9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-03 09:05:39 +01:00

working on kpts

This commit is contained in:
Kevin Gasperich 2020-03-17 17:57:56 -05:00
parent 92294cf973
commit 84531d8021
10 changed files with 1551 additions and 16 deletions

View File

@ -12,7 +12,7 @@
integer :: ibegin,j,k
integer :: prev
prev = 0
ao_cart_to_sphe_coefi_kpts(:,:) = (0.d0,0.d0)
ao_cart_to_sphe_coef_kpts(:,:) = (0.d0,0.d0)
! Assume order provided by ao_power_index
i = 1
ao_cart_to_sphe_num_per_kpt = 0
@ -79,13 +79,13 @@ BEGIN_PROVIDER [ complex*16, ao_cart_to_sphe_overlap_kpts, (ao_cart_to_sphe_num_
call zgemm('T','N',ao_cart_to_sphe_num_per_kpt,ao_num_per_kpt,ao_num_per_kpt, (1.d0,0.d0), &
ao_cart_to_sphe_coef_kpts,size(ao_cart_to_sphe_coef_kpts,1), &
ao_overlap_kpts(1,1,k),size(ao_overlap_kpts,1), (0.d0,0.d0), &
ao_overlap_kpts(:,:,k),size(ao_overlap_kpts,1), (0.d0,0.d0), &
S, size(S,1))
call zgemm('N','N',ao_cart_to_sphe_num_per_kpt,ao_cart_to_sphe_num_per_kpt,ao_num_per_kpt, (1.d0,0.d0), &
S, size(S,1), &
ao_cart_to_sphe_coef_kpts,size(ao_cart_to_sphe_coef_kpts,1), (0.d0,0.d0), &
ao_cart_to_sphe_overlap_kpts(1,1,k),size(ao_cart_to_sphe_overlap_kpts,1))
ao_cart_to_sphe_overlap_kpts(:,:,k),size(ao_cart_to_sphe_overlap_kpts,1))
enddo
deallocate(S)
@ -106,7 +106,7 @@ BEGIN_PROVIDER [ complex*16, ao_ortho_cano_coef_inv_kpts, (ao_num_per_kpt,ao_num
enddo
END_PROVIDER
BEGIN_PROVIDER [ complex*16, ao_ortho_canonical_coef_kpts, (ao_num_per_kpt,ao_num_per_kpt)]
BEGIN_PROVIDER [ complex*16, ao_ortho_canonical_coef_kpts, (ao_num_per_kpt,ao_num_per_kpt,kpt_num)]
&BEGIN_PROVIDER [ integer, ao_ortho_canonical_num_per_kpt, (kpt_num) ]
&BEGIN_PROVIDER [ integer, ao_ortho_canonical_num_per_kpt_max ]
implicit none
@ -155,14 +155,14 @@ END_PROVIDER
ao_cart_to_sphe_num_per_kpt, S, size(S,1), ao_ortho_canonical_num_per_kpt(k))
call zgemm('N','N', ao_num_per_kpt, ao_ortho_canonical_num_per_kpt(k), ao_cart_to_sphe_num_per_kpt, (1.d0,0.d0), &
ao_cart_to_sphe_coef_kpts(:,:,k), size(ao_cart_to_sphe_coef_kpts,1), &
ao_cart_to_sphe_coef_kpts, size(ao_cart_to_sphe_coef_kpts,1), &
S, size(S,1), &
(0.d0,0.d0), ao_ortho_canonical_coef_kpts(:,:,k), size(ao_ortho_canonical_coef_kpts,1))
enddo
deallocate(S)
endif
ao_ortho_canonical_num_per_kpt_max = max(ao_ortho_canonical_num_per_kpt)
ao_ortho_canonical_num_per_kpt_max = maxval(ao_ortho_canonical_num_per_kpt)
END_PROVIDER
BEGIN_PROVIDER [complex*16, ao_ortho_canonical_overlap_kpts, (ao_ortho_canonical_num_per_kpt_max,ao_ortho_canonical_num_per_kpt_max,kpt_num)]
@ -176,7 +176,7 @@ BEGIN_PROVIDER [complex*16, ao_ortho_canonical_overlap_kpts, (ao_ortho_canonical
do k=1,kpt_num
do j=1, ao_ortho_canonical_num_per_kpt_max
do i=1, ao_ortho_canonical_num_per_kpt_max
ao_ortho_canonical_overlap_complex(i,j,k) = (0.d0,0.d0)
ao_ortho_canonical_overlap_kpts(i,j,k) = (0.d0,0.d0)
enddo
enddo
enddo

