9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-18 11:23:38 +01:00

inactive --> virtual one-e term gradient ok

This commit is contained in:
eginer 2023-07-10 23:24:12 +02:00
parent 2d383d09c6
commit 8729a7ca45
3 changed files with 281 additions and 0 deletions

View File

@ -0,0 +1,78 @@
BEGIN_PROVIDER [real*8, gradvec_tc_r, (0:3,nMonoEx)]
&BEGIN_PROVIDER [real*8, gradvec_tc_l, (0:3,nMonoEx)]
implicit none
integer :: ii,tt,aa,indx
integer :: i,t,a,fff
double precision :: res_l(0:3), res_r(0:3)
gradvec_tc_l = 0.d0
gradvec_tc_r = 0.d0
do i=1,n_core_inact_orb
ii=list_core_inact(i)
do t=1,n_act_orb
tt=list_act(t)
indx = mat_idx_c_a(i,t)
call gradvec_tc_it(ii,tt,res_l)
call gradvec_tc_it(tt,ii,res_r)
do fff = 0,3
gradvec_tc_l(fff,indx)=res_l(fff)
gradvec_tc_r(fff,indx)=res_r(fff)
enddo
end do
end do
do i=1,n_core_inact_orb
ii=list_core_inact(i)
do a=1,n_virt_orb
indx = mat_idx_c_v(i,a)
aa=list_virt(a)
call gradvec_tc_ia(ii,aa,res_l)
call gradvec_tc_ia(aa,ii,res_r)
do fff = 0,3
gradvec_tc_l(fff,indx)=res_l(fff)
gradvec_tc_r(fff,indx)=res_r(fff)
enddo
end do
end do
do t=1,n_act_orb
do a=1,n_virt_orb
indx = mat_idx_a_v(i,a)
! gradvec_tc_l(indx)=gradvec_ta(t,a)
end do
end do
END_PROVIDER
subroutine gradvec_tc_ia(i,a,res)
implicit none
BEGIN_DOC
! doubly occupied --> virtual TC gradient
!
! Corresponds to <X0|H E_i^a|Phi_0>
END_DOC
integer, intent(in) :: i,a
double precision, intent(out) :: res(0:3)
res = 0.d0
res(1) = -2 * mo_bi_ortho_tc_one_e(i,a)
end
subroutine gradvec_tc_it(i,t,res)
implicit none
BEGIN_DOC
! doubly occupied --> active TC gradient
!
! Corresponds to <X0|H E_i^t|Phi_0>
END_DOC
integer, intent(in) :: i,t
double precision, intent(out) :: res(0:3)
integer :: rr,r,ss,s
double precision :: dm
res = 0.d0
res(1) = -2 * mo_bi_ortho_tc_one_e(i,t)
do rr = 1, n_act_orb
r = list_act(rr)
dm = tc_transition_matrix_mo(t,r,1,1)
res(1) += mo_bi_ortho_tc_one_e(i,r) * dm
enddo
end

View File

@ -0,0 +1,109 @@
BEGIN_PROVIDER [real*8, gradvec_detail_right_old, (0:3,nMonoEx)]
&BEGIN_PROVIDER [real*8, gradvec_detail_left_old, (0:3,nMonoEx)]
BEGIN_DOC
! calculate the orbital gradient <Psi| H E_pq |Psi> by hand, i.e. for
! each determinant I we determine the string E_pq |I> (alpha and beta
! separately) and generate <Psi|H E_pq |I>
! sum_I c_I <Psi|H E_pq |I> is then the pq component of the orbital
! gradient
! E_pq = a^+_pa_q + a^+_Pa_Q
END_DOC
implicit none
integer :: ii,tt,aa,indx,ihole,ipart,istate,ll
real*8 :: res_l(0:3), res_r(0:3)
do ii = 1, n_core_inact_orb
ihole = list_core_inact(ii)
do aa = 1, n_virt_orb
ipart = list_virt(aa)
indx = mat_idx_c_v(ii,aa)
call calc_grad_elem_h_tc(ihole,ipart,res_l, res_r)
do ll = 0, 3
gradvec_detail_left_old (ll,indx)=res_l(ll)
gradvec_detail_right_old(ll,indx)=res_r(ll)
enddo
enddo
enddo
! do indx=1,nMonoEx
! ihole=excit(1,indx)
! ipart=excit(2,indx)
! call calc_grad_elem_h_tc(ihole,ipart,res_l, res_r)
! do ll = 0, 3
! gradvec_detail_left_old (ll,indx)=res_l(ll)
! gradvec_detail_right_old(ll,indx)=res_r(ll)
! enddo
! end do
real*8 :: norm_grad_left, norm_grad_right
norm_grad_left=0.d0
norm_grad_right=0.d0
do indx=1,nMonoEx
norm_grad_left+=gradvec_detail_left_old(0,indx)*gradvec_detail_left_old(0,indx)
norm_grad_right+=gradvec_detail_right_old(0,indx)*gradvec_detail_right_old(0,indx)
end do
norm_grad_left=sqrt(norm_grad_left)
norm_grad_right=sqrt(norm_grad_right)
! if (bavard) then
write(6,*)
write(6,*) ' Norm of the LEFT orbital gradient (via <0|EH|0>) : ', norm_grad_left
write(6,*) ' Norm of the RIGHT orbital gradient (via <0|HE|0>) : ', norm_grad_right
write(6,*)
! endif
END_PROVIDER
subroutine calc_grad_elem_h_tc(ihole,ipart,res_l, res_r)
BEGIN_DOC
! eq 18 of Siegbahn et al, Physica Scripta 1980
! we calculate res_l = <Phi| H^tc E_pq | Psi>, and res_r = <Phi| E_qp H^tc | Psi>
! q=hole, p=particle
! res_l(0) = total matrix element
! res_l(1) = one-electron part
! res_l(2) = two-electron part
! res_l(3) = three-electron part
END_DOC
implicit none
integer, intent(in) :: ihole,ipart
double precision, intent(out) :: res_l(0:3), res_r(0:3)
integer :: mu,iii,ispin,ierr,nu,istate,ll
integer(bit_kind), allocatable :: det_mu(:,:),det_mu_ex(:,:)
real*8 :: i_H_chi_array(0:3,N_states),i_H_phi_array(0:3,N_states),phase
allocate(det_mu(N_int,2))
allocate(det_mu_ex(N_int,2))
res_l=0.D0
res_r=0.D0
! print*,'in i_h_psi'
! print*,ihole,ipart
do mu=1,n_det
! get the string of the determinant
call det_extract(det_mu,mu,N_int)
do ispin=1,2
! do the monoexcitation on it
call det_copy(det_mu,det_mu_ex,N_int)
call do_signed_mono_excitation(det_mu,det_mu_ex,nu &
,ihole,ipart,ispin,phase,ierr)
if (ierr.eq.1) then
call i_H_tc_psi_phi(det_mu_ex,psi_det,psi_l_coef_bi_ortho,psi_r_coef_bi_ortho,N_int &
,N_det,N_det,N_states,i_H_chi_array,i_H_phi_array)
! print*,i_H_chi_array(1,1),i_H_phi_array(1,1)
do istate=1,N_states
do ll = 0,3
res_l(ll)+=i_H_chi_array(ll,istate)*psi_r_coef_bi_ortho(mu,istate)*phase
res_r(ll)+=i_H_phi_array(ll,istate)*psi_l_coef_bi_ortho(mu,istate)*phase
enddo
end do
end if
end do
end do
! state-averaged gradient
res_l*=1.d0/dble(N_states)
res_r*=1.d0/dble(N_states)
end

