9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-04-25 09:44:43 +02:00

Merge branch 'dev-stable' of github.com:QuantumPackage/qp2 into dev-stable

This commit is contained in:
Anthony Scemama 2025-04-18 11:08:34 +02:00
commit 84a8f476e7

View File

@ -0,0 +1,138 @@
BEGIN_PROVIDER [ double precision, ao_cart_to_sphe_coef, (ao_num,ao_sphe_num)]
implicit none
BEGIN_DOC
! Coefficients to go from current cartesian AO basis set to spherical AO basis set
!
! ao_cart_to_sphe_coef(i,j) = coefficient of the i-th cartesian |AO| on the j-th spherical |AO|
!
! :math:`\chi^s_{\nu} = \sum_{\nu}^{N_{\text{cart}}} B^{sc}_{\mu\nu} \chi^c_{\mu}`
!
! where :math:`\chi^s_{\nu}` is an element of the spherical AO basis,
! :math:`\chi^c_{\mu}` is an element of the cartesian AO basis,
! and :math:`B^{sc}_{\mu\nu}` is an change of basis matrix
END_DOC
integer :: row,col,k,j
!
if (ao_cartesian) then
! Identity matrix
integer :: i
do i=1,ao_sphe_num
ao_cart_to_sphe_coef(i,i) = 1.d0
enddo
else
ao_cart_to_sphe_coef(:,:) = 0.d0
row = 1
col = 1
do while (row <= ao_num)
! Select case based on azimuthal quantum number of i-th AO orbitals
select case ( ao_l(row) )
case (0)
! S orbital
ao_cart_to_sphe_coef(row,col) = 1.d0
row += 1
col += 1
BEGIN_TEMPLATE
case ($SHELL)
! P,D,F,... orbitals
do k=1,size(cart_to_sphe_$SHELL,2)
do j=1,size(cart_to_sphe_$SHELL,1)
ao_cart_to_sphe_coef(row+j-1,col+k-1) = cart_to_sphe_$SHELL(j,k)
enddo
enddo
row += size(cart_to_sphe_$SHELL,1)
col += size(cart_to_sphe_$SHELL,2)
SUBST [ SHELL ]
1;;
2;;
3;;
4;;
5;;
6;;
7;;
8;;
9;;
END_TEMPLATE
case default
stop 'Error in ao_cart_to_sphe : angular momentum too high'
end select
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_cart_to_sphe_coef_transp, (ao_sphe_num,ao_num)]
implicit none
BEGIN_DOC
! Transpose of :c:data:`ao_cart_to_sphe_coef`
END_DOC
integer :: i,j
do i = 1, ao_num
do j = 1, ao_sphe_num
ao_cart_to_sphe_coef_transp(j,i) = ao_cart_to_sphe_coef(i,j)
enddo
enddo
END_PROVIDER
subroutine ao_cart_to_ao_sphe(A_ao_cart,LDA_ao_cart,A_ao_sphe,LDA_ao_sphe)
implicit none
BEGIN_DOC
! Transform matrix A from the |AO| cartesian basis to the |AO| spherical basis
!
! :math:`(B^{sc})^T.A^c.B^{sc}`
!
! where :math:`B^{sc}` is :c:data:`ao_cart_to_sphe_coef`,
! the matrix of coefficients from the cartesian AO basis to spherical one,
! and :math:`B^{sc}` is :c:data:`ao_cart_to_sphe_coef_transp`, its transpose.
END_DOC
integer, intent(in) :: LDA_ao_cart,LDA_ao_sphe
double precision, intent(in) :: A_ao_cart(LDA_ao_cart,ao_num)
double precision, intent(out) :: A_ao_sphe(LDA_ao_sphe,ao_sphe_num)
double precision, allocatable :: T(:,:)
!
allocate (T(ao_num,ao_sphe_num) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
call dgemm('N','N', ao_num, ao_sphe_num, ao_num, &
1.d0, A_ao_cart, LDA_ao_cart, &
ao_cart_to_sphe_coef, size(ao_cart_to_sphe_coef,1), &
0.d0, T, size(T,1))
! Notice that for the following dgemm we could have used
! ao_cart_to_sphe_coef_transp, but instead we transposed with the 'T' argument
call dgemm('T','N', ao_sphe_num, ao_sphe_num, ao_num, &
1.d0, ao_cart_to_sphe_coef, size(ao_cart_to_sphe_coef,1), &
T, ao_num, &
0.d0, A_ao_sphe, size(A_ao_sphe,1))
!
! call restore_symmetry(mo_num,mo_num,A_ao_sphe,size(A_ao_sphe,1),1.d-15)
deallocate(T)
end
BEGIN_PROVIDER [ double precision, ao_cart_to_sphe_overlap, (ao_sphe_num,ao_sphe_num) ]
implicit none
BEGIN_DOC
! |AO| overlap matrix in the spherical basis set obtained as
!
! :math:`(B^{sc})^T.S^c.B^{sc}`
!
! where :math:`S^c` is the overlap matrix in the cartesian AO basis
END_DOC
!
call ao_cart_to_ao_sphe(ao_overlap,ao_num,ao_cart_to_sphe_overlap,ao_sphe_num)
!
END_PROVIDER
BEGIN_PROVIDER [ double precision, ao_cart_to_sphe_overlap_inv, (ao_sphe_num,ao_sphe_num) ]
implicit none
BEGIN_DOC
! Inverse of :c:data:`ao_cart_to_sphe_overlap`
END_DOC
!
call get_pseudo_inverse( &
ao_cart_to_sphe_overlap, size(ao_cart_to_sphe_overlap,1), &
ao_sphe_num,ao_sphe_num, &
ao_cart_to_sphe_overlap_inv, size(ao_cart_to_sphe_overlap_inv,1), &
lin_dep_cutoff)
END_PROVIDER