9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-09 06:53:38 +01:00

Vectorized int2_grad1u2_grad2u2_j1b2

This commit is contained in:
Anthony Scemama 2022-11-20 22:50:14 +01:00
parent 768e1ac5d8
commit 86b4ff44d9
4 changed files with 39 additions and 74 deletions

View File

@ -176,8 +176,8 @@ END_PROVIDER
enddo
ASSERT(List_all_comb_b3_expo(i) .gt. 0d0)
if(List_all_comb_b3_expo(i) .lt. 1d-10) cycle
ASSERT(List_all_comb_b3_expo(i) .gt. 0d0)
List_all_comb_b3_cent(1,i) = List_all_comb_b3_cent(1,i) / List_all_comb_b3_expo(i)
List_all_comb_b3_cent(2,i) = List_all_comb_b3_cent(2,i) / List_all_comb_b3_expo(i)

View File

@ -56,7 +56,7 @@ end
!---
subroutine overlap_gauss_r12_v(D_center_,delta,A_center,B_center,power_A,power_B,alpha,beta,rvec,n_points)
subroutine overlap_gauss_r12_v(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,rvec,n_points)
BEGIN_DOC
! Computes the following integral :
!
@ -70,7 +70,7 @@ subroutine overlap_gauss_r12_v(D_center_,delta,A_center,B_center,power_A,power_B
implicit none
include 'constants.include.F'
integer, intent(in) :: n_points
double precision, intent(in) :: D_center_(n_points,3), delta ! pure gaussian "D"
double precision, intent(in) :: D_center(n_points,3), delta ! pure gaussian "D"
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
integer, intent(in) :: power_A(3),power_B(3)
double precision, intent(out) :: rvec(n_points)
@ -92,14 +92,7 @@ subroutine overlap_gauss_r12_v(D_center_,delta,A_center,B_center,power_A,power_B
maxab = maxval(power_A(1:3))
double precision, allocatable :: D_center(:,:)
allocate(D_center(3,n_points))
D_center(1,1:n_points) = D_center_(1:n_points,1)
D_center(2,1:n_points) = D_center_(1:n_points,2)
D_center(3,1:n_points) = D_center_(1:n_points,3)
allocate (A_new(0:maxab, 3, n_points), A_center_new(3, n_points), &
allocate (A_new(n_points, 0:maxab, 3), A_center_new(n_points, 3), &
fact_a_new(n_points), iorder_a_new(3), overlap(n_points) )
call give_explicit_poly_and_gaussian_v(A_new, maxab, A_center_new, &
@ -118,9 +111,9 @@ subroutine overlap_gauss_r12_v(D_center_,delta,A_center,B_center,power_A,power_B
iorder_tmp(3) = lz
call overlap_gaussian_xyz_v(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B,overlap,dim1,n_points)
do ipoint=1,n_points
rvec(ipoint) = rvec(ipoint) + A_new(lx,1,ipoint) * &
A_new(ly,2,ipoint) * &
A_new(lz,3,ipoint) * overlap(ipoint)
rvec(ipoint) = rvec(ipoint) + A_new(ipoint,lx,1) * &
A_new(ipoint,ly,2) * &
A_new(ipoint,lz,3) * overlap(ipoint)
enddo
enddo
enddo