View File

@ -0,0 +1,94 @@
use bitmasks
BEGIN_PROVIDER [ integer, nMonoEx ]
BEGIN_DOC
! Number of single excitations
END_DOC
implicit none
nMonoEx=n_core_inact_orb*n_act_orb+n_core_inact_orb*n_virt_orb+n_act_orb*n_virt_orb
END_PROVIDER
BEGIN_PROVIDER [integer, n_c_a_prov]
&BEGIN_PROVIDER [integer, n_c_v_prov]
&BEGIN_PROVIDER [integer, n_a_v_prov]
implicit none
n_c_a_prov = n_core_inact_orb * n_act_orb
n_c_v_prov = n_core_inact_orb * n_virt_orb
n_a_v_prov = n_act_orb * n_virt_orb
END_PROVIDER
BEGIN_PROVIDER [integer, excit, (2,nMonoEx)]
&BEGIN_PROVIDER [character*3, excit_class, (nMonoEx)]
&BEGIN_PROVIDER [integer, list_idx_c_a, (3,n_c_a_prov) ]
&BEGIN_PROVIDER [integer, list_idx_c_v, (3,n_c_v_prov) ]
&BEGIN_PROVIDER [integer, list_idx_a_v, (3,n_a_v_prov) ]
&BEGIN_PROVIDER [integer, mat_idx_c_a, (n_core_inact_orb,n_act_orb)
&BEGIN_PROVIDER [integer, mat_idx_c_v, (n_core_inact_orb,n_virt_orb)
&BEGIN_PROVIDER [integer, mat_idx_a_v, (n_act_orb,n_virt_orb)
BEGIN_DOC
! a list of the orbitals involved in the excitation
END_DOC
implicit none
integer :: i,t,a,ii,tt,aa,indx,indx_tmp
indx=0
indx_tmp = 0
do ii=1,n_core_inact_orb
i=list_core_inact(ii)
do tt=1,n_act_orb
t=list_act(tt)
indx+=1
excit(1,indx)=i
excit(2,indx)=t
excit_class(indx)='c-a'
indx_tmp += 1
list_idx_c_a(1,indx_tmp) = indx
list_idx_c_a(2,indx_tmp) = ii
list_idx_c_a(3,indx_tmp) = tt
mat_idx_c_a(ii,tt) = indx
end do
end do
indx_tmp = 0
do ii=1,n_core_inact_orb
i=list_core_inact(ii)
do aa=1,n_virt_orb
a=list_virt(aa)
indx+=1
excit(1,indx)=i
excit(2,indx)=a
excit_class(indx)='c-v'
indx_tmp += 1
list_idx_c_v(1,indx_tmp) = indx
list_idx_c_v(2,indx_tmp) = ii
list_idx_c_v(3,indx_tmp) = aa
mat_idx_c_v(ii,aa) = indx
end do
end do
indx_tmp = 0
do tt=1,n_act_orb
t=list_act(tt)
do aa=1,n_virt_orb
a=list_virt(aa)
indx+=1
excit(1,indx)=t
excit(2,indx)=a
excit_class(indx)='a-v'
indx_tmp += 1
list_idx_a_v(1,indx_tmp) = indx
list_idx_a_v(2,indx_tmp) = tt
list_idx_a_v(3,indx_tmp) = aa
mat_idx_a_v(tt,aa) = indx
end do
end do
! if (bavard) then
write(6,*) ' Filled the table of the Monoexcitations '
do indx=1,nMonoEx
write(6,*) ' ex ',indx,' : ',excit(1,indx),' -> ' &
,excit(2,indx),' ',excit_class(indx)
end do
! end if
END_PROVIDER