mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-10 20:18:12 +01:00
cleaning up converter
This commit is contained in:
parent
c5726abb13
commit
8411167e90
@ -509,6 +509,72 @@ def print_ao_bi(mf,kconserv=None,outfilename='W.ao.qp',bielec_int_threshold = 1E
|
||||
v.real,v.imag)+'\n')
|
||||
|
||||
|
||||
def print_kpts_unblocked(ints_k,outfilename,thresh):
|
||||
'''
|
||||
for ints_k of shape (Nk,n1,n2),
|
||||
print the elements of the corresponding block-diagonal matrix of shape (Nk*n1,Nk*n2) in file
|
||||
'''
|
||||
Nk,n1,n2 = ints_k.shape
|
||||
with open(outfilename,'w') as outfile:
|
||||
for ik in range(Nk):
|
||||
shift1 = ik*n1+1
|
||||
shift2 = ik*n2+1
|
||||
for i1 in range(n1):
|
||||
for i2 in range(n2):
|
||||
int_ij = ints_k[ik,i1,i2]
|
||||
if abs(int_ij) > thresh:
|
||||
outfile.write(stri2z(i1+shift1, i2+shift2, int_ij.real, int_ij.imag)+'\n')
|
||||
return
|
||||
|
||||
def print_kpts_unblocked_upper(ints_k,outfilename,thresh):
|
||||
'''
|
||||
for hermitian ints_k of shape (Nk,n1,n1),
|
||||
print the elements of the corresponding block-diagonal matrix of shape (Nk*n1,Nk*n1) in file
|
||||
(only upper triangle is printed)
|
||||
'''
|
||||
Nk,n1,n2 = ints_k.shape
|
||||
if (n1!=n2):
|
||||
raise Exception('print_kpts_unblocked_upper called with non-square matrix')
|
||||
|
||||
with open(outfilename,'w') as outfile:
|
||||
for ik in range(Nk):
|
||||
shift = ik*n1+1
|
||||
for i1 in range(n1):
|
||||
for i2 in range(i1,n1):
|
||||
int_ij = ints_k[ik,i1,i2]
|
||||
if abs(int_ij) > thresh:
|
||||
outfile.write(stri2z(i1+shift, i2+shift, int_ij.real, int_ij.imag)+'\n')
|
||||
return
|
||||
|
||||
|
||||
|
||||
def get_kin_ao(mf):
|
||||
nao = mf.cell.nao_nr()
|
||||
Nk = len(mf.kpts)
|
||||
return np.reshape(mf.cell.pbc_intor('int1e_kin',1,1,kpts=mf.kpts),(Nk,nao,nao))
|
||||
|
||||
def get_ovlp_ao(mf):
|
||||
nao = mf.cell.nao_nr()
|
||||
Nk = len(mf.kpts)
|
||||
return np.reshape(mf.get_ovlp(cell=cell,kpts=kpts),(Nk,nao,nao))
|
||||
|
||||
def get_pot_ao(mf):
|
||||
nao = mf.cell.nao_nr()
|
||||
Nk = len(mf.kpts)
|
||||
|
||||
if mf.cell.pseudo:
|
||||
v_kpts_ao = np.reshape(mf.with_df.get_pp(kpts=kpts),(Nk,nao,nao))
|
||||
else:
|
||||
v_kpts_ao = np.reshape(mf.with_df.get_nuc(kpts=kpts),(Nk,nao,nao))
|
||||
|
||||
if len(cell._ecpbas) > 0:
|
||||
from pyscf.pbc.gto import ecp
|
||||
v_kpts_ao += np.reshape(ecp.ecp_int(cell, kpts),(Nk,nao,nao))
|
||||
|
||||
return v_kpts_ao
|
||||
|
||||
def ao_to_mo_1e(ao_kpts,mo_coef):
|
||||
return np.einsum('kim,kij,kjn->kmn',mo_coef.conj(),ao_kpts_ao,mo_coef)
|
||||
|
||||
|
||||
def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
|
||||
@ -532,19 +598,23 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
|
||||
import h5py
|
||||
import scipy
|
||||
|
||||
qph5=h5py.File('qpdat.h5')
|
||||
qph5.create_group('nuclei')
|
||||
qph5.create_group('electrons')
|
||||
qph5.create_group('ao_basis')
|
||||
qph5.create_group('mo_basis')
|
||||
|
||||
|
||||
mo_coef_threshold = int_threshold
|
||||
ovlp_threshold = int_threshold
|
||||
kin_threshold = int_threshold
|
||||
ne_threshold = int_threshold
|
||||
bielec_int_threshold = int_threshold
|
||||
thresh_mono = int_threshold
|
||||
|
||||
|
||||