View File

@ -147,12 +147,12 @@ subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_k,iorde
integer, intent(in) :: n_points, ldp
integer, intent(in) :: a(3),b(3) ! powers : (x-xa)**a_x = (x-A(1))**a(1)
double precision, intent(in) :: alpha, beta ! exponents
double precision, intent(in) :: A_center(3,n_points) ! A center
double precision, intent(in) :: A_center(n_points,3) ! A center
double precision, intent(in) :: B_center (3) ! B center
double precision, intent(out) :: P_center(3,n_points) ! new center
double precision, intent(out) :: P_center(n_points,3) ! new center
double precision, intent(out) :: p ! new exponent
double precision, intent(out) :: fact_k(n_points) ! constant factor
double precision, intent(out) :: P_new(0:ldp,3,n_points)! polynomial
double precision, intent(out) :: P_new(n_points,0:ldp,3)! polynomial
integer, intent(out) :: iorder(3) ! i_order(i) = order of the polynomials
double precision, allocatable :: P_a(:,:,:), P_b(:,:,:)
@ -161,82 +161,54 @@ subroutine give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_k,iorde
call gaussian_product_v(alpha,A_center,beta,B_center,fact_k,p,P_center,n_points)
!TODO TRANSP
double precision, allocatable :: P_a_(:,:,:), P_b_(:,:,:), A_center_(:,:), P_center_(:,:), P_new_(:,:,:)
allocate(A_center_(n_points,3), P_center_(n_points,3), P_new_(n_points,0:ldp,3))
A_center_(1:n_points,1) = A_center(1,1:n_points)
A_center_(1:n_points,2) = A_center(2,1:n_points)
A_center_(1:n_points,3) = A_center(3,1:n_points)
P_center_(1:n_points,1) = P_center(1,1:n_points)
P_center_(1:n_points,2) = P_center(2,1:n_points)
P_center_(1:n_points,3) = P_center(3,1:n_points)
if ( ior(ior(b(1),b(2)),b(3)) == 0 ) then ! b == (0,0,0)
lda = maxval(a)
ldb = 0
allocate(P_a_(n_points,0:lda,3), P_b_(n_points,0:0,3))
allocate(P_a(n_points,0:lda,3), P_b(n_points,0:0,3))
call recentered_poly2_v0(P_a_,lda,A_center_,P_center_,a,P_b_,B_center,P_center_,n_points)
call recentered_poly2_v0(P_a,lda,A_center,P_center,a,P_b,B_center,P_center,n_points)
iorder(1:3) = a(1:3)
do ipoint=1,n_points
do xyz=1,3
P_new_(ipoint,0,xyz) = P_a_(ipoint,0,xyz) * P_b_(ipoint,0,xyz)
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz)
do i=1,a(xyz)
P_new_(ipoint,i,xyz) = P_new_(ipoint,i,xyz) + P_b_(ipoint,0,xyz) * P_a_(ipoint,i,xyz)
P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz)
enddo
enddo
enddo
do ipoint=1,n_points
do i=0,ldp
P_new(i,1,ipoint) = P_new_(ipoint,i,1)
P_new(i,2,ipoint) = P_new_(ipoint,i,2)
P_new(i,3,ipoint) = P_new_(ipoint,i,3)
enddo
enddo
return
endif
lda = maxval(a)
ldb = maxval(b)
allocate(P_a_(n_points,0:lda,3), P_b_(n_points,0:ldb,3))
call recentered_poly2_v(P_a_,lda,A_center_,P_center_,a,P_b_,ldb,B_center,P_center_,b,n_points)
allocate(P_a(n_points,0:lda,3), P_b(n_points,0:ldb,3))
call recentered_poly2_v(P_a,lda,A_center,P_center,a,P_b,ldb,B_center,P_center,b,n_points)
iorder(1:3) = a(1:3) + b(1:3)
do xyz=1,3
if (b(xyz) == 0) then
do ipoint=1,n_points
P_new_(ipoint,0,xyz) = P_a_(ipoint,0,xyz) * P_b_(ipoint,0,xyz)
P_new(ipoint,0,xyz) = P_a(ipoint,0,xyz) * P_b(ipoint,0,xyz)
do i=1,a(xyz)
P_new_(ipoint,i,xyz) = P_new_(ipoint,i,xyz) + P_b_(ipoint,0,xyz) * P_a_(ipoint,i,xyz)
P_new(ipoint,i,xyz) = P_new(ipoint,i,xyz) + P_b(ipoint,0,xyz) * P_a(ipoint,i,xyz)
enddo
enddo
else
do i=0,iorder(xyz)
do ipoint=1,n_points
P_new_(ipoint,i,xyz) = 0.d0
P_new(ipoint,i,xyz) = 0.d0
enddo
enddo
call multiply_poly_v(P_a_(1,0,xyz), a(xyz),P_b_(1,0,xyz),b(xyz),P_new_(1,0,xyz),ldp,n_points)
call multiply_poly_v(P_a(1,0,xyz), a(xyz),P_b(1,0,xyz),b(xyz),P_new(1,0,xyz),ldp,n_points)
endif
enddo
do ipoint=1,n_points
do i=0,ldp
P_new(i,1,ipoint) = P_new_(ipoint,i,1)
P_new(i,2,ipoint) = P_new_(ipoint,i,2)
P_new(i,3,ipoint) = P_new_(ipoint,i,3)
enddo
enddo
end
!-
@ -353,9 +325,9 @@ subroutine gaussian_product_v(a,xa,b,xb,k,p,xp,n_points)
integer, intent(in) :: n_points
double precision, intent(in) :: a,b ! Exponents
double precision, intent(in) :: xa(3,n_points),xb(3) ! Centers
double precision, intent(in) :: xa(n_points,3),xb(3) ! Centers
double precision, intent(out) :: p ! New exponent
double precision, intent(out) :: xp(3,n_points) ! New center
double precision, intent(out) :: xp(n_points,3) ! New center
double precision, intent(out) :: k(n_points) ! Constant
double precision :: p_inv
@ -377,20 +349,20 @@ subroutine gaussian_product_v(a,xa,b,xb,k,p,xp,n_points)
bpxb(3) = bp*xb(3)
do ipoint=1,n_points
xab(1) = xa(1,ipoint)-xb(1)
xab(2) = xa(2,ipoint)-xb(2)
xab(3) = xa(3,ipoint)-xb(3)
xab(1) = xa(ipoint,1)-xb(1)
xab(2) = xa(ipoint,2)-xb(2)
xab(3) = xa(ipoint,3)-xb(3)
k(ipoint) = ab*(xab(1)*xab(1)+xab(2)*xab(2)+xab(3)*xab(3))
if (k(ipoint) > 40.d0) then
k(ipoint)=0.d0
xp(1,ipoint) = 0.d0
xp(2,ipoint) = 0.d0
xp(3,ipoint) = 0.d0
xp(ipoint,1) = 0.d0
xp(ipoint,2) = 0.d0
xp(ipoint,3) = 0.d0
else
k(ipoint) = dexp(-k(ipoint))
xp(1,ipoint) = ap*xa(1,ipoint)+bpxb(1)
xp(2,ipoint) = ap*xa(2,ipoint)+bpxb(2)
xp(3,ipoint) = ap*xa(3,ipoint)+bpxb(3)
xp(ipoint,1) = ap*xa(ipoint,1)+bpxb(1)
xp(ipoint,2) = ap*xa(ipoint,2)+bpxb(2)
xp(ipoint,3) = ap*xa(ipoint,3)+bpxb(3)
endif
enddo
end subroutine