View File

@ -413,3 +413,444 @@ END_PROVIDER
print *, list_inact_act(1:n_inact_act_orb)
END_PROVIDER
!============================================!
! !
! kpts !
! !
!============================================!
BEGIN_PROVIDER [ integer, n_core_orb_kpts, (kpt_num)]
implicit none
BEGIN_DOC
! Number of core MOs
END_DOC
integer :: i,k,kshift
do k=1,kpt_num
n_core_orb_kpts(k) = 0
kshift = (1-k)*mo_num_per_kpt
do i = 1, mo_num_per_kpt
if(mo_class(i+kshift) == 'Core')then
n_core_orb_kpts(k) += 1
endif
enddo
enddo
! call write_int(6,n_core_orb, 'Number of core MOs')
END_PROVIDER
BEGIN_PROVIDER [ integer, n_inact_orb_kpts, (kpt_num)]
implicit none
BEGIN_DOC
! Number of inactive MOs
END_DOC
integer :: i,k,kshift
do k=1,kpt_num
n_inact_orb_kpts(k) = 0
kshift = (1-k)*mo_num_per_kpt
do i = 1, mo_num_per_kpt
if(mo_class(i+kshift) == 'Inactive')then
n_inact_orb_kpts(k) += 1
endif
enddo
enddo
! call write_int(6,n_inact_orb, 'Number of inactive MOs')
END_PROVIDER
BEGIN_PROVIDER [ integer, n_act_orb_kpts, (kpt_num)]
implicit none
BEGIN_DOC
! Number of active MOs
END_DOC
integer :: i,k,kshift
do k=1,kpt_num
n_act_orb_kpts(k) = 0
kshift = (1-k)*mo_num_per_kpt
do i = 1, mo_num_per_kpt
if(mo_class(i+kshift) == 'Active')then
n_act_orb_kpts(k) += 1
endif
enddo
enddo
! call write_int(6,n_act_orb, 'Number of active MOs')
END_PROVIDER
BEGIN_PROVIDER [ integer, n_virt_orb_kpts, (kpt_num)]
implicit none
BEGIN_DOC
! Number of virtual MOs
END_DOC
integer :: i,k,kshift
do k=1,kpt_num
n_virt_orb_kpts(k) = 0
kshift = (1-k)*mo_num_per_kpt
do i = 1, mo_num_per_kpt
if(mo_class(i+kshift) == 'Virtual')then
n_virt_orb_kpts(k) += 1
endif
enddo
enddo
! call write_int(6,n_virt_orb, 'Number of virtual MOs')
END_PROVIDER
BEGIN_PROVIDER [ integer, n_del_orb_kpts, (kpt_num)]
implicit none
BEGIN_DOC
! Number of deleted MOs
END_DOC
integer :: i,k,kshift
do k=1,kpt_num
n_del_orb_kpts(k) = 0
kshift = (1-k)*mo_num_per_kpt
do i = 1, mo_num_per_kpt
if(mo_class(i+kshift) == 'Deleted')then
n_del_orb_kpts(k) += 1
endif
enddo
enddo
! call write_int(6,n_del_orb, 'Number of deleted MOs')
END_PROVIDER
BEGIN_PROVIDER [ integer, n_core_inact_orb_kpts, (kpt_num) ]
!todo: finish implementation for kpts (will need kpt_mask)
implicit none
BEGIN_DOC
! n_core + n_inact
END_DOC
integer :: i,k
do k=1,kpt_num
n_core_inact_orb_kpts(k) = 0
do i = 1, N_int
n_core_inact_orb_kpts(k) += popcnt(iand(kpt_mask(i,k),reunion_of_core_inact_bitmask(i,1)))
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [integer, n_inact_act_orb_kpts, (kpt_num) ]
implicit none
BEGIN_DOC
! n_inact + n_act
END_DOC
integer :: k
do k=1,kpt_num
n_inact_act_orb_kpts(k) = (n_inact_orb_kpts(k)+n_act_orb_kpts(k))
enddo
END_PROVIDER
BEGIN_PROVIDER [integer, dim_list_core_orb_kpts]
implicit none
BEGIN_DOC
! dimensions for the allocation of list_core.
! it is at least 1
END_DOC
dim_list_core_orb_kpts = max(maxval(n_core_orb_kpts),1)
END_PROVIDER
BEGIN_PROVIDER [integer, dim_list_inact_orb_kpts]
implicit none
BEGIN_DOC
! dimensions for the allocation of list_inact.
! it is at least 1
END_DOC
dim_list_inact_orb_kpts = max(maxval(n_inact_orb_kpts),1)
END_PROVIDER
BEGIN_PROVIDER [integer, dim_list_core_inact_orb_kpts]
implicit none
BEGIN_DOC
! dimensions for the allocation of list_core.
! it is at least 1
END_DOC
dim_list_core_inact_orb_kpts = max(maxval(n_core_inact_orb_kpts),1)
END_PROVIDER
BEGIN_PROVIDER [integer, dim_list_act_orb_kpts]
implicit none
BEGIN_DOC
! dimensions for the allocation of list_act.
! it is at least 1
END_DOC
dim_list_act_orb_kpts = max(maxval(n_act_orb_kpts),1)
END_PROVIDER
BEGIN_PROVIDER [integer, dim_list_virt_orb_kpts]
implicit none
BEGIN_DOC
! dimensions for the allocation of list_virt.
! it is at least 1
END_DOC
dim_list_virt_orb_kpts = max(maxval(n_virt_orb_kpts),1)
END_PROVIDER
BEGIN_PROVIDER [integer, dim_list_del_orb_kpts]
implicit none
BEGIN_DOC
! dimensions for the allocation of list_del.
! it is at least 1
END_DOC
dim_list_del_orb_kpts = max(maxval(n_del_orb_kpts),1)
END_PROVIDER
BEGIN_PROVIDER [integer, n_core_inact_act_orb_kpts, (kpt_num) ]
implicit none
BEGIN_DOC
! Number of core inactive and active MOs
END_DOC
integer :: k
do k=1,kpt_num
n_core_inact_act_orb_kpts(k) = (n_core_orb_kpts(k) + n_inact_orb_kpts(k) + n_act_orb_kpts(k))
enddo
END_PROVIDER
!todo: finish below for kpts
!
! BEGIN_PROVIDER [ integer(bit_kind), core_bitmask , (N_int,2) ]
! implicit none
! BEGIN_DOC
! ! Bitmask identifying the core MOs
! END_DOC
! core_bitmask = 0_bit_kind
! if(n_core_orb > 0)then
! call list_to_bitstring( core_bitmask(1,1), list_core, n_core_orb, N_int)
! call list_to_bitstring( core_bitmask(1,2), list_core, n_core_orb, N_int)
! endif
! END_PROVIDER
!
! BEGIN_PROVIDER [ integer(bit_kind), inact_bitmask, (N_int,2) ]
! implicit none
! BEGIN_DOC
! ! Bitmask identifying the inactive MOs
! END_DOC
! inact_bitmask = 0_bit_kind
! if(n_inact_orb > 0)then
! call list_to_bitstring( inact_bitmask(1,1), list_inact, n_inact_orb, N_int)
! call list_to_bitstring( inact_bitmask(1,2), list_inact, n_inact_orb, N_int)
! endif
! END_PROVIDER
!
! BEGIN_PROVIDER [ integer(bit_kind), act_bitmask , (N_int,2) ]
! implicit none
! BEGIN_DOC
! ! Bitmask identifying the active MOs
! END_DOC
! act_bitmask = 0_bit_kind
! if(n_act_orb > 0)then
! call list_to_bitstring( act_bitmask(1,1), list_act, n_act_orb, N_int)
! call list_to_bitstring( act_bitmask(1,2), list_act, n_act_orb, N_int)
! endif
! END_PROVIDER
!
! BEGIN_PROVIDER [ integer(bit_kind), virt_bitmask , (N_int,2) ]
! implicit none
! BEGIN_DOC
! ! Bitmask identifying the virtual MOs
! END_DOC
! virt_bitmask = 0_bit_kind
! if(n_virt_orb > 0)then
! call list_to_bitstring( virt_bitmask(1,1), list_virt, n_virt_orb, N_int)
! call list_to_bitstring( virt_bitmask(1,2), list_virt, n_virt_orb, N_int)
! endif
! END_PROVIDER
!
! BEGIN_PROVIDER [ integer(bit_kind), del_bitmask , (N_int,2) ]
! implicit none
! BEGIN_DOC
! ! Bitmask identifying the deleted MOs
! END_DOC
!
! del_bitmask = 0_bit_kind
!
! if(n_del_orb > 0)then
! call list_to_bitstring( del_bitmask(1,1), list_del, n_del_orb, N_int)
! call list_to_bitstring( del_bitmask(1,2), list_del, n_del_orb, N_int)
! endif
!
! END_PROVIDER
!
!
!
!
!
! BEGIN_PROVIDER [ integer, list_core , (dim_list_core_orb) ]
!&BEGIN_PROVIDER [ integer, list_core_reverse, (mo_num) ]
! implicit none
! BEGIN_DOC
! ! List of MO indices which are in the core.
! END_DOC
! integer :: i, n
! list_core = 0
! list_core_reverse = 0
!
! n=0
! do i = 1, mo_num
! if(mo_class(i) == 'Core')then
! n += 1
! list_core(n) = i
! list_core_reverse(i) = n
! endif
! enddo
! print *, 'Core MOs:'
! print *, list_core(1:n_core_orb)
!
!END_PROVIDER
!
! BEGIN_PROVIDER [ integer, list_inact , (dim_list_inact_orb) ]
!&BEGIN_PROVIDER [ integer, list_inact_reverse, (mo_num) ]
! implicit none
! BEGIN_DOC
! ! List of MO indices which are inactive.
! END_DOC
! integer :: i, n
! list_inact = 0
! list_inact_reverse = 0
!
! n=0
! do i = 1, mo_num
! if (mo_class(i) == 'Inactive')then
! n += 1
! list_inact(n) = i
! list_inact_reverse(i) = n
! endif
! enddo
! print *, 'Inactive MOs:'
! print *, list_inact(1:n_inact_orb)
!
!END_PROVIDER
!
! BEGIN_PROVIDER [ integer, list_virt , (dim_list_virt_orb) ]
!&BEGIN_PROVIDER [ integer, list_virt_reverse, (mo_num) ]
! implicit none
! BEGIN_DOC
! ! List of MO indices which are virtual
! END_DOC
! integer :: i, n
! list_virt = 0
! list_virt_reverse = 0
!
! n=0
! do i = 1, mo_num
! if (mo_class(i) == 'Virtual')then
! n += 1
! list_virt(n) = i
! list_virt_reverse(i) = n
! endif
! enddo
! print *, 'Virtual MOs:'
! print *, list_virt(1:n_virt_orb)
!
!END_PROVIDER
!
! BEGIN_PROVIDER [ integer, list_del , (dim_list_del_orb) ]
!&BEGIN_PROVIDER [ integer, list_del_reverse, (mo_num) ]
! implicit none
! BEGIN_DOC
! ! List of MO indices which are deleted.
! END_DOC
! integer :: i, n
! list_del = 0
! list_del_reverse = 0
!
! n=0
! do i = 1, mo_num
! if (mo_class(i) == 'Deleted')then
! n += 1
! list_del(n) = i
! list_del_reverse(i) = n
! endif
! enddo
! print *, 'Deleted MOs:'
! print *, list_del(1:n_del_orb)
!
!END_PROVIDER
!
! BEGIN_PROVIDER [ integer, list_act , (dim_list_act_orb) ]
!&BEGIN_PROVIDER [ integer, list_act_reverse, (mo_num) ]
! implicit none
! BEGIN_DOC
! ! List of MO indices which are in the active.
! END_DOC
! integer :: i, n
! list_act = 0
! list_act_reverse = 0
!
! n=0
! do i = 1, mo_num
! if (mo_class(i) == 'Active')then
! n += 1
! list_act(n) = i
! list_act_reverse(i) = n
! endif
! enddo
! print *, 'Active MOs:'
! print *, list_act(1:n_act_orb)
!
!END_PROVIDER
!
!
!
! BEGIN_PROVIDER [ integer, list_core_inact , (dim_list_core_inact_orb) ]
!&BEGIN_PROVIDER [ integer, list_core_inact_reverse, (mo_num) ]
! implicit none
! BEGIN_DOC
! ! List of indices of the core and inactive MOs
! END_DOC
! integer :: i,itmp
! call bitstring_to_list(reunion_of_core_inact_bitmask(1,1), list_core_inact, itmp, N_int)
! list_core_inact_reverse = 0
! ASSERT (itmp == n_core_inact_orb)
! do i = 1, n_core_inact_orb
! list_core_inact_reverse(list_core_inact(i)) = i
! enddo
! print *, 'Core and Inactive MOs:'
! print *, list_core_inact(1:n_core_inact_orb)
!END_PROVIDER
!
!
! BEGIN_PROVIDER [ integer, list_core_inact_act , (n_core_inact_act_orb) ]
!&BEGIN_PROVIDER [ integer, list_core_inact_act_reverse, (mo_num) ]
! implicit none
! BEGIN_DOC
! ! List of indices of the core inactive and active MOs
! END_DOC
! integer :: i,itmp
! call bitstring_to_list(reunion_of_core_inact_act_bitmask(1,1), list_core_inact_act, itmp, N_int)
! list_core_inact_act_reverse = 0
! ASSERT (itmp == n_core_inact_act_orb)
! do i = 1, n_core_inact_act_orb
! list_core_inact_act_reverse(list_core_inact_act(i)) = i
! enddo
! print *, 'Core, Inactive and Active MOs:'
! print *, list_core_inact_act(1:n_core_inact_act_orb)
!END_PROVIDER
!
!
! BEGIN_PROVIDER [ integer, list_inact_act , (n_inact_act_orb) ]
!&BEGIN_PROVIDER [ integer, list_inact_act_reverse, (mo_num) ]
! implicit none
! BEGIN_DOC
! ! List of indices of the inactive and active MOs
! END_DOC
! integer :: i,itmp
! call bitstring_to_list(reunion_of_inact_act_bitmask(1,1), list_inact_act, itmp, N_int)
! list_inact_act_reverse = 0
! ASSERT (itmp == n_inact_act_orb)
! do i = 1, n_inact_act_orb
! list_inact_act_reverse(list_inact_act(i)) = i
! enddo
! print *, 'Inactive and Active MOs:'
! print *, list_inact_act(1:n_inact_act_orb)
!END_PROVIDER
!

