp
hf_1e_tmp = (0.d0,0.d0)
hf_2e_tmp = (0.d0,0.d0)
do j=1,ao_num
do i=1,ao_num
hf_2e_tmp += 0.5d0 * ( ao_two_e_integral_alpha_complex(i,j) * SCF_density_matrix_ao_alpha_complex(j,i) &
+ao_two_e_integral_beta_complex(i,j) * SCF_density_matrix_ao_beta_complex(j,i) )
hf_1e_tmp += ao_one_e_integrals_complex(i,j) * (SCF_density_matrix_ao_alpha_complex(j,i) &
+ SCF_density_matrix_ao_beta_complex (j,i) )
hf_2e_tmp += 0.5d0 * ( ao_two_e_integral_alpha_complex(i,j) * scf_density_matrix_ao_alpha_complex(j,i) &
+ao_two_e_integral_beta_complex(i,j) * scf_density_matrix_ao_beta_complex(j,i) )
hf_1e_tmp += ao_one_e_integrals_complex(i,j) * (scf_density_matrix_ao_alpha_complex(j,i) &
+ scf_density_matrix_ao_beta_complex (j,i) )
enddo
enddo
if (dabs(dimag(hf_2e_tmp)).gt.1.d-10) then
print*,'HF_2e energy should be real:',irp_here
stop -1
else
HF_two_electron_energy = dble(hf_2e_tmp)
hf_two_electron_energy = dble(hf_2e_tmp)
endif
if (dabs(dimag(hf_1e_tmp)).gt.1.d-10) then
print*,'HF_1e energy should be real:',irp_here
stop -1
else
HF_one_electron_energy = dble(hf_1e_tmp)
hf_one_electron_energy = dble(hf_1e_tmp)
endif
else
do j=1,ao_num
do i=1,ao_num
HF_two_electron_energy += 0.5d0 * ( ao_two_e_integral_alpha(i,j) * SCF_density_matrix_ao_alpha(i,j) &
+ao_two_e_integral_beta(i,j) * SCF_density_matrix_ao_beta(i,j) )
HF_one_electron_energy += ao_one_e_integrals(i,j) * (SCF_density_matrix_ao_alpha(i,j) + SCF_density_matrix_ao_beta (i,j) )
hf_two_electron_energy += 0.5d0 * ( ao_two_e_integral_alpha(i,j) * scf_density_matrix_ao_alpha(i,j) &
+ao_two_e_integral_beta(i,j) * scf_density_matrix_ao_beta(i,j) )
hf_one_electron_energy += ao_one_e_integrals(i,j) * (scf_density_matrix_ao_alpha(i,j) + scf_density_matrix_ao_beta (i,j) )
enddo
enddo
endif
HF_energy += HF_two_electron_energy + HF_one_electron_energy
hf_energy += hf_two_electron_energy + hf_one_electron_energy
END_PROVIDER

View File

@ -0,0 +1,19 @@
program print_e_scf
call run
end
subroutine run
use bitmasks
implicit none
call print_debug_scf_complex
print*,'hf 1e,2e,total energy'
print*,hf_one_electron_energy
print*,hf_two_electron_energy
print*,hf_energy
end

View File

@ -98,6 +98,10 @@ subroutine run
call roothaan_hall_scf
endif
call ezfio_set_hartree_fock_energy(SCF_energy)
print*,'hf 1e,2e,total energy'
print*,hf_one_electron_energy
print*,hf_two_electron_energy
print*,hf_energy
end