View File

@ -165,7 +165,7 @@ subroutine overlap_gaussian_xyz_v(A_center,B_center,alpha,beta,power_A,&
END_DOC
include 'constants.include.F'
integer,intent(in) :: dim, n_points
double precision,intent(in) :: A_center(3,n_points),B_center(3) ! center of the x1 functions
double precision,intent(in) :: A_center(n_points,3),B_center(3) ! center of the x1 functions
double precision, intent(in) :: alpha,beta
integer,intent(in) :: power_A(3), power_B(3) ! power of the x1 functions
double precision, intent(out) :: overlap(n_points)
@ -177,7 +177,7 @@ subroutine overlap_gaussian_xyz_v(A_center,B_center,alpha,beta,power_A,&
double precision :: F_integral
ldp = maxval( power_A(1:3) + power_B(1:3) )
allocate(P_new(0:ldp,3,n_points), P_center(3,n_points), fact_p(n_points), &
allocate(P_new(n_points,0:ldp,3), P_center(n_points,3), fact_p(n_points), &
fact_pp(n_points), pp(n_points))
call give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_p,iorder_p,alpha,beta,power_A,power_B,A_center,B_center,n_points)
@ -197,19 +197,19 @@ subroutine overlap_gaussian_xyz_v(A_center,B_center,alpha,beta,power_A,&
cycle
endif
overlap_x = P_new(0,1,ipoint) * F_integral_tab(0)
overlap_x = P_new(ipoint,0,1) * F_integral_tab(0)
do i = 1,iorder_p(1)
overlap_x = overlap_x + P_new(i,1,ipoint) * F_integral_tab(i)
overlap_x = overlap_x + P_new(ipoint,i,1) * F_integral_tab(i)
enddo
overlap_y = P_new(0,2,ipoint) * F_integral_tab(0)
overlap_y = P_new(ipoint,0,2) * F_integral_tab(0)
do i = 1,iorder_p(2)
overlap_y = overlap_y + P_new(i,2,ipoint) * F_integral_tab(i)
overlap_y = overlap_y + P_new(ipoint,i,2) * F_integral_tab(i)
enddo
overlap_z = P_new(0,3,ipoint) * F_integral_tab(0)
overlap_z = P_new(ipoint,0,3) * F_integral_tab(0)
do i = 1,iorder_p(3)
overlap_z = overlap_z + P_new(i,3,ipoint) * F_integral_tab(i)
overlap_z = overlap_z + P_new(ipoint,i,3) * F_integral_tab(i)
enddo
overlap(ipoint) = overlap_x * overlap_y * overlap_z * fact_pp(ipoint)