View File

@ -46,21 +46,25 @@ subroutine create_guess
logical :: exists
PROVIDE ezfio_filename
if (is_complex) then
call ezfio_has_mo_basis_mo_coef_complex(exists)
! call ezfio_has_mo_basis_mo_coef_complex(exists)
call ezfio_has_mo_basis_mo_coef_kpts(exists)
else
call ezfio_has_mo_basis_mo_coef(exists)
endif
if (.not.exists) then
if (mo_guess_type == "HCore") then
if (is_complex) then
mo_coef_complex = ao_ortho_lowdin_coef_complex
TOUCH mo_coef_complex
!mo_coef_complex = ao_ortho_lowdin_coef_complex
mo_coef_kpts = ao_ortho_lowdin_coef_kpts
TOUCH mo_coef_kpts
mo_label = 'Guess'
call mo_as_eigvectors_of_mo_matrix_complex(mo_one_e_integrals_complex, &
size(mo_one_e_integrals_complex,1), &
size(mo_one_e_integrals_complex,2), &
!call mo_as_eigvectors_of_mo_matrix_complex(mo_one_e_integrals_kpts, &
call mo_as_eigvectors_of_mo_matrix_kpts(mo_one_e_integrals_kpts, &
size(mo_one_e_integrals_kpts,1), &
size(mo_one_e_integrals_kpts,2), &
size(mo_one_e_integrals_kpts,3), &
mo_label,1,.false.)
SOFT_TOUCH mo_coef_complex mo_label
SOFT_TOUCH mo_coef_kpts mo_label
else
mo_coef = ao_ortho_lowdin_coef
TOUCH mo_coef
@ -73,7 +77,8 @@ subroutine create_guess
endif
else if (mo_guess_type == "Huckel") then
if (is_complex) then
call huckel_guess_complex
!call huckel_guess_complex
call huckel_guess_kpts
else
call huckel_guess
endif