View File

@ -15,26 +15,36 @@ subroutine print_debug_scf_complex
do i=1,ao_num
write(*,'(200(E24.15))') scf_density_matrix_ao_alpha_complex(i,:)
enddo
write(*,'(A)') 'scf_density_matrix_ao_beta_complex'
write(*,'(A)') 'ao_one_e_integrals_complex'
write(*,'(A)') '---------------'
do i=1,ao_num
write(*,'(200(E24.15))') scf_density_matrix_ao_beta_complex(i,:)
write(*,'(200(E24.15))') ao_one_e_integrals_complex(i,:)
enddo
write(*,'(A)') 'ao_two_e_integral_alpha_complex'
write(*,'(A)') '---------------'
do i=1,ao_num
write(*,'(200(E24.15))') ao_two_e_integral_alpha_complex(i,:)
enddo
write(*,'(A)') 'ao_two_e_integral_beta_complex'
write(*,'(A)') '---------------'
do i=1,ao_num
write(*,'(200(E24.15))') ao_two_e_integral_beta_complex(i,:)
enddo
write(*,'(A)') 'fock_matrix_ao_alpha_complex'
write(*,'(A)') '---------------'
do i=1,ao_num
write(*,'(200(E24.15))') fock_matrix_ao_alpha_complex(i,:)
enddo
write(*,'(A)') 'ao_overlap_complex'
write(*,'(A)') '---------------'
do i=1,ao_num
write(*,'(200(E24.15))') ao_overlap_complex(i,:)
enddo
write(*,'(A)') 'scf_density_matrix_ao_beta_complex'
write(*,'(A)') '---------------'
do i=1,ao_num
write(*,'(200(E24.15))') scf_density_matrix_ao_beta_complex(i,:)
enddo
write(*,'(A)') 'ao_two_e_integral_beta_complex'
write(*,'(A)') '---------------'
do i=1,ao_num
write(*,'(200(E24.15))') ao_two_e_integral_beta_complex(i,:)
enddo
write(*,'(A)') 'fock_matrix_ao_beta_complex'
write(*,'(A)') '---------------'
do i=1,ao_num

View File

@ -1,4 +1,4 @@
BEGIN_PROVIDER [complex*16, SCF_density_matrix_ao_alpha_complex, (ao_num,ao_num) ]
BEGIN_PROVIDER [ complex*16, scf_density_matrix_ao_alpha_complex, (ao_num,ao_num) ]
implicit none
BEGIN_DOC
! $C.C^t$ over $\alpha$ MOs
@ -7,11 +7,11 @@ BEGIN_PROVIDER [complex*16, SCF_density_matrix_ao_alpha_complex, (ao_num,ao_num)
call zgemm('N','C',ao_num,ao_num,elec_alpha_num,(1.d0,0.d0), &
mo_coef_complex, size(mo_coef_complex,1), &
mo_coef_complex, size(mo_coef_complex,1), (0.d0,0.d0), &
SCF_density_matrix_ao_alpha_complex, size(SCF_density_matrix_ao_alpha_complex,1))
scf_density_matrix_ao_alpha_complex, size(scf_density_matrix_ao_alpha_complex,1))
END_PROVIDER
BEGIN_PROVIDER [ complex*16, SCF_density_matrix_ao_beta_complex, (ao_num,ao_num) ]
BEGIN_PROVIDER [ complex*16, scf_density_matrix_ao_beta_complex, (ao_num,ao_num) ]
implicit none
BEGIN_DOC
! $C.C^t$ over $\beta$ MOs
@ -20,21 +20,21 @@ BEGIN_PROVIDER [ complex*16, SCF_density_matrix_ao_beta_complex, (ao_num,ao_num
call zgemm('N','C',ao_num,ao_num,elec_beta_num,(1.d0,0.d0), &
mo_coef_complex, size(mo_coef_complex,1), &
mo_coef_complex, size(mo_coef_complex,1), (0.d0,0.d0), &
SCF_density_matrix_ao_beta_complex, size(SCF_density_matrix_ao_beta_complex,1))
scf_density_matrix_ao_beta_complex, size(scf_density_matrix_ao_beta_complex,1))
END_PROVIDER
BEGIN_PROVIDER [ complex*16, SCF_density_matrix_ao_complex, (ao_num,ao_num) ]
BEGIN_PROVIDER [ complex*16, scf_density_matrix_ao_complex, (ao_num,ao_num) ]
implicit none
BEGIN_DOC
! Sum of $\alpha$ and $\beta$ density matrices
END_DOC
ASSERT (size(SCF_density_matrix_ao_complex,1) == size(SCF_density_matrix_ao_alpha_complex,1))
ASSERT (size(scf_density_matrix_ao_complex,1) == size(scf_density_matrix_ao_alpha_complex,1))
if (elec_alpha_num== elec_beta_num) then
SCF_density_matrix_ao_complex = SCF_density_matrix_ao_alpha_complex + SCF_density_matrix_ao_alpha_complex
scf_density_matrix_ao_complex = scf_density_matrix_ao_alpha_complex + scf_density_matrix_ao_alpha_complex
else
ASSERT (size(SCF_density_matrix_ao_complex,1) == size(SCF_density_matrix_ao_beta_complex ,1))
SCF_density_matrix_ao_complex = SCF_density_matrix_ao_alpha_complex + SCF_density_matrix_ao_beta_complex
ASSERT (size(scf_density_matrix_ao_complex,1) == size(scf_density_matrix_ao_beta_complex ,1))
scf_density_matrix_ao_complex = scf_density_matrix_ao_alpha_complex + scf_density_matrix_ao_beta_complex
endif
END_PROVIDER