qph5path = 'qpdat.h5'
|
||||
# create hdf5 file, delete old data if exists
|
||||
with h5py.File(qph5path,'w') as qph5:
|
||||
qph5.create_group('nuclei')
|
||||
qph5.create_group('electrons')
|
||||
qph5.create_group('ao_basis')
|
||||
qph5.create_group('mo_basis')
|
||||
|
||||
qph5 = h5py.File(qph5path,'a')
|
||||
natom = cell.natm
|
||||
nelec = cell.nelectron
|
||||
neleca,nelecb = cell.nelec
|
||||
@ -573,18 +643,19 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
|
||||
print("n active Mos per kpt", nmo)
|
||||
print("n AOs per kpt", nao)
|
||||
|
||||
naux = mf.with_df.auxcell.nao
|
||||
print("n df fitting functions", naux)
|
||||
# naux = mf.with_df.auxcell.nao
|
||||
# print("n df fitting functions", naux)
|
||||
|
||||
#in old version: param << nelec*Nk, nmo*Nk, natom*Nk
|
||||
qph5['electrons'].attrs['elec_alpha_num']=neleca*Nk
|
||||
qph5['electrons'].attrs['elec_beta_num']=nelecb*Nk
|
||||
qph5['mo_basis'].attrs['mo_num']=Nk*nmo
|
||||
qph5['ao_basis'].attrs['ao_num']=Nk*nao
|
||||
qph5['nuclei'].attrs['nucl_num']=Nk*natom
|
||||
#qph5['nuclei'].attrs['nucl_num']=Nk*natom
|
||||
qph5['nuclei'].attrs['nucl_num']=natom
|
||||
qph5['nuclei'].attrs['kpt_num']=Nk
|
||||
qph5.create_group('ao_two_e_ints')
|
||||
qph5['ao_two_e_ints'].attrs['df_num']=naux
|
||||
# qph5['ao_two_e_ints'].attrs['df_num']=naux
|
||||
|
||||
qph5['ao_basis'].attrs['ao_basis']=mf.cell.basis
|
||||
ao_nucl=[mf.cell.bas_atom(i)+1 for i in range(nao)]
|
||||
@ -613,37 +684,22 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
|
||||
qph5.create_dataset('mo_basis/mo_coef_kpts_real',data=mo_k.real)
|
||||
qph5.create_dataset('mo_basis/mo_coef_kpts_imag',data=mo_k.imag)
|
||||
|
||||
with open('C.qp','w') as outfile:
|
||||
c_kpts = np.reshape(mo_k,(Nk,nao,nmo))
|
||||
|
||||
for ik in range(Nk):
|
||||
shift1=ik*nao+1
|
||||
shift2=ik*nmo+1
|
||||
for i in range(nao):
|
||||
for j in range(nmo):
|
||||
cij = c_kpts[ik,i,j]
|
||||
if abs(cij) > mo_coef_threshold:
|
||||
outfile.write(stri2z(i+shift1, j+shift2, cij.real, cij.imag)+'\n')
|
||||
print_kpts_unblocked(mo_k,'C.qp',mo_coef_threshold)
|
||||
|
||||
# ___
|
||||
# | ._ _|_ _ _ ._ _. | _ |\/| _ ._ _
|
||||
# _|_ | | |_ (/_ (_| | (_| | _> | | (_) | | (_)
|
||||
# _|
|
||||
|
||||
if mf.cell.pseudo:
|
||||
v_kpts_ao = np.reshape(mf.with_df.get_pp(kpts=kpts),(Nk,nao,nao))
|
||||
else:
|
||||
v_kpts_ao = np.reshape(mf.with_df.get_nuc(kpts=kpts),(Nk,nao,nao))
|
||||
if len(cell._ecpbas) > 0:
|
||||
v_kpts_ao += np.reshape(ecp.ecp_int(cell, kpts),(Nk,nao,nao))
|
||||
ne_ao = get_pot_ao(mf)
|
||||
kin_ao = get_kin_ao(mf)
|
||||
ovlp_ao = get_ovlp_ao(mf)
|
||||
|
||||
ne_ao = ('V',v_kpts_ao,ne_threshold)
|
||||
ovlp_ao = ('S',np.reshape(mf.get_ovlp(cell=cell,kpts=kpts),(Nk,nao,nao)),ovlp_threshold)
|
||||
kin_ao = ('T',np.reshape(cell.pbc_intor('int1e_kin',1,1,kpts=kpts),(Nk,nao,nao)),kin_threshold)
|
||||
if print_ao_ints_mono:
|
||||
kin_ao_blocked=scipy.linalg.block_diag(*kin_ao)
|
||||
ovlp_ao_blocked=scipy.linalg.block_diag(*ovlp_ao)
|
||||
ne_ao_blocked=scipy.linalg.block_diag(*ne_ao)
|
||||
|
||||
kin_ao_blocked=scipy.linalg.block_diag(*kin_ao[1])
|
||||
ovlp_ao_blocked=scipy.linalg.block_diag(*ovlp_ao[1])
|
||||