View File

@ -93,6 +93,7 @@ BEGIN_PROVIDER [ complex*16, mo_coef_complex_kpts, (ao_num_per_kpt, mo_num_per_k
END_PROVIDER
BEGIN_PROVIDER [ complex*16, mo_coef_transp_complex, (mo_num,ao_num) ]
&BEGIN_PROVIDER [ complex*16, mo_coef_transp_complex_conjg, (mo_num,ao_num) ]
implicit none
@ -198,3 +199,276 @@ subroutine ao_ortho_cano_to_ao_cplx(A_ao,LDA_ao,A,LDA)
deallocate(T)
end
!============================================!
! !
! kpts !
! !
!============================================!
BEGIN_PROVIDER [ complex*16, mo_coef_kpts, (ao_num_per_kpt, mo_num_per_kpt, kpt_num) ]
implicit none
BEGIN_DOC
! Molecular orbital coefficients on |AO| basis set
!
! mo_coef_kpts(i,j,k) = coefficient of the i-th |AO| on the jth |MO| in kth kpt
!
! mo_label : Label characterizing the |MOs| (local, canonical, natural, etc)
END_DOC
integer :: i, j, k
logical :: exists
PROVIDE ezfio_filename
if (mpi_master) then
! Coefs
call ezfio_has_mo_basis_mo_coef_complex(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST(exists, 1, MPI_LOGICAL, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_kpts with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
call ezfio_get_mo_basis_mo_coef_kpts(mo_coef_kpts)
write(*,*) 'Read mo_coef_kpts'
endif
IRP_IF MPI
call MPI_BCAST( mo_coef_kpts, kpt_num*mo_num_per_kpt*ao_num_per_kpt, MPI_DOUBLE_COMPLEX, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_coef_kpts with MPI'
endif
IRP_ENDIF
else
! Orthonormalized AO basis
do k=1,kpt_num
do i=1,mo_num_per_kpt
do j=1,ao_num_per_kpt
mo_coef_kpts(j,i,k) = ao_ortho_canonical_coef_kpts(j,i,k)
enddo
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ complex*16, mo_coef_in_ao_ortho_basis_kpts, (ao_num_per_kpt, mo_num_per_kpt, kpt_num) ]
implicit none
BEGIN_DOC
! |MO| coefficients in orthogonalized |AO| basis
!
! $C^{-1}.C_{mo}$
END_DOC
integer :: k
do k=1,kpt_num
call zgemm('N','N',ao_num_per_kpt,mo_num_per_kpt,ao_num_per_kpt,(1.d0,0.d0), &
ao_ortho_cano_coef_inv_kpts(:,:,k), size(ao_ortho_cano_coef_inv_kpts,1),&
mo_coef_kpts(:,:,k), size(mo_coef_kpts,1), (0.d0,0.d0), &
mo_coef_in_ao_ortho_basis_kpts(:,:,k), size(mo_coef_in_ao_ortho_basis_kpts,1))
enddo
END_PROVIDER
BEGIN_PROVIDER [ complex*16, mo_coef_transp_kpts, (mo_num_per_kpt,ao_num_per_kpt,kpt_num) ]
&BEGIN_PROVIDER [ complex*16, mo_coef_transp_kpts_conjg, (mo_num_per_kpt,ao_num_per_kpt,kpt_num) ]
implicit none
BEGIN_DOC
! |MO| coefficients on |AO| basis set
END_DOC
integer :: i, j, k
do k=1,kpt_num
do j=1,ao_num_per_kpt
do i=1,mo_num_per_kpt
mo_coef_transp_kpts(i,j,k) = mo_coef_kpts(j,i,k)
mo_coef_transp_kpts_conjg(i,j,k) = dconjg(mo_coef_kpts(j,i,k))
enddo
enddo
enddo
END_PROVIDER
subroutine ao_to_mo_kpts(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
!todo: check this
BEGIN_DOC
! Transform A from the AO basis to the MO basis
! where A is complex in the AO basis
!
! C^\dagger.A_ao.C
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
complex*16, intent(in) :: A_ao(LDA_ao,ao_num_per_kpt,kpt_num)
complex*16, intent(out) :: A_mo(LDA_mo,mo_num_per_kpt,kpt_num)
complex*16, allocatable :: T(:,:)
allocate ( T(ao_num_per_kpt,mo_num_per_kpt) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
integer :: k
do k=1,kpt_num
call zgemm('N','N', ao_num_per_kpt, mo_num_per_kpt, ao_num_per_kpt, &
(1.d0,0.d0), A_ao,LDA_ao, &
mo_coef_kpts(:,:,k), size(mo_coef_kpts,1), &
(0.d0,0.d0), T, size(T,1))
call zgemm('C','N', mo_num_per_kpt, mo_num_per_kpt, ao_num_per_kpt, &
(1.d0,0.d0), mo_coef_kpts(:,:,k),size(mo_coef_kpts,1), &
T, ao_num_per_kpt, &
(0.d0,0.d0), A_mo(:,:,k), size(A_mo,1))
enddo
deallocate(T)
end
subroutine ao_to_mo_noconjg_kpts(A_ao,LDA_ao,A_mo,LDA_mo)
implicit none
BEGIN_DOC
! Transform A from the AO basis to the MO basis
! where A is complex in the AO basis
!
! C^T.A_ao.C
! needed for 4idx tranform in four_idx_novvvv
END_DOC
integer, intent(in) :: LDA_ao,LDA_mo
complex*16, intent(in) :: A_ao(LDA_ao,ao_num_per_kpt,kpt_num)
complex*16, intent(out) :: A_mo(LDA_mo,mo_num_per_kpt,kpt_num)
complex*16, allocatable :: T(:,:)
allocate ( T(ao_num_per_kpt,mo_num_per_kpt) )
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: T
integer :: k
do k=1,kpt_num
call zgemm('N','N', ao_num_per_kpt, mo_num_per_kpt, ao_num_per_kpt, &
(1.d0,0.d0), A_ao,LDA_ao, &
mo_coef_kpts(:,:,k), size(mo_coef_kpts,1), &
(0.d0,0.d0), T, size(T,1))
call zgemm('T','N', mo_num_per_kpt, mo_num_per_kpt, ao_num_per_kpt, &
(1.d0,0.d0), mo_coef_kpts(:,:,k),size(mo_coef_kpts,1), &
T, ao_num_per_kpt, &
(0.d0,0.d0), A_mo(:,:,k), size(A_mo,1))
enddo
deallocate(T)
end
subroutine ao_ortho_cano_to_ao_kpts(A_ao,LDA_ao,A,LDA)
implicit none
!todo: check this; no longer using assumed-size arrays
BEGIN_DOC
! Transform A from the |AO| basis to the orthogonal |AO| basis
!
! $C^{-1}.A_{ao}.C^{\dagger-1}$
END_DOC
integer, intent(in) :: LDA_ao,LDA
complex*16, intent(in) :: A_ao(LDA_ao,ao_num_per_kpt,kpt_num)
complex*16, intent(out) :: A(LDA,ao_num_per_kpt,kpt_num)
complex*16, allocatable :: T(:,:)
allocate ( T(ao_num_per_kpt,ao_num_per_kpt) )
integer :: k
do k=1,kpt_num
call zgemm('C','N', ao_num_per_kpt, ao_num_per_kpt, ao_num_per_kpt, &
(1.d0,0.d0), &
ao_ortho_cano_coef_inv_kpts(:,:,k), size(ao_ortho_cano_coef_inv_kpts,1),&
A_ao(:,:,k),size(A_ao,1), &
(0.d0,0.d0), T, size(T,1))
call zgemm('N','N', ao_num_per_kpt, ao_num_per_kpt, ao_num_per_kpt, (1.d0,0.d0), &
T, size(T,1), &
ao_ortho_cano_coef_inv_kpts(:,:,k),size(ao_ortho_cano_coef_inv_kpts,1),&
(0.d0,0.d0), A(:,:,k), size(A,1))
enddo
deallocate(T)
end
!============================================!
! !
! elec kpts !
! !
!============================================!
BEGIN_PROVIDER [ integer, elec_alpha_num_kpts, (kpt_num) ]
&BEGIN_PROVIDER [ integer, elec_beta_num_kpts, (kpt_num) ]
!todo: reorder? if not integer multiple, use some list of kpts to determine filling order
implicit none
integer :: i,k,kpt
PROVIDE elec_alpha_num elec_beta_num
do k=1,kpt_num
elec_alpha_num_kpts(k) = 0
elec_beta_num_kpts(k) = 0
enddo
kpt=1
do i=1,elec_beta_num
elec_alpha_num_kpts(kpt) += 1
elec_beta_num_kpts(kpt) += 1
kpt += 1
if (kpt > kpt_num) then
kpt = 1
endif
enddo
do i=elec_beta_num+1,elec_alpha_num
elec_alpha_num_kpts(kpt) += 1
kpt += 1
if (kpt > kpt_num) then
kpt = 1
endif
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, mo_occ_kpts, (mo_num_per_kpt,kpt_num) ]
implicit none
BEGIN_DOC
! |MO| occupation numbers
END_DOC
PROVIDE ezfio_filename elec_beta_num_kpts elec_alpha_num_kpts
if (mpi_master) then
logical :: exists
call ezfio_has_mo_basis_mo_occ_kpts(exists)
if (exists) then
call ezfio_get_mo_basis_mo_occ_kpts(mo_occ_kpts)
else
mo_occ_kpts = 0.d0
integer :: i,k
do k=1,kpt_num
do i=1,elec_beta_num_kpts(k)
mo_occ_kpts(i,k) = 2.d0
enddo
do i=elec_beta_num_kpts(k)+1,elec_alpha_num_kpts(k)
mo_occ_kpts(i,k) = 1.d0
enddo
enddo
endif
write(*,*) 'Read mo_occ_kpts'
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( mo_occ_kpts, mo_num_per_kpt*kpt_num, MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read mo_occ_kpts with MPI'
endif
IRP_ENDIF
END_PROVIDER