View File

@ -17,6 +17,9 @@ echo 'Create EZFIO'
qp_edit -c $ezfio &> /dev/null
#cp $ezfio/{ao,mo}_basis/ao_md5
qp_run import_kconserv $ezfio
#qp_run import_ao_2e_complex $ezfio
#qp_run dump_ao_2e_from_df $ezfio
#Read the integral
#echo 'Read Integral'

View File

@ -508,6 +508,7 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
natom = cell.natm
nelec = cell.nelectron
neleca,nelecb = cell.nelec
atom_xyz = mf.cell.atom_coords()
if not(mf.cell.unit.startswith(('B','b','au','AU'))):
atom_xyz /= nist.BOHR # always convert to au
@ -537,8 +538,8 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
print("n df fitting functions", naux)
#in old version: param << nelec*Nk, nmo*Nk, natom*Nk
qph5['electrons'].attrs['elec_alpha_num']=nelec*Nk
qph5['electrons'].attrs['elec_beta_num']=nelec*Nk
qph5['electrons'].attrs['elec_alpha_num']=neleca*Nk
qph5['electrons'].attrs['elec_beta_num']=nelecb*Nk
qph5['mo_basis'].attrs['mo_num']=Nk*nmo
qph5['ao_basis'].attrs['ao_num']=Nk*nao
qph5['nuclei'].attrs['nucl_num']=Nk*natom
@ -573,6 +574,18 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
qph5.create_dataset('mo_basis/mo_coef_kpts_real',data=mo_k.real)
qph5.create_dataset('mo_basis/mo_coef_kpts_imag',data=mo_k.imag)
with open('C.qp','w') as outfile:
c_kpts = np.reshape(mo_k,(Nk,nao,nmo))
for ik in range(Nk):
shift1=ik*nao+1
shift2=ik*nmo+1
for i in range(nao):
for j in range(nmo):
cij = c_kpts[ik,i,j]
if abs(cij) > mo_coef_threshold:
outfile.write('%s %s %s %s\n' % (i+shift1, j+shift2, cij.real, cij.imag))
# ___
# | ._ _|_ _ _ ._ _. | _ |\/| _ ._ _
# _|_ | | |_ (/_ (_| | (_| | _> | | (_) | | (_)