ne_ao_blocked=scipy.linalg.block_diag(*v_kpts_ao)
|
||||
qph5.create_dataset('ao_one_e_ints/ao_integrals_kinetic_real',data=kin_ao_blocked.real)
|
||||
qph5.create_dataset('ao_one_e_ints/ao_integrals_kinetic_imag',data=kin_ao_blocked.imag)
|
||||
qph5.create_dataset('ao_one_e_ints/ao_integrals_overlap_real',data=ovlp_ao_blocked.real)
|
||||
@ -651,28 +707,28 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
|
||||
qph5.create_dataset('ao_one_e_ints/ao_integrals_n_e_real', data=ne_ao_blocked.real)
|
||||
qph5.create_dataset('ao_one_e_ints/ao_integrals_n_e_imag', data=ne_ao_blocked.imag)
|
||||
|
||||
for fname,ints in zip(('S.qp','V.qp','T.qp'),
|
||||
(ovlp_ao, ne_ao, kin_ao)):
|
||||
print_kpts_unblocked_upper(ints,fname,thresh_mono)
|
||||
|
||||
|
||||
for name, intval_kpts_ao, thresh in (ne_ao, ovlp_ao, kin_ao):
|
||||
if print_ao_ints_mono:
|
||||
with open('%s.qp' % name,'w') as outfile:
|
||||
for ik in range(Nk):
|
||||
shift=ik*nao+1
|
||||
for i in range(nao):
|
||||
for j in range(i,nao):
|
||||
int_ij = intval_kpts_ao[ik,i,j]
|
||||
if abs(int_ij) > thresh:
|
||||
outfile.write(stri2z(i+shift, j+shift, int_ij.real, int_ij.imag)+'\n')
|
||||
if print_mo_ints_mono:
|
||||
intval_kpts_mo = np.einsum('kim,kij,kjn->kmn',mo_k.conj(),intval_kpts_ao,mo_k)
|
||||
with open('%s_mo.qp' % name,'w') as outfile:
|
||||
for ik in range(Nk):
|
||||
shift=ik*nmo+1
|
||||
for i in range(nmo):
|
||||
for j in range(i,nmo):
|
||||
int_ij = intval_kpts_mo[ik,i,j]
|
||||
if abs(int_ij) > thresh:
|
||||
outfile.write(stri2z(i+shift, j+shift, int_ij.real, int_ij.imag)+'\n')
|
||||
kin_mo = ao_to_mo_1e(kin_ao,mo_k)
|
||||
ovlp_mo = ao_to_mo_1e(ovlp_ao,mo_k)
|
||||
ne_mo = ao_to_mo_1e(ne_ao,mo_k)
|
||||
|
||||
kin_mo_blocked=scipy.linalg.block_diag(*kin_mo)
|
||||
ovlp_mo_blocked=scipy.linalg.block_diag(*ovlp_mo)
|
||||
ne_mo_blocked=scipy.linalg.block_diag(*ne_mo)
|
||||
|
||||
qph5.create_dataset('mo_one_e_ints/mo_integrals_kinetic_real',data=kin_mo_blocked.real)
|
||||
qph5.create_dataset('mo_one_e_ints/mo_integrals_kinetic_imag',data=kin_mo_blocked.imag)
|
||||
qph5.create_dataset('mo_one_e_ints/mo_integrals_overlap_real',data=ovlp_mo_blocked.real)
|
||||
qph5.create_dataset('mo_one_e_ints/mo_integrals_overlap_imag',data=ovlp_mo_blocked.imag)
|
||||
qph5.create_dataset('mo_one_e_ints/mo_integrals_n_e_real', data=ne_mo_blocked.real)
|
||||
qph5.create_dataset('mo_one_e_ints/mo_integrals_n_e_imag', data=ne_mo_blocked.imag)
|
||||
for fname,ints in zip(('S.mo.qp','V.mo.qp','T.mo.qp'),
|
||||
(ovlp_mo, ne_mo, kin_mo)):
|
||||
print_kpts_unblocked_upper(ints,fname,thresh_mono)
|
||||
|
||||
|
||||
# ___ _
|
||||
@ -721,6 +777,9 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
|
||||
j3arr=np.array([(i.value.reshape([-1,nao,nao]) if (i.shape[1] == naosq) else makesq3(i.value,nao)) * nkinvsq for i in j3clist])
|
||||
|
||||
nkpt_pairs = j3arr.shape[0]
|
||||
naux = max(i.shape[0] for i in j3arr)
|
||||
print("n df fitting functions", naux)
|
||||
qph5['ao_two_e_ints'].attrs['df_num']=naux
|
||||
df_ao_tmp = np.zeros((nao,nao,naux,nkpt_pairs),dtype=np.complex128)
|
||||
|
||||
if print_ao_ints_df:
|
||||
@ -765,6 +824,88 @@ def pyscf2QP2(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8,
|
||||
print_mo_bi(mf,kconserv,'W.mo.qp',cas_idx,bielec_int_threshold)
|
||||
|
||||
|
||||
def getj3ao(cell,mf, kpts, cas_idx=None, int_threshold = 1E-8):
|
||||
'''
|
||||
kpts = List of kpoints coordinates. Cannot be null, for gamma is other script
|
||||
kmesh = Mesh of kpoints (optional)
|
||||
cas_idx = List of active MOs. If not specified all MOs are actives
|
||||
int_threshold = The integral will be not printed in they are bellow that
|
||||
'''
|
||||
|
||||
from pyscf.pbc import ao2mo
|
||||
from pyscf.pbc import tools
|
||||
from pyscf.pbc.gto import ecp
|
||||
from pyscf.data import nist
|
||||
import h5py
|
||||
import scipy
|
||||
|
||||
|
||||
|
||||
mo_coef_threshold = int_threshold
|
||||
ovlp_threshold = int_threshold
|
||||
kin_threshold = int_threshold
|
||||
ne_threshold = int_threshold
|
||||
bielec_int_threshold = int_threshold
|
||||
|
||||
mo_coeff = mf.mo_coeff
|
||||
# Mo_coeff actif
|
||||
mo_k = np.array([c[:,cas_idx] for c in mo_coeff] if cas_idx is not None else mo_coeff)
|
||||
e_k = np.array([e[cas_idx] for e in mf.mo_energy] if cas_idx is not None else mf.mo_energy)
|
||||
|
||||
Nk, nao, nmo = mo_k.shape
|
||||
print("n Kpts", Nk)
|
||||
print("n active Mos per kpt", nmo)
|
||||
print("n AOs per kpt", nao)
|
||||
|
||||
# naux = mf.with_df.auxcell.nao
|
||||
# print("n df fitting functions", naux)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
with h5py.File(mf.with_df._cderi) as intfile:
|
||||
# intfile=h5py.File(mf.with_df._cderi,'r')
|
||||
|
||||
j3c = intfile.get('j3c')
|
||||
naosq = nao*nao
|
||||
naotri = (nao*(nao+1))//2
|
||||
j3ckeys = list(j3c.keys())
|
||||
j3ckeys.sort(key=lambda strkey:int(strkey))
|
||||
|
||||
# in new(?) version of PySCF, there is an extra layer of groups before the datasets
|
||||
# datasets used to be [/j3c/0, /j3c/1, /j3c/2, ...]
|
||||
# datasets now are [/j3c/0/0, /j3c/1/0, /j3c/2/0, ...]
|
||||
j3clist = [j3c.get(i+'/0') for i in j3ckeys]
|
||||
if j3clist==[None]*len(j3clist):
|
||||
# if using older version, stop before last level
|
||||
j3clist = [j3c.get(i) for i in j3ckeys]
|
||||
|
||||
nkinvsq = 1./np.sqrt(Nk)
|
||||
|
||||
# dimensions are (kikj,iaux,jao,kao), where kikj is compound index of kpts i and j
|
||||
# output dimensions should be reversed (nao, nao, naux, nkptpairs)
|
||||
j3arr=np.array([(i.value.reshape([-1,nao,nao]) if (i.shape[1] == naosq) else makesq3(i.value,nao)) * nkinvsq for i in j3clist])
|
||||
|
||||
return j3arr
|
||||
#nkpt_pairs = j3arr.shape[0]
|
||||
#df_ao_tmp = np.zeros((nao,nao,naux,nkpt_pairs),dtype=np.complex128)
|
||||
|
||||
#if print_ao_ints_df:
|
||||
# with open('D.qp','w') as outfile:
|
||||
# pass
|
||||
# with open('D.qp','a') as outfile:
|
||||
# for k,kpt_pair in enumerate(j3arr):
|
||||
# for iaux,dfbasfunc in enumerate(kpt_pair):
|
||||
# for i,i0 in enumerate(dfbasfunc):
|
||||
# for j,v in enumerate(i0):
|
||||
# if (abs(v) > bielec_int_threshold):
|
||||
# outfile.write(stri4z(i+1,j+1,iaux+1,k+1,v.real,v.imag)+'\n')
|
||||
# df_ao_tmp[i,j,iaux,k]=v
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
#def testpyscf2QP(cell,mf, kpts, kmesh=None, cas_idx=None, int_threshold = 1E-8):
|
||||
# '''
|
||||
|
Loading…
Reference in New Issue
Block a user