View File

@ -245,4 +245,271 @@ subroutine mo_coef_new_as_svd_vectors_of_mo_matrix_eig_complex(matrix,lda,m,n,mo
end
!============================================!
! !
! kpts !
! !
!============================================!
subroutine mo_as_eigvectors_of_mo_matrix_kpts(matrix,n,m,nk,label,sign,output)
!TODO: test this
implicit none
integer,intent(in) :: n,m,nk, sign
character*(64), intent(in) :: label
complex*16, intent(in) :: matrix(n,m,nk)
logical, intent(in) :: output
integer :: i,j,k
double precision, allocatable :: eigvalues(:)
complex*16, allocatable :: mo_coef_new(:,:), R(:,:), A(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: mo_coef_new, R
call write_time(6)
if (m /= mo_num_per_kpt) then
print *, irp_here, ': Error : m/= mo_num_per_kpt'
stop 1
endif
if (nk /= kpt_num) then
print *, irp_here, ': Error : nk/= kpt_num'
stop 1
endif
allocate(A(n,m),R(n,m),mo_coef_new(ao_num_per_kpt,m),eigvalues(m))
do k=1,nk
if (sign == -1) then
do j=1,m
do i=1,n
A(i,j) = -matrix(i,j,k)
enddo
enddo
else
do j=1,m
do i=1,n
A(i,j) = matrix(i,j,k)
enddo
enddo
endif
mo_coef_new = mo_coef_kpts(:,:,k)
call lapack_diag_complex(eigvalues,R,A,n,m)
if (sign == -1) then
do i=1,m
eigvalues(i) = -eigvalues(i)
enddo
endif
if (output) then
do i=1,m
write (6,'(2(I8),1X,F16.10)') k,i,eigvalues(i)
enddo
write (6,'(A)') '======== ================'
write (6,'(A)') ''
write (6,'(A)') 'Fock Matrix'
write (6,'(A)') '-----------'
do i=1,n
write(*,'(200(E24.15))') A(i,:)
enddo
endif
call zgemm('N','N',ao_num_per_kpt,m,m,(1.d0,0.d0), &
mo_coef_new,size(mo_coef_new,1),R,size(R,1),(0.d0,0.d0), &
mo_coef_kpts(:,:,k),size(mo_coef_kpts,1))
enddo
deallocate(A,mo_coef_new,R,eigvalues)
call write_time(6)
mo_label = label
if (output) then
write (6,'(A)') 'MOs are now **'//trim(label)//'**'
write (6,'(A)') ''
write (6,'(A)') 'Eigenvalues'
write (6,'(A)') '-----------'
write (6,'(A)') ''
write (6,'(A)') '======== ================'
endif
end
subroutine mo_as_svd_vectors_of_mo_matrix_kpts(matrix,lda,m,n,label)
!TODO: implement
print *, irp_here, ' not implemented for kpts'
stop 1
implicit none
integer,intent(in) :: lda,m,n
character*(64), intent(in) :: label
complex*16, intent(in) :: matrix(lda,n)
integer :: i,j
double precision :: accu
double precision, allocatable :: D(:)
complex*16, allocatable :: mo_coef_new(:,:), U(:,:), A(:,:), Vt(:,:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: mo_coef_new, U, Vt, A
call write_time(6)
if (m /= mo_num) then
print *, irp_here, ': Error : m/= mo_num'
stop 1
endif
allocate(A(lda,n),U(lda,n),mo_coef_new(ao_num,m),D(m),Vt(lda,n))
do j=1,n
do i=1,m
A(i,j) = matrix(i,j)
enddo
enddo
mo_coef_new = mo_coef_complex
call svd_complex(A,lda,U,lda,D,Vt,lda,m,n)
write (6,'(A)') 'MOs are now **'//trim(label)//'**'
write (6,'(A)') ''
write (6,'(A)') 'Eigenvalues'
write (6,'(A)') '-----------'
write (6,'(A)') ''
write (6,'(A)') '======== ================ ================'
write (6,'(A)') ' MO Eigenvalue Cumulative '
write (6,'(A)') '======== ================ ================'
accu = 0.d0
do i=1,m
accu = accu + D(i)
write (6,'(I8,1X,F16.10,1X,F16.10)') i,D(i), accu
enddo
write (6,'(A)') '======== ================ ================'
write (6,'(A)') ''
call zgemm('N','N',ao_num,m,m,(1.d0,0.d0),mo_coef_new,size(mo_coef_new,1),U,size(U,1),(0.d0,0.d0),mo_coef_complex,size(mo_coef_complex,1))
deallocate(A,mo_coef_new,U,Vt,D)
call write_time(6)
mo_label = label
end
subroutine mo_as_svd_vectors_of_mo_matrix_eig_kpts(matrix,lda,m,n,eig,label)
!TODO: implement
print *, irp_here, ' not implemented for kpts'
stop 1
implicit none
integer,intent(in) :: lda,m,n
character*(64), intent(in) :: label
complex*16, intent(in) :: matrix(lda,n)
double precision, intent(out) :: eig(m)
integer :: i,j
double precision :: accu
double precision, allocatable :: D(:)
complex*16, allocatable :: mo_coef_new(:,:), U(:,:), A(:,:), Vt(:,:), work(:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: mo_coef_new, U, Vt, A
call write_time(6)
if (m /= mo_num) then
print *, irp_here, ': Error : m/= mo_num'
stop 1
endif
allocate(A(lda,n),U(lda,n),mo_coef_new(ao_num,m),D(m),Vt(lda,n))
do j=1,n
do i=1,m
A(i,j) = matrix(i,j)
enddo
enddo
mo_coef_new = mo_coef_complex
call svd_complex(A,lda,U,lda,D,Vt,lda,m,n)
write (6,'(A)') 'MOs are now **'//trim(label)//'**'
write (6,'(A)') ''
write (6,'(A)') 'Eigenvalues'
write (6,'(A)') '-----------'
write (6,'(A)') ''
write (6,'(A)') '======== ================ ================'
write (6,'(A)') ' MO Eigenvalue Cumulative '
write (6,'(A)') '======== ================ ================'
accu = 0.d0
do i=1,m
accu = accu + D(i)
write (6,'(I8,1X,F16.10,1X,F16.10)') i,D(i), accu
enddo
write (6,'(A)') '======== ================ ================'
write (6,'(A)') ''
call zgemm('N','N',ao_num,m,m,(1.d0,0.d0),mo_coef_new,size(mo_coef_new,1),U,size(U,1),(0.d0,0.d0),mo_coef_complex,size(mo_coef_complex,1))
do i=1,m
eig(i) = D(i)
enddo
deallocate(A,mo_coef_new,U,Vt,D)
call write_time(6)
mo_label = label
end
subroutine mo_coef_new_as_svd_vectors_of_mo_matrix_eig_kpts(matrix,lda,m,n,mo_coef_before,eig,mo_coef_new)
!TODO: implement
print *, irp_here, ' not implemented for kpts'
stop 1
implicit none
BEGIN_DOC
! You enter with matrix in the MO basis defined with the mo_coef_before.
!
! You SVD the matrix and set the eigenvectors as mo_coef_new ordered by increasing singular values
END_DOC
integer,intent(in) :: lda,m,n
complex*16, intent(in) :: matrix(lda,n),mo_coef_before(ao_num,m)
double precision, intent(out) :: eig(m)
complex*16, intent(out) :: mo_coef_new(ao_num,m)
integer :: i,j
double precision :: accu
double precision, allocatable :: D(:)
complex*16, allocatable :: mo_coef_tmp(:,:), U(:,:), A(:,:), Vt(:,:), work(:)
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: U, Vt, A
call write_time(6)
if (m /= mo_num) then
print *, irp_here, ': Error : m/= mo_num'
stop 1
endif
allocate(A(lda,n),U(lda,n),D(m),Vt(lda,n),mo_coef_tmp(ao_num,mo_num))
do j=1,n
do i=1,m
A(i,j) = matrix(i,j)
enddo
enddo
mo_coef_tmp = mo_coef_before
call svd_complex(A,lda,U,lda,D,Vt,lda,m,n)
write (6,'(A)') ''
write (6,'(A)') 'Eigenvalues'
write (6,'(A)') '-----------'
write (6,'(A)') ''
write (6,'(A)') '======== ================ ================'
write (6,'(A)') ' MO Eigenvalue Cumulative '
write (6,'(A)') '======== ================ ================'
accu = 0.d0
do i=1,m
accu = accu + D(i)
write (6,'(I8,1X,F16.10,1X,F16.10)') i,D(i), accu
enddo
write (6,'(A)') '======== ================ ================'
write (6,'(A)') ''
call zgemm('N','N',ao_num,m,m,(1.d0,0.d0),mo_coef_tmp,size(mo_coef_new,1),U,size(U,1),(0.d0,0.d0),mo_coef_new,size(mo_coef_new,1))
do i=1,m
eig(i) = D(i)
enddo
deallocate(A,U,Vt,D,mo_coef_tmp)
call write_time(6)
end