View File

@ -0,0 +1,89 @@
program import_ao_2e_complex
call run
end
subroutine run
use map_module
implicit none
integer :: iunit
integer :: getunitandopen
integer ::i,j,k,l
double precision :: integral
complex*16, allocatable :: C(:,:)
double precision :: tmp_re, tmp_im
integer :: n_integrals_1, n_integrals_2
integer(key_kind), allocatable :: buffer_i_1(:), buffer_i_2(:)
real(integral_kind), allocatable :: buffer_values_1(:), buffer_values_2(:)
logical :: use_map1
integer(key_kind) :: idx_tmp
double precision :: sign
! call ezfio_set_ao_basis_ao_num(ao_num)
allocate(buffer_i_1(ao_num**3), buffer_values_1(ao_num**3))
allocate(buffer_i_2(ao_num**3), buffer_values_2(ao_num**3))
iunit = getunitandopen('W.qp','r')
n_integrals_1=0
n_integrals_2=0
buffer_values_1 = 0.d0
buffer_values_2 = 0.d0
do
read (iunit,*,end=13) i,j,k,l, tmp_re, tmp_im
call ao_two_e_integral_complex_map_idx_sign(i,j,k,l,use_map1,idx_tmp,sign)
! print'(4(I4),(L3),(I6),(F7.1))',i,j,k,l,use_map1,idx_tmp,sign
if (use_map1) then
n_integrals_1 += 1
buffer_i_1(n_integrals_1)=idx_tmp
buffer_values_1(n_integrals_1)=tmp_re
! print'(A,4(I4),(I6),(E15.7))','map1',i,j,k,l,idx_tmp,tmp_re
if (sign.ne.0.d0) then
n_integrals_1 += 1
buffer_i_1(n_integrals_1)=idx_tmp+1
buffer_values_1(n_integrals_1)=tmp_im*sign
! print'(A,4(I4),(I6),(E15.7))','map1',i,j,k,l,idx_tmp+1,tmp_im*sign
endif
if (n_integrals_1 >= size(buffer_i_1)-1) then
call insert_into_ao_integrals_map(n_integrals_1,buffer_i_1,buffer_values_1)
n_integrals_1 = 0
endif
else
n_integrals_2 += 1
buffer_i_2(n_integrals_2)=idx_tmp
buffer_values_2(n_integrals_2)=tmp_re
! print'(A,4(I4),(I6),(E15.7))','map2',i,j,k,l,idx_tmp,tmp_re
if (sign.ne.0.d0) then
n_integrals_2 += 1
buffer_i_2(n_integrals_2)=idx_tmp+1
buffer_values_2(n_integrals_2)=tmp_im*sign
! print'(A,4(I4),(I6),(E15.7))','map2',i,j,k,l,idx_tmp+1,tmp_im*sign
endif
if (n_integrals_2 >= size(buffer_i_2)-1) then
call insert_into_ao_integrals_map_2(n_integrals_2,buffer_i_2,buffer_values_2)
n_integrals_2 = 0
endif
endif
enddo
13 continue
close(iunit)
if (n_integrals_1 > 0) then
call insert_into_ao_integrals_map(n_integrals_1,buffer_i_1,buffer_values_1)
endif
if (n_integrals_2 > 0) then
call insert_into_ao_integrals_map_2(n_integrals_2,buffer_i_2,buffer_values_2)
endif
call map_sort(ao_integrals_map)
call map_unique(ao_integrals_map)
call map_sort(ao_integrals_map_2)
call map_unique(ao_integrals_map_2)
call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints_complex_1',ao_integrals_map)
call map_save_to_disk(trim(ezfio_filename)//'/work/ao_ints_complex_2',ao_integrals_map_2)
call ezfio_set_ao_two_e_ints_io_ao_two_e_integrals('Read')
end

View File

@ -22,7 +22,7 @@ subroutine run
allocate(A(kpt_num,kpt_num,kpt_num))
A = 0
iunit = getunitandopen('kconserv','r')
iunit = getunitandopen('K.qp','r')
do
read (iunit,*,end=10) i,j,k,l
A(i,j,k) = l