View File

@ -46,3 +46,64 @@ BEGIN_PROVIDER [complex*16, ao_ortho_lowdin_overlap_complex, (ao_num,ao_num)]
enddo
enddo
END_PROVIDER
!============================================!
! !
! kpts !
! !
!============================================!
BEGIN_PROVIDER [complex*16, ao_ortho_lowdin_coef_kpts, (ao_num_per_kpt,ao_num_per_kpt,kpt_num)]
implicit none
BEGIN_DOC
! matrix of the coefficients of the mos generated by the
! orthonormalization by the S^{-1/2} canonical transformation of the aos
! ao_ortho_lowdin_coef(i,j) = coefficient of the ith ao on the jth ao_ortho_lowdin orbital
END_DOC
integer :: i,j,k,l
complex*16, allocatable :: tmp_matrix(:,:)
allocate (tmp_matrix(ao_num,ao_num))
do k=1,kpt_num
tmp_matrix(:,:) = (0.d0,0.d0)
do j=1, ao_num
tmp_matrix(j,j) = (1.d0,0.d0)
enddo
call ortho_lowdin_complex(ao_overlap_kpts(:,:,k),ao_num_per_kpt,ao_num_per_kpt,tmp_matrix,ao_num_per_kpt,ao_num_per_kpt)
do i=1, ao_num_per_kpt
do j=1, ao_num_per_kpt
ao_ortho_lowdin_coef_kpts(j,i,k) = tmp_matrix(i,j)
enddo
enddo
enddo
deallocate(tmp_matrix)
END_PROVIDER
BEGIN_PROVIDER [complex*16, ao_ortho_lowdin_overlap_kpts, (ao_num_per_kpt,ao_num_per_kpt,kpt_num)]
implicit none
BEGIN_DOC
! overlap matrix of the ao_ortho_lowdin
! supposed to be the Identity
END_DOC
integer :: i,j,k,l,kk
complex*16 :: c
do kk=1,kpt_num
do j=1, ao_num_per_kpt
do i=1, ao_num_per_kpt
ao_ortho_lowdin_overlap_kpts(i,j,kk) = (0.d0,0.d0)
enddo
enddo
enddo
do kk=1,kpt_num
do k=1, ao_num_per_kpt
do j=1, ao_num_per_kpt
c = (0.d0,0.d0)
do l=1, ao_num_per_kpt
c += dconjg(ao_ortho_lowdin_coef_kpts(j,l,kk)) * ao_overlap_kpts(k,l,kk)
enddo
do i=1, ao_num_per_kpt
ao_ortho_lowdin_overlap_kpts(i,j,kk) += ao_ortho_lowdin_coef_kpts(i,k,kk) * c
enddo
enddo
enddo
enddo
END_PROVIDER

View File

@ -51,3 +51,65 @@ BEGIN_PROVIDER [ complex*16, eigenvectors_Fock_matrix_mo_complex, (ao_num,mo_num
END_PROVIDER
!============================================!
! !
! kpts !
! !
!============================================!
BEGIN_PROVIDER [ complex*16, eigenvectors_Fock_matrix_mo_kpts, (ao_num_per_kpt,mo_num_per_kpt,kpt_num) ]
implicit none
BEGIN_DOC
! Eigenvectors of the Fock matrix in the |MO| basis obtained with level shift.
END_DOC
integer :: i,j,k
integer :: n
complex*16, allocatable :: F(:,:)
double precision, allocatable :: diag(:)
allocate( F(mo_num_per_kpt,mo_num_per_kpt) )
allocate (diag(mo_num_per_kpt) )
do k=1,kpt_num
do j=1,mo_num
do i=1,mo_num
!F(i,j) = fock_matrix_mo_complex(i,j)
F(i,j) = fock_matrix_mo_kpts(i,j,k)
enddo
enddo
if(frozen_orb_scf)then
integer :: iorb,jorb
!todo: core/act per kpt
do i = 1, n_core_orb
iorb = list_core(i)
do j = 1, n_act_orb
jorb = list_act(j)
F(iorb,jorb) = (0.d0,0.d0)
F(jorb,iorb) = (0.d0,0.d0)
enddo
enddo
endif
! Insert level shift here
!todo: elec per kpt
do i = elec_beta_num_per_kpt(k)+1, elec_alpha_num_per_kpt(k)
F(i,i) += 0.5d0*level_shift
enddo
do i = elec_alpha_num_per_kpt(k)+1, mo_num_per_kpt
F(i,i) += level_shift
enddo
n = mo_num_per_kpt
call lapack_diagd_diag_in_place_complex(diag,F,n,n)
call zgemm('N','N',ao_num_per_kpt,mo_num_per_kpt,mo_num_per_kpt, (1.d0,0.d0), &
mo_coef_kpts(:,:,k), size(mo_coef_kpts,1), F, size(F,1), &
(0.d0,0.d0), eigenvectors_Fock_matrix_mo_kpts(:,:,k), size(eigenvectors_Fock_matrix_mo_kpts,1))
enddo
deallocate(F, diag)
END_PROVIDER

View File

@ -359,3 +359,377 @@ END_PROVIDER
enddo
END_PROVIDER
!============================================!
! !
! kpts !
! !
!============================================!
BEGIN_PROVIDER [ complex*16, Fock_matrix_mo_kpts, (mo_num_per_kpt,mo_num_per_kpt,kpt_num) ]
&BEGIN_PROVIDER [ double precision, Fock_matrix_diag_mo_kpts, (mo_num_per_kpt,kpt_num)]
implicit none
BEGIN_DOC
! Fock matrix on the MO basis.
! For open shells, the ROHF Fock Matrix is ::
!
! | F-K | F + K/2 | F |
! |---------------------------------|
! | F + K/2 | F | F - K/2 |
! |---------------------------------|
! | F | F - K/2 | F + K |
!
!
! F = 1/2 (Fa + Fb)
!
! K = Fb - Fa
!
END_DOC
integer :: i,j,n,k
!todo: fix for kpts? (okay for simple cases)
if (elec_alpha_num == elec_beta_num) then
Fock_matrix_mo_kpts = Fock_matrix_mo_alpha_kpts
else
do k=1,kpt_num
do j=1,elec_beta_num_kpts(k)
! F-K
do i=1,elec_beta_num_kpts(k) !CC
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))&
- (Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
enddo
! F+K/2
do i=elec_beta_num_kpts(k)+1,elec_alpha_num_kpts(k) !CA
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))&
+ 0.5d0*(Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
enddo
! F
do i=elec_alpha_num_kpts(k)+1, mo_num_per_kpt !CV
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))
enddo
enddo
do j=elec_beta_num_kpts(k)+1,elec_alpha_num_kpts(k)
! F+K/2
do i=1,elec_beta_num_kpts(k) !AC
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))&
+ 0.5d0*(Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
enddo
! F
do i=elec_beta_num_kpts(k)+1,elec_alpha_num_kpts(k) !AA
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))
enddo
! F-K/2
do i=elec_alpha_num_kpts(k)+1, mo_num_per_kpt !AV
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))&
- 0.5d0*(Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
enddo
enddo
do j=elec_alpha_num_kpts(k)+1, mo_num_per_kpt
! F
do i=1,elec_beta_num_kpts(k) !VC
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))
enddo
! F-K/2
do i=elec_beta_num_kpts(k)+1,elec_alpha_num_kpts(k) !VA
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k))&
- 0.5d0*(Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
enddo
! F+K
do i=elec_alpha_num_kpts(k)+1,mo_num_per_kpt !VV
Fock_matrix_mo_kpts(i,j,k) = 0.5d0*(Fock_matrix_mo_alpha_kpts(i,j,k)+Fock_matrix_mo_beta_kpts(i,j,k)) &
+ (Fock_matrix_mo_beta_kpts(i,j,k) - Fock_matrix_mo_alpha_kpts(i,j,k))
enddo
enddo
enddo
endif
do k=1,kpt_num
do i = 1, mo_num_per_kpt
Fock_matrix_diag_mo_kpts(i,k) = dble(Fock_matrix_mo_kpts(i,i,k))
if (dabs(dimag(Fock_matrix_mo_kpts(i,i,k))) .gt. 1.0d-12) then
!stop 'diagonal elements of Fock matrix should be real'
print *, 'diagonal elements of Fock matrix should be real',i,Fock_matrix_mo_kpts(i,i,k)
!stop -1
endif
enddo
enddo
if(frozen_orb_scf)then
integer :: iorb,jorb
do k=1,kpt_num
! for tags: list_core, n_core_orb, n_act_orb, list_act
do i = 1, n_core_orb_kpts(k)
iorb = list_core_kpts(i,k)
do j = 1, n_act_orb_kpts(k)
jorb = list_act_kpts(j,k)
fock_matrix_mo_kpts(iorb,jorb,k) = (0.d0,0.d0)
fock_matrix_mo_kpts(jorb,iorb,k) = (0.d0,0.d0)
enddo
enddo
enddo
endif
END_PROVIDER
BEGIN_PROVIDER [ complex*16, Fock_matrix_mo_alpha_complex, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! Fock matrix on the MO basis
END_DOC
call ao_to_mo_complex(Fock_matrix_ao_alpha_complex,size(Fock_matrix_ao_alpha_complex,1), &
Fock_matrix_mo_alpha_complex,size(Fock_matrix_mo_alpha_complex,1))
END_PROVIDER
BEGIN_PROVIDER [ complex*16, Fock_matrix_mo_beta_complex, (mo_num,mo_num) ]
implicit none
BEGIN_DOC
! Fock matrix on the MO basis
END_DOC
call ao_to_mo_complex(Fock_matrix_ao_beta_complex,size(Fock_matrix_ao_beta_complex,1), &
Fock_matrix_mo_beta_complex,size(Fock_matrix_mo_beta_complex,1))
END_PROVIDER
BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_complex, (ao_num, ao_num) ]
implicit none
BEGIN_DOC
! Fock matrix in AO basis set
END_DOC
if(frozen_orb_scf)then
call mo_to_ao_complex(Fock_matrix_mo_complex,size(Fock_matrix_mo_complex,1), &
Fock_matrix_ao_complex,size(Fock_matrix_ao_complex,1))
else
if ( (elec_alpha_num == elec_beta_num).and. &
(level_shift == 0.) ) &
then
integer :: i,j
do j=1,ao_num
do i=1,ao_num
Fock_matrix_ao_complex(i,j) = Fock_matrix_ao_alpha_complex(i,j)
enddo
enddo
else
call mo_to_ao_complex(Fock_matrix_mo_complex,size(Fock_matrix_mo_complex,1), &
Fock_matrix_ao_complex,size(Fock_matrix_ao_complex,1))
endif
endif
END_PROVIDER
BEGIN_PROVIDER [ complex*16, ao_two_e_integral_alpha_complex, (ao_num, ao_num) ]
&BEGIN_PROVIDER [ complex*16, ao_two_e_integral_beta_complex , (ao_num, ao_num) ]
use map_module
implicit none
BEGIN_DOC
! Alpha and Beta Fock matrices in AO basis set
END_DOC
!TODO: finish implementing this: see complex qp1 (different mapping)
integer :: i,j,k,l,k1,r,s
integer :: i0,j0,k0,l0
integer*8 :: p,q
complex*16 :: integral, c0
complex*16, allocatable :: ao_two_e_integral_alpha_tmp(:,:)
complex*16, allocatable :: ao_two_e_integral_beta_tmp(:,:)
ao_two_e_integral_alpha_complex = (0.d0,0.d0)
ao_two_e_integral_beta_complex = (0.d0,0.d0)
PROVIDE ao_two_e_integrals_in_map
integer(omp_lock_kind) :: lck(ao_num)
integer(map_size_kind) :: i8
integer :: ii(4), jj(4), kk(4), ll(4), k2
integer(cache_map_size_kind) :: n_elements_max, n_elements
integer(key_kind), allocatable :: keys(:)
double precision, allocatable :: values(:)
complex*16, parameter :: i_sign(4) = (/(0.d0,1.d0),(0.d0,1.d0),(0.d0,-1.d0),(0.d0,-1.d0)/)
integer(key_kind) :: key1
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
!$OMP c0,key1)&
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha_complex, &
!$OMP SCF_density_matrix_ao_beta_complex, &
!$OMP ao_integrals_map, ao_two_e_integral_alpha_complex, ao_two_e_integral_beta_complex)
call get_cache_map_n_elements_max(ao_integrals_map,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
ao_two_e_integral_beta_tmp(ao_num,ao_num))
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
!$OMP DO SCHEDULE(static,1)
do i8=0_8,ao_integrals_map%map_size
n_elements = n_elements_max
call get_cache_map(ao_integrals_map,i8,keys,values,n_elements)
do k1=1,n_elements
! get original key
! reverse of 2*key (imag part) and 2*key-1 (real part)
key1 = shiftr(keys(k1)+1,1)
call two_e_integrals_index_reverse_complex_1(ii,jj,kk,ll,key1)
! i<=k, j<=l, ik<=jl
! ijkl, jilk, klij*, lkji*
if (shiftl(key1,1)==keys(k1)) then !imaginary part (even)
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
integral = i_sign(k2)*values(k1) !for klij and lkji, take complex conjugate
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
ao_two_e_integral_alpha_tmp(i,k) += c0
ao_two_e_integral_beta_tmp (i,k) += c0
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
enddo
else ! real part
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
integral = values(k1)
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
ao_two_e_integral_alpha_tmp(i,k) += c0
ao_two_e_integral_beta_tmp (i,k) += c0
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
enddo
endif
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha_complex += ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta_complex += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
!$OMP PARALLEL DEFAULT(NONE) &
!$OMP PRIVATE(i,j,l,k1,k,integral,ii,jj,kk,ll,i8,keys,values,n_elements_max, &
!$OMP n_elements,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp, &
!$OMP c0,key1)&
!$OMP SHARED(ao_num,SCF_density_matrix_ao_alpha_complex, &
!$OMP SCF_density_matrix_ao_beta_complex, &
!$OMP ao_integrals_map_2, ao_two_e_integral_alpha_complex, ao_two_e_integral_beta_complex)
call get_cache_map_n_elements_max(ao_integrals_map_2,n_elements_max)
allocate(keys(n_elements_max), values(n_elements_max))
allocate(ao_two_e_integral_alpha_tmp(ao_num,ao_num), &
ao_two_e_integral_beta_tmp(ao_num,ao_num))
ao_two_e_integral_alpha_tmp = (0.d0,0.d0)
ao_two_e_integral_beta_tmp = (0.d0,0.d0)
!$OMP DO SCHEDULE(static,1)
do i8=0_8,ao_integrals_map_2%map_size
n_elements = n_elements_max
call get_cache_map(ao_integrals_map_2,i8,keys,values,n_elements)
do k1=1,n_elements
! get original key
! reverse of 2*key (imag part) and 2*key-1 (real part)
key1 = shiftr(keys(k1)+1,1)
call two_e_integrals_index_reverse_complex_2(ii,jj,kk,ll,key1)
! i>=k, j<=l, ik<=jl
! ijkl, jilk, klij*, lkji*
if (shiftl(key1,1)==keys(k1)) then !imaginary part
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
integral = i_sign(k2)*values(k1) ! for klij and lkji, take conjugate
!G_a(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_b(i,k) += D_{ab}(l,j)*(<ij|kl>)
!G_a(i,l) -= D_a (k,j)*(<ij|kl>)
!G_b(i,l) -= D_b (k,j)*(<ij|kl>)
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
ao_two_e_integral_alpha_tmp(i,k) += c0
ao_two_e_integral_beta_tmp (i,k) += c0
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
enddo
else ! real part
do k2=1,4
if (ii(k2)==0) then
cycle
endif
i = ii(k2)
j = jj(k2)
k = kk(k2)
l = ll(k2)
integral = values(k1)
c0 = (scf_density_matrix_ao_alpha_complex(l,j)+scf_density_matrix_ao_beta_complex(l,j)) * integral
ao_two_e_integral_alpha_tmp(i,k) += c0
ao_two_e_integral_beta_tmp (i,k) += c0
ao_two_e_integral_alpha_tmp(i,l) -= SCF_density_matrix_ao_alpha_complex(k,j) * integral
ao_two_e_integral_beta_tmp (i,l) -= scf_density_matrix_ao_beta_complex (k,j) * integral
enddo
endif
enddo
enddo
!$OMP END DO NOWAIT
!$OMP CRITICAL
ao_two_e_integral_alpha_complex += ao_two_e_integral_alpha_tmp
ao_two_e_integral_beta_complex += ao_two_e_integral_beta_tmp
!$OMP END CRITICAL
deallocate(keys,values,ao_two_e_integral_alpha_tmp,ao_two_e_integral_beta_tmp)
!$OMP END PARALLEL
END_PROVIDER
BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_alpha_complex, (ao_num, ao_num) ]
&BEGIN_PROVIDER [ complex*16, Fock_matrix_ao_beta_complex, (ao_num, ao_num) ]
implicit none
BEGIN_DOC
! Alpha Fock matrix in AO basis set
END_DOC
integer :: i,j
do j=1,ao_num
do i=1,ao_num
Fock_matrix_ao_alpha_complex(i,j) = ao_one_e_integrals_complex(i,j) + ao_two_e_integral_alpha_complex(i,j)
Fock_matrix_ao_beta_complex (i,j) = ao_one_e_integrals_complex(i,j) + ao_two_e_integral_beta_complex (i,j)
enddo
enddo
END_PROVIDER

View File

@ -40,3 +40,52 @@ subroutine huckel_guess_complex
deallocate(A)
end
!============================================!
! !
! kpts !
! !
!============================================!
subroutine huckel_guess_kpts
implicit none
BEGIN_DOC
! Build the MOs using the extended Huckel model
END_DOC
integer :: i,j,k
double precision :: accu
double precision :: c
character*(64) :: label
complex*16, allocatable :: A(:,:)
label = "Guess"
c = 0.5d0 * 1.75d0
allocate (A(ao_num, ao_num))
do k=1,kpt_num
A = (0.d0,0.d0)
do j=1,ao_num_per_kpt
do i=1,ao_num_per_kpt
A(i,j) = c * ao_overlap_kpts(i,j,k) * (ao_one_e_integrals_diag_kpts(i,k) + ao_one_e_integrals_diag_kpts(j,k))
enddo
A(j,j) = ao_one_e_integrals_diag_kpts(j,k) + dble(ao_two_e_integral_alpha_kpts(j,j,k))
if (dabs(dimag(ao_two_e_integral_alpha_kpts(j,j,k))) .gt. 1.0d-10) then
stop 'diagonal elements of ao_bi_elec_integral_alpha should be real'
endif
enddo
! Fock_matrix_ao_alpha(1:ao_num,1:ao_num) = A(1:ao_num,1:ao_num)
! Fock_matrix_ao_beta (1:ao_num,1:ao_num) = A(1:ao_num,1:ao_num)
call zlacpy('X', ao_num_per_kpt, ao_num_per_kpt, A, size(A,1), &
Fock_matrix_ao_alpha_kpts(:,:,k), size(Fock_matrix_ao_alpha_kpts,1))
call zlacpy('X', ao_num_per_kpt, ao_num_per_kpt, A, size(A,1), &
Fock_matrix_ao_beta_kpts(:,:,k), size(Fock_matrix_ao_beta_kpts, 1))
enddo
! TOUCH mo_coef
!TOUCH fock_matrix_ao_alpha_complex fock_matrix_ao_beta_kpts
TOUCH fock_matrix_ao_alpha_kpts fock_matrix_ao_beta_kpts
mo_coef_kpts = eigenvectors_fock_matrix_mo_kpts
SOFT_TOUCH mo_coef_complex
call save_mos
deallocate(A)
end

View File

@ -1,7 +1,9 @@
todo:
change everything to be blocked by kpt
change everything to be blocked by kpt
elec_alpha_num_per_kpt (maybe add to mo_basis?)
bitmasks per kpt? (or at least occ/act/virt num and list)
-------------------------------------------------------------------------------------
old: