9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-21 11:03:29 +01:00

Merge pull request #247 from QuantumPackage/dev-stable
Some checks failed
continuous-integration/drone/push Build is failing

Dev stable
This commit is contained in:
Anthony Scemama 2023-02-21 10:05:30 +01:00 committed by GitHub
commit 810b623743
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
73 changed files with 9609 additions and 857 deletions

57
.github/workflows/compilation.yml vendored Normal file
View File

@ -0,0 +1,57 @@
name: QP Compilation
on:
push:
branches:
- master
- dev-stable
pull_request:
branches:
- dev-stable
- master
jobs:
configuration:
runs-on: ubuntu-20.04
name: Dependencies
steps:
- name: install dependencies
run: |
sudo apt install gfortran gcc liblapack-dev libblas-dev wget python3 make m4 pkg-config
compilation:
name: Compilation
runs-on: ubuntu-20.04
steps:
- uses: actions/checkout@v3
- name: Restore configuration
id: restore
uses: actions/cache@v3
continue-on-error: false
with:
key: qp2-config
fail-on-cache-miss: true
path: |
external/opampack/
include/
lib/
lib64/
libexec/
restore-keys: qp2-
- name: Configuration
run: |
./configure -i ninja || :
./configure -i docopt || :
./configure -i resultsFile || :
./configure -i bats || :
./configure -c ./config/gfortran_debug.cfg
- name: Compilation
run: |
bash -c "source quantum_package.rc ; exec ninja"

66
.github/workflows/configuration.yml vendored Normal file
View File

@ -0,0 +1,66 @@
name: QP Configuration
on:
push:
branches:
- master
# - ci
pull_request:
branches:
- master
schedule:
- cron: "23 22 * * 6"
jobs:
configuration:
runs-on: ubuntu-20.04
name: Dependencies
steps:
- uses: actions/checkout@v3
- name: Install dependencies
run: |
sudo apt install gfortran gcc liblapack-dev libblas-dev wget python3 make m4 pkg-config
- name: zlib
run: |
./configure -i zlib || echo OK
- name: ninja
run: |
./configure -i ninja || echo OK
- name: zeromq
run: |
./configure -i zeromq || echo OK
- name: f77zmq
run: |
./configure -i f77zmq || echo OK
- name: gmp
run: |
./configure -i gmp || echo OK
- name: ocaml
run: |
./configure -i ocaml || echo OK
- name: docopt
run: |
./configure -i docopt || echo OK
- name: resultsFile
run: |
./configure -i resultsFile || echo OK
- name: bats
run: |
./configure -i bats || echo OK
- name: Final check
run: |
./configure -c config/gfortran_debug.cfg
- name: Cache
uses: actions/cache@v3
with:
key: qp2-config
path: |
external/opampack/
include/
lib/
lib64/
libexec/

View File

@ -4,20 +4,20 @@
** Changes
- Introduced DFT-based basis set correction
- Use OpamPack for OCaml
- Configure adapted for ARM
- Added many types of integrals
- Accelerated four-index transformation
*** TODO: take from dev
- [ ] Added GTOs with complex exponent
- [ ] Added many types of integrals
- Updated version of f77-zmq
- Added transcorrelated SCF
- Added transcorrelated CIPSI
- Started to introduce shells in AOs
- Added ECMD UEG functional
- Introduced DFT-based basis set correction
- General davidson algorithm
- Use OpamPack for OCaml
- Configure adapted for ARM
*** Done
- General Davidson algorithm
* Version 2.2

View File

@ -1 +1 @@
2.2.1
2.3.1

21
configure vendored
View File

@ -20,18 +20,6 @@ git submodule update
ARCHITECTURE=$(uname -m)
cd ${QP_ROOT}/external/qp2-dependencies
echo "Architecture: $ARCHITECTURE"
case $ARCHITECTURE in
aarch64)
git checkout arm64
;;
x86_64)
git checkout x86
;;
*)
echo "Unknown architecture. Using x86_64."
git checkout x86
;;
esac
cd ${QP_ROOT}
@ -209,7 +197,7 @@ for PACKAGE in ${PACKAGES} ; do
execute << EOF
rm -f "\${QP_ROOT}"/bin/ninja
tar -zxvf "\${QP_ROOT}"/external/qp2-dependencies/ninja.tar.gz
tar -zxvf "\${QP_ROOT}"/external/qp2-dependencies/${ARCHITECTURE}/ninja.tar.gz
mv ninja "\${QP_ROOT}"/bin/
EOF
@ -254,10 +242,13 @@ EOF
execute <<EOF
source "${QP_ROOT}"/quantum_package.rc
rm -rf "${QP_ROOT}"/external/opampack
cd "${QP_ROOT}"/external/
tar --gunzip --extract --file qp2-dependencies/opampack.tar.gz
tar --gunzip --extract --file qp2-dependencies/${ARCHITECTURE}/opampack.tar.gz
cd "${QP_ROOT}"/external/opampack
./install.sh
export OPAMROOT="${QP_ROOT}"/external/opampack/opamroot
eval \$("${QP_ROOT}"/external/opampack/opam env)
EOF
elif [[ ${PACKAGE} = bse ]] ; then
@ -357,7 +348,7 @@ if [[ ${ZLIB} = $(not_found) ]] ; then
fail
fi
OCAML=$(find_exe ocaml)
OCAML=$(find_exe ocamlc)
if [[ ${OCAML} = $(not_found) ]] ; then
error "OCaml (ocaml) compiler is not installed."
fail

2
external/ezfio vendored

@ -1 +1 @@
Subproject commit ed1df9f3c1f51752656ca98da5693a4119add05c
Subproject commit d5805497fa0ef30e70e055cde1ecec2963303e93

2
external/irpf90 vendored

@ -1 +1 @@
Subproject commit 33ca5e1018f3bbb5e695e6ee558f5dac0753b271
Subproject commit 0007f72f677fe7d61c5e1ed461882cb239517102

@ -1 +1 @@
Subproject commit f40bde0925808bbec0424b57bfcef1b26473a1c8
Subproject commit b8cd5815bce14c9b880e3c5ea3d5fc2652f5955c

8
include/.gitignore vendored
View File

@ -1,7 +1 @@
zmq.h
gmp.h
zconf.h
zconf.h
zlib.h
zmq_utils.h
f77_zmq_free.h
*

View File

@ -84,7 +84,7 @@ end = struct
Ezfio.get_nuclei_nucl_coord()
|> Ezfio.flattened_ezfio
in
let zero = Point3d.of_string Units.Bohr "0. 0. 0." in
let zero = Point3d.of_string ~units:Units.Bohr "0. 0. 0." in
let result = Array.make nucl_num zero in
for i=0 to (nucl_num-1)
do
@ -218,7 +218,7 @@ Nuclear coordinates in xyz format (Angstroms) ::
and lines = Array.of_list lines
in
List.init (Nucl_number.to_int nucl_num) (fun i ->
Atom.of_string Units.Angstrom lines.(i))
Atom.of_string ~units:Units.Angstrom lines.(i))
end
| _ -> failwith "Error in xyz format"
in

3
scripts/.gitignore vendored
View File

@ -2,3 +2,6 @@
*.pyo
docopt.py
resultsFile/
verif_omp/a.out
src/*/Makefile
src/*/*/

View File

@ -99,9 +99,20 @@ def ninja_create_env_variable(pwd_config_file):
l_string = ["builddir = {0}".format(os.path.dirname(ROOT_BUILD_NINJA)),
""]
for flag in ["FC", "FCFLAGS", "IRPF90", "IRPF90_FLAGS"]:
str_ = "{0} = {1}".format(flag, get_compilation_option(pwd_config_file,
flag))
for directory in [real_join(QP_SRC, m) for m in sorted(os.listdir(QP_SRC))]:
includefile = real_join(directory, flag)
try:
content = ""
with open(includefile,'r') as f:
content = f.read()
str_ += " "+content
except IOError:
pass
l_string.append(str_)
lib_lapack = get_compilation_option(pwd_config_file, "LAPACK_LIB")
@ -110,17 +121,20 @@ def ninja_create_env_variable(pwd_config_file):
str_lib = " ".join([lib_lapack, EZFIO_LIB, ZMQ_LIB, LIB, lib_usr])
# Read all LIB files in modules
libfile = "LIB"
try:
content = ""
with open(libfile,'r') as f:
content = f.read()
str_lib += " "+content
except IOError:
pass
for directory in [real_join(QP_SRC, m) for m in sorted(os.listdir(QP_SRC))]:
libfile = real_join(directory, "LIB")
try:
content = ""
with open(libfile,'r') as f:
content = f.read().replace('\n','')
str_lib += " "+content
except IOError:
pass
l_string.append("LIB = {0} ".format(str_lib))
l_string.append("CONFIG_FILE = {0}".format(pwd_config_file))
l_string.append("")
return l_string

11
src/.gitignore vendored Normal file
View File

@ -0,0 +1,11 @@
*
!README.rst
!*/
*/*
!*/*.*
*/*.o
*/build.ninja
*/ezfio_interface.irp.f
*/.gitignore
*/*.swp

View File

@ -80,6 +80,10 @@ BEGIN_PROVIDER [ double precision, ao_integrals_n_e, (ao_num,ao_num)]
IF (DO_PSEUDO) THEN
ao_integrals_n_e += ao_pseudo_integrals
ENDIF
IF(point_charges) THEN
ao_integrals_n_e += ao_integrals_pt_chrg
ENDIF
endif

View File

@ -0,0 +1,108 @@
BEGIN_PROVIDER [ double precision, ao_integrals_pt_chrg, (ao_num,ao_num)]
BEGIN_DOC
! Point charge-electron interaction, in the |AO| basis set.
!
! :math:`\langle \chi_i | -\sum_charge charge * \frac{1}{|r-R_charge|} | \chi_j \rangle`
!
! Notice the minus sign convention as it is supposed to be for electrons.
END_DOC
implicit none
integer :: num_A, num_B, power_A(3), power_B(3)
integer :: i, j, k, l, n_pt_in, m
double precision :: alpha, beta
double precision :: A_center(3),B_center(3),C_center(3)
double precision :: overlap_x,overlap_y,overlap_z,overlap,dx,NAI_pol_mult
ao_integrals_pt_chrg = 0.d0
! if (read_ao_integrals_pt_chrg) then
!
! call ezfio_get_ao_one_e_ints_ao_integrals_pt_chrg(ao_integrals_pt_chrg)
! print *, 'AO N-e integrals read from disk'
!
! else
! if(use_cosgtos) then
! !print *, " use_cosgtos for ao_integrals_pt_chrg ?", use_cosgtos
!
! do j = 1, ao_num
! do i = 1, ao_num
! ao_integrals_pt_chrg(i,j) = ao_integrals_pt_chrg_cosgtos(i,j)
! enddo
! enddo
!
! else
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,l,m,alpha,beta,A_center,B_center,C_center,power_A,power_B,&
!$OMP num_A,num_B,Z,c,c1,n_pt_in) &
!$OMP SHARED (ao_num,ao_prim_num,ao_expo_ordered_transp,ao_power,ao_nucl,pts_charge_coord,ao_coef_normalized_ordered_transp,nucl_coord,&
!$OMP n_pt_max_integrals,ao_integrals_pt_chrg,n_pts_charge,pts_charge_z)
n_pt_in = n_pt_max_integrals
!$OMP DO SCHEDULE (dynamic)
do j = 1, ao_num
num_A = ao_nucl(j)
power_A(1:3)= ao_power(j,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
do i = 1, ao_num
num_B = ao_nucl(i)
power_B(1:3)= ao_power(i,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
do l=1,ao_prim_num(j)
alpha = ao_expo_ordered_transp(l,j)
do m=1,ao_prim_num(i)
beta = ao_expo_ordered_transp(m,i)
double precision :: c, c1
c = 0.d0
do k = 1, n_pts_charge
double precision :: Z
Z = pts_charge_z(k)
C_center(1:3) = pts_charge_coord(k,1:3)
c1 = NAI_pol_mult( A_center, B_center, power_A, power_B &
, alpha, beta, C_center, n_pt_in )
c = c - Z * c1
enddo
ao_integrals_pt_chrg(i,j) = ao_integrals_pt_chrg(i,j) &
+ ao_coef_normalized_ordered_transp(l,j) &
* ao_coef_normalized_ordered_transp(m,i) * c
enddo
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
! endif
! IF(do_pseudo) THEN
! ao_integrals_pt_chrg += ao_pseudo_integrals
! ENDIF
! endif
! if (write_ao_integrals_pt_chrg) then
! call ezfio_set_ao_one_e_ints_ao_integrals_pt_chrg(ao_integrals_pt_chrg)
! print *, 'AO N-e integrals written to disk'
! endif
END_PROVIDER

View File

@ -142,7 +142,7 @@ subroutine ao_idx2_sq(i,j,ij)
ij=i*i
endif
end
subroutine idx2_tri_int(i,j,ij)
implicit none
integer, intent(in) :: i,j
@ -152,7 +152,7 @@ subroutine idx2_tri_int(i,j,ij)
q = min(i,j)
ij = q+ishft(p*p-p,-1)
end
subroutine ao_idx2_tri_key(i,j,ij)
use map_module
implicit none
@ -163,8 +163,8 @@ subroutine ao_idx2_tri_key(i,j,ij)
q = min(i,j)
ij = q+ishft(p*p-p,-1)
end
subroutine two_e_integrals_index_2fold(i,j,k,l,i1)
subroutine two_e_integrals_index_2fold(i,j,k,l,i1)
use map_module
implicit none
integer, intent(in) :: i,j,k,l
@ -176,7 +176,7 @@ subroutine two_e_integrals_index_2fold(i,j,k,l,i1)
call ao_idx2_tri_key(ik,jl,i1)
end
subroutine ao_idx2_sq_rev(i,k,ik)
subroutine ao_idx2_sq_rev(i,k,ik)
BEGIN_DOC
! reverse square compound index
END_DOC
@ -321,14 +321,15 @@ BEGIN_PROVIDER [ double precision, ao_integrals_cache, (0:64*64*64*64) ]
!$OMP END PARALLEL DO
END_PROVIDER
! ---
double precision function get_ao_two_e_integral(i,j,k,l,map) result(result)
double precision function get_ao_two_e_integral(i, j, k, l, map) result(result)
use map_module
implicit none
BEGIN_DOC
! Gets one AO bi-electronic integral from the AO map
! Gets one AO bi-electronic integral from the AO map in PHYSICIST NOTATION
!
! i,j,k,l in physicist notation <ij|kl>
! <1:k, 2:l |1:i, 2:j>
END_DOC
integer, intent(in) :: i,j,k,l
integer(key_kind) :: idx
@ -398,7 +399,7 @@ BEGIN_PROVIDER [ complex*16, ao_integrals_cache_periodic, (0:64*64*64*64) ]
tmp_im = 0.d0
integral = dcmplx(tmp_re,tmp_im)
endif
ii = l-ao_integrals_cache_min
ii = ior( shiftl(ii,6), k-ao_integrals_cache_min)
ii = ior( shiftl(ii,6), j-ao_integrals_cache_min)
@ -473,7 +474,7 @@ subroutine get_ao_two_e_integrals(j,k,l,sze,out_val)
BEGIN_DOC
! Gets multiple AO bi-electronic integral from the AO map .
! All i are retrieved for j,k,l fixed.
! physicist convention : <ij|kl>
! physicist convention : <ij|kl>
END_DOC
implicit none
integer, intent(in) :: j,k,l, sze
@ -502,7 +503,7 @@ subroutine get_ao_two_e_integrals_periodic(j,k,l,sze,out_val)
BEGIN_DOC
! Gets multiple AO bi-electronic integral from the AO map .
! All i are retrieved for j,k,l fixed.
! physicist convention : <ij|kl>
! physicist convention : <ij|kl>
END_DOC
implicit none
integer, intent(in) :: j,k,l, sze

View File

@ -101,6 +101,7 @@ double precision function ao_two_e_integral(i,j,k,l)
endif
endif
end
double precision function ao_two_e_integral_schwartz_accel(i,j,k,l)

View File

@ -70,8 +70,8 @@ subroutine run_cipsi
do while ( &
(N_det < N_det_max) .and. &
(sum(abs(pt2_data % pt2(1:N_states)) * state_average_weight(1:N_states)) > pt2_max) .and. &
(sum(abs(pt2_data % variance(1:N_states)) * state_average_weight(1:N_states)) > variance_max) .and. &
(maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) .and. &
(maxval(abs(pt2_data % variance(1:N_states))) > variance_max) .and. &
(correlation_energy_ratio <= correlation_energy_ratio_max) &
)
write(*,'(A)') '--------------------------------------------------------------------------------'

View File

@ -131,7 +131,7 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
PROVIDE psi_bilinear_matrix_transp_rows_loc psi_bilinear_matrix_transp_columns
PROVIDE psi_bilinear_matrix_transp_order psi_selectors_coef_transp psi_det_sorted
PROVIDE psi_det_hii selection_weight pseudo_sym
PROVIDE list_act list_inact list_core list_virt list_del seniority_max
PROVIDE n_act_orb n_inact_orb n_core_orb n_virt_orb n_del_orb seniority_max
PROVIDE excitation_beta_max excitation_alpha_max excitation_max
if (h0_type == 'CFG') then
@ -290,9 +290,9 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
call set_multiple_levels_omp(.False.)
print '(A)', '========== ======================= ===================== ===================== ==========='
print '(A)', ' Samples Energy Variance Norm^2 Seconds'
print '(A)', '========== ======================= ===================== ===================== ==========='
print '(A)', '========== ==================== ================ ================ ================ ============= ==========='
print '(A)', ' Samples Energy PT2 Variance Norm^2 Convergence Seconds'
print '(A)', '========== ==================== ================ ================ ================ ============= ==========='
PROVIDE global_selection_buffer
@ -316,7 +316,8 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
call end_parallel_job(zmq_to_qp_run_socket, zmq_socket_pull, 'pt2')
call set_multiple_levels_omp(.True.)
print '(A)', '========== ======================= ===================== ===================== ==========='
print '(A)', '========== ==================== ================ ================ ================ ============= ==========='
do k=1,N_states
pt2_overlap(pt2_stoch_istate,k) = pt2_data % overlap(k,pt2_stoch_istate)
@ -414,6 +415,17 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2_data, pt2_data_
double precision :: rss
double precision, external :: memory_of_double, memory_of_int
character(len=20) :: format_str1, str_error1, format_str2, str_error2
character(len=20) :: format_str3, str_error3, format_str4, str_error4
character(len=20) :: format_value1, format_value2, format_value3, format_value4
character(len=20) :: str_value1, str_value2, str_value3, str_value4
character(len=20) :: str_conv
double precision :: value1, value2, value3, value4
double precision :: error1, error2, error3, error4
integer :: size1,size2,size3,size4
double precision :: conv_crit
sending =.False.
rss = memory_of_int(pt2_n_tasks_max*2+N_det_generators*2)
@ -537,14 +549,60 @@ subroutine pt2_collector(zmq_socket_pull, E, relative_error, pt2_data, pt2_data_
if ((time - time1 > 1.d0) .or. (n==N_det_generators)) then
time1 = time
print '(I10, X, F12.6, X, G10.3, X, F10.6, X, G10.3, X, F10.6, X, G10.3, X, F10.1)', c, &
pt2_data % pt2(pt2_stoch_istate) +E, &
pt2_data_err % pt2(pt2_stoch_istate), &
pt2_data % variance(pt2_stoch_istate), &
pt2_data_err % variance(pt2_stoch_istate), &
pt2_data % overlap(pt2_stoch_istate,pt2_stoch_istate), &
pt2_data_err % overlap(pt2_stoch_istate,pt2_stoch_istate), &
time-time0
value1 = pt2_data % pt2(pt2_stoch_istate) + E
error1 = pt2_data_err % pt2(pt2_stoch_istate)
value2 = pt2_data % pt2(pt2_stoch_istate)
error2 = pt2_data_err % pt2(pt2_stoch_istate)
value3 = pt2_data % variance(pt2_stoch_istate)
error3 = pt2_data_err % variance(pt2_stoch_istate)
value4 = pt2_data % overlap(pt2_stoch_istate,pt2_stoch_istate)
error4 = pt2_data_err % overlap(pt2_stoch_istate,pt2_stoch_istate)
! Max size of the values (FX.Y) with X=size
size1 = 15
size2 = 12
size3 = 12
size4 = 12
! To generate the format: number(error)
call format_w_error(value1,error1,size1,8,format_value1,str_error1)
call format_w_error(value2,error2,size2,8,format_value2,str_error2)
call format_w_error(value3,error3,size3,8,format_value3,str_error3)
call format_w_error(value4,error4,size4,8,format_value4,str_error4)
! value > string with the right format
write(str_value1,'('//format_value1//')') value1
write(str_value2,'('//format_value2//')') value2
write(str_value3,'('//format_value3//')') value3
write(str_value4,'('//format_value4//')') value4
! Convergence criterion
conv_crit = dabs(pt2_data_err % pt2(pt2_stoch_istate)) / &
(1.d-20 + dabs(pt2_data % pt2(pt2_stoch_istate)) )
write(str_conv,'(G10.3)') conv_crit
write(*,'(I10,X,X,A20,X,A16,X,A16,X,A16,X,A12,X,F10.1)') c,&
adjustl(adjustr(str_value1)//'('//str_error1(1:1)//')'),&
adjustl(adjustr(str_value2)//'('//str_error2(1:1)//')'),&
adjustl(adjustr(str_value3)//'('//str_error3(1:1)//')'),&
adjustl(adjustr(str_value4)//'('//str_error4(1:1)//')'),&
adjustl(str_conv),&
time-time0
! Old print
!print '(I10, X, F12.6, X, G10.3, X, F10.6, X, G10.3, X, F10.6, X, G10.3, X, F10.1,1pE16.6,1pE16.6)', c, &
! pt2_data % pt2(pt2_stoch_istate) +E, &
! pt2_data_err % pt2(pt2_stoch_istate), &
! pt2_data % variance(pt2_stoch_istate), &
! pt2_data_err % variance(pt2_stoch_istate), &
! pt2_data % overlap(pt2_stoch_istate,pt2_stoch_istate), &
! pt2_data_err % overlap(pt2_stoch_istate,pt2_stoch_istate), &
! time-time0, &
! pt2_data % pt2(pt2_stoch_istate), &
! dabs(pt2_data_err % pt2(pt2_stoch_istate)) / &
! (1.d-20 + dabs(pt2_data % pt2(pt2_stoch_istate)) )
if (stop_now .or. ( &
(do_exit .and. (dabs(pt2_data_err % pt2(pt2_stoch_istate)) / &
(1.d-20 + dabs(pt2_data % pt2(pt2_stoch_istate)) ) <= relative_error))) ) then
@ -844,6 +902,7 @@ END_PROVIDER
if (tooth_width == 0.d0) then
tooth_width = max(1.d-15,sum(tilde_w(pt2_n_0(t):pt2_n_0(t+1))))
endif
ASSERT(tooth_width > 0.d0)
do i=pt2_n_0(t)+1, pt2_n_0(t+1)
pt2_w(i) = tilde_w(i) * pt2_W_T / tooth_width
end do

View File

@ -31,11 +31,12 @@ subroutine run_pt2_slave(thread,iproc,energy)
double precision, intent(in) :: energy(N_states_diag)
integer, intent(in) :: thread, iproc
if (N_det > 100000 ) then
call run_pt2_slave_large(thread,iproc,energy)
else
call run_pt2_slave_small(thread,iproc,energy)
endif
call run_pt2_slave_large(thread,iproc,energy)
! if (N_det > 100000 ) then
! call run_pt2_slave_large(thread,iproc,energy)
! else
! call run_pt2_slave_small(thread,iproc,energy)
! endif
end
subroutine run_pt2_slave_small(thread,iproc,energy)
@ -66,6 +67,7 @@ subroutine run_pt2_slave_small(thread,iproc,energy)
double precision, external :: memory_of_double, memory_of_int
integer :: bsize ! Size of selection buffers
! logical :: sending
allocate(task_id(pt2_n_tasks_max), task(pt2_n_tasks_max))
allocate(pt2_data(pt2_n_tasks_max), i_generator(pt2_n_tasks_max), subset(pt2_n_tasks_max))
@ -83,6 +85,7 @@ subroutine run_pt2_slave_small(thread,iproc,energy)
buffer_ready = .False.
n_tasks = 1
! sending = .False.
done = .False.
do while (.not.done)
@ -116,13 +119,14 @@ subroutine run_pt2_slave_small(thread,iproc,energy)
do k=1,n_tasks
call pt2_alloc(pt2_data(k),N_states)
b%cur = 0
! double precision :: time2
! call wall_time(time2)
!double precision :: time2
!call wall_time(time2)
call select_connected(i_generator(k),energy,pt2_data(k),b,subset(k),pt2_F(i_generator(k)))
! call wall_time(time1)
! print *, i_generator(1), time1-time2, n_tasks, pt2_F(i_generator(1))
!call wall_time(time1)
!print *, i_generator(1), time1-time2, n_tasks, pt2_F(i_generator(1))
enddo
call wall_time(time1)
!print *, '-->', i_generator(1), time1-time0, n_tasks
integer, external :: tasks_done_to_taskserver
if (tasks_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,n_tasks) == -1) then
@ -160,11 +164,6 @@ end subroutine
subroutine run_pt2_slave_large(thread,iproc,energy)
use selection_types
use f77_zmq
BEGIN_DOC
! This subroutine can miss important determinants when the PT2 is completely
! computed. It should be called only for large workloads where the PT2 is
! interrupted before the end
END_DOC
implicit none
double precision, intent(in) :: energy(N_states_diag)
@ -190,12 +189,8 @@ subroutine run_pt2_slave_large(thread,iproc,energy)
integer :: bsize ! Size of selection buffers
logical :: sending
double precision :: time_shift
PROVIDE global_selection_buffer global_selection_buffer_lock
call random_number(time_shift)
time_shift = time_shift*15.d0
zmq_to_qp_run_socket = new_zmq_to_qp_run_socket()
@ -213,9 +208,6 @@ subroutine run_pt2_slave_large(thread,iproc,energy)
sending = .False.
done = .False.
double precision :: time0, time1
call wall_time(time0)
time0 = time0+time_shift
do while (.not.done)
integer, external :: get_tasks_from_taskserver
@ -242,28 +234,25 @@ subroutine run_pt2_slave_large(thread,iproc,energy)
ASSERT (b%N == bsize)
endif
double precision :: time0, time1
call wall_time(time0)
call pt2_alloc(pt2_data,N_states)
b%cur = 0
call select_connected(i_generator,energy,pt2_data,b,subset,pt2_F(i_generator))
call wall_time(time1)
integer, external :: tasks_done_to_taskserver
if (tasks_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id,n_tasks) == -1) then
done = .true.
endif
call sort_selection_buffer(b)
call wall_time(time1)
! if (time1-time0 > 15.d0) then
call omp_set_lock(global_selection_buffer_lock)
global_selection_buffer%mini = b%mini
call merge_selection_buffers(b,global_selection_buffer)
b%cur=0
call omp_unset_lock(global_selection_buffer_lock)
call wall_time(time0)
! endif
call push_pt2_results_async_recv(zmq_socket_push,b%mini,sending)
if ( iproc == 1 .or. i_generator < 100 .or. done) then
call omp_set_lock(global_selection_buffer_lock)
global_selection_buffer%mini = b%mini
call merge_selection_buffers(b,global_selection_buffer)
b%cur=0
call omp_unset_lock(global_selection_buffer_lock)
if ( iproc == 1 ) then
call omp_set_lock(global_selection_buffer_lock)
call push_pt2_results_async_send(zmq_socket_push, (/i_generator/), (/pt2_data/), global_selection_buffer, (/task_id/), 1,sending)
global_selection_buffer%cur = 0

View File

@ -571,7 +571,6 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
double precision, external :: diag_H_mat_elem_fock
double precision :: E_shift
double precision :: s_weight(N_states,N_states)
logical, external :: is_in_wavefunction
PROVIDE dominant_dets_of_cfgs N_dominant_dets_of_cfgs
do jstate=1,N_states
do istate=1,N_states
@ -751,7 +750,10 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
if (delta_E < 0.d0) then
tmp = -tmp
endif
!e_pert(istate) = alpha_h_psi * alpha_h_psi / (E0(istate) - Hii)
e_pert(istate) = 0.5d0 * (tmp - delta_E)
if (dabs(alpha_h_psi) > 1.d-4) then
coef(istate) = e_pert(istate) / alpha_h_psi
else
@ -864,6 +866,7 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
!!!BEGIN_DEBUG
! ! To check if the pt2 is taking determinants already in the wf
! if (is_in_wavefunction(det(N_int,1),N_int)) then
! logical, external :: is_in_wavefunction
! print*, 'A determinant contributing to the pt2 is already in'
! print*, 'the wave function:'
! call print_det(det(N_int,1),N_int)

View File

@ -311,7 +311,7 @@ subroutine run_slave_main
if (mpi_master) then
print *, 'Running PT2'
endif
!$OMP PARALLEL PRIVATE(i) NUM_THREADS(nproc_target)
!$OMP PARALLEL PRIVATE(i) NUM_THREADS(nproc_target+1)
i = omp_get_thread_num()
call run_pt2_slave(0,i,pt2_e0_denominator)
!$OMP END PARALLEL

View File

@ -69,8 +69,8 @@ subroutine run_stochastic_cipsi
do while ( &
(N_det < N_det_max) .and. &
(sum(abs(pt2_data % pt2(1:N_states)) * state_average_weight(1:N_states)) > pt2_max) .and. &
(sum(abs(pt2_data % variance(1:N_states)) * state_average_weight(1:N_states)) > variance_max) .and. &
(maxval(abs(pt2_data % pt2(1:N_states))) > pt2_max) .and. &
(maxval(abs(pt2_data % variance(1:N_states))) > variance_max) .and. &
(correlation_energy_ratio <= correlation_energy_ratio_max) &
)
write(*,'(A)') '--------------------------------------------------------------------------------'

View File

@ -66,10 +66,27 @@ subroutine v_rho_oc_to_v_rho_ab(v_rho_o,v_rho_c,v_rho_a,v_rho_b)
END_DOC
double precision, intent(in) :: v_rho_o,v_rho_c
double precision, intent(out) :: v_rho_a,v_rho_b
! print*,'in v_rho_oc_to_v_rho_ab'
! print*, v_rho_c , v_rho_o
v_rho_a = v_rho_c + v_rho_o
v_rho_b = v_rho_c - v_rho_o
end
subroutine v_grad_rho_ab_to_v_grad_rho_oc(v_grad_rho_a_2,v_grad_rho_b_2,v_grad_rho_a_b,v_grad_rho_o_2,v_grad_rho_c_2,v_grad_rho_o_c)
implicit none
double precision, intent(in) :: v_grad_rho_a_2,v_grad_rho_b_2,v_grad_rho_a_b
double precision, intent(out) :: v_grad_rho_o_2,v_grad_rho_c_2,v_grad_rho_o_c
BEGIN_DOC
! convert (v_grad_rho_a_2, v_grad_rho_b_2, v_grad_rho_a.grad_rho_b)
!
! to (v_grad_rho_c_2, v_grad_rho_o_2, v_grad_rho_o.grad_rho_c)
!
! rho_c = total density, rho_o spin density
END_DOC
v_grad_rho_c_2 = 0.25d0 * (v_grad_rho_a_2 + v_grad_rho_b_2 + v_grad_rho_a_b)
v_grad_rho_o_2 = 0.25d0 * (v_grad_rho_a_2 + v_grad_rho_b_2 - v_grad_rho_a_b)
v_grad_rho_o_c = 0.25d0 * (2d0 * v_grad_rho_a_2 - 2d0 * v_grad_rho_b_2 )
end
subroutine v_grad_rho_oc_to_v_grad_rho_ab(v_grad_rho_o_2,v_grad_rho_c_2,v_grad_rho_o_c,v_grad_rho_a_2,v_grad_rho_b_2,v_grad_rho_a_b)
@ -88,21 +105,3 @@ subroutine v_grad_rho_oc_to_v_grad_rho_ab(v_grad_rho_o_2,v_grad_rho_c_2,v_grad_r
v_grad_rho_a_b = -2d0 * v_grad_rho_o_2 + 2d0 * v_grad_rho_c_2
end

View File

@ -45,6 +45,8 @@
call density_and_grad_alpha_beta_and_all_aos_and_grad_aos_at_r(r,dm_a,dm_b, dm_a_grad, dm_b_grad, aos_array, grad_aos_array)
! alpha/beta density
dm_a(istate) = max(dm_a(istate),1.d-12)
dm_b(istate) = max(dm_b(istate),1.d-12)
one_e_dm_and_grad_alpha_in_r(4,i,istate) = dm_a(istate)
one_e_dm_and_grad_beta_in_r(4,i,istate) = dm_b(istate)
@ -80,6 +82,7 @@
enddo
enddo
!$OMP END PARALLEL DO
print*,'density and gradients provided'
END_PROVIDER

View File

@ -18,6 +18,39 @@ function run() {
}
function run_pt_charges() {
thresh=1.e-5
cp ${QP_ROOT}/src/nuclei/write_pt_charges.py .
cat > hcn.xyz << EOF
3
HCN molecule
C 0.0 0.0 0.0
H 0.0 0.0 1.064
N 0.0 0.0 -1.156
EOF
cat > hcn_charges.xyz << EOF
0.5 2.0 0.0 0.0
0.5 -2.0 0.0 0.0
EOF
rm -rf hcn.ezfio
qp create_ezfio -b def2-svp hcn.xyz
qp run scf
mv hcn_charges.xyz hcn.ezfio_point_charges.xyz
python write_pt_charges.py hcn.ezfio
qp set nuclei point_charges True
qp run scf | tee hcn.ezfio.pt_charges.out
energy="$(ezfio get hartree_fock energy)"
rm -rf hcn.ezfio
good=-92.76613324421798
eq $energy $good $thresh
}
@test "point charges" {
run_pt_charges
}
@test "B-B" { # 3s
run b2_stretched.ezfio -48.9950585434279
}

View File

@ -49,7 +49,6 @@ subroutine create_guess
if (.not.exists) then
mo_label = 'Guess'
if (mo_guess_type == "HCore") then
mo_coef = ao_ortho_lowdin_coef
call restore_symmetry(ao_num,mo_num,mo_coef,size(mo_coef,1),1.d-10)
TOUCH mo_coef
call mo_as_eigvectors_of_mo_matrix(mo_one_e_integrals, &

View File

@ -235,11 +235,11 @@ subroutine get_mo_two_e_integrals_erf_ij(k,l,sze,out_array,map)
logical :: integral_is_in_map
if (key_kind == 8) then
call i8radix_sort(hash,iorder,kk,-1)
call i8sort(hash,iorder,kk)
else if (key_kind == 4) then
call iradix_sort(hash,iorder,kk,-1)
call isort(hash,iorder,kk)
else if (key_kind == 2) then
call i2radix_sort(hash,iorder,kk,-1)
call i2sort(hash,iorder,kk)
endif
call map_get_many(mo_integrals_erf_map, hash, tmp_val, kk)
@ -290,11 +290,11 @@ subroutine get_mo_two_e_integrals_erf_i1j1(k,l,sze,out_array,map)
logical :: integral_is_in_map
if (key_kind == 8) then
call i8radix_sort(hash,iorder,kk,-1)
call i8sort(hash,iorder,kk)
else if (key_kind == 4) then
call iradix_sort(hash,iorder,kk,-1)
call isort(hash,iorder,kk)
else if (key_kind == 2) then
call i2radix_sort(hash,iorder,kk,-1)
call i2sort(hash,iorder,kk)
endif
call map_get_many(mo_integrals_erf_map, hash, tmp_val, kk)

View File

@ -53,7 +53,7 @@ BEGIN_PROVIDER [ double precision, h_core_ri, (mo_num, mo_num) ]
enddo
do k=1,mo_num
do i=1,mo_num
h_core_ri(i,j) = h_core_ri(i,j) - 0.5 * big_array_exchange_integrals(k,i,j)
h_core_ri(i,j) = h_core_ri(i,j) - 0.5d0 * big_array_exchange_integrals(k,i,j)
enddo
enddo
enddo

View File

@ -53,7 +53,11 @@ BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
! call four_idx_novvvv
call four_idx_novvvv_old
else
call add_integrals_to_map(full_ijkl_bitmask_4)
if (dble(ao_num)**4 * 32.d-9 < dble(qp_max_mem)) then
call four_idx_dgemm
else
call add_integrals_to_map(full_ijkl_bitmask_4)
endif
endif
call wall_time(wall_2)
@ -77,6 +81,94 @@ BEGIN_PROVIDER [ logical, mo_two_e_integrals_in_map ]
END_PROVIDER
subroutine four_idx_dgemm
implicit none
integer :: p,q,r,s,i,j,k,l
double precision, allocatable :: a1(:,:,:,:)
double precision, allocatable :: a2(:,:,:,:)
allocate (a1(ao_num,ao_num,ao_num,ao_num))
print *, 'Getting AOs'
!$OMP PARALLEL DO DEFAULT(SHARED) PRIVATE(q,r,s)
do s=1,ao_num
do r=1,ao_num
do q=1,ao_num
call get_ao_two_e_integrals(q,r,s,ao_num,a1(1,q,r,s))
enddo
enddo
enddo
!$OMP END PARALLEL DO
print *, '1st transformation'
! 1st transformation
allocate (a2(ao_num,ao_num,ao_num,mo_num))
call dgemm('T','N', (ao_num*ao_num*ao_num), mo_num, ao_num, 1.d0, a1, ao_num, mo_coef, ao_num, 0.d0, a2, (ao_num*ao_num*ao_num))
! 2nd transformation
print *, '2nd transformation'
deallocate (a1)
allocate (a1(ao_num,ao_num,mo_num,mo_num))
call dgemm('T','N', (ao_num*ao_num*mo_num), mo_num, ao_num, 1.d0, a2, ao_num, mo_coef, ao_num, 0.d0, a1, (ao_num*ao_num*mo_num))
! 3rd transformation
print *, '3rd transformation'
deallocate (a2)
allocate (a2(ao_num,mo_num,mo_num,mo_num))
call dgemm('T','N', (ao_num*mo_num*mo_num), mo_num, ao_num, 1.d0, a1, ao_num, mo_coef, ao_num, 0.d0, a2, (ao_num*mo_num*mo_num))
! 4th transformation
print *, '4th transformation'
deallocate (a1)
allocate (a1(mo_num,mo_num,mo_num,mo_num))
call dgemm('T','N', (mo_num*mo_num*mo_num), mo_num, ao_num, 1.d0, a2, ao_num, mo_coef, ao_num, 0.d0, a1, (mo_num*mo_num*mo_num))
deallocate (a2)
integer :: n_integrals, size_buffer
integer(key_kind) , allocatable :: buffer_i(:)
real(integral_kind), allocatable :: buffer_value(:)
size_buffer = min(ao_num*ao_num*ao_num,16000000)
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(i,j,k,l,buffer_value,buffer_i,n_integrals)
allocate ( buffer_i(size_buffer), buffer_value(size_buffer) )
n_integrals = 0
!$OMP DO
do l=1,mo_num
do k=1,mo_num
do j=1,l
do i=1,k
if (abs(a1(i,j,k,l)) < mo_integrals_threshold) then
cycle
endif
n_integrals += 1
buffer_value(n_integrals) = a1(i,j,k,l)
!DIR$ FORCEINLINE
call mo_two_e_integrals_index(i,j,k,l,buffer_i(n_integrals))
if (n_integrals == size_buffer) then
call map_append(mo_integrals_map, buffer_i, buffer_value, n_integrals)
n_integrals = 0
endif
enddo
enddo
enddo
enddo
!$OMP END DO
call map_append(mo_integrals_map, buffer_i, buffer_value, n_integrals)
deallocate(buffer_i, buffer_value)
!$OMP END PARALLEL
deallocate (a1)
call map_unique(mo_integrals_map)
integer*8 :: get_mo_map_size, mo_map_size
mo_map_size = get_mo_map_size()
end subroutine
subroutine add_integrals_to_map(mask_ijkl)
use bitmasks
@ -153,24 +245,26 @@ subroutine add_integrals_to_map(mask_ijkl)
return
endif
size_buffer = min(ao_num*ao_num*ao_num,16000000)
call wall_time(wall_1)
size_buffer = min(ao_num*ao_num*ao_num,8000000)
print*, 'Buffers : ', 8.*(mo_num*(n_j)*(n_k+1) + mo_num+&
ao_num+ao_num*ao_num+ size_buffer*3)/(1024*1024), 'MB / core'
double precision :: accu_bis
accu_bis = 0.d0
call wall_time(wall_1)
!$OMP PARALLEL PRIVATE(l1,k1,j1,i1,i2,i3,i4,i,j,k,l,c, ii1,kmax, &
!$OMP two_e_tmp_0_idx, two_e_tmp_0, two_e_tmp_1,two_e_tmp_2,two_e_tmp_3,&
!$OMP buffer_i,buffer_value,n_integrals,wall_2,i0,j0,k0,l0, &
!$OMP wall_0,thread_num,accu_bis) &
!$OMP wall_0,thread_num) &
!$OMP DEFAULT(NONE) &
!$OMP SHARED(size_buffer,ao_num,mo_num,n_i,n_j,n_k,n_l, &
!$OMP mo_coef_transp, &
!$OMP mo_coef_transp_is_built, list_ijkl, &
!$OMP mo_coef_is_built, wall_1, &
!$OMP mo_coef,mo_integrals_threshold,mo_integrals_map)
thread_num = 0
!$ thread_num = omp_get_thread_num()
n_integrals = 0
wall_0 = wall_1
allocate(two_e_tmp_3(mo_num, n_j, n_k), &
@ -181,8 +275,6 @@ subroutine add_integrals_to_map(mask_ijkl)
buffer_i(size_buffer), &
buffer_value(size_buffer) )
thread_num = 0
!$ thread_num = omp_get_thread_num()
!$OMP DO SCHEDULE(guided)
do l1 = 1,ao_num
two_e_tmp_3 = 0.d0
@ -340,10 +432,10 @@ subroutine add_integrals_to_map(mask_ijkl)
!$OMP END DO NOWAIT
deallocate (two_e_tmp_1,two_e_tmp_2,two_e_tmp_3)
integer :: index_needed
call insert_into_mo_integrals_map(n_integrals,buffer_i,buffer_value,&
real(mo_integrals_threshold,integral_kind))
if (n_integrals > 0) then
call insert_into_mo_integrals_map(n_integrals,buffer_i,buffer_value,&
real(mo_integrals_threshold,integral_kind))
endif
deallocate(buffer_i, buffer_value)
!$OMP END PARALLEL
call map_merge(mo_integrals_map)
@ -433,12 +525,10 @@ subroutine add_integrals_to_map_three_indices(mask_ijk)
call wall_time(wall_1)
call cpu_time(cpu_1)
double precision :: accu_bis
accu_bis = 0.d0
!$OMP PARALLEL PRIVATE(m,l1,k1,j1,i1,i2,i3,i4,i,j,k,l,c, ii1,kmax, &
!$OMP two_e_tmp_0_idx, two_e_tmp_0, two_e_tmp_1,two_e_tmp_2,two_e_tmp_3,&
!$OMP buffer_i,buffer_value,n_integrals,wall_2,i0,j0,k0,l0, &
!$OMP wall_0,thread_num,accu_bis) &
!$OMP wall_0,thread_num) &
!$OMP DEFAULT(NONE) &
!$OMP SHARED(size_buffer,ao_num,mo_num,n_i,n_j,n_k, &
!$OMP mo_coef_transp, &
@ -636,8 +726,6 @@ subroutine add_integrals_to_map_three_indices(mask_ijk)
!$OMP END DO NOWAIT
deallocate (two_e_tmp_1,two_e_tmp_2,two_e_tmp_3)
integer :: index_needed
call insert_into_mo_integrals_map(n_integrals,buffer_i,buffer_value,&
real(mo_integrals_threshold,integral_kind))
deallocate(buffer_i, buffer_value)

View File

@ -37,3 +37,27 @@ type: logical
doc: If true, the calculation uses periodic boundary conditions
interface: ezfio, provider, ocaml
default: false
[n_pts_charge]
type: integer
doc: Number of point charges to be added to the potential
interface: ezfio
default: 0
[pts_charge_z]
type: double precision
doc: Charge associated to each point charge
interface: ezfio
size: (nuclei.n_pts_charge)
[pts_charge_coord]
type: double precision
doc: Coordinate of each point charge.
interface: ezfio
size: (nuclei.n_pts_charge,3)
[point_charges]
type: logical
doc: If |true|, point charges (see nuclei/write_pt_charges.py) are added to the one-electron potential
interface: ezfio,provider,ocaml
default: False

View File

@ -205,6 +205,9 @@ BEGIN_PROVIDER [ double precision, nuclear_repulsion ]
enddo
enddo
nuclear_repulsion *= 0.5d0
if(point_charges)then
nuclear_repulsion += pt_chrg_nuclei_interaction + pt_chrg_interaction
endif
end if
call write_time(6)

View File

@ -0,0 +1,209 @@
! ---
BEGIN_PROVIDER [ integer, n_pts_charge ]
implicit none
BEGIN_DOC
! Number of point charges to be added to the potential
END_DOC
logical :: has
PROVIDE ezfio_filename
if (mpi_master) then
call ezfio_has_nuclei_n_pts_charge(has)
if (has) then
write(6,'(A)') '.. >>>>> [ IO READ: n_pts_charge ] <<<<< ..'
call ezfio_get_nuclei_n_pts_charge(n_pts_charge)
else
print *, 'nuclei/n_pts_charge not found in EZFIO file'
stop 1
endif
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST( n_pts_charge, 1, MPI_INTEGER, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read n_pts_charge with MPI'
endif
IRP_ENDIF
call write_time(6)
END_PROVIDER
BEGIN_PROVIDER [ double precision, pts_charge_z, (n_pts_charge) ]
BEGIN_DOC
! Charge associated to each point charge.
END_DOC
implicit none
logical :: exists
PROVIDE ezfio_filename
if (mpi_master) then
call ezfio_has_nuclei_pts_charge_z(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST(pts_charge_z, (n_pts_charge), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read pts_charge_z with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
write(6,'(A)') '.. >>>>> [ IO READ: pts_charge_z ] <<<<< ..'
call ezfio_get_nuclei_pts_charge_z(pts_charge_z)
IRP_IF MPI
call MPI_BCAST(pts_charge_z, (n_pts_charge), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read pts_charge_z with MPI'
endif
IRP_ENDIF
endif
else
integer :: i
do i = 1, n_pts_charge
pts_charge_z(i) = 0.d0
enddo
endif
print*,'Point charges '
do i = 1, n_pts_charge
print*,'i,pts_charge_z(i)',i,pts_charge_z(i)
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, pts_charge_coord, (n_pts_charge,3) ]
BEGIN_DOC
! Coordinates of each point charge.
END_DOC
implicit none
logical :: exists
PROVIDE ezfio_filename
if (mpi_master) then
call ezfio_has_nuclei_pts_charge_coord(exists)
endif
IRP_IF MPI_DEBUG
print *, irp_here, mpi_rank
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
IRP_ENDIF
IRP_IF MPI
include 'mpif.h'
integer :: ierr
call MPI_BCAST(pts_charge_coord, (n_pts_charge), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read pts_charge_coord with MPI'
endif
IRP_ENDIF
if (exists) then
if (mpi_master) then
double precision, allocatable :: buffer(:,:)
allocate (buffer(n_pts_charge,3))
write(6,'(A)') '.. >>>>> [ IO READ: pts_charge_coord ] <<<<< ..'
call ezfio_get_nuclei_pts_charge_coord(buffer)
integer :: i,j
do i=1,3
do j=1,n_pts_charge
pts_charge_coord(j,i) = buffer(j,i)
enddo
enddo
deallocate(buffer)
IRP_IF MPI
call MPI_BCAST(pts_charge_coord, (n_pts_charge), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
if (ierr /= MPI_SUCCESS) then
stop 'Unable to read pts_charge_coord with MPI'
endif
IRP_ENDIF
endif
else
do i = 1, n_pts_charge
pts_charge_coord(i,:) = 0.d0
enddo
endif
print*,'Coordinates for the point charges '
do i = 1, n_pts_charge
write(*,'(I3,X,3(F16.8,X))') i,pts_charge_coord(i,1:3)
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, pt_chrg_interaction]
implicit none
BEGIN_DOC
! Interaction between the point charges
END_DOC
integer :: i,j
double precision :: Z_A, z_B,A_center(3), B_center(3), dist
pt_chrg_interaction = 0.d0
do i = 1, n_pts_charge
Z_A = pts_charge_z(i)
A_center(1:3) = pts_charge_coord(i,1:3)
do j = i+1, n_pts_charge
Z_B = pts_charge_z(j)
B_center(1:3) = pts_charge_coord(j,1:3)
dist = (A_center(1)-B_center(1))**2 + (A_center(2)-B_center(2))**2 + (A_center(3)-B_center(3))**2
dist = dsqrt(dist)
pt_chrg_interaction += Z_A*Z_B/dist
enddo
enddo
print*,'Interaction between the point charges '
print*,'pt_chrg_interaction = ',pt_chrg_interaction
END_PROVIDER
BEGIN_PROVIDER [ double precision, pt_chrg_nuclei_interaction]
implicit none
BEGIN_DOC
! repulsion between the point charges and the nuclei
END_DOC
integer :: i,j
double precision :: Z_A, z_B,A_center(3), B_center(3), dist
pt_chrg_nuclei_interaction = 0.d0
do i = 1, n_pts_charge
Z_A = pts_charge_z(i)
A_center(1:3) = pts_charge_coord(i,1:3)
do j = 1, nucl_num
Z_B = nucl_charge(j)
B_center(1:3) = nucl_coord(j,1:3)
dist = (A_center(1)-B_center(1))**2 + (A_center(2)-B_center(2))**2 + (A_center(3)-B_center(3))**2
dist = dsqrt(dist)
pt_chrg_nuclei_interaction += Z_A*Z_B/dist
enddo
enddo
print*,'Interaction between point charges and nuclei'
print*,'pt_chrg_nuclei_interaction = ',pt_chrg_nuclei_interaction
END_PROVIDER

View File

@ -16,7 +16,7 @@
else
ref_tc_energy_3e = 0.d0
endif
ref_tc_energy_tot = ref_tc_energy_1e + ref_tc_energy_2e + ref_tc_energy_3e
ref_tc_energy_tot = ref_tc_energy_1e + ref_tc_energy_2e + ref_tc_energy_3e + nuclear_repulsion
END_PROVIDER
subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree, htot)
@ -88,7 +88,7 @@ subroutine diag_htilde_mu_mat_fock_bi_ortho(Nint, det_in, hmono, htwoe, hthree,
call a_tc_operator ( occ_hole (i,ispin), ispin, det_tmp, hmono,htwoe,hthree, Nint,na,nb)
enddo
enddo
htot = hmono+htwoe+hthree
htot = hmono+htwoe+hthree+nuclear_repulsion
end
subroutine ac_tc_operator(iorb,ispin,key,hmono,htwoe,hthree,Nint,na,nb)

View File

@ -17,6 +17,7 @@ subroutine routine_active_only
double precision :: wee_ab_st_av, rdm_ab_st_av
double precision :: wee_tot_st_av, rdm_tot_st_av,spin_trace
double precision :: wee_aa_st_av_2,wee_ab_st_av_2,wee_bb_st_av_2,wee_tot_st_av_2,wee_tot_st_av_3
double precision :: accu_aa, accu_bb, accu_ab, accu_tot
wee_ab = 0.d0
wee_bb = 0.d0
@ -64,14 +65,23 @@ subroutine routine_active_only
do istate = 1, N_states
!! PURE ACTIVE PART
!!
accu_aa = 0.d0
accu_bb = 0.d0
accu_ab = 0.d0
accu_tot = 0.d0
do i = 1, n_act_orb
iorb = list_act(i)
do j = 1, n_act_orb
jorb = list_act(j)
accu_bb += act_2_rdm_bb_mo(j,i,j,i,1)
accu_aa += act_2_rdm_aa_mo(j,i,j,i,1)
accu_ab += act_2_rdm_ab_mo(j,i,j,i,1)
accu_tot += act_2_rdm_spin_trace_mo(j,i,j,i,1)
do k = 1, n_act_orb
korb = list_act(k)
do l = 1, n_act_orb
lorb = list_act(l)
! 1 2 1 2 2 1 2 1
if(dabs(act_2_rdm_spin_trace_mo(i,j,k,l,istate) - act_2_rdm_spin_trace_mo(j,i,l,k,istate)).gt.1.d-10)then
print*,'Error in act_2_rdm_spin_trace_mo'
print*,"dabs(act_2_rdm_spin_trace_mo(i,j,k,l) - act_2_rdm_spin_trace_mo(j,i,l,k)).gt.1.d-10"
@ -79,6 +89,7 @@ subroutine routine_active_only
print*,act_2_rdm_spin_trace_mo(i,j,k,l,istate),act_2_rdm_spin_trace_mo(j,i,l,k,istate),dabs(act_2_rdm_spin_trace_mo(i,j,k,l,istate) - act_2_rdm_spin_trace_mo(j,i,l,k,istate))
endif
! 1 2 1 2 1 2 1 2
if(dabs(act_2_rdm_spin_trace_mo(i,j,k,l,istate) - act_2_rdm_spin_trace_mo(k,l,i,j,istate)).gt.1.d-10)then
print*,'Error in act_2_rdm_spin_trace_mo'
print*,"dabs(act_2_rdm_spin_trace_mo(i,j,k,l,istate) - act_2_rdm_spin_trace_mo(k,l,i,j,istate),istate).gt.1.d-10"
@ -131,6 +142,15 @@ subroutine routine_active_only
print*,'wee_tot = ',wee_tot(istate)
print*,'Full energy '
print*,'psi_energy_two_e(istate)= ',psi_energy_two_e(istate)
print*,'--------------------------'
print*,'accu_aa = ',accu_aa
print*,'N_a (N_a-1)/2 = ', elec_alpha_num*(elec_alpha_num-1)*0.5
print*,'accu_bb = ',accu_bb
print*,'N_b (N_b-1)/2 = ', elec_beta_num*(elec_beta_num-1)*0.5
print*,'accu_ab = ',accu_ab
print*,'N_a N_b = ', elec_beta_num*elec_alpha_num
print*,'accu_tot = ',accu_tot
print*,'Ne(Ne-1)/2 = ',(elec_num-1)*elec_num * 0.5
enddo
wee_aa_st_av = 0.d0
wee_bb_st_av = 0.d0

View File

@ -14,6 +14,7 @@ double precision, parameter :: thresh = 1.d-15
double precision, parameter :: cx_lda = -0.73855876638202234d0
double precision, parameter :: c_2_4_3 = 2.5198420997897464d0
double precision, parameter :: cst_lda = -0.93052573634909996d0
double precision, parameter :: c_4_3 = 1.3333333333333333d0
double precision, parameter :: c_1_3 = 0.3333333333333333d0
double precision, parameter :: c_4_3 = 4.d0/3.d0
double precision, parameter :: c_1_3 = 1.d0/3.d0
double precision, parameter :: sq_op5 = dsqrt(0.5d0)
double precision, parameter :: dlog_2pi = dlog(2.d0*dacos(-1.d0))

View File

@ -0,0 +1,71 @@
subroutine format_w_error(value,error,size_nb,max_nb_digits,format_value,str_error)
implicit none
BEGIN_DOC
! Format for double precision, value(error)
END_DOC
! in
! | value | double precision | value... |
! | error | double precision | error... |
! | size_nb | integer | X in FX.Y |
! | max_nb_digits | integer | Max Y in FX.Y |
! out
! | format_value | character | string FX.Y for the format |
! | str_error | character | string of the error |
! internal
! | str_size | character | size in string format |
! | nb_digits | integer | number of digits Y in FX.Y depending of the error |
! | str_nb_digits | character | nb_digits in string format |
! | str_exp | character | string of the value in exponential format |
! in
double precision, intent(in) :: error, value
integer, intent(in) :: size_nb, max_nb_digits
! out
character(len=20), intent(out) :: str_error, format_value
! internal
character(len=20) :: str_size, str_nb_digits, str_exp
integer :: nb_digits
! max_nb_digit: Y max
! size_nb = Size of the double: X (FX.Y)
write(str_size,'(I3)') size_nb
! Error
write(str_exp,'(1pE20.0)') error
str_error = trim(adjustl(str_exp))
! Number of digit: Y (FX.Y) from the exponent
str_nb_digits = str_exp(19:20)
read(str_nb_digits,*) nb_digits
! If the error is 0d0
if (error <= 1d-16) then
write(str_nb_digits,*) max_nb_digits
endif
! If the error is too small
if (nb_digits > max_nb_digits) then
write(str_nb_digits,*) max_nb_digits
str_error(1:1) = '0'
endif
! If the error is too big (>= 0.5)
if (error >= 0.5d0) then
str_nb_digits = '1'
str_error(1:1) = '*'
endif
! FX.Y,A1,A1,A1 for value(str_error)
!string = 'F'//trim(adjustl(str_size))//'.'//trim(adjustl(str_nb_digits))//',A1,A1,A1'
! FX.Y just for the value
format_value = 'F'//trim(adjustl(str_size))//'.'//trim(adjustl(str_nb_digits))
end

View File

@ -238,11 +238,11 @@ subroutine cache_map_sort(map)
iorder(i) = i
enddo
if (cache_key_kind == 2) then
call i2radix_sort(map%key,iorder,map%n_elements,-1)
call i2sort(map%key,iorder,map%n_elements,-1)
else if (cache_key_kind == 4) then
call iradix_sort(map%key,iorder,map%n_elements,-1)
call isort(map%key,iorder,map%n_elements,-1)
else if (cache_key_kind == 8) then
call i8radix_sort(map%key,iorder,map%n_elements,-1)
call i8sort(map%key,iorder,map%n_elements,-1)
endif
if (integral_kind == 4) then
call set_order(map%value,iorder,map%n_elements)

373
src/utils/qsort.c Normal file
View File

@ -0,0 +1,373 @@
/* [[file:~/qp2/src/utils/qsort.org::*Generated%20C%20file][Generated C file:1]] */
#include <stdlib.h>
#include <stdint.h>
struct int16_t_comp {
int16_t x;
int32_t i;
};
int compare_int16_t( const void * l, const void * r )
{
const int16_t * restrict _l= l;
const int16_t * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_int16_t(int16_t* restrict A_in, int32_t* restrict iorder, int32_t isize) {
struct int16_t_comp* A = malloc(isize * sizeof(struct int16_t_comp));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct int16_t_comp), compare_int16_t);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_int16_t_noidx(int16_t* A, int32_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(int16_t), compare_int16_t);
}
struct int16_t_comp_big {
int16_t x;
int64_t i;
};
int compare_int16_t_big( const void * l, const void * r )
{
const int16_t * restrict _l= l;
const int16_t * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_int16_t_big(int16_t* restrict A_in, int64_t* restrict iorder, int64_t isize) {
struct int16_t_comp_big* A = malloc(isize * sizeof(struct int16_t_comp_big));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct int16_t_comp_big), compare_int16_t_big);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_int16_t_noidx_big(int16_t* A, int64_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(int16_t), compare_int16_t_big);
}
struct int32_t_comp {
int32_t x;
int32_t i;
};
int compare_int32_t( const void * l, const void * r )
{
const int32_t * restrict _l= l;
const int32_t * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_int32_t(int32_t* restrict A_in, int32_t* restrict iorder, int32_t isize) {
struct int32_t_comp* A = malloc(isize * sizeof(struct int32_t_comp));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct int32_t_comp), compare_int32_t);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_int32_t_noidx(int32_t* A, int32_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(int32_t), compare_int32_t);
}
struct int32_t_comp_big {
int32_t x;
int64_t i;
};
int compare_int32_t_big( const void * l, const void * r )
{
const int32_t * restrict _l= l;
const int32_t * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_int32_t_big(int32_t* restrict A_in, int64_t* restrict iorder, int64_t isize) {
struct int32_t_comp_big* A = malloc(isize * sizeof(struct int32_t_comp_big));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct int32_t_comp_big), compare_int32_t_big);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_int32_t_noidx_big(int32_t* A, int64_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(int32_t), compare_int32_t_big);
}
struct int64_t_comp {
int64_t x;
int32_t i;
};
int compare_int64_t( const void * l, const void * r )
{
const int64_t * restrict _l= l;
const int64_t * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_int64_t(int64_t* restrict A_in, int32_t* restrict iorder, int32_t isize) {
struct int64_t_comp* A = malloc(isize * sizeof(struct int64_t_comp));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct int64_t_comp), compare_int64_t);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_int64_t_noidx(int64_t* A, int32_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(int64_t), compare_int64_t);
}
struct int64_t_comp_big {
int64_t x;
int64_t i;
};
int compare_int64_t_big( const void * l, const void * r )
{
const int64_t * restrict _l= l;
const int64_t * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_int64_t_big(int64_t* restrict A_in, int64_t* restrict iorder, int64_t isize) {
struct int64_t_comp_big* A = malloc(isize * sizeof(struct int64_t_comp_big));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct int64_t_comp_big), compare_int64_t_big);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_int64_t_noidx_big(int64_t* A, int64_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(int64_t), compare_int64_t_big);
}
struct double_comp {
double x;
int32_t i;
};
int compare_double( const void * l, const void * r )
{
const double * restrict _l= l;
const double * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_double(double* restrict A_in, int32_t* restrict iorder, int32_t isize) {
struct double_comp* A = malloc(isize * sizeof(struct double_comp));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct double_comp), compare_double);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_double_noidx(double* A, int32_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(double), compare_double);
}
struct double_comp_big {
double x;
int64_t i;
};
int compare_double_big( const void * l, const void * r )
{
const double * restrict _l= l;
const double * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_double_big(double* restrict A_in, int64_t* restrict iorder, int64_t isize) {
struct double_comp_big* A = malloc(isize * sizeof(struct double_comp_big));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct double_comp_big), compare_double_big);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_double_noidx_big(double* A, int64_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(double), compare_double_big);
}
struct float_comp {
float x;
int32_t i;
};
int compare_float( const void * l, const void * r )
{
const float * restrict _l= l;
const float * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_float(float* restrict A_in, int32_t* restrict iorder, int32_t isize) {
struct float_comp* A = malloc(isize * sizeof(struct float_comp));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct float_comp), compare_float);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_float_noidx(float* A, int32_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(float), compare_float);
}
struct float_comp_big {
float x;
int64_t i;
};
int compare_float_big( const void * l, const void * r )
{
const float * restrict _l= l;
const float * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_float_big(float* restrict A_in, int64_t* restrict iorder, int64_t isize) {
struct float_comp_big* A = malloc(isize * sizeof(struct float_comp_big));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct float_comp_big), compare_float_big);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_float_noidx_big(float* A, int64_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(float), compare_float_big);
}
/* Generated C file:1 ends here */

169
src/utils/qsort.org Normal file
View File

@ -0,0 +1,169 @@
#+TITLE: Quick sort binding for Fortran
* C template
#+NAME: c_template
#+BEGIN_SRC c
struct TYPE_comp_big {
TYPE x;
int32_t i;
};
int compare_TYPE_big( const void * l, const void * r )
{
const TYPE * restrict _l= l;
const TYPE * restrict _r= r;
if( *_l > *_r ) return 1;
if( *_l < *_r ) return -1;
return 0;
}
void qsort_TYPE_big(TYPE* restrict A_in, int32_t* restrict iorder, int32_t isize) {
struct TYPE_comp_big* A = malloc(isize * sizeof(struct TYPE_comp_big));
if (A == NULL) return;
for (int i=0 ; i<isize ; ++i) {
A[i].x = A_in[i];
A[i].i = iorder[i];
}
qsort( (void*) A, (size_t) isize, sizeof(struct TYPE_comp_big), compare_TYPE_big);
for (int i=0 ; i<isize ; ++i) {
A_in[i] = A[i].x;
iorder[i] = A[i].i;
}
free(A);
}
void qsort_TYPE_noidx_big(TYPE* A, int32_t isize) {
qsort( (void*) A, (size_t) isize, sizeof(TYPE), compare_TYPE_big);
}
#+END_SRC
* Fortran template
#+NAME:f_template
#+BEGIN_SRC f90
subroutine Lsort_big_c(A, iorder, isize) bind(C, name="qsort_TYPE_big")
use iso_c_binding
integer(c_int32_t), value :: isize
integer(c_int32_t) :: iorder(isize)
real (c_TYPE) :: A(isize)
end subroutine Lsort_big_c
subroutine Lsort_noidx_big_c(A, isize) bind(C, name="qsort_TYPE_noidx_big")
use iso_c_binding
integer(c_int32_t), value :: isize
real (c_TYPE) :: A(isize)
end subroutine Lsort_noidx_big_c
#+END_SRC
#+NAME:f_template2
#+BEGIN_SRC f90
subroutine Lsort_big(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int32_t) :: isize
integer(c_int32_t) :: iorder(isize)
real (c_TYPE) :: A(isize)
call Lsort_big_c(A, iorder, isize)
end subroutine Lsort_big
subroutine Lsort_noidx_big(A, isize)
use iso_c_binding
use qsort_module
integer(c_int32_t) :: isize
real (c_TYPE) :: A(isize)
call Lsort_noidx_big_c(A, isize)
end subroutine Lsort_noidx_big
#+END_SRC
* Python scripts for type replacements
#+NAME: replaced
#+begin_src python :results output :noweb yes
data = """
<<c_template>>
"""
for typ in ["int16_t", "int32_t", "int64_t", "double", "float"]:
print( data.replace("TYPE", typ).replace("_big", "") )
print( data.replace("int32_t", "int64_t").replace("TYPE", typ) )
#+end_src
#+NAME: replaced_f
#+begin_src python :results output :noweb yes
data = """
<<f_template>>
"""
c1 = {
"int16_t": "i2",
"int32_t": "i",
"int64_t": "i8",
"double": "d",
"float": ""
}
c2 = {
"int16_t": "integer",
"int32_t": "integer",
"int64_t": "integer",
"double": "real",
"float": "real"
}
for typ in ["int16_t", "int32_t", "int64_t", "double", "float"]:
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("TYPE", typ).replace("_big", "") )
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("int32_t", "int64_t").replace("TYPE", typ) )
#+end_src
#+NAME: replaced_f2
#+begin_src python :results output :noweb yes
data = """
<<f_template2>>
"""
c1 = {
"int16_t": "i2",
"int32_t": "i",
"int64_t": "i8",
"double": "d",
"float": ""
}
c2 = {
"int16_t": "integer",
"int32_t": "integer",
"int64_t": "integer",
"double": "real",
"float": "real"
}
for typ in ["int16_t", "int32_t", "int64_t", "double", "float"]:
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("TYPE", typ).replace("_big", "") )
print( data.replace("real",c2[typ]).replace("L",c1[typ]).replace("int32_t", "int64_t").replace("TYPE", typ) )
#+end_src
* Generated C file
#+BEGIN_SRC c :comments link :tangle qsort.c :noweb yes
#include <stdlib.h>
#include <stdint.h>
<<replaced()>>
#+END_SRC
* Generated Fortran file
#+BEGIN_SRC f90 :tangle qsort_module.f90 :noweb yes
module qsort_module
use iso_c_binding
interface
<<replaced_f()>>
end interface
end module qsort_module
<<replaced_f2()>>
#+END_SRC

347
src/utils/qsort_module.f90 Normal file
View File

@ -0,0 +1,347 @@
module qsort_module
use iso_c_binding
interface
subroutine i2sort_c(A, iorder, isize) bind(C, name="qsort_int16_t")
use iso_c_binding
integer(c_int32_t), value :: isize
integer(c_int32_t) :: iorder(isize)
integer (c_int16_t) :: A(isize)
end subroutine i2sort_c
subroutine i2sort_noidx_c(A, isize) bind(C, name="qsort_int16_t_noidx")
use iso_c_binding
integer(c_int32_t), value :: isize
integer (c_int16_t) :: A(isize)
end subroutine i2sort_noidx_c
subroutine i2sort_big_c(A, iorder, isize) bind(C, name="qsort_int16_t_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer(c_int64_t) :: iorder(isize)
integer (c_int16_t) :: A(isize)
end subroutine i2sort_big_c
subroutine i2sort_noidx_big_c(A, isize) bind(C, name="qsort_int16_t_noidx_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer (c_int16_t) :: A(isize)
end subroutine i2sort_noidx_big_c
subroutine isort_c(A, iorder, isize) bind(C, name="qsort_int32_t")
use iso_c_binding
integer(c_int32_t), value :: isize
integer(c_int32_t) :: iorder(isize)
integer (c_int32_t) :: A(isize)
end subroutine isort_c
subroutine isort_noidx_c(A, isize) bind(C, name="qsort_int32_t_noidx")
use iso_c_binding
integer(c_int32_t), value :: isize
integer (c_int32_t) :: A(isize)
end subroutine isort_noidx_c
subroutine isort_big_c(A, iorder, isize) bind(C, name="qsort_int32_t_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer(c_int64_t) :: iorder(isize)
integer (c_int32_t) :: A(isize)
end subroutine isort_big_c
subroutine isort_noidx_big_c(A, isize) bind(C, name="qsort_int32_t_noidx_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer (c_int32_t) :: A(isize)
end subroutine isort_noidx_big_c
subroutine i8sort_c(A, iorder, isize) bind(C, name="qsort_int64_t")
use iso_c_binding
integer(c_int32_t), value :: isize
integer(c_int32_t) :: iorder(isize)
integer (c_int64_t) :: A(isize)
end subroutine i8sort_c
subroutine i8sort_noidx_c(A, isize) bind(C, name="qsort_int64_t_noidx")
use iso_c_binding
integer(c_int32_t), value :: isize
integer (c_int64_t) :: A(isize)
end subroutine i8sort_noidx_c
subroutine i8sort_big_c(A, iorder, isize) bind(C, name="qsort_int64_t_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer(c_int64_t) :: iorder(isize)
integer (c_int64_t) :: A(isize)
end subroutine i8sort_big_c
subroutine i8sort_noidx_big_c(A, isize) bind(C, name="qsort_int64_t_noidx_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer (c_int64_t) :: A(isize)
end subroutine i8sort_noidx_big_c
subroutine dsort_c(A, iorder, isize) bind(C, name="qsort_double")
use iso_c_binding
integer(c_int32_t), value :: isize
integer(c_int32_t) :: iorder(isize)
real (c_double) :: A(isize)
end subroutine dsort_c
subroutine dsort_noidx_c(A, isize) bind(C, name="qsort_double_noidx")
use iso_c_binding
integer(c_int32_t), value :: isize
real (c_double) :: A(isize)
end subroutine dsort_noidx_c
subroutine dsort_big_c(A, iorder, isize) bind(C, name="qsort_double_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer(c_int64_t) :: iorder(isize)
real (c_double) :: A(isize)
end subroutine dsort_big_c
subroutine dsort_noidx_big_c(A, isize) bind(C, name="qsort_double_noidx_big")
use iso_c_binding
integer(c_int64_t), value :: isize
real (c_double) :: A(isize)
end subroutine dsort_noidx_big_c
subroutine sort_c(A, iorder, isize) bind(C, name="qsort_float")
use iso_c_binding
integer(c_int32_t), value :: isize
integer(c_int32_t) :: iorder(isize)
real (c_float) :: A(isize)
end subroutine sort_c
subroutine sort_noidx_c(A, isize) bind(C, name="qsort_float_noidx")
use iso_c_binding
integer(c_int32_t), value :: isize
real (c_float) :: A(isize)
end subroutine sort_noidx_c
subroutine sort_big_c(A, iorder, isize) bind(C, name="qsort_float_big")
use iso_c_binding
integer(c_int64_t), value :: isize
integer(c_int64_t) :: iorder(isize)
real (c_float) :: A(isize)
end subroutine sort_big_c
subroutine sort_noidx_big_c(A, isize) bind(C, name="qsort_float_noidx_big")
use iso_c_binding
integer(c_int64_t), value :: isize
real (c_float) :: A(isize)
end subroutine sort_noidx_big_c
end interface
end module qsort_module
subroutine i2sort(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int32_t) :: isize
integer(c_int32_t) :: iorder(isize)
integer (c_int16_t) :: A(isize)
call i2sort_c(A, iorder, isize)
end subroutine i2sort
subroutine i2sort_noidx(A, isize)
use iso_c_binding
use qsort_module
integer(c_int32_t) :: isize
integer (c_int16_t) :: A(isize)
call i2sort_noidx_c(A, isize)
end subroutine i2sort_noidx
subroutine i2sort_big(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int64_t) :: isize
integer(c_int64_t) :: iorder(isize)
integer (c_int16_t) :: A(isize)
call i2sort_big_c(A, iorder, isize)
end subroutine i2sort_big
subroutine i2sort_noidx_big(A, isize)
use iso_c_binding
use qsort_module
integer(c_int64_t) :: isize
integer (c_int16_t) :: A(isize)
call i2sort_noidx_big_c(A, isize)
end subroutine i2sort_noidx_big
subroutine isort(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int32_t) :: isize
integer(c_int32_t) :: iorder(isize)
integer (c_int32_t) :: A(isize)
call isort_c(A, iorder, isize)
end subroutine isort
subroutine isort_noidx(A, isize)
use iso_c_binding
use qsort_module
integer(c_int32_t) :: isize
integer (c_int32_t) :: A(isize)
call isort_noidx_c(A, isize)
end subroutine isort_noidx
subroutine isort_big(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int64_t) :: isize
integer(c_int64_t) :: iorder(isize)
integer (c_int32_t) :: A(isize)
call isort_big_c(A, iorder, isize)
end subroutine isort_big
subroutine isort_noidx_big(A, isize)
use iso_c_binding
use qsort_module
integer(c_int64_t) :: isize
integer (c_int32_t) :: A(isize)
call isort_noidx_big_c(A, isize)
end subroutine isort_noidx_big
subroutine i8sort(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int32_t) :: isize
integer(c_int32_t) :: iorder(isize)
integer (c_int64_t) :: A(isize)
call i8sort_c(A, iorder, isize)
end subroutine i8sort
subroutine i8sort_noidx(A, isize)
use iso_c_binding
use qsort_module
integer(c_int32_t) :: isize
integer (c_int64_t) :: A(isize)
call i8sort_noidx_c(A, isize)
end subroutine i8sort_noidx
subroutine i8sort_big(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int64_t) :: isize
integer(c_int64_t) :: iorder(isize)
integer (c_int64_t) :: A(isize)
call i8sort_big_c(A, iorder, isize)
end subroutine i8sort_big
subroutine i8sort_noidx_big(A, isize)
use iso_c_binding
use qsort_module
integer(c_int64_t) :: isize
integer (c_int64_t) :: A(isize)
call i8sort_noidx_big_c(A, isize)
end subroutine i8sort_noidx_big
subroutine dsort(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int32_t) :: isize
integer(c_int32_t) :: iorder(isize)
real (c_double) :: A(isize)
call dsort_c(A, iorder, isize)
end subroutine dsort
subroutine dsort_noidx(A, isize)
use iso_c_binding
use qsort_module
integer(c_int32_t) :: isize
real (c_double) :: A(isize)
call dsort_noidx_c(A, isize)
end subroutine dsort_noidx
subroutine dsort_big(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int64_t) :: isize
integer(c_int64_t) :: iorder(isize)
real (c_double) :: A(isize)
call dsort_big_c(A, iorder, isize)
end subroutine dsort_big
subroutine dsort_noidx_big(A, isize)
use iso_c_binding
use qsort_module
integer(c_int64_t) :: isize
real (c_double) :: A(isize)
call dsort_noidx_big_c(A, isize)
end subroutine dsort_noidx_big
subroutine sort(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int32_t) :: isize
integer(c_int32_t) :: iorder(isize)
real (c_float) :: A(isize)
call sort_c(A, iorder, isize)
end subroutine sort
subroutine sort_noidx(A, isize)
use iso_c_binding
use qsort_module
integer(c_int32_t) :: isize
real (c_float) :: A(isize)
call sort_noidx_c(A, isize)
end subroutine sort_noidx
subroutine sort_big(A, iorder, isize)
use qsort_module
use iso_c_binding
integer(c_int64_t) :: isize
integer(c_int64_t) :: iorder(isize)
real (c_float) :: A(isize)
call sort_big_c(A, iorder, isize)
end subroutine sort_big
subroutine sort_noidx_big(A, isize)
use iso_c_binding
use qsort_module
integer(c_int64_t) :: isize
real (c_float) :: A(isize)
call sort_noidx_big_c(A, isize)
end subroutine sort_noidx_big

View File

@ -1,222 +1,4 @@
BEGIN_TEMPLATE
subroutine insertion_$Xsort (x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize) using the insertion sort algorithm.
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
$type :: xtmp
integer :: i, i0, j, jmax
do i=2,isize
xtmp = x(i)
i0 = iorder(i)
j=i-1
do while (j>0)
if ((x(j) <= xtmp)) exit
x(j+1) = x(j)
iorder(j+1) = iorder(j)
j=j-1
enddo
x(j+1) = xtmp
iorder(j+1) = i0
enddo
end subroutine insertion_$Xsort
subroutine quick_$Xsort(x, iorder, isize)
implicit none
BEGIN_DOC
! Sort array x(isize) using the quicksort algorithm.
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
integer, external :: omp_get_num_threads
call rec_$X_quicksort(x,iorder,isize,1,isize,nproc)
end
recursive subroutine rec_$X_quicksort(x, iorder, isize, first, last, level)
implicit none
integer, intent(in) :: isize, first, last, level
integer,intent(inout) :: iorder(isize)
$type, intent(inout) :: x(isize)
$type :: c, tmp
integer :: itmp
integer :: i, j
if(isize<2)return
c = x( shiftr(first+last,1) )
i = first
j = last
do
do while (x(i) < c)
i=i+1
end do
do while (c < x(j))
j=j-1
end do
if (i >= j) exit
tmp = x(i)
x(i) = x(j)
x(j) = tmp
itmp = iorder(i)
iorder(i) = iorder(j)
iorder(j) = itmp
i=i+1
j=j-1
enddo
if ( ((i-first <= 10000).and.(last-j <= 10000)).or.(level<=0) ) then
if (first < i-1) then
call rec_$X_quicksort(x, iorder, isize, first, i-1,level/2)
endif
if (j+1 < last) then
call rec_$X_quicksort(x, iorder, isize, j+1, last,level/2)
endif
else
if (first < i-1) then
call rec_$X_quicksort(x, iorder, isize, first, i-1,level/2)
endif
if (j+1 < last) then
call rec_$X_quicksort(x, iorder, isize, j+1, last,level/2)
endif
endif
end
subroutine heap_$Xsort(x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize) using the heap sort algorithm.
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
integer :: i, k, j, l, i0
$type :: xtemp
l = isize/2+1
k = isize
do while (.True.)
if (l>1) then
l=l-1
xtemp = x(l)
i0 = iorder(l)
else
xtemp = x(k)
i0 = iorder(k)
x(k) = x(1)
iorder(k) = iorder(1)
k = k-1
if (k == 1) then
x(1) = xtemp
iorder(1) = i0
exit
endif
endif
i=l
j = shiftl(l,1)
do while (j<k)
if ( x(j) < x(j+1) ) then
j=j+1
endif
if (xtemp < x(j)) then
x(i) = x(j)
iorder(i) = iorder(j)
i = j
j = shiftl(j,1)
else
j = k+1
endif
enddo
if (j==k) then
if (xtemp < x(j)) then
x(i) = x(j)
iorder(i) = iorder(j)
i = j
j = shiftl(j,1)
else
j = k+1
endif
endif
x(i) = xtemp
iorder(i) = i0
enddo
end subroutine heap_$Xsort
subroutine heap_$Xsort_big(x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize) using the heap sort algorithm.
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
! This is a version for very large arrays where the indices need
! to be in integer*8 format
END_DOC
integer*8,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer*8,intent(inout) :: iorder(isize)
integer*8 :: i, k, j, l, i0
$type :: xtemp
l = isize/2+1
k = isize
do while (.True.)
if (l>1) then
l=l-1
xtemp = x(l)
i0 = iorder(l)
else
xtemp = x(k)
i0 = iorder(k)
x(k) = x(1)
iorder(k) = iorder(1)
k = k-1
if (k == 1) then
x(1) = xtemp
iorder(1) = i0
exit
endif
endif
i=l
j = shiftl(l,1)
do while (j<k)
if ( x(j) < x(j+1) ) then
j=j+1
endif
if (xtemp < x(j)) then
x(i) = x(j)
iorder(i) = iorder(j)
i = j
j = shiftl(j,1)
else
j = k+1
endif
enddo
if (j==k) then
if (xtemp < x(j)) then
x(i) = x(j)
iorder(i) = iorder(j)
i = j
j = shiftl(j,1)
else
j = k+1
endif
endif
x(i) = xtemp
iorder(i) = i0
enddo
end subroutine heap_$Xsort_big
subroutine sorted_$Xnumber(x,isize,n)
implicit none
@ -250,222 +32,6 @@ SUBST [ X, type ]
END_TEMPLATE
!---------------------- INTEL
IRP_IF INTEL
BEGIN_TEMPLATE
subroutine $Xsort(x,iorder,isize)
use intel
implicit none
BEGIN_DOC
! Sort array x(isize).
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
integer :: n
character, allocatable :: tmp(:)
if (isize < 2) return
call ippsSortRadixIndexGetBufferSize(isize, $ippsz, n)
allocate(tmp(n))
call ippsSortRadixIndexAscend_$ityp(x, $n, iorder, isize, tmp)
deallocate(tmp)
iorder(1:isize) = iorder(1:isize)+1
call $Xset_order(x,iorder,isize)
end
subroutine $Xsort_noidx(x,isize)
use intel
implicit none
BEGIN_DOC
! Sort array x(isize).
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer :: n
character, allocatable :: tmp(:)
if (isize < 2) return
call ippsSortRadixIndexGetBufferSize(isize, $ippsz, n)
allocate(tmp(n))
call ippsSortRadixAscend_$ityp_I(x, isize, tmp)
deallocate(tmp)
end
SUBST [ X, type, ityp, n, ippsz ]
; real ; 32f ; 4 ; 13 ;;
i ; integer ; 32s ; 4 ; 11 ;;
i2 ; integer*2 ; 16s ; 2 ; 7 ;;
END_TEMPLATE
BEGIN_TEMPLATE
subroutine $Xsort(x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize).
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
integer :: n
if (isize < 2) then
return
endif
! call sorted_$Xnumber(x,isize,n)
! if (isize == n) then
! return
! endif
if ( isize < 32) then
call insertion_$Xsort(x,iorder,isize)
else
! call heap_$Xsort(x,iorder,isize)
call quick_$Xsort(x,iorder,isize)
endif
end subroutine $Xsort
SUBST [ X, type ]
d ; double precision ;;
END_TEMPLATE
BEGIN_TEMPLATE
subroutine $Xsort(x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize).
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
integer :: n
if (isize < 2) then
return
endif
call sorted_$Xnumber(x,isize,n)
if (isize == n) then
return
endif
if ( isize < 32) then
call insertion_$Xsort(x,iorder,isize)
else
! call $Xradix_sort(x,iorder,isize,-1)
call quick_$Xsort(x,iorder,isize)
endif
end subroutine $Xsort
SUBST [ X, type ]
i8 ; integer*8 ;;
END_TEMPLATE
!---------------------- END INTEL
IRP_ELSE
!---------------------- NON-INTEL
BEGIN_TEMPLATE
subroutine $Xsort_noidx(x,isize)
implicit none
BEGIN_DOC
! Sort array x(isize).
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer, allocatable :: iorder(:)
integer :: i
allocate(iorder(isize))
do i=1,isize
iorder(i)=i
enddo
call $Xsort(x,iorder,isize)
deallocate(iorder)
end subroutine $Xsort_noidx
SUBST [ X, type ]
; real ;;
d ; double precision ;;
i ; integer ;;
i8 ; integer*8 ;;
i2 ; integer*2 ;;
END_TEMPLATE
BEGIN_TEMPLATE
subroutine $Xsort(x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize).
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
integer :: n
if (isize < 2) then
return
endif
! call sorted_$Xnumber(x,isize,n)
! if (isize == n) then
! return
! endif
if ( isize < 32) then
call insertion_$Xsort(x,iorder,isize)
else
! call heap_$Xsort(x,iorder,isize)
call quick_$Xsort(x,iorder,isize)
endif
end subroutine $Xsort
SUBST [ X, type ]
; real ;;
d ; double precision ;;
END_TEMPLATE
BEGIN_TEMPLATE
subroutine $Xsort(x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize).
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
END_DOC
integer,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer,intent(inout) :: iorder(isize)
integer :: n
if (isize < 2) then
return
endif
call sorted_$Xnumber(x,isize,n)
if (isize == n) then
return
endif
if ( isize < 32) then
call insertion_$Xsort(x,iorder,isize)
else
! call $Xradix_sort(x,iorder,isize,-1)
call quick_$Xsort(x,iorder,isize)
endif
end subroutine $Xsort
SUBST [ X, type ]
i ; integer ;;
i8 ; integer*8 ;;
i2 ; integer*2 ;;
END_TEMPLATE
IRP_ENDIF
!---------------------- END NON-INTEL
BEGIN_TEMPLATE
subroutine $Xset_order(x,iorder,isize)
@ -491,47 +57,6 @@ BEGIN_TEMPLATE
deallocate(xtmp)
end
SUBST [ X, type ]
; real ;;
d ; double precision ;;
i ; integer ;;
i8; integer*8 ;;
i2; integer*2 ;;
END_TEMPLATE
BEGIN_TEMPLATE
subroutine insertion_$Xsort_big (x,iorder,isize)
implicit none
BEGIN_DOC
! Sort array x(isize) using the insertion sort algorithm.
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
! This is a version for very large arrays where the indices need
! to be in integer*8 format
END_DOC
integer*8,intent(in) :: isize
$type,intent(inout) :: x(isize)
integer*8,intent(inout) :: iorder(isize)
$type :: xtmp
integer*8 :: i, i0, j, jmax
do i=2_8,isize
xtmp = x(i)
i0 = iorder(i)
j = i-1_8
do while (j>0_8)
if (x(j)<=xtmp) exit
x(j+1_8) = x(j)
iorder(j+1_8) = iorder(j)
j = j-1_8
enddo
x(j+1_8) = xtmp
iorder(j+1_8) = i0
enddo
end subroutine insertion_$Xsort_big
subroutine $Xset_order_big(x,iorder,isize)
implicit none
BEGIN_DOC
@ -565,223 +90,3 @@ SUBST [ X, type ]
END_TEMPLATE
BEGIN_TEMPLATE
recursive subroutine $Xradix_sort$big(x,iorder,isize,iradix)
implicit none
BEGIN_DOC
! Sort integer array x(isize) using the radix sort algorithm.
! iorder in input should be (1,2,3,...,isize), and in output
! contains the new order of the elements.
! iradix should be -1 in input.
END_DOC
integer*$int_type, intent(in) :: isize
integer*$int_type, intent(inout) :: iorder(isize)
integer*$type, intent(inout) :: x(isize)
integer, intent(in) :: iradix
integer :: iradix_new
integer*$type, allocatable :: x2(:), x1(:)
integer*$type :: i4 ! data type
integer*$int_type, allocatable :: iorder1(:),iorder2(:)
integer*$int_type :: i0, i1, i2, i3, i ! index type
integer*$type :: mask
integer :: err
!DIR$ ATTRIBUTES ALIGN : 128 :: iorder1,iorder2, x2, x1
if (isize < 2) then
return
endif
if (iradix == -1) then ! Sort Positive and negative
allocate(x1(isize),iorder1(isize), x2(isize),iorder2(isize),stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to allocate arrays'
stop
endif
i1=1_$int_type
i2=1_$int_type
do i=1_$int_type,isize
if (x(i) < 0_$type) then
iorder1(i1) = iorder(i)
x1(i1) = -x(i)
i1 = i1+1_$int_type
else
iorder2(i2) = iorder(i)
x2(i2) = x(i)
i2 = i2+1_$int_type
endif
enddo
i1=i1-1_$int_type
i2=i2-1_$int_type
do i=1_$int_type,i2
iorder(i1+i) = iorder2(i)
x(i1+i) = x2(i)
enddo
deallocate(x2,iorder2,stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to deallocate arrays x2, iorder2'
stop
endif
if (i1 > 1_$int_type) then
call $Xradix_sort$big(x1,iorder1,i1,-2)
do i=1_$int_type,i1
x(i) = -x1(1_$int_type+i1-i)
iorder(i) = iorder1(1_$int_type+i1-i)
enddo
endif
if (i2>1_$int_type) then
call $Xradix_sort$big(x(i1+1_$int_type),iorder(i1+1_$int_type),i2,-2)
endif
deallocate(x1,iorder1,stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to deallocate arrays x1, iorder1'
stop
endif
return
else if (iradix == -2) then ! Positive
! Find most significant bit
i0 = 0_$int_type
i4 = maxval(x)
iradix_new = max($integer_size-1-leadz(i4),1)
mask = ibset(0_$type,iradix_new)
allocate(x1(isize),iorder1(isize), x2(isize),iorder2(isize),stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to allocate arrays'
stop
endif
i1=1_$int_type
i2=1_$int_type
do i=1_$int_type,isize
if (iand(mask,x(i)) == 0_$type) then
iorder1(i1) = iorder(i)
x1(i1) = x(i)
i1 = i1+1_$int_type
else
iorder2(i2) = iorder(i)
x2(i2) = x(i)
i2 = i2+1_$int_type
endif
enddo
i1=i1-1_$int_type
i2=i2-1_$int_type
do i=1_$int_type,i1
iorder(i0+i) = iorder1(i)
x(i0+i) = x1(i)
enddo
i0 = i0+i1
i3 = i0
deallocate(x1,iorder1,stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to deallocate arrays x1, iorder1'
stop
endif
do i=1_$int_type,i2
iorder(i0+i) = iorder2(i)
x(i0+i) = x2(i)
enddo
i0 = i0+i2
deallocate(x2,iorder2,stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to deallocate arrays x2, iorder2'
stop
endif
if (i3>1_$int_type) then
call $Xradix_sort$big(x,iorder,i3,iradix_new-1)
endif
if (isize-i3>1_$int_type) then
call $Xradix_sort$big(x(i3+1_$int_type),iorder(i3+1_$int_type),isize-i3,iradix_new-1)
endif
return
endif
ASSERT (iradix >= 0)
if (isize < 48) then
call insertion_$Xsort$big(x,iorder,isize)
return
endif
allocate(x2(isize),iorder2(isize),stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to allocate arrays x1, iorder1'
stop
endif
mask = ibset(0_$type,iradix)
i0=1_$int_type
i1=1_$int_type
do i=1_$int_type,isize
if (iand(mask,x(i)) == 0_$type) then
iorder(i0) = iorder(i)
x(i0) = x(i)
i0 = i0+1_$int_type
else
iorder2(i1) = iorder(i)
x2(i1) = x(i)
i1 = i1+1_$int_type
endif
enddo
i0=i0-1_$int_type
i1=i1-1_$int_type
do i=1_$int_type,i1
iorder(i0+i) = iorder2(i)
x(i0+i) = x2(i)
enddo
deallocate(x2,iorder2,stat=err)
if (err /= 0) then
print *, irp_here, ': Unable to allocate arrays x2, iorder2'
stop
endif
if (iradix == 0) then
return
endif
if (i1>1_$int_type) then
call $Xradix_sort$big(x(i0+1_$int_type),iorder(i0+1_$int_type),i1,iradix-1)
endif
if (i0>1) then
call $Xradix_sort$big(x,iorder,i0,iradix-1)
endif
end
SUBST [ X, type, integer_size, is_big, big, int_type ]
i ; 4 ; 32 ; .False. ; ; 4 ;;
i8 ; 8 ; 64 ; .False. ; ; 4 ;;
i2 ; 2 ; 16 ; .False. ; ; 4 ;;
i ; 4 ; 32 ; .True. ; _big ; 8 ;;
i8 ; 8 ; 64 ; .True. ; _big ; 8 ;;
END_TEMPLATE

22
src/utils/units.irp.f Normal file
View File

@ -0,0 +1,22 @@
BEGIN_PROVIDER [double precision, ha_to_ev]
implicit none
BEGIN_DOC
! Converstion from Hartree to eV
END_DOC
ha_to_ev = 27.211396641308d0
END_PROVIDER
BEGIN_PROVIDER [double precision, au_to_D]
implicit none
BEGIN_DOC
! Converstion from au to Debye
END_DOC
au_to_D = 2.5415802529d0
END_PROVIDER

View File

@ -37,6 +37,10 @@ double precision function binom_func(i,j)
else
binom_func = dexp( logfact(i)-logfact(j)-logfact(i-j) )
endif
! To avoid .999999 numbers
binom_func = floor(binom_func + 0.5d0)
end
@ -132,7 +136,7 @@ double precision function logfact(n)
enddo
end function
! ---
BEGIN_PROVIDER [ double precision, fact_inv, (128) ]
implicit none
@ -146,6 +150,29 @@ BEGIN_PROVIDER [ double precision, fact_inv, (128) ]
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, shiftfact_op5_inv, (128) ]
BEGIN_DOC
!
! 1 / Gamma(n + 0.5)
!
END_DOC
implicit none
integer :: i
double precision :: tmp
do i = 1, size(shiftfact_op5_inv)
!tmp = dgamma(dble(i) + 0.5d0)
tmp = gamma(dble(i) + 0.5d0)
shiftfact_op5_inv(i) = 1.d0 / tmp
enddo
END_PROVIDER
! ---
double precision function dble_fact(n)
implicit none
@ -300,12 +327,12 @@ subroutine wall_time(t)
end
BEGIN_PROVIDER [ integer, nproc ]
use omp_lib
implicit none
BEGIN_DOC
! Number of current OpenMP threads
END_DOC
integer, external :: omp_get_num_threads
nproc = 1
!$OMP PARALLEL
!$OMP MASTER
@ -407,3 +434,28 @@ subroutine lowercase(txt,n)
enddo
end
subroutine v2_over_x(v,x,res)
!BEGIN_DOC
! Two by two diagonalization to avoid the divergence in v^2/x when x goes to 0
!END_DOC
implicit none
double precision, intent(in) :: v, x
double precision, intent(out) :: res
double precision :: delta_E, tmp, val
res = 0d0
delta_E = x
if (v == 0.d0) return
val = 2d0 * v
tmp = dsqrt(delta_E * delta_E + val * val)
if (delta_E < 0.d0) then
tmp = -tmp
endif
res = 0.5d0 * (tmp - delta_E)
end

View File

@ -0,0 +1,89 @@
[thresh_delta]
type: double precision
doc: Threshold to stop the optimization if the radius of the trust region delta < thresh_delta
interface: ezfio,provider,ocaml
default: 1.e-10
[thresh_rho]
type: double precision
doc: Threshold for the step acceptance in the trust region algorithm, if (rho .geq. thresh_rho) the step is accepted, else the step is cancelled and a smaller step is tried until (rho .geq. thresh_rho)
interface: ezfio,provider,ocaml
default: 0.1
[thresh_eig]
type: double precision
doc: Threshold to consider when an eigenvalue is 0 in the trust region algorithm
interface: ezfio,provider,ocaml
default: 1.e-12
[thresh_model]
type: double precision
doc: If if ABS(criterion - criterion_model) < thresh_model, the program exit the trust region algorithm
interface: ezfio,provider,ocaml
default: 1.e-12
[absolute_eig]
type: logical
doc: If True, the algorithm replace the eigenvalues of the hessian by their absolute value to compute the step (in the trust region)
interface: ezfio,provider,ocaml
default: false
[thresh_wtg]
type: double precision
doc: Threshold in the trust region algorithm to considere when the dot product of the eigenvector W by the gradient v_grad is equal to 0. Must be smaller than thresh_eig by several order of magnitude to avoid numerical problem. If the research of the optimal lambda cannot reach the condition (||x|| .eq. delta) because (||x|| .lt. delta), the reason might be that thresh_wtg is too big or/and thresh_eig is too small
interface: ezfio,provider,ocaml
default: 1.e-6
[thresh_wtg2]
type: double precision
doc: Threshold in the trust region algorithm to considere when the dot product of the eigenvector W by the gradient v_grad is 0 in the case of avoid_saddle .eq. true. There is no particular reason to put a different value that thresh_wtg, but it can be useful one day
interface: ezfio,provider,ocaml
default: 1.e-6
[avoid_saddle]
type: logical
doc: Test to avoid saddle point, active if true
interface: ezfio,provider,ocaml
default: false
[version_avoid_saddle]
type: integer
doc: cf. trust region, not stable
interface: ezfio,provider,ocaml
default: 3
[thresh_rho_2]
type: double precision
doc: Threshold for the step acceptance for the research of lambda in the trust region algorithm, if (rho_2 .geq. thresh_rho_2) the step is accepted, else the step is rejected
interface: ezfio,provider,ocaml
default: 0.1
[thresh_cc]
type: double precision
doc: Threshold to stop the research of the optimal lambda in the trust region algorithm when (dabs(1d0-||x||^2/delta^2) < thresh_cc)
interface: ezfio,provider,ocaml
default: 1.e-6
[thresh_model_2]
type: double precision
doc: if (ABS(criterion - criterion_model) < thresh_model_2), i.e., the difference between the actual criterion and the predicted next criterion, during the research of the optimal lambda in the trust region algorithm it prints a warning
interface: ezfio,provider,ocaml
default: 1.e-12
[version_lambda_search]
type: integer
doc: Research of the optimal lambda in the trust region algorithm to constrain the norm of the step by solving: 1 -> ||x||^2 - delta^2 .eq. 0, 2 -> 1/||x||^2 - 1/delta^2 .eq. 0
interface: ezfio,provider,ocaml
default: 2
[nb_it_max_lambda]
type: integer
doc: Maximal number of iterations for the research of the optimal lambda in the trust region algorithm
interface: ezfio,provider,ocaml
default: 100
[nb_it_max_pre_search]
type: integer
doc: Maximal number of iterations for the pre-research of the optimal lambda in the trust region algorithm
interface: ezfio,provider,ocaml
default: 40

View File

@ -0,0 +1 @@
hartree_fock

View File

@ -0,0 +1,5 @@
============
trust_region
============
The documentation can be found in the org files.

View File

@ -0,0 +1,7 @@
#!/bin/sh
list='ls *.org'
for element in $list
do
emacs --batch $element -f org-babel-tangle
done

View File

@ -0,0 +1,248 @@
! Algorithm for the trust region
! step_in_trust_region:
! Computes the step in the trust region (delta)
! (automatically sets at the iteration 0 and which evolves during the
! process in function of the evolution of rho). The step is computing by
! constraining its norm with a lagrange multiplier.
! Since the calculation of the step is based on the Newton method, an
! estimation of the gain in energy is given using the Taylors series
! truncated at the second order (criterion_model).
! If (DABS(criterion-criterion_model) < 1d-12) then
! must_exit = .True.
! else
! must_exit = .False.
! This estimation of the gain in energy is used by
! is_step_cancel_trust_region to say if the step is accepted or cancelled.
! If the step must be cancelled, the calculation restart from the same
! hessian and gradient and recomputes the step but in a smaller trust
! region and so on until the step is accepted. If the step is accepted
! the hessian and the gradient are recomputed to produce a new step.
! Example:
! !### Initialization ###
! delta = 0d0
! nb_iter = 0 ! Must start at 0 !!!
! rho = 0.5d0
! not_converged = .True.
!
! ! ### TODO ###
! ! Compute the criterion before the loop
! call #your_criterion(prev_criterion)
!
! do while (not_converged)
! ! ### TODO ##
! ! Call your gradient
! ! Call you hessian
! call #your_gradient(v_grad) (1D array)
! call #your_hessian(H) (2D array)
!
! ! ### TODO ###
! ! Diagonalization of the hessian
! call diagonalization_hessian(n,H,e_val,w)
!
! cancel_step = .True. ! To enter in the loop just after
! ! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
! do while (cancel_step)
!
! ! Hessian,gradient,Criterion -> x
! call trust_region_step_w_expected_e(tmp_n,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,tmp_x,must_exit)
!
! if (must_exit) then
! ! ### Message ###
! ! if step_in_trust_region sets must_exit on true for numerical reasons
! print*,'algo_trust1 sends the message : Exit'
! !### exit ###
! endif
!
! !### TODO ###
! ! Compute x -> m_x
! ! Compute m_x -> R
! ! Apply R and keep the previous MOs...
! ! Update/touch
! ! Compute the new criterion/energy -> criterion
!
! call #your_routine_1D_to_2D_antisymmetric_array(x,m_x)
! call #your_routine_2D_antisymmetric_array_to_rotation_matrix(m_x,R)
! call #your_routine_to_apply_the_rotation_matrix(R,prev_mos)
!
! TOUCH #your_variables
!
! call #your_criterion(criterion)
!
! ! Criterion -> step accepted or rejected
! call trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
!
! ! ### TODO ###
! !if (cancel_step) then
! ! Cancel the previous step (mo_coef = prev_mos if you keep them...)
! !endif
! #if (cancel_step) then
! #mo_coef = prev_mos
! #endif
!
! enddo
!
! !call save_mos() !### depend of the time for 1 iteration
!
! ! To exit the external loop if must_exit = .True.
! if (must_exit) then
! !### exit ###
! endif
!
! ! Step accepted, nb iteration + 1
! nb_iter = nb_iter + 1
!
! ! ### TODO ###
! !if (###Conditions###) then
! ! no_converged = .False.
! !endif
! #if (#your_conditions) then
! # not_converged = .False.
! #endif
!
! enddo
! Variables:
! Input:
! | n | integer | m*(m-1)/2 |
! | m | integer | number of mo in the mo_class |
! | H(n,n) | double precision | Hessian |
! | v_grad(n) | double precision | Gradient |
! | W(n,n) | double precision | Eigenvectors of the hessian |
! | e_val(n) | double precision | Eigenvalues of the hessian |
! | criterion | double precision | Actual criterion |
! | prev_criterion | double precision | Value of the criterion before the first iteration/after the previous iteration |
! | rho | double precision | Given by is_step_cancel_trus_region |
! | | | Agreement between the real function and the Taylor series (2nd order) |
! | nb_iter | integer | Actual number of iterations |
! Input/output:
! | delta | double precision | Radius of the trust region |
! Output:
! | criterion_model | double precision | Predicted criterion after the rotation |
! | x(n) | double precision | Step |
! | must_exit | logical | If the program must exit the loop |
subroutine trust_region_step_w_expected_e(n,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,x,must_exit)
include 'pi.h'
BEGIN_DOC
! Compute the step and the expected criterion/energy after the step
END_DOC
implicit none
! in
integer, intent(in) :: n, nb_iter
double precision, intent(in) :: H(n,n), W(n,n), v_grad(n)
double precision, intent(in) :: rho, prev_criterion
! inout
double precision, intent(inout) :: delta, e_val(n)
! out
double precision, intent(out) :: criterion_model, x(n)
logical, intent(out) :: must_exit
! internal
integer :: info
must_exit = .False.
call trust_region_step(n,nb_iter,v_grad,rho,e_val,W,x,delta)
call trust_region_expected_e(n,v_grad,H,x,prev_criterion,criterion_model)
! exit if DABS(prev_criterion - criterion_model) < 1d-12
if (DABS(prev_criterion - criterion_model) < thresh_model) then
print*,''
print*,'###############################################################################'
print*,'DABS(prev_criterion - criterion_model) <', thresh_model, 'stop the trust region'
print*,'###############################################################################'
print*,''
must_exit = .True.
endif
if (delta < thresh_delta) then
print*,''
print*,'##############################################'
print*,'Delta <', thresh_delta, 'stop the trust region'
print*,'##############################################'
print*,''
must_exit = .True.
endif
! Add after the call to this subroutine, a statement:
! "if (must_exit) then
! exit
! endif"
! in order to exit the optimization loop
end subroutine
! Variables:
! Input:
! | nb_iter | integer | actual number of iterations |
! | prev_criterion | double precision | criterion before the application of the step x |
! | criterion | double precision | criterion after the application of the step x |
! | criterion_model | double precision | predicted criterion after the application of x |
! Output:
! | rho | double precision | Agreement between the predicted criterion and the real new criterion |
! | cancel_step | logical | If the step must be cancelled |
subroutine trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
include 'pi.h'
BEGIN_DOC
! Compute if the step should be cancelled
END_DOC
implicit none
! in
double precision, intent(in) :: prev_criterion, criterion, criterion_model
! inout
integer, intent(inout) :: nb_iter
! out
logical, intent(out) :: cancel_step
double precision, intent(out) :: rho
! Computes rho
call trust_region_rho(prev_criterion,criterion,criterion_model,rho)
if (nb_iter == 0) then
nb_iter = 1 ! in order to enable the change of delta if the first iteration is cancelled
endif
! If rho < thresh_rho -> give something in output to cancel the step
if (rho >= thresh_rho) then !0.1d0) then
! The step is accepted
cancel_step = .False.
else
! The step is rejected
cancel_step = .True.
print*, '***********************'
print*, 'Step cancel : rho <', thresh_rho
print*, '***********************'
endif
end subroutine

View File

@ -0,0 +1,593 @@
* Algorithm for the trust region
step_in_trust_region:
Computes the step in the trust region (delta)
(automatically sets at the iteration 0 and which evolves during the
process in function of the evolution of rho). The step is computing by
constraining its norm with a lagrange multiplier.
Since the calculation of the step is based on the Newton method, an
estimation of the gain in energy is given using the Taylors series
truncated at the second order (criterion_model).
If (DABS(criterion-criterion_model) < 1d-12) then
must_exit = .True.
else
must_exit = .False.
This estimation of the gain in energy is used by
is_step_cancel_trust_region to say if the step is accepted or cancelled.
If the step must be cancelled, the calculation restart from the same
hessian and gradient and recomputes the step but in a smaller trust
region and so on until the step is accepted. If the step is accepted
the hessian and the gradient are recomputed to produce a new step.
Example:
#+BEGIN_SRC f90 :comments org :tangle algo_trust.irp.f
! !### Initialization ###
! delta = 0d0
! nb_iter = 0 ! Must start at 0 !!!
! rho = 0.5d0
! not_converged = .True.
!
! ! ### TODO ###
! ! Compute the criterion before the loop
! call #your_criterion(prev_criterion)
!
! do while (not_converged)
! ! ### TODO ##
! ! Call your gradient
! ! Call you hessian
! call #your_gradient(v_grad) (1D array)
! call #your_hessian(H) (2D array)
!
! ! ### TODO ###
! ! Diagonalization of the hessian
! call diagonalization_hessian(n,H,e_val,w)
!
! cancel_step = .True. ! To enter in the loop just after
! ! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
! do while (cancel_step)
!
! ! Hessian,gradient,Criterion -> x
! call trust_region_step_w_expected_e(tmp_n,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,tmp_x,must_exit)
!
! if (must_exit) then
! ! ### Message ###
! ! if step_in_trust_region sets must_exit on true for numerical reasons
! print*,'algo_trust1 sends the message : Exit'
! !### exit ###
! endif
!
! !### TODO ###
! ! Compute x -> m_x
! ! Compute m_x -> R
! ! Apply R and keep the previous MOs...
! ! Update/touch
! ! Compute the new criterion/energy -> criterion
!
! call #your_routine_1D_to_2D_antisymmetric_array(x,m_x)
! call #your_routine_2D_antisymmetric_array_to_rotation_matrix(m_x,R)
! call #your_routine_to_apply_the_rotation_matrix(R,prev_mos)
!
! TOUCH #your_variables
!
! call #your_criterion(criterion)
!
! ! Criterion -> step accepted or rejected
! call trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
!
! ! ### TODO ###
! !if (cancel_step) then
! ! Cancel the previous step (mo_coef = prev_mos if you keep them...)
! !endif
! #if (cancel_step) then
! #mo_coef = prev_mos
! #endif
!
! enddo
!
! !call save_mos() !### depend of the time for 1 iteration
!
! ! To exit the external loop if must_exit = .True.
! if (must_exit) then
! !### exit ###
! endif
!
! ! Step accepted, nb iteration + 1
! nb_iter = nb_iter + 1
!
! ! ### TODO ###
! !if (###Conditions###) then
! ! no_converged = .False.
! !endif
! #if (#your_conditions) then
! # not_converged = .False.
! #endif
!
! enddo
#+END_SRC
Variables:
Input:
| n | integer | m*(m-1)/2 |
| m | integer | number of mo in the mo_class |
| H(n,n) | double precision | Hessian |
| v_grad(n) | double precision | Gradient |
| W(n,n) | double precision | Eigenvectors of the hessian |
| e_val(n) | double precision | Eigenvalues of the hessian |
| criterion | double precision | Actual criterion |
| prev_criterion | double precision | Value of the criterion before the first iteration/after the previous iteration |
| rho | double precision | Given by is_step_cancel_trus_region |
| | | Agreement between the real function and the Taylor series (2nd order) |
| nb_iter | integer | Actual number of iterations |
Input/output:
| delta | double precision | Radius of the trust region |
Output:
| criterion_model | double precision | Predicted criterion after the rotation |
| x(n) | double precision | Step |
| must_exit | logical | If the program must exit the loop |
#+BEGIN_SRC f90 :comments org :tangle algo_trust.irp.f
subroutine trust_region_step_w_expected_e(n,H,W,e_val,v_grad,prev_criterion,rho,nb_iter,delta,criterion_model,x,must_exit)
include 'pi.h'
BEGIN_DOC
! Compute the step and the expected criterion/energy after the step
END_DOC
implicit none
! in
integer, intent(in) :: n, nb_iter
double precision, intent(in) :: H(n,n), W(n,n), v_grad(n)
double precision, intent(in) :: rho, prev_criterion
! inout
double precision, intent(inout) :: delta, e_val(n)
! out
double precision, intent(out) :: criterion_model, x(n)
logical, intent(out) :: must_exit
! internal
integer :: info
must_exit = .False.
call trust_region_step(n,nb_iter,v_grad,rho,e_val,W,x,delta)
call trust_region_expected_e(n,v_grad,H,x,prev_criterion,criterion_model)
! exit if DABS(prev_criterion - criterion_model) < 1d-12
if (DABS(prev_criterion - criterion_model) < thresh_model) then
print*,''
print*,'###############################################################################'
print*,'DABS(prev_criterion - criterion_model) <', thresh_model, 'stop the trust region'
print*,'###############################################################################'
print*,''
must_exit = .True.
endif
if (delta < thresh_delta) then
print*,''
print*,'##############################################'
print*,'Delta <', thresh_delta, 'stop the trust region'
print*,'##############################################'
print*,''
must_exit = .True.
endif
! Add after the call to this subroutine, a statement:
! "if (must_exit) then
! exit
! endif"
! in order to exit the optimization loop
end subroutine
#+END_SRC
Variables:
Input:
| nb_iter | integer | actual number of iterations |
| prev_criterion | double precision | criterion before the application of the step x |
| criterion | double precision | criterion after the application of the step x |
| criterion_model | double precision | predicted criterion after the application of x |
Output:
| rho | double precision | Agreement between the predicted criterion and the real new criterion |
| cancel_step | logical | If the step must be cancelled |
#+BEGIN_SRC f90 :comments org :tangle algo_trust.irp.f
subroutine trust_region_is_step_cancelled(nb_iter,prev_criterion, criterion, criterion_model,rho,cancel_step)
include 'pi.h'
BEGIN_DOC
! Compute if the step should be cancelled
END_DOC
implicit none
! in
double precision, intent(in) :: prev_criterion, criterion, criterion_model
! inout
integer, intent(inout) :: nb_iter
! out
logical, intent(out) :: cancel_step
double precision, intent(out) :: rho
! Computes rho
call trust_region_rho(prev_criterion,criterion,criterion_model,rho)
if (nb_iter == 0) then
nb_iter = 1 ! in order to enable the change of delta if the first iteration is cancelled
endif
! If rho < thresh_rho -> give something in output to cancel the step
if (rho >= thresh_rho) then !0.1d0) then
! The step is accepted
cancel_step = .False.
else
! The step is rejected
cancel_step = .True.
print*, '***********************'
print*, 'Step cancel : rho <', thresh_rho
print*, '***********************'
endif
end subroutine
#+END_SRC
** Template for MOs
#+BEGIN_SRC f90 :comments org :tangle trust_region_template_mos.txt
subroutine algo_trust_template(tmp_n, tmp_list_size, tmp_list)
implicit none
! Variables
! In
integer, intent(in) :: tmp_n, tmp_list_size, tmp_list(tmp_list_size)
! Out
! Rien ou un truc pour savoir si ça c'est bien passé
! Internal
double precision, allocatable :: e_val(:), W(:,:), tmp_R(:,:), R(:,:), tmp_x(:), tmp_m_x(:,:)
double precision, allocatable :: prev_mos(:,:)
double precision :: criterion, prev_criterion, criterion_model
double precision :: delta, rho
logical :: not_converged, cancel_step, must_exit, enforce_step_cancellation
integer :: nb_iter, info, nb_sub_iter
integer :: i,j,tmp_i,tmp_j
allocate(W(tmp_n, tmp_n),e_val(tmp_n),tmp_x(tmp_n),tmp_m_x(tmp_list_size, tmp_list_size))
allocate(tmp_R(tmp_list_size, tmp_list_size), R(mo_num, mo_num))
allocate(prev_mos(ao_num, mo_num))
! Provide the criterion, but unnecessary because it's done
! automatically
PROVIDE C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
! Initialization
delta = 0d0
nb_iter = 0 ! Must start at 0 !!!
rho = 0.5d0 ! Must start at 0.5
not_converged = .True. ! Must be true
! Compute the criterion before the loop
prev_criterion = C_PROVIDER
do while (not_converged)
print*,''
print*,'******************'
print*,'Iteration', nb_iter
print*,'******************'
print*,''
! The new hessian and gradient are computed at the end of the previous iteration
! Diagonalization of the hessian
call diagonalization_hessian(tmp_n, H_PROVIDER, e_val, W)
cancel_step = .True. ! To enter in the loop just after
nb_sub_iter = 0
! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
do while (cancel_step)
print*,'-----------------------------'
print*,'Iteration:', nb_iter
print*,'Sub iteration:', nb_sub_iter
print*,'-----------------------------'
! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n, H_PROVIDER, W, e_val, g_PROVIDER, &
prev_criterion, rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
if (must_exit) then
! if step_in_trust_region sets must_exit on true for numerical reasons
print*,'trust_region_step_w_expected_e sent the message : Exit'
exit
endif
! 1D tmp -> 2D tmp
call vec_to_mat_v2(tmp_n, tmp_list_size, tmp_x, tmp_m_x)
! Rotation submatrix (square matrix tmp_list_size by tmp_list_size)
call rotation_matrix(tmp_m_x, tmp_list_size, tmp_R, tmp_list_size, tmp_list_size, info, enforce_step_cancellation)
if (enforce_step_cancellation) then
print*, 'Forces the step cancellation, too large error in the rotation matrix'
rho = 0d0
cycle
endif
! tmp_R to R, subspace to full space
call sub_to_full_rotation_matrix(tmp_list_size, tmp_list, tmp_R, R)
! Rotation of the MOs
call apply_mo_rotation(R, prev_mos)
! touch mo_coef
call clear_mo_map ! Only if you are using the bi-electronic integrals
! mo_coef becomes valid
! And avoid the recomputation of the providers which depend of mo_coef
TOUCH mo_coef C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
! To update the other parameters if needed
call #update_parameters()
! To enforce the program to provide new criterion after the update
! of the parameters
FREE C_PROVIDER
PROVIDE C_PROVIDER
criterion = C_PROVIDER
! Criterion -> step accepted or rejected
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, criterion_model, rho, cancel_step)
! Cancellation of the step ?
if (cancel_step) then
! Replacement by the previous MOs
mo_coef = prev_mos
! call save_mos() ! depends of the time for 1 iteration
! No need to clear_mo_map since we don't recompute the gradient and the hessian
! mo_coef becomes valid
! Avoid the recomputation of the providers which depend of mo_coef
TOUCH mo_coef H_PROVIDER g_PROVIDER C_PROVIDER cc_PROVIDER
else
! The step is accepted:
! criterion -> prev criterion
! The replacement "criterion -> prev criterion" is already done
! in trust_region_rho, so if the criterion does not have a reason
! to change, it will change nothing for the criterion and will
! force the program to provide the new hessian, gradient and
! convergence criterion for the next iteration.
! But in the case of orbital optimization we diagonalize the CI
! matrix after the "FREE" statement, so the criterion will change
FREE C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
PROVIDE C_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
prev_criterion = C_PROVIDER
endif
nb_sub_iter = nb_sub_iter + 1
enddo
! call save_mos() ! depends of the time for 1 iteration
! To exit the external loop if must_exit = .True.
if (must_exit) then
exit
endif
! Step accepted, nb iteration + 1
nb_iter = nb_iter + 1
! Provide the convergence criterion
! Provide the gradient and the hessian for the next iteration
PROVIDE cc_PROVIDER
! To exit
if (dabs(cc_PROVIDER) < thresh_opt_max_elem_grad) then
not_converged = .False.
endif
if (nb_iter > optimization_max_nb_iter) then
not_converged = .False.
endif
if (delta < thresh_delta) then
not_converged = .False.
endif
enddo
! Save the final MOs
call save_mos()
! Diagonalization of the hessian
! (To see the eigenvalues at the end of the optimization)
call diagonalization_hessian(tmp_n, H_PROVIDER, e_val, W)
deallocate(e_val, W, tmp_R, R, tmp_x, prev_mos)
end
#+END_SRC
** Cartesian version
#+BEGIN_SRC f90 :comments org :tangle trust_region_template_xyz.txt
subroutine algo_trust_cartesian_template(tmp_n)
implicit none
! Variables
! In
integer, intent(in) :: tmp_n
! Out
! Rien ou un truc pour savoir si ça c'est bien passé
! Internal
double precision, allocatable :: e_val(:), W(:,:), tmp_x(:)
double precision :: criterion, prev_criterion, criterion_model
double precision :: delta, rho
logical :: not_converged, cancel_step, must_exit
integer :: nb_iter, nb_sub_iter
integer :: i,j
allocate(W(tmp_n, tmp_n),e_val(tmp_n),tmp_x(tmp_n))
PROVIDE C_PROVIDER X_PROVIDER H_PROVIDER g_PROVIDER
! Initialization
delta = 0d0
nb_iter = 0 ! Must start at 0 !!!
rho = 0.5d0 ! Must start at 0.5
not_converged = .True. ! Must be true
! Compute the criterion before the loop
prev_criterion = C_PROVIDER
do while (not_converged)
print*,''
print*,'******************'
print*,'Iteration', nb_iter
print*,'******************'
print*,''
if (nb_iter > 0) then
PROVIDE H_PROVIDER g_PROVIDER
endif
! Diagonalization of the hessian
call diagonalization_hessian(tmp_n, H_PROVIDER, e_val, W)
cancel_step = .True. ! To enter in the loop just after
nb_sub_iter = 0
! Loop to Reduce the trust radius until the criterion decreases and rho >= thresh_rho
do while (cancel_step)
print*,'-----------------------------'
print*,'Iteration:', nb_iter
print*,'Sub iteration:', nb_sub_iter
print*,'-----------------------------'
! Hessian,gradient,Criterion -> x
call trust_region_step_w_expected_e(tmp_n, H_PROVIDER, W, e_val, g_PROVIDER, &
prev_criterion, rho, nb_iter, delta, criterion_model, tmp_x, must_exit)
if (must_exit) then
! if step_in_trust_region sets must_exit on true for numerical reasons
print*,'trust_region_step_w_expected_e sent the message : Exit'
exit
endif
! New coordinates, check the sign
X_PROVIDER = X_PROVIDER - tmp_x
! touch X_PROVIDER
TOUCH X_PROVIDER H_PROVIDER g_PROVIDER cc_PROVIDER
! To update the other parameters if needed
call #update_parameters()
! New criterion
PROVIDE C_PROVIDER ! Unnecessary
criterion = C_PROVIDER
! Criterion -> step accepted or rejected
call trust_region_is_step_cancelled(nb_iter, prev_criterion, criterion, criterion_model, rho, cancel_step)
! Cancel the previous step
if (cancel_step) then
! Replacement by the previous coordinates, check the sign
X_PROVIDER = X_PROVIDER + tmp_x
! Avoid the recomputation of the hessian and the gradient
TOUCH X_PROVIDER H_PROVIDER g_PROVIDER C_PROVIDER cc_PROVIDER
endif
nb_sub_iter = nb_sub_iter + 1
enddo
! To exit the external loop if must_exit = .True.
if (must_exit) then
exit
endif
! Step accepted, nb iteration + 1
nb_iter = nb_iter + 1
PROVIDE cc_PROVIDER
! To exit
if (dabs(cc_PROVIDER) < thresh_opt_max_elem_grad) then
not_converged = .False.
endif
if (nb_iter > optimization_max_nb_iter) then
not_converged = .False.
endif
if (delta < thresh_delta) then
not_converged = .False.
endif
enddo
deallocate(e_val, W, tmp_x)
end
#+END_SRC
** Script template
#+BEGIN_SRC bash :tangle script_template_mos.sh
#!/bin/bash
your_file=
your_C_PROVIDER=
your_H_PROVIDER=
your_g_PROVIDER=
your_cc_PROVIDER=
sed "s/C_PROVIDER/$your_C_PROVIDER/g" trust_region_template_mos.txt > $your_file
sed -i "s/H_PROVIDER/$your_H_PROVIDER/g" $your_file
sed -i "s/g_PROVIDER/$your_g_PROVIDER/g" $your_file
sed -i "s/cc_PROVIDER/$your_cc_PROVIDER/g" $your_file
#+END_SRC
#+BEGIN_SRC bash :tangle script_template_xyz.sh
#!/bin/bash
your_file=
your_C_PROVIDER=
your_X_PROVIDER=
your_H_PROVIDER=
your_g_PROVIDER=
your_cc_PROVIDER=
sed "s/C_PROVIDER/$your_C_PROVIDER/g" trust_region_template_xyz.txt > $your_file
sed -i "s/X_PROVIDER/$your_X_PROVIDER/g" $your_file
sed -i "s/H_PROVIDER/$your_H_PROVIDER/g" $your_file
sed -i "s/g_PROVIDER/$your_g_PROVIDER/g" $your_file
sed -i "s/cc_PROVIDER/$your_cc_PROVIDER/g" $your_file
#+END_SRC

View File

@ -0,0 +1,85 @@
! Apply MO rotation
! Subroutine to apply the rotation matrix to the coefficients of the
! MOs.
! New MOs = Old MOs . Rotation matrix
! *Compute the new MOs with the previous MOs and a rotation matrix*
! Provided:
! | mo_num | integer | number of MOs |
! | ao_num | integer | number of AOs |
! | mo_coef(ao_num,mo_num) | double precision | coefficients of the MOs |
! Intent in:
! | R(mo_num,mo_num) | double precision | rotation matrix |
! Intent out:
! | prev_mos(ao_num,mo_num) | double precision | MOs before the rotation |
! Internal:
! | new_mos(ao_num,mo_num) | double precision | MOs after the rotation |
! | i,j | integer | indexes |
subroutine apply_mo_rotation(R,prev_mos)
include 'pi.h'
BEGIN_DOC
! Compute the new MOs knowing the rotation matrix
END_DOC
implicit none
! Variables
! in
double precision, intent(in) :: R(mo_num,mo_num)
! out
double precision, intent(out) :: prev_mos(ao_num,mo_num)
! internal
double precision, allocatable :: new_mos(:,:)
integer :: i,j
double precision :: t1,t2,t3
print*,''
print*,'---apply_mo_rotation---'
call wall_time(t1)
! Allocation
allocate(new_mos(ao_num,mo_num))
! Calculation
! Product of old MOs (mo_coef) by Rotation matrix (R)
call dgemm('N','N',ao_num,mo_num,mo_num,1d0,mo_coef,size(mo_coef,1),R,size(R,1),0d0,new_mos,size(new_mos,1))
prev_mos = mo_coef
mo_coef = new_mos
!if (debug) then
! print*,'New mo_coef : '
! do i = 1, mo_num
! write(*,'(100(F10.5))') mo_coef(i,:)
! enddo
!endif
! Save the new MOs and change the label
mo_label = 'MCSCF'
!call save_mos
call ezfio_set_determinants_mo_label(mo_label)
!print*,'Done, MOs saved'
! Deallocation, end
deallocate(new_mos)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in apply mo rotation:', t3
print*,'---End apply_mo_rotation---'
end subroutine

View File

@ -0,0 +1,86 @@
* Apply MO rotation
Subroutine to apply the rotation matrix to the coefficients of the
MOs.
New MOs = Old MOs . Rotation matrix
*Compute the new MOs with the previous MOs and a rotation matrix*
Provided:
| mo_num | integer | number of MOs |
| ao_num | integer | number of AOs |
| mo_coef(ao_num,mo_num) | double precision | coefficients of the MOs |
Intent in:
| R(mo_num,mo_num) | double precision | rotation matrix |
Intent out:
| prev_mos(ao_num,mo_num) | double precision | MOs before the rotation |
Internal:
| new_mos(ao_num,mo_num) | double precision | MOs after the rotation |
| i,j | integer | indexes |
#+BEGIN_SRC f90 :comments org :tangle apply_mo_rotation.irp.f
subroutine apply_mo_rotation(R,prev_mos)
include 'pi.h'
BEGIN_DOC
! Compute the new MOs knowing the rotation matrix
END_DOC
implicit none
! Variables
! in
double precision, intent(in) :: R(mo_num,mo_num)
! out
double precision, intent(out) :: prev_mos(ao_num,mo_num)
! internal
double precision, allocatable :: new_mos(:,:)
integer :: i,j
double precision :: t1,t2,t3
print*,''
print*,'---apply_mo_rotation---'
call wall_time(t1)
! Allocation
allocate(new_mos(ao_num,mo_num))
! Calculation
! Product of old MOs (mo_coef) by Rotation matrix (R)
call dgemm('N','N',ao_num,mo_num,mo_num,1d0,mo_coef,size(mo_coef,1),R,size(R,1),0d0,new_mos,size(new_mos,1))
prev_mos = mo_coef
mo_coef = new_mos
!if (debug) then
! print*,'New mo_coef : '
! do i = 1, mo_num
! write(*,'(100(F10.5))') mo_coef(i,:)
! enddo
!endif
! Save the new MOs and change the label
mo_label = 'MCSCF'
!call save_mos
call ezfio_set_determinants_mo_label(mo_label)
!print*,'Done, MOs saved'
! Deallocation, end
deallocate(new_mos)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in apply mo rotation:', t3
print*,'---End apply_mo_rotation---'
end subroutine
#+END_SRC

View File

@ -0,0 +1,61 @@
! Matrix to vector index
! *Compute the index i of a vector element from the indexes p,q of a
! matrix element*
! Lower diagonal matrix (p,q), p > q -> vector (i)
! If a matrix is antisymmetric it can be reshaped as a vector. And the
! vector can be reshaped as an antisymmetric matrix
! \begin{align*}
! \begin{pmatrix}
! 0 & -1 & -2 & -4 \\
! 1 & 0 & -3 & -5 \\
! 2 & 3 & 0 & -6 \\
! 4 & 5 & 6 & 0
! \end{pmatrix}
! \Leftrightarrow
! \begin{pmatrix}
! 1 & 2 & 3 & 4 & 5 & 6
! \end{pmatrix}
! \end{align*}
! !!! Here the algorithm only work for the lower diagonal !!!
! Input:
! | p,q | integer | indexes of a matrix element in the lower diagonal |
! | | | p > q, q -> column |
! | | | p -> row, |
! | | | q -> column |
! Input:
! | i | integer | corresponding index in the vector |
subroutine mat_to_vec_index(p,q,i)
include 'pi.h'
implicit none
! Variables
! in
integer, intent(in) :: p,q
! out
integer, intent(out) :: i
! internal
integer :: a,b
double precision :: da
! Calculation
a = p-1
b = a*(a-1)/2
i = q+b
end subroutine

View File

@ -0,0 +1,63 @@
* Matrix to vector index
*Compute the index i of a vector element from the indexes p,q of a
matrix element*
Lower diagonal matrix (p,q), p > q -> vector (i)
If a matrix is antisymmetric it can be reshaped as a vector. And the
vector can be reshaped as an antisymmetric matrix
\begin{align*}
\begin{pmatrix}
0 & -1 & -2 & -4 \\
1 & 0 & -3 & -5 \\
2 & 3 & 0 & -6 \\
4 & 5 & 6 & 0
\end{pmatrix}
\Leftrightarrow
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6
\end{pmatrix}
\end{align*}
!!! Here the algorithm only work for the lower diagonal !!!
Input:
| p,q | integer | indexes of a matrix element in the lower diagonal |
| | | p > q, q -> column |
| | | p -> row, |
| | | q -> column |
Input:
| i | integer | corresponding index in the vector |
#+BEGIN_SRC f90 :comments org :tangle mat_to_vec_index.irp.f
subroutine mat_to_vec_index(p,q,i)
include 'pi.h'
implicit none
! Variables
! in
integer, intent(in) :: p,q
! out
integer, intent(out) :: i
! internal
integer :: a,b
double precision :: da
! Calculation
a = p-1
b = a*(a-1)/2
i = q+b
end subroutine
#+END_SRC

View File

@ -0,0 +1,2 @@
!logical, parameter :: debug=.False.
double precision, parameter :: pi = 3.1415926535897932d0

View File

@ -0,0 +1,443 @@
! Rotation matrix
! *Build a rotation matrix from an antisymmetric matrix*
! Compute a rotation matrix $\textbf{R}$ from an antisymmetric matrix $$\textbf{A}$$ such as :
! $$
! \textbf{R}=\exp(\textbf{A})
! $$
! So :
! \begin{align*}
! \textbf{R}=& \exp(\textbf{A}) \\
! =& \sum_k^{\infty} \frac{1}{k!}\textbf{A}^k \\
! =& \textbf{W} \cdot \cos(\tau) \cdot \textbf{W}^{\dagger} + \textbf{W} \cdot \tau^{-1} \cdot \sin(\tau) \cdot \textbf{W}^{\dagger} \cdot \textbf{A}
! \end{align*}
! With :
! $\textbf{W}$ : eigenvectors of $\textbf{A}^2$
! $\tau$ : $\sqrt{-x}$
! $x$ : eigenvalues of $\textbf{A}^2$
! Input:
! | A(n,n) | double precision | antisymmetric matrix |
! | n | integer | number of columns of the A matrix |
! | LDA | integer | specifies the leading dimension of A, must be at least max(1,n) |
! | LDR | integer | specifies the leading dimension of R, must be at least max(1,n) |
! Output:
! | R(n,n) | double precision | Rotation matrix |
! | info | integer | if info = 0, the execution is successful |
! | | | if info = k, the k-th parameter has an illegal value |
! | | | if info = -k, the algorithm failed |
! Internal:
! | B(n,n) | double precision | B = A.A |
! | work(lwork,n) | double precision | work matrix for dysev, dimension max(1,lwork) |
! | lwork | integer | dimension of the syev work array >= max(1, 3n-1) |
! | W(n,n) | double precision | eigenvectors of B |
! | e_val(n) | double precision | eigenvalues of B |
! | m_diag(n,n) | double precision | diagonal matrix with the eigenvalues of B |
! | cos_tau(n,n) | double precision | diagonal matrix with cos(tau) values |
! | sin_tau(n,n) | double precision | diagonal matrix with sin cos(tau) values |
! | tau_m1(n,n) | double precision | diagonal matrix with (tau)^-1 values |
! | part_1(n,n) | double precision | matrix W.cos_tau.W^t |
! | part_1a(n,n) | double precision | matrix cos_tau.W^t |
! | part_2(n,n) | double precision | matrix W.tau_m1.sin_tau.W^t.A |
! | part_2a(n,n) | double precision | matrix W^t.A |
! | part_2b(n,n) | double precision | matrix sin_tau.W^t.A |
! | part_2c(n,n) | double precision | matrix tau_m1.sin_tau.W^t.A |
! | RR_t(n,n) | double precision | R.R^t must be equal to the identity<=> R.R^t-1=0 <=> norm = 0 |
! | norm | integer | norm of R.R^t-1, must be equal to 0 |
! | i,j | integer | indexes |
! Functions:
! | dnrm2 | double precision | Lapack function, compute the norm of a matrix |
! | disnan | logical | Lapack function, check if an element is NaN |
subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
implicit none
BEGIN_DOC
! Rotation matrix to rotate the molecular orbitals.
! If the rotation is too large the transformation is not unitary and must be cancelled.
END_DOC
include 'pi.h'
! Variables
! in
integer, intent(in) :: n,LDA,LDR
double precision, intent(inout) :: A(LDA,n)
! out
double precision, intent(out) :: R(LDR,n)
integer, intent(out) :: info
logical, intent(out) :: enforce_step_cancellation
! internal
double precision, allocatable :: B(:,:)
double precision, allocatable :: work(:,:)
double precision, allocatable :: W(:,:), e_val(:)
double precision, allocatable :: m_diag(:,:),cos_tau(:,:),sin_tau(:,:),tau_m1(:,:)
double precision, allocatable :: part_1(:,:),part_1a(:,:)
double precision, allocatable :: part_2(:,:),part_2a(:,:),part_2b(:,:),part_2c(:,:)
double precision, allocatable :: RR_t(:,:)
integer :: i,j
integer :: info2, lwork ! for dsyev
double precision :: norm, max_elem, max_elem_A, t1,t2,t3
! function
double precision :: dnrm2
logical :: disnan
print*,''
print*,'---rotation_matrix---'
call wall_time(t1)
! Allocation
allocate(B(n,n))
allocate(m_diag(n,n),cos_tau(n,n),sin_tau(n,n),tau_m1(n,n))
allocate(W(n,n),e_val(n))
allocate(part_1(n,n),part_1a(n,n))
allocate(part_2(n,n),part_2a(n,n),part_2b(n,n),part_2c(n,n))
allocate(RR_t(n,n))
! Pre-conditions
! Initialization
info=0
enforce_step_cancellation = .False.
! Size of matrix A must be at least 1 by 1
if (n<1) then
info = 3
print*, 'WARNING: invalid parameter 5'
print*, 'n<1'
return
endif
! Leading dimension of A must be >= n
if (LDA < n) then
info = 25
print*, 'WARNING: invalid parameter 2 or 5'
print*, 'LDA < n'
return
endif
! Leading dimension of A must be >= n
if (LDR < n) then
info = 4
print*, 'WARNING: invalid parameter 4'
print*, 'LDR < n'
return
endif
! Matrix elements of A must by non-NaN
do j = 1, n
do i = 1, n
if (disnan(A(i,j))) then
info=1
print*, 'WARNING: invalid parameter 1'
print*, 'NaN element in A matrix'
return
endif
enddo
enddo
do i = 1, n
if (A(i,i) /= 0d0) then
print*, 'WARNING: matrix A is not antisymmetric'
print*, 'Non 0 element on the diagonal', i, A(i,i)
call ABORT
endif
enddo
do j = 1, n
do i = 1, n
if (A(i,j)+A(j,i)>1d-16) then
print*, 'WANRING: matrix A is not antisymmetric'
print*, 'A(i,j) /= - A(j,i):', i,j,A(i,j), A(j,i)
print*, 'diff:', A(i,j)+A(j,i)
call ABORT
endif
enddo
enddo
! Fix for too big elements ! bad idea better to cancel if the error is too big
!do j = 1, n
! do i = 1, n
! A(i,j) = mod(A(i,j),2d0*pi)
! if (dabs(A(i,j)) > pi) then
! A(i,j) = 0d0
! endif
! enddo
!enddo
max_elem_A = 0d0
do j = 1, n
do i = 1, n
if (ABS(A(i,j)) > ABS(max_elem_A)) then
max_elem_A = A(i,j)
endif
enddo
enddo
print*,'max element in A', max_elem_A
if (ABS(max_elem_A) > 2 * pi) then
print*,''
print*,'WARNING: ABS(max_elem_A) > 2 pi '
print*,''
endif
! B=A.A
! - Calculation of the matrix $\textbf{B} = \textbf{A}^2$
! - Diagonalization of $\textbf{B}$
! W, the eigenvectors
! e_val, the eigenvalues
! Compute B=A.A
call dgemm('N','N',n,n,n,1d0,A,size(A,1),A,size(A,1),0d0,B,size(B,1))
! Copy B in W, diagonalization will put the eigenvectors in W
W=B
! Diagonalization of B
! Eigenvalues -> e_val
! Eigenvectors -> W
lwork = 3*n-1
allocate(work(lwork,n))
print*,'Starting diagonalization ...'
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info2)
deallocate(work)
if (info2 == 0) then
print*, 'Diagonalization : Done'
elseif (info2 < 0) then
print*, 'WARNING: error in the diagonalization'
print*, 'Illegal value of the ', info2,'-th parameter'
else
print*, "WARNING: Diagonalization failed to converge"
endif
! Tau^-1, cos(tau), sin(tau)
! $$\tau = \sqrt{-x}$$
! - Calculation of $\cos(\tau)$ $\Leftrightarrow$ $\cos(\sqrt{-x})$
! - Calculation of $\sin(\tau)$ $\Leftrightarrow$ $\sin(\sqrt{-x})$
! - Calculation of $\tau^{-1}$ $\Leftrightarrow$ $(\sqrt{-x})^{-1}$
! These matrices are diagonals
! Diagonal matrix m_diag
do j = 1, n
if (e_val(j) >= -1d-12) then !0.d0) then !!! e_avl(i) must be < -1d-12 to avoid numerical problems
e_val(j) = 0.d0
else
e_val(j) = - e_val(j)
endif
enddo
m_diag = 0.d0
do i = 1, n
m_diag(i,i) = e_val(i)
enddo
! cos_tau
do j = 1, n
do i = 1, n
if (i==j) then
cos_tau(i,j) = dcos(dsqrt(e_val(i)))
else
cos_tau(i,j) = 0d0
endif
enddo
enddo
! sin_tau
do j = 1, n
do i = 1, n
if (i==j) then
sin_tau(i,j) = dsin(dsqrt(e_val(i)))
else
sin_tau(i,j) = 0d0
endif
enddo
enddo
! Debug, display the cos_tau and sin_tau matrix
!if (debug) then
! print*, 'cos_tau'
! do i = 1, n
! print*, cos_tau(i,:)
! enddo
! print*, 'sin_tau'
! do i = 1, n
! print*, sin_tau(i,:)
! enddo
!endif
! tau^-1
do j = 1, n
do i = 1, n
if ((i==j) .and. (e_val(i) > 1d-16)) then!0d0)) then !!! Convergence problem can come from here if the threshold is too big/small
tau_m1(i,j) = 1d0/(dsqrt(e_val(i)))
else
tau_m1(i,j) = 0d0
endif
enddo
enddo
max_elem = 0d0
do i = 1, n
if (ABS(tau_m1(i,i)) > ABS(max_elem)) then
max_elem = tau_m1(i,i)
endif
enddo
print*,'max elem tau^-1:', max_elem
! Debug
!print*,'eigenvalues:'
!do i = 1, n
! print*, e_val(i)
!enddo
!Debug, display tau^-1
!if (debug) then
! print*, 'tau^-1'
! do i = 1, n
! print*,tau_m1(i,:)
! enddo
!endif
! Rotation matrix
! \begin{align*}
! \textbf{R} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger} + \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
! \end{align*}
! \begin{align*}
! \textbf{Part1} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger}
! \end{align*}
! \begin{align*}
! \textbf{Part2} = \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
! \end{align*}
! First:
! part_1 = dgemm(W, dgemm(cos_tau, W^t))
! part_1a = dgemm(cos_tau, W^t)
! part_1 = dgemm(W, part_1a)
! And:
! part_2= dgemm(W, dgemm(tau_m1, dgemm(sin_tau, dgemm(W^t, A))))
! part_2a = dgemm(W^t, A)
! part_2b = dgemm(sin_tau, part_2a)
! part_2c = dgemm(tau_m1, part_2b)
! part_2 = dgemm(W, part_2c)
! Finally:
! Rotation matrix, R = part_1+part_2
! If $R$ is a rotation matrix:
! $R.R^T=R^T.R=\textbf{1}$
! part_1
call dgemm('N','T',n,n,n,1d0,cos_tau,size(cos_tau,1),W,size(W,1),0d0,part_1a,size(part_1a,1))
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_1a,size(part_1a,1),0d0,part_1,size(part_1,1))
! part_2
call dgemm('T','N',n,n,n,1d0,W,size(W,1),A,size(A,1),0d0,part_2a,size(part_2a,1))
call dgemm('N','N',n,n,n,1d0,sin_tau,size(sin_tau,1),part_2a,size(part_2a,1),0d0,part_2b,size(part_2b,1))
call dgemm('N','N',n,n,n,1d0,tau_m1,size(tau_m1,1),part_2b,size(part_2b,1),0d0,part_2c,size(part_2c,1))
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_2c,size(part_2c,1),0d0,part_2,size(part_2,1))
! Rotation matrix R
R = part_1 + part_2
! Matrix check
! R.R^t and R^t.R must be equal to identity matrix
do j = 1, n
do i=1,n
if (i==j) then
RR_t(i,j) = 1d0
else
RR_t(i,j) = 0d0
endif
enddo
enddo
call dgemm('N','T',n,n,n,1d0,R,size(R,1),R,size(R,1),-1d0,RR_t,size(RR_t,1))
norm = dnrm2(n*n,RR_t,1)
print*, 'Rotation matrix check, norm R.R^T = ', norm
! Debug
!if (debug) then
! print*, 'RR_t'
! do i = 1, n
! print*, RR_t(i,:)
! enddo
!endif
! Post conditions
! Check if R.R^T=1
max_elem = 0d0
do j = 1, n
do i = 1, n
if (ABS(RR_t(i,j)) > ABS(max_elem)) then
max_elem = RR_t(i,j)
endif
enddo
enddo
print*, 'Max error in R.R^T:', max_elem
print*, 'e_val(1):', e_val(1)
print*, 'e_val(n):', e_val(n)
print*, 'max elem in A:', max_elem_A
if (ABS(max_elem) > 1d-12) then
print*, 'WARNING: max error in R.R^T > 1d-12'
print*, 'Enforce the step cancellation'
enforce_step_cancellation = .True.
endif
! Matrix elements of R must by non-NaN
do j = 1,n
do i = 1,LDR
if (disnan(R(i,j))) then
info = 666
print*, 'NaN in rotation matrix'
call ABORT
endif
enddo
enddo
! Display
!if (debug) then
! print*,'Rotation matrix :'
! do i = 1, n
! write(*,'(100(F10.5))') R(i,:)
! enddo
!endif
! Deallocation, end
deallocate(B)
deallocate(m_diag,cos_tau,sin_tau,tau_m1)
deallocate(W,e_val)
deallocate(part_1,part_1a)
deallocate(part_2,part_2a,part_2b,part_2c)
deallocate(RR_t)
call wall_time(t2)
t3 = t2-t1
print*,'Time in rotation matrix:', t3
print*,'---End rotation_matrix---'
end subroutine

View File

@ -0,0 +1,454 @@
* Rotation matrix
*Build a rotation matrix from an antisymmetric matrix*
Compute a rotation matrix $\textbf{R}$ from an antisymmetric matrix $$\textbf{A}$$ such as :
$$
\textbf{R}=\exp(\textbf{A})
$$
So :
\begin{align*}
\textbf{R}=& \exp(\textbf{A}) \\
=& \sum_k^{\infty} \frac{1}{k!}\textbf{A}^k \\
=& \textbf{W} \cdot \cos(\tau) \cdot \textbf{W}^{\dagger} + \textbf{W} \cdot \tau^{-1} \cdot \sin(\tau) \cdot \textbf{W}^{\dagger} \cdot \textbf{A}
\end{align*}
With :
$\textbf{W}$ : eigenvectors of $\textbf{A}^2$
$\tau$ : $\sqrt{-x}$
$x$ : eigenvalues of $\textbf{A}^2$
Input:
| A(n,n) | double precision | antisymmetric matrix |
| n | integer | number of columns of the A matrix |
| LDA | integer | specifies the leading dimension of A, must be at least max(1,n) |
| LDR | integer | specifies the leading dimension of R, must be at least max(1,n) |
Output:
| R(n,n) | double precision | Rotation matrix |
| info | integer | if info = 0, the execution is successful |
| | | if info = k, the k-th parameter has an illegal value |
| | | if info = -k, the algorithm failed |
Internal:
| B(n,n) | double precision | B = A.A |
| work(lwork,n) | double precision | work matrix for dysev, dimension max(1,lwork) |
| lwork | integer | dimension of the syev work array >= max(1, 3n-1) |
| W(n,n) | double precision | eigenvectors of B |
| e_val(n) | double precision | eigenvalues of B |
| m_diag(n,n) | double precision | diagonal matrix with the eigenvalues of B |
| cos_tau(n,n) | double precision | diagonal matrix with cos(tau) values |
| sin_tau(n,n) | double precision | diagonal matrix with sin cos(tau) values |
| tau_m1(n,n) | double precision | diagonal matrix with (tau)^-1 values |
| part_1(n,n) | double precision | matrix W.cos_tau.W^t |
| part_1a(n,n) | double precision | matrix cos_tau.W^t |
| part_2(n,n) | double precision | matrix W.tau_m1.sin_tau.W^t.A |
| part_2a(n,n) | double precision | matrix W^t.A |
| part_2b(n,n) | double precision | matrix sin_tau.W^t.A |
| part_2c(n,n) | double precision | matrix tau_m1.sin_tau.W^t.A |
| RR_t(n,n) | double precision | R.R^t must be equal to the identity<=> R.R^t-1=0 <=> norm = 0 |
| norm | integer | norm of R.R^t-1, must be equal to 0 |
| i,j | integer | indexes |
Functions:
| dnrm2 | double precision | Lapack function, compute the norm of a matrix |
| disnan | logical | Lapack function, check if an element is NaN |
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
subroutine rotation_matrix(A,LDA,R,LDR,n,info,enforce_step_cancellation)
implicit none
BEGIN_DOC
! Rotation matrix to rotate the molecular orbitals.
! If the rotation is too large the transformation is not unitary and must be cancelled.
END_DOC
include 'pi.h'
! Variables
! in
integer, intent(in) :: n,LDA,LDR
double precision, intent(inout) :: A(LDA,n)
! out
double precision, intent(out) :: R(LDR,n)
integer, intent(out) :: info
logical, intent(out) :: enforce_step_cancellation
! internal
double precision, allocatable :: B(:,:)
double precision, allocatable :: work(:,:)
double precision, allocatable :: W(:,:), e_val(:)
double precision, allocatable :: m_diag(:,:),cos_tau(:,:),sin_tau(:,:),tau_m1(:,:)
double precision, allocatable :: part_1(:,:),part_1a(:,:)
double precision, allocatable :: part_2(:,:),part_2a(:,:),part_2b(:,:),part_2c(:,:)
double precision, allocatable :: RR_t(:,:)
integer :: i,j
integer :: info2, lwork ! for dsyev
double precision :: norm, max_elem, max_elem_A, t1,t2,t3
! function
double precision :: dnrm2
logical :: disnan
print*,''
print*,'---rotation_matrix---'
call wall_time(t1)
! Allocation
allocate(B(n,n))
allocate(m_diag(n,n),cos_tau(n,n),sin_tau(n,n),tau_m1(n,n))
allocate(W(n,n),e_val(n))
allocate(part_1(n,n),part_1a(n,n))
allocate(part_2(n,n),part_2a(n,n),part_2b(n,n),part_2c(n,n))
allocate(RR_t(n,n))
#+END_SRC
** Pre-conditions
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
! Initialization
info=0
enforce_step_cancellation = .False.
! Size of matrix A must be at least 1 by 1
if (n<1) then
info = 3
print*, 'WARNING: invalid parameter 5'
print*, 'n<1'
return
endif
! Leading dimension of A must be >= n
if (LDA < n) then
info = 25
print*, 'WARNING: invalid parameter 2 or 5'
print*, 'LDA < n'
return
endif
! Leading dimension of A must be >= n
if (LDR < n) then
info = 4
print*, 'WARNING: invalid parameter 4'
print*, 'LDR < n'
return
endif
! Matrix elements of A must by non-NaN
do j = 1, n
do i = 1, n
if (disnan(A(i,j))) then
info=1
print*, 'WARNING: invalid parameter 1'
print*, 'NaN element in A matrix'
return
endif
enddo
enddo
do i = 1, n
if (A(i,i) /= 0d0) then
print*, 'WARNING: matrix A is not antisymmetric'
print*, 'Non 0 element on the diagonal', i, A(i,i)
call ABORT
endif
enddo
do j = 1, n
do i = 1, n
if (A(i,j)+A(j,i)>1d-16) then
print*, 'WANRING: matrix A is not antisymmetric'
print*, 'A(i,j) /= - A(j,i):', i,j,A(i,j), A(j,i)
print*, 'diff:', A(i,j)+A(j,i)
call ABORT
endif
enddo
enddo
! Fix for too big elements ! bad idea better to cancel if the error is too big
!do j = 1, n
! do i = 1, n
! A(i,j) = mod(A(i,j),2d0*pi)
! if (dabs(A(i,j)) > pi) then
! A(i,j) = 0d0
! endif
! enddo
!enddo
max_elem_A = 0d0
do j = 1, n
do i = 1, n
if (ABS(A(i,j)) > ABS(max_elem_A)) then
max_elem_A = A(i,j)
endif
enddo
enddo
print*,'max element in A', max_elem_A
if (ABS(max_elem_A) > 2 * pi) then
print*,''
print*,'WARNING: ABS(max_elem_A) > 2 pi '
print*,''
endif
#+END_SRC
** Calculations
*** B=A.A
- Calculation of the matrix $\textbf{B} = \textbf{A}^2$
- Diagonalization of $\textbf{B}$
W, the eigenvectors
e_val, the eigenvalues
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
! Compute B=A.A
call dgemm('N','N',n,n,n,1d0,A,size(A,1),A,size(A,1),0d0,B,size(B,1))
! Copy B in W, diagonalization will put the eigenvectors in W
W=B
! Diagonalization of B
! Eigenvalues -> e_val
! Eigenvectors -> W
lwork = 3*n-1
allocate(work(lwork,n))
print*,'Starting diagonalization ...'
call dsyev('V','U',n,W,size(W,1),e_val,work,lwork,info2)
deallocate(work)
if (info2 == 0) then
print*, 'Diagonalization : Done'
elseif (info2 < 0) then
print*, 'WARNING: error in the diagonalization'
print*, 'Illegal value of the ', info2,'-th parameter'
else
print*, "WARNING: Diagonalization failed to converge"
endif
#+END_SRC
*** Tau^-1, cos(tau), sin(tau)
$$\tau = \sqrt{-x}$$
- Calculation of $\cos(\tau)$ $\Leftrightarrow$ $\cos(\sqrt{-x})$
- Calculation of $\sin(\tau)$ $\Leftrightarrow$ $\sin(\sqrt{-x})$
- Calculation of $\tau^{-1}$ $\Leftrightarrow$ $(\sqrt{-x})^{-1}$
These matrices are diagonals
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
! Diagonal matrix m_diag
do j = 1, n
if (e_val(j) >= -1d-12) then !0.d0) then !!! e_avl(i) must be < -1d-12 to avoid numerical problems
e_val(j) = 0.d0
else
e_val(j) = - e_val(j)
endif
enddo
m_diag = 0.d0
do i = 1, n
m_diag(i,i) = e_val(i)
enddo
! cos_tau
do j = 1, n
do i = 1, n
if (i==j) then
cos_tau(i,j) = dcos(dsqrt(e_val(i)))
else
cos_tau(i,j) = 0d0
endif
enddo
enddo
! sin_tau
do j = 1, n
do i = 1, n
if (i==j) then
sin_tau(i,j) = dsin(dsqrt(e_val(i)))
else
sin_tau(i,j) = 0d0
endif
enddo
enddo
! Debug, display the cos_tau and sin_tau matrix
!if (debug) then
! print*, 'cos_tau'
! do i = 1, n
! print*, cos_tau(i,:)
! enddo
! print*, 'sin_tau'
! do i = 1, n
! print*, sin_tau(i,:)
! enddo
!endif
! tau^-1
do j = 1, n
do i = 1, n
if ((i==j) .and. (e_val(i) > 1d-16)) then!0d0)) then !!! Convergence problem can come from here if the threshold is too big/small
tau_m1(i,j) = 1d0/(dsqrt(e_val(i)))
else
tau_m1(i,j) = 0d0
endif
enddo
enddo
max_elem = 0d0
do i = 1, n
if (ABS(tau_m1(i,i)) > ABS(max_elem)) then
max_elem = tau_m1(i,i)
endif
enddo
print*,'max elem tau^-1:', max_elem
! Debug
!print*,'eigenvalues:'
!do i = 1, n
! print*, e_val(i)
!enddo
!Debug, display tau^-1
!if (debug) then
! print*, 'tau^-1'
! do i = 1, n
! print*,tau_m1(i,:)
! enddo
!endif
#+END_SRC
*** Rotation matrix
\begin{align*}
\textbf{R} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger} + \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
\end{align*}
\begin{align*}
\textbf{Part1} = \textbf{W} \cos(\tau) \textbf{W}^{\dagger}
\end{align*}
\begin{align*}
\textbf{Part2} = \textbf{W} \tau^{-1} \sin(\tau) \textbf{W}^{\dagger} \textbf{A}
\end{align*}
First:
part_1 = dgemm(W, dgemm(cos_tau, W^t))
part_1a = dgemm(cos_tau, W^t)
part_1 = dgemm(W, part_1a)
And:
part_2= dgemm(W, dgemm(tau_m1, dgemm(sin_tau, dgemm(W^t, A))))
part_2a = dgemm(W^t, A)
part_2b = dgemm(sin_tau, part_2a)
part_2c = dgemm(tau_m1, part_2b)
part_2 = dgemm(W, part_2c)
Finally:
Rotation matrix, R = part_1+part_2
If $R$ is a rotation matrix:
$R.R^T=R^T.R=\textbf{1}$
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
! part_1
call dgemm('N','T',n,n,n,1d0,cos_tau,size(cos_tau,1),W,size(W,1),0d0,part_1a,size(part_1a,1))
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_1a,size(part_1a,1),0d0,part_1,size(part_1,1))
! part_2
call dgemm('T','N',n,n,n,1d0,W,size(W,1),A,size(A,1),0d0,part_2a,size(part_2a,1))
call dgemm('N','N',n,n,n,1d0,sin_tau,size(sin_tau,1),part_2a,size(part_2a,1),0d0,part_2b,size(part_2b,1))
call dgemm('N','N',n,n,n,1d0,tau_m1,size(tau_m1,1),part_2b,size(part_2b,1),0d0,part_2c,size(part_2c,1))
call dgemm('N','N',n,n,n,1d0,W,size(W,1),part_2c,size(part_2c,1),0d0,part_2,size(part_2,1))
! Rotation matrix R
R = part_1 + part_2
! Matrix check
! R.R^t and R^t.R must be equal to identity matrix
do j = 1, n
do i=1,n
if (i==j) then
RR_t(i,j) = 1d0
else
RR_t(i,j) = 0d0
endif
enddo
enddo
call dgemm('N','T',n,n,n,1d0,R,size(R,1),R,size(R,1),-1d0,RR_t,size(RR_t,1))
norm = dnrm2(n*n,RR_t,1)
print*, 'Rotation matrix check, norm R.R^T = ', norm
! Debug
!if (debug) then
! print*, 'RR_t'
! do i = 1, n
! print*, RR_t(i,:)
! enddo
!endif
#+END_SRC
*** Post conditions
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
! Check if R.R^T=1
max_elem = 0d0
do j = 1, n
do i = 1, n
if (ABS(RR_t(i,j)) > ABS(max_elem)) then
max_elem = RR_t(i,j)
endif
enddo
enddo
print*, 'Max error in R.R^T:', max_elem
print*, 'e_val(1):', e_val(1)
print*, 'e_val(n):', e_val(n)
print*, 'max elem in A:', max_elem_A
if (ABS(max_elem) > 1d-12) then
print*, 'WARNING: max error in R.R^T > 1d-12'
print*, 'Enforce the step cancellation'
enforce_step_cancellation = .True.
endif
! Matrix elements of R must by non-NaN
do j = 1,n
do i = 1,LDR
if (disnan(R(i,j))) then
info = 666
print*, 'NaN in rotation matrix'
call ABORT
endif
enddo
enddo
! Display
!if (debug) then
! print*,'Rotation matrix :'
! do i = 1, n
! write(*,'(100(F10.5))') R(i,:)
! enddo
!endif
#+END_SRC
** Deallocation, end
#+BEGIN_SRC f90 :comments org :tangle rotation_matrix.irp.f
deallocate(B)
deallocate(m_diag,cos_tau,sin_tau,tau_m1)
deallocate(W,e_val)
deallocate(part_1,part_1a)
deallocate(part_2,part_2a,part_2b,part_2c)
deallocate(RR_t)
call wall_time(t2)
t3 = t2-t1
print*,'Time in rotation matrix:', t3
print*,'---End rotation_matrix---'
end subroutine
#+END_SRC

View File

@ -0,0 +1,64 @@
! Rotation matrix in a subspace to rotation matrix in the full space
! Usually, we are using a list of MOs, for exemple the active ones. When
! we compute a rotation matrix to rotate the MOs, we just compute a
! rotation matrix for these MOs in order to reduce the size of the
! matrix which has to be computed. Since the computation of a rotation
! matrix scale in $O(N^3)$ with $N$ the number of MOs, it's better to
! reuce the number of MOs involved.
! After that we replace the rotation matrix in the full space by
! building the elements of the rotation matrix in the full space from
! the elements of the rotation matrix in the subspace and adding some 0
! on the extradiagonal elements and some 1 on the diagonal elements,
! for the MOs that are not involved in the rotation.
! Provided:
! | mo_num | integer | Number of MOs |
! Input:
! | m | integer | Size of tmp_list, m <= mo_num |
! | tmp_list(m) | integer | List of MOs |
! | tmp_R(m,m) | double precision | Rotation matrix in the space of |
! | | | the MOs containing by tmp_list |
! Output:
! | R(mo_num,mo_num | double precision | Rotation matrix in the space |
! | | | of all the MOs |
! Internal:
! | i,j | integer | indexes in the full space |
! | tmp_i,tmp_j | integer | indexes in the subspace |
subroutine sub_to_full_rotation_matrix(m,tmp_list,tmp_R,R)
BEGIN_DOC
! Compute the full rotation matrix from a smaller one
END_DOC
implicit none
! in
integer, intent(in) :: m, tmp_list(m)
double precision, intent(in) :: tmp_R(m,m)
! out
double precision, intent(out) :: R(mo_num,mo_num)
! internal
integer :: i,j,tmp_i,tmp_j
! tmp_R to R, subspace to full space
R = 0d0
do i = 1, mo_num
R(i,i) = 1d0 ! 1 on the diagonal because it is a rotation matrix, 1 = nothing change for the corresponding orbital
enddo
do tmp_j = 1, m
j = tmp_list(tmp_j)
do tmp_i = 1, m
i = tmp_list(tmp_i)
R(i,j) = tmp_R(tmp_i,tmp_j)
enddo
enddo
end

View File

@ -0,0 +1,65 @@
* Rotation matrix in a subspace to rotation matrix in the full space
Usually, we are using a list of MOs, for exemple the active ones. When
we compute a rotation matrix to rotate the MOs, we just compute a
rotation matrix for these MOs in order to reduce the size of the
matrix which has to be computed. Since the computation of a rotation
matrix scale in $O(N^3)$ with $N$ the number of MOs, it's better to
reuce the number of MOs involved.
After that we replace the rotation matrix in the full space by
building the elements of the rotation matrix in the full space from
the elements of the rotation matrix in the subspace and adding some 0
on the extradiagonal elements and some 1 on the diagonal elements,
for the MOs that are not involved in the rotation.
Provided:
| mo_num | integer | Number of MOs |
Input:
| m | integer | Size of tmp_list, m <= mo_num |
| tmp_list(m) | integer | List of MOs |
| tmp_R(m,m) | double precision | Rotation matrix in the space of |
| | | the MOs containing by tmp_list |
Output:
| R(mo_num,mo_num | double precision | Rotation matrix in the space |
| | | of all the MOs |
Internal:
| i,j | integer | indexes in the full space |
| tmp_i,tmp_j | integer | indexes in the subspace |
#+BEGIN_SRC f90 :comments org :tangle sub_to_full_rotation_matrix.irp.f
subroutine sub_to_full_rotation_matrix(m,tmp_list,tmp_R,R)
BEGIN_DOC
! Compute the full rotation matrix from a smaller one
END_DOC
implicit none
! in
integer, intent(in) :: m, tmp_list(m)
double precision, intent(in) :: tmp_R(m,m)
! out
double precision, intent(out) :: R(mo_num,mo_num)
! internal
integer :: i,j,tmp_i,tmp_j
! tmp_R to R, subspace to full space
R = 0d0
do i = 1, mo_num
R(i,i) = 1d0 ! 1 on the diagonal because it is a rotation matrix, 1 = nothing change for the corresponding orbital
enddo
do tmp_j = 1, m
j = tmp_list(tmp_j)
do tmp_i = 1, m
i = tmp_list(tmp_i)
R(i,j) = tmp_R(tmp_i,tmp_j)
enddo
enddo
end
#+END_SRC

View File

@ -0,0 +1,119 @@
! Predicted energy : e_model
! *Compute the energy predicted by the Taylor series*
! The energy is predicted using a Taylor expansion truncated at te 2nd
! order :
! \begin{align*}
! E_{k+1} = E_{k} + \textbf{g}_k^{T} \cdot \textbf{x}_{k+1} + \frac{1}{2} \cdot \textbf{x}_{k+1}^T \cdot \textbf{H}_{k} \cdot \textbf{x}_{k+1} + \mathcal{O}(\textbf{x}_{k+1}^2)
! \end{align*}
! Input:
! | n | integer | m*(m-1)/2 |
! | v_grad(n) | double precision | gradient |
! | H(n,n) | double precision | hessian |
! | x(n) | double precision | Step in the trust region |
! | prev_energy | double precision | previous energy |
! Output:
! | e_model | double precision | predicted energy after the rotation of the MOs |
! Internal:
! | part_1 | double precision | v_grad^T.x |
! | part_2 | double precision | 1/2 . x^T.H.x |
! | part_2a | double precision | H.x |
! | i,j | integer | indexes |
! Function:
! | ddot | double precision | dot product (Lapack) |
subroutine trust_region_expected_e(n,v_grad,H,x,prev_energy,e_model)
include 'pi.h'
BEGIN_DOC
! Compute the expected criterion/energy after the application of the step x
END_DOC
implicit none
! Variables
! in
integer, intent(in) :: n
double precision, intent(in) :: v_grad(n),H(n,n),x(n)
double precision, intent(in) :: prev_energy
! out
double precision, intent(out) :: e_model
! internal
double precision :: part_1, part_2, t1,t2,t3
double precision, allocatable :: part_2a(:)
integer :: i,j
!Function
double precision :: ddot
print*,''
print*,'---Trust_e_model---'
call wall_time(t1)
! Allocation
allocate(part_2a(n))
! Calculations
! part_1 corresponds to the product g.x
! part_2a corresponds to the product H.x
! part_2 corresponds to the product 0.5*(x^T.H.x)
! TODO: remove the dot products
! Product v_grad.x
part_1 = ddot(n,v_grad,1,x,1)
!if (debug) then
print*,'g.x : ', part_1
!endif
! Product H.x
call dgemv('N',n,n,1d0,H,size(H,1),x,1,0d0,part_2a,1)
! Product 1/2 . x^T.H.x
part_2 = 0.5d0 * ddot(n,x,1,part_2a,1)
!if (debug) then
print*,'1/2*x^T.H.x : ', part_2
!endif
print*,'prev_energy', prev_energy
! Sum
e_model = prev_energy + part_1 + part_2
! Writing the predicted energy
print*, 'Predicted energy after the rotation : ', e_model
print*, 'Previous energy - predicted energy:', prev_energy - e_model
! Can be deleted, already in another subroutine
if (DABS(prev_energy - e_model) < 1d-12 ) then
print*,'WARNING: ABS(prev_energy - e_model) < 1d-12'
endif
! Deallocation
deallocate(part_2a)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in trust e model:', t3
print*,'---End trust_e_model---'
print*,''
end subroutine

View File

@ -0,0 +1,121 @@
* Predicted energy : e_model
*Compute the energy predicted by the Taylor series*
The energy is predicted using a Taylor expansion truncated at te 2nd
order :
\begin{align*}
E_{k+1} = E_{k} + \textbf{g}_k^{T} \cdot \textbf{x}_{k+1} + \frac{1}{2} \cdot \textbf{x}_{k+1}^T \cdot \textbf{H}_{k} \cdot \textbf{x}_{k+1} + \mathcal{O}(\textbf{x}_{k+1}^2)
\end{align*}
Input:
| n | integer | m*(m-1)/2 |
| v_grad(n) | double precision | gradient |
| H(n,n) | double precision | hessian |
| x(n) | double precision | Step in the trust region |
| prev_energy | double precision | previous energy |
Output:
| e_model | double precision | predicted energy after the rotation of the MOs |
Internal:
| part_1 | double precision | v_grad^T.x |
| part_2 | double precision | 1/2 . x^T.H.x |
| part_2a | double precision | H.x |
| i,j | integer | indexes |
Function:
| ddot | double precision | dot product (Lapack) |
#+BEGIN_SRC f90 :comments org :tangle trust_region_expected_e.irp.f
subroutine trust_region_expected_e(n,v_grad,H,x,prev_energy,e_model)
include 'pi.h'
BEGIN_DOC
! Compute the expected criterion/energy after the application of the step x
END_DOC
implicit none
! Variables
! in
integer, intent(in) :: n
double precision, intent(in) :: v_grad(n),H(n,n),x(n)
double precision, intent(in) :: prev_energy
! out
double precision, intent(out) :: e_model
! internal
double precision :: part_1, part_2, t1,t2,t3
double precision, allocatable :: part_2a(:)
integer :: i,j
!Function
double precision :: ddot
print*,''
print*,'---Trust_e_model---'
call wall_time(t1)
! Allocation
allocate(part_2a(n))
#+END_SRC
** Calculations
part_1 corresponds to the product g.x
part_2a corresponds to the product H.x
part_2 corresponds to the product 0.5*(x^T.H.x)
TODO: remove the dot products
#+BEGIN_SRC f90 :comments org :tangle trust_region_expected_e.irp.f
! Product v_grad.x
part_1 = ddot(n,v_grad,1,x,1)
!if (debug) then
print*,'g.x : ', part_1
!endif
! Product H.x
call dgemv('N',n,n,1d0,H,size(H,1),x,1,0d0,part_2a,1)
! Product 1/2 . x^T.H.x
part_2 = 0.5d0 * ddot(n,x,1,part_2a,1)
!if (debug) then
print*,'1/2*x^T.H.x : ', part_2
!endif
print*,'prev_energy', prev_energy
! Sum
e_model = prev_energy + part_1 + part_2
! Writing the predicted energy
print*, 'Predicted energy after the rotation : ', e_model
print*, 'Previous energy - predicted energy:', prev_energy - e_model
! Can be deleted, already in another subroutine
if (DABS(prev_energy - e_model) < 1d-12 ) then
print*,'WARNING: ABS(prev_energy - e_model) < 1d-12'
endif
! Deallocation
deallocate(part_2a)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in trust e model:', t3
print*,'---End trust_e_model---'
print*,''
end subroutine
#+END_SRC

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,121 @@
! Agreement with the model: Rho
! *Compute the ratio : rho = (prev_energy - energy) / (prev_energy - e_model)*
! Rho represents the agreement between the model (the predicted energy
! by the Taylor expansion truncated at the 2nd order) and the real
! energy :
! \begin{equation}
! \rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
! \end{equation}
! With :
! $E^{k}$ the energy at the previous iteration
! $E^{k+1}$ the energy at the actual iteration
! $m^{k+1}$ the predicted energy for the actual iteration
! (cf. trust_e_model)
! If $\rho \approx 1$, the agreement is good, contrary to $\rho \approx 0$.
! If $\rho \leq 0$ the previous energy is lower than the actual
! energy. We have to cancel the last step and use a smaller trust
! region.
! Here we cancel the last step if $\rho < 0.1$, because even if
! the energy decreases, the agreement is bad, i.e., the Taylor expansion
! truncated at the second order doesn't represent correctly the energy
! landscape. So it's better to cancel the step and restart with a
! smaller trust region.
! Provided in qp_edit:
! | thresh_rho |
! Input:
! | prev_energy | double precision | previous energy (energy before the rotation) |
! | e_model | double precision | predicted energy after the rotation |
! Output:
! | rho | double precision | the agreement between the model (predicted) and the real energy |
! | prev_energy | double precision | if rho >= 0.1 the actual energy becomes the previous energy |
! | | | else the previous energy doesn't change |
! Internal:
! | energy | double precision | energy (real) after the rotation |
! | i | integer | index |
! | t* | double precision | time |
subroutine trust_region_rho(prev_energy, energy,e_model,rho)
include 'pi.h'
BEGIN_DOC
! Compute rho, the agreement between the predicted criterion/energy and the real one
END_DOC
implicit none
! Variables
! In
double precision, intent(inout) :: prev_energy
double precision, intent(in) :: e_model, energy
! Out
double precision, intent(out) :: rho
! Internal
double precision :: t1, t2, t3
integer :: i
print*,''
print*,'---Rho_model---'
call wall_time(t1)
! Rho
! \begin{equation}
! \rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
! \end{equation}
! In function of $\rho$ th step can be accepted or cancelled.
! If we cancel the last step (k+1), the previous energy (k) doesn't
! change!
! If the step (k+1) is accepted, then the "previous energy" becomes E(k+1)
! Already done in an other subroutine
!if (ABS(prev_energy - e_model) < 1d-12) then
! print*,'WARNING: prev_energy - e_model < 1d-12'
! print*,'=> rho will tend toward infinity'
! print*,'Check you convergence criterion !'
!endif
rho = (prev_energy - energy) / (prev_energy - e_model)
print*, 'previous energy, prev_energy :', prev_energy
print*, 'predicted energy, e_model :', e_model
print*, 'real energy, energy :', energy
print*, 'prev_energy - energy :', prev_energy - energy
print*, 'prev_energy - e_model :', prev_energy - e_model
print*, 'Rho :', rho
print*, 'Threshold for rho:', thresh_rho
! Modification of prev_energy in function of rho
if (rho < thresh_rho) then !0.1) then
! the step is cancelled
print*, 'Rho <', thresh_rho,', the previous energy does not changed'
print*, 'prev_energy :', prev_energy
else
! the step is accepted
prev_energy = energy
print*, 'Rho >=', thresh_rho,', energy -> prev_energy :', energy
endif
call wall_time(t2)
t3 = t2 - t1
print*,'Time in rho model:', t3
print*,'---End rho_model---'
print*,''
end subroutine

View File

@ -0,0 +1,123 @@
* Agreement with the model: Rho
*Compute the ratio : rho = (prev_energy - energy) / (prev_energy - e_model)*
Rho represents the agreement between the model (the predicted energy
by the Taylor expansion truncated at the 2nd order) and the real
energy :
\begin{equation}
\rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
\end{equation}
With :
$E^{k}$ the energy at the previous iteration
$E^{k+1}$ the energy at the actual iteration
$m^{k+1}$ the predicted energy for the actual iteration
(cf. trust_e_model)
If $\rho \approx 1$, the agreement is good, contrary to $\rho \approx 0$.
If $\rho \leq 0$ the previous energy is lower than the actual
energy. We have to cancel the last step and use a smaller trust
region.
Here we cancel the last step if $\rho < 0.1$, because even if
the energy decreases, the agreement is bad, i.e., the Taylor expansion
truncated at the second order doesn't represent correctly the energy
landscape. So it's better to cancel the step and restart with a
smaller trust region.
Provided in qp_edit:
| thresh_rho |
Input:
| prev_energy | double precision | previous energy (energy before the rotation) |
| e_model | double precision | predicted energy after the rotation |
Output:
| rho | double precision | the agreement between the model (predicted) and the real energy |
| prev_energy | double precision | if rho >= 0.1 the actual energy becomes the previous energy |
| | | else the previous energy doesn't change |
Internal:
| energy | double precision | energy (real) after the rotation |
| i | integer | index |
| t* | double precision | time |
#+BEGIN_SRC f90 :comments org :tangle trust_region_rho.irp.f
subroutine trust_region_rho(prev_energy, energy,e_model,rho)
include 'pi.h'
BEGIN_DOC
! Compute rho, the agreement between the predicted criterion/energy and the real one
END_DOC
implicit none
! Variables
! In
double precision, intent(inout) :: prev_energy
double precision, intent(in) :: e_model, energy
! Out
double precision, intent(out) :: rho
! Internal
double precision :: t1, t2, t3
integer :: i
print*,''
print*,'---Rho_model---'
call wall_time(t1)
#+END_SRC
** Rho
\begin{equation}
\rho^{k+1} = \frac{E^{k} - E^{k+1}}{E^{k} - m^{k+1}}
\end{equation}
In function of $\rho$ th step can be accepted or cancelled.
If we cancel the last step (k+1), the previous energy (k) doesn't
change!
If the step (k+1) is accepted, then the "previous energy" becomes E(k+1)
#+BEGIN_SRC f90 :comments org :tangle trust_region_rho.irp.f
! Already done in an other subroutine
!if (ABS(prev_energy - e_model) < 1d-12) then
! print*,'WARNING: prev_energy - e_model < 1d-12'
! print*,'=> rho will tend toward infinity'
! print*,'Check you convergence criterion !'
!endif
rho = (prev_energy - energy) / (prev_energy - e_model)
print*, 'previous energy, prev_energy :', prev_energy
print*, 'predicted energy, e_model :', e_model
print*, 'real energy, energy :', energy
print*, 'prev_energy - energy :', prev_energy - energy
print*, 'prev_energy - e_model :', prev_energy - e_model
print*, 'Rho :', rho
print*, 'Threshold for rho:', thresh_rho
! Modification of prev_energy in function of rho
if (rho < thresh_rho) then !0.1) then
! the step is cancelled
print*, 'Rho <', thresh_rho,', the previous energy does not changed'
print*, 'prev_energy :', prev_energy
else
! the step is accepted
prev_energy = energy
print*, 'Rho >=', thresh_rho,', energy -> prev_energy :', energy
endif
call wall_time(t2)
t3 = t2 - t1
print*,'Time in rho model:', t3
print*,'---End rho_model---'
print*,''
end subroutine
#+END_SRC

View File

@ -0,0 +1,716 @@
! Trust region
! *Compute the next step with the trust region algorithm*
! The Newton method is an iterative method to find a minimum of a given
! function. It uses a Taylor series truncated at the second order of the
! targeted function and gives its minimizer. The minimizer is taken as
! the new position and the same thing is done. And by doing so
! iteratively the method find a minimum, a local or global one depending
! of the starting point and the convexity/nonconvexity of the targeted
! function.
! The goal of the trust region is to constrain the step size of the
! Newton method in a certain area around the actual position, where the
! Taylor series is a good approximation of the targeted function. This
! area is called the "trust region".
! In addition, in function of the agreement between the Taylor
! development of the energy and the real energy, the size of the trust
! region will be updated at each iteration. By doing so, the step sizes
! are not too larges. In addition, since we add a criterion to cancel the
! step if the energy increases (more precisely if rho < 0.1), so it's
! impossible to diverge. \newline
! References: \newline
! Nocedal & Wright, Numerical Optimization, chapter 4 (1999), \newline
! https://link.springer.com/book/10.1007/978-0-387-40065-5, \newline
! ISBN: 978-0-387-40065-5 \newline
! By using the first and the second derivatives, the Newton method gives
! a step:
! \begin{align*}
! \textbf{x}_{(k+1)}^{\text{Newton}} = - \textbf{H}_{(k)}^{-1} \cdot
! \textbf{g}_{(k)}
! \end{align*}
! which leads to the minimizer of the Taylor series.
! !!! Warning: the Newton method gives the minimizer if and only if
! $\textbf{H}$ is positive definite, else it leads to a saddle point !!!
! But we want a step $\textbf{x}_{(k+1)}$ with a constraint on its (euclidian) norm:
! \begin{align*}
! ||\textbf{x}_{(k+1)}|| \leq \Delta_{(k+1)}
! \end{align*}
! which is equivalent to
! \begin{align*}
! \textbf{x}_{(k+1)}^T \cdot \textbf{x}_{(k+1)} \leq \Delta_{(k+1)}^2
! \end{align*}
! with: \newline
! $\textbf{x}_{(k+1)}$ is the step for the k+1-th iteration (vector of
! size n) \newline
! $\textbf{H}_{(k)}$ is the hessian at the k-th iteration (n by n
! matrix) \newline
! $\textbf{g}_{(k)}$ is the gradient at the k-th iteration (vector of
! size n) \newline
! $\Delta_{(k+1)}$ is the trust radius for the (k+1)-th iteration
! \newline
! Thus we want to constrain the step size $\textbf{x}_{(k+1)}$ into a
! hypersphere of radius $\Delta_{(k+1)}$.\newline
! So, if $||\textbf{x}_{(k+1)}^{\text{Newton}}|| \leq \Delta_{(k)}$ and
! $\textbf{H}$ is positive definite, the
! solution is the step given by the Newton method
! $\textbf{x}_{(k+1)} = \textbf{x}_{(k+1)}^{\text{Newton}}$.
! Else we have to constrain the step size. For simplicity we will remove
! the index $_{(k)}$ and $_{(k+1)}$. To restict the step size, we have
! to put a constraint on $\textbf{x}$ with a Lagrange multiplier.
! Starting from the Taylor series of a function E (here, the energy)
! truncated at the 2nd order, we have:
! \begin{align*}
! E(\textbf{x}) = E +\textbf{g}^T \cdot \textbf{x} + \frac{1}{2}
! \cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x} +
! \mathcal{O}(\textbf{x}^2)
! \end{align*}
! With the constraint on the norm of $\textbf{x}$ we can write the
! Lagrangian
! \begin{align*}
! \mathcal{L}(\textbf{x},\lambda) = E + \textbf{g}^T \cdot \textbf{x}
! + \frac{1}{2} \cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x}
! + \frac{1}{2} \lambda (\textbf{x}^T \cdot \textbf{x} - \Delta^2)
! \end{align*}
! Where: \newline
! $\lambda$ is the Lagrange multiplier \newline
! $E$ is the energy at the k-th iteration $\Leftrightarrow
! E(\textbf{x} = \textbf{0})$ \newline
! To solve this equation, we search a stationary point where the first
! derivative of $\mathcal{L}$ with respect to $\textbf{x}$ becomes 0, i.e.
! \begin{align*}
! \frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}=0
! \end{align*}
! The derivative is:
! \begin{align*}
! \frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
! = \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
! \end{align*}
! So, we search $\textbf{x}$ such as:
! \begin{align*}
! \frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
! = \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x} = 0
! \end{align*}
! We can rewrite that as:
! \begin{align*}
! \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
! = \textbf{g} + (\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x} = 0
! \end{align*}
! with $\textbf{I}$ is the identity matrix.
! By doing so, the solution is:
! \begin{align*}
! (\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x}= -\textbf{g}
! \end{align*}
! \begin{align*}
! \textbf{x}= - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
! \end{align*}
! with $\textbf{x}^T \textbf{x} = \Delta^2$.
! We have to solve this previous equation to find this $\textbf{x}$ in the
! trust region, i.e. $||\textbf{x}|| = \Delta$. Now, this problem is
! just a one dimension problem because we can express $\textbf{x}$ as a
! function of $\lambda$:
! \begin{align*}
! \textbf{x}(\lambda) = - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
! \end{align*}
! We start from the fact that the hessian is diagonalizable. So we have:
! \begin{align*}
! \textbf{H} = \textbf{W} \cdot \textbf{h} \cdot \textbf{W}^T
! \end{align*}
! with: \newline
! $\textbf{H}$, the hessian matrix \newline
! $\textbf{W}$, the matrix containing the eigenvectors \newline
! $\textbf{w}_i$, the i-th eigenvector, i.e. i-th column of $\textbf{W}$ \newline
! $\textbf{h}$, the matrix containing the eigenvalues in ascending order \newline
! $h_i$, the i-th eigenvalue in ascending order \newline
! Now we use the fact that adding a constant on the diagonal just shifts
! the eigenvalues:
! \begin{align*}
! \textbf{H} + \textbf{I} \lambda = \textbf{W} \cdot (\textbf{h}
! +\textbf{I} \lambda) \cdot \textbf{W}^T
! \end{align*}
! By doing so we can express $\textbf{x}$ as a function of $\lambda$
! \begin{align*}
! \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
! \textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
! \end{align*}
! with $\lambda \neq - h_i$.
! An interesting thing in our case is the norm of $\textbf{x}$,
! because we want $||\textbf{x}|| = \Delta$. Due to the orthogonality of
! the eigenvectors $\left\{\textbf{w} \right\} _{i=1}^n$ we have:
! \begin{align*}
! ||\textbf{x}(\lambda)||^2 = \sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot
! \textbf{g})^2}{(h_i + \lambda)^2}
! \end{align*}
! So the $||\textbf{x}(\lambda)||^2$ is just a function of $\lambda$.
! And if we study the properties of this function we see that:
! \begin{align*}
! \lim_{\lambda\to\infty} ||\textbf{x}(\lambda)|| = 0
! \end{align*}
! and if $\textbf{w}_i^T \cdot \textbf{g} \neq 0$:
! \begin{align*}
! \lim_{\lambda\to -h_i} ||\textbf{x}(\lambda)|| = + \infty
! \end{align*}
! From these limits and knowing that $h_1$ is the lowest eigenvalue, we
! can conclude that $||\textbf{x}(\lambda)||$ is a continuous and
! strictly decreasing function on the interval $\lambda \in
! (-h_1;\infty)$. Thus, there is one $\lambda$ in this interval which
! gives $||\textbf{x}(\lambda)|| = \Delta$, consequently there is one
! solution.
! Since $\textbf{x} = - (\textbf{H} + \lambda \textbf{I})^{-1} \cdot
! \textbf{g}$ and we want to reduce the norm of $\textbf{x}$, clearly,
! $\lambda > 0$ ($\lambda = 0$ is the unconstraint solution). But the
! Newton method is only defined for a positive definite hessian matrix,
! so $(\textbf{H} + \textbf{I} \lambda)$ must be positive
! definite. Consequently, in the case where $\textbf{H}$ is not positive
! definite, to ensure the positive definiteness, $\lambda$ must be
! greater than $- h_1$.
! \begin{align*}
! \lambda > 0 \quad \text{and} \quad \lambda \geq - h_1
! \end{align*}
! From that there are five cases:
! - if $\textbf{H}$ is positive definite, $-h_1 < 0$, $\lambda \in (0,\infty)$
! - if $\textbf{H}$ is not positive definite and $\textbf{w}_1^T \cdot
! \textbf{g} \neq 0$, $(\textbf{H} + \textbf{I}
! \lambda)$
! must be positve definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty)$
! - if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
! \textbf{g} = 0$ and $||\textbf{x}(-h_1)|| > \Delta$ by removing
! $j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
! positive definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty$)
! - if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
! \textbf{g} = 0$ and $||\textbf{x}(-h_1)|| \leq \Delta$ by removing
! $j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
! positive definite, $-h_1 > 0$, $\lambda = -h_1$). This case is
! similar to the case where $\textbf{H}$ and $||\textbf{x}(\lambda =
! 0)|| \leq \Delta$
! but we can also add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
! time a constant to ensure the condition $||\textbf{x}(\lambda =
! -h_1)|| = \Delta$ and escape from the saddle point
! Thus to find the solution, we can write:
! \begin{align*}
! ||\textbf{x}(\lambda)|| = \Delta
! \end{align*}
! \begin{align*}
! ||\textbf{x}(\lambda)|| - \Delta = 0
! \end{align*}
! Taking the square of this equation
! \begin{align*}
! (||\textbf{x}(\lambda)|| - \Delta)^2 = 0
! \end{align*}
! we have a function with one minimum for the optimal $\lambda$.
! Since we have the formula of $||\textbf{x}(\lambda)||^2$, we solve
! \begin{align*}
! (||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
! \end{align*}
! But in practice, it is more effective to solve:
! \begin{align*}
! (\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
! \end{align*}
! To do that, we just use the Newton method with "trust_newton" using
! first and second derivative of $(||\textbf{x}(\lambda)||^2 -
! \Delta^2)^2$ with respect to $\textbf{x}$.
! This will give the optimal $\lambda$ to compute the
! solution $\textbf{x}$ with the formula seen previously:
! \begin{align*}
! \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
! \textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
! \end{align*}
! The solution $\textbf{x}(\lambda)$ with the optimal $\lambda$ is our
! step to go from the (k)-th to the (k+1)-th iteration, is noted $\textbf{x}^*$.
! Evolution of the trust region
! We initialize the trust region at the first iteration using a radius
! \begin{align*}
! \Delta = ||\textbf{x}(\lambda=0)||
! \end{align*}
! And for the next iteration the trust region will evolves depending of
! the agreement of the energy prediction based on the Taylor series
! truncated at the 2nd order and the real energy. If the Taylor series
! truncated at the 2nd order represents correctly the energy landscape
! the trust region will be extent else it will be reduced. In order to
! mesure this agreement we use the ratio rho cf. "rho_model" and
! "trust_e_model". From that we use the following values:
! - if $\rho \geq 0.75$, then $\Delta = 2 \Delta$,
! - if $0.5 \geq \rho < 0.75$, then $\Delta = \Delta$,
! - if $0.25 \geq \rho < 0.5$, then $\Delta = 0.5 \Delta$,
! - if $\rho < 0.25$, then $\Delta = 0.25 \Delta$.
! In addition, if $\rho < 0.1$ the iteration is cancelled, so it
! restarts with a smaller trust region until the energy decreases.
! Summary
! To summarize, knowing the hessian (eigenvectors and eigenvalues), the
! gradient and the radius of the trust region we can compute the norm of
! the Newton step
! \begin{align*}
! ||\textbf{x}(\lambda = 0)||^2 = ||- \textbf{H}^{-1} \cdot \textbf{g}||^2 = \sum_{i=1}^n
! \frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2}, \quad h_i \neq 0
! \end{align*}
! - if $h_1 \geq 0$, $||\textbf{x}(\lambda = 0)|| \leq \Delta$ and
! $\textbf{x}(\lambda=0)$ is in the trust region and it is not
! necessary to put a constraint on $\textbf{x}$, the solution is the
! unconstrained one, $\textbf{x}^* = \textbf{x}(\lambda = 0)$.
! - else if $h_1 < 0$, $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
! $||\textbf{x}(\lambda = -h_1)|| \leq \Delta$ (by removing $j=1$ in
! the sum), the solution is $\textbf{x}^* = \textbf{x}(\lambda =
! -h_1)$, similarly to the previous case.
! But we can add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
! time a constant to ensure the condition $||\textbf{x}(\lambda =
! -h_1)|| = \Delta$ and escape from the saddle point
! - else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} \neq 0$ we
! have to search $\lambda \in (-h_1, \infty)$ such as
! $\textbf{x}(\lambda) = \Delta$ by solving with the Newton method
! \begin{align*}
! (||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
! \end{align*}
! or
! \begin{align*}
! (\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
! \end{align*}
! which is numerically more stable. And finally compute
! \begin{align*}
! \textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
! \textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
! \end{align*}
! - else if $h_1 \geq 0$ and $||\textbf{x}(\lambda = 0)|| > \Delta$ we
! do exactly the same thing that the previous case but we search
! $\lambda \in (0, \infty)$
! - else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
! $||\textbf{x}(\lambda = -h_1)|| > \Delta$ (by removing $j=1$ in the
! sum), again we do exactly the same thing that the previous case
! searching $\lambda \in (-h_1, \infty)$.
! For the cases where $\textbf{w}_1^T \cdot \textbf{g} = 0$ it is not
! necessary in fact to remove the $j = 1$ in the sum since the term
! where $h_i - \lambda < 10^{-6}$ are not computed.
! After that, we take this vector $\textbf{x}^*$, called "x", and we do
! the transformation to an antisymmetric matrix $\textbf{X}$, called
! m_x. This matrix $\textbf{X}$ will be used to compute a rotation
! matrix $\textbf{R}= \exp(\textbf{X})$ in "rotation_matrix".
! NB:
! An improvement can be done using a elleptical trust region.
! Code
! Provided:
! | mo_num | integer | number of MOs |
! Cf. qp_edit in orbital optimization section, for some constants/thresholds
! Input:
! | m | integer | number of MOs |
! | n | integer | m*(m-1)/2 |
! | H(n, n) | double precision | hessian |
! | v_grad(n) | double precision | gradient |
! | e_val(n) | double precision | eigenvalues of the hessian |
! | W(n, n) | double precision | eigenvectors of the hessian |
! | rho | double precision | agreement between the model and the reality, |
! | | | represents the quality of the energy prediction |
! | nb_iter | integer | number of iteration |
! Input/Ouput:
! | delta | double precision | radius of the trust region |
! Output:
! | x(n) | double precision | vector containing the step |
! Internal:
! | accu | double precision | temporary variable to compute the step |
! | lambda | double precision | lagrange multiplier |
! | trust_radius2 | double precision | square of the radius of the trust region |
! | norm2_x | double precision | norm^2 of the vector x |
! | norm2_g | double precision | norm^2 of the vector containing the gradient |
! | tmp_wtg(n) | double precision | tmp_wtg(i) = w_i^T . g |
! | i, j, k | integer | indexes |
! Function:
! | dnrm2 | double precision | Blas function computing the norm |
! | f_norm_trust_region_omp | double precision | compute the value of norm(x(lambda)^2) |
subroutine trust_region_step(n,nb_iter,v_grad,rho,e_val,w,x,delta)
include 'pi.h'
BEGIN_DOC
! Compuet the step in the trust region
END_DOC
implicit none
! Variables
! in
integer, intent(in) :: n
double precision, intent(in) :: v_grad(n), rho
integer, intent(inout) :: nb_iter
double precision, intent(in) :: e_val(n), w(n,n)
! inout
double precision, intent(inout) :: delta
! out
double precision, intent(out) :: x(n)
! Internal
double precision :: accu, lambda, trust_radius2
double precision :: norm2_x, norm2_g
double precision, allocatable :: tmp_wtg(:)
integer :: i,j,k
double precision :: t1,t2,t3
integer :: n_neg_eval
! Functions
double precision :: ddot, dnrm2
double precision :: f_norm_trust_region_omp
print*,''
print*,'=================='
print*,'---Trust_region---'
print*,'=================='
call wall_time(t1)
! Allocation
allocate(tmp_wtg(n))
! Initialization and norm
! The norm of the step size will be useful for the trust region
! algorithm. We start from a first guess and the radius of the trust
! region will evolve during the optimization.
! avoid_saddle is actually a test to avoid saddle points
! Initialization of the Lagrange multiplier
lambda = 0d0
! List of w^T.g, to avoid the recomputation
tmp_wtg = 0d0
do j = 1, n
do i = 1, n
tmp_wtg(j) = tmp_wtg(j) + w(i,j) * v_grad(i)
enddo
enddo
! Replacement of the small tmp_wtg corresponding to a negative eigenvalue
! in the case of avoid_saddle
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
i = 2
! Number of negative eigenvalues
do while (e_val(i) < - thresh_eig)
if (tmp_wtg(i) < thresh_wtg2) then
if (version_avoid_saddle == 1) then
tmp_wtg(i) = 1d0
elseif (version_avoid_saddle == 2) then
tmp_wtg(i) = DABS(e_val(i))
elseif (version_avoid_saddle == 3) then
tmp_wtg(i) = dsqrt(DABS(e_val(i)))
else
tmp_wtg(i) = thresh_wtg2
endif
endif
i = i + 1
enddo
! For the fist one it's a little bit different
if (tmp_wtg(1) < thresh_wtg2) then
tmp_wtg(1) = 0d0
endif
endif
! Norm^2 of x, ||x||^2
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
! We just use this norm for the nb_iter = 0 in order to initialize the trust radius delta
! We don't care about the sign of the eigenvalue we just want the size of the step in a normal Newton-Raphson algorithm
! Anyway if the step is too big it will be reduced
print*,'||x||^2 :', norm2_x
! Norm^2 of the gradient, ||v_grad||^2
norm2_g = (dnrm2(n,v_grad,1))**2
print*,'||grad||^2 :', norm2_g
! Trust radius initialization
! At the first iteration (nb_iter = 0) we initialize the trust region
! with the norm of the step generate by the Newton's method ($\textbf{x}_1 =
! (\textbf{H}_0)^{-1} \cdot \textbf{g}_0$,
! we compute this norm using f_norm_trust_region_omp as explain just
! below)
! trust radius
if (nb_iter == 0) then
trust_radius2 = norm2_x
! To avoid infinite loop of cancellation of this first step
! without changing delta
nb_iter = 1
! Compute delta, delta = sqrt(trust_radius)
delta = dsqrt(trust_radius2)
endif
! Modification of the trust radius
! In function of rho (which represents the agreement between the model
! and the reality, cf. rho_model) the trust region evolves. We update
! delta (the radius of the trust region).
! To avoid too big trust region we put a maximum size.
! Modification of the trust radius in function of rho
if (rho >= 0.75d0) then
delta = 2d0 * delta
elseif (rho >= 0.5d0) then
delta = delta
elseif (rho >= 0.25d0) then
delta = 0.5d0 * delta
else
delta = 0.25d0 * delta
endif
! Maximum size of the trust region
!if (delta > 0.5d0 * n * pi) then
! delta = 0.5d0 * n * pi
! print*,'Delta > delta_max, delta = 0.5d0 * n * pi'
!endif
if (delta > 1d10) then
delta = 1d10
endif
print*, 'Delta :', delta
! Calculation of the optimal lambda
! We search the solution of $(||x||^2 - \Delta^2)^2 = 0$
! - If $||\textbf{x}|| > \Delta$ or $h_1 < 0$ we have to add a constant
! $\lambda > 0 \quad \text{and} \quad \lambda > -h_1$
! - If $||\textbf{x}|| \leq \Delta$ and $h_1 \geq 0$ the solution is the
! unconstrained one, $\lambda = 0$
! You will find more details at the beginning
! By giving delta, we search (||x||^2 - delta^2)^2 = 0
! and not (||x||^2 - delta)^2 = 0
! Research of lambda to solve ||x(lambda)|| = Delta
! Display
print*, 'e_val(1) = ', e_val(1)
print*, 'w_1^T.g =', tmp_wtg(1)
! H positive definite
if (e_val(1) > - thresh_eig) then
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
print*, '||x(0)||=', dsqrt(norm2_x)
print*, 'Delta=', delta
! H positive definite, ||x(lambda = 0)|| <= Delta
if (dsqrt(norm2_x) <= delta) then
print*, 'H positive definite, ||x(lambda = 0)|| <= Delta'
print*, 'lambda = 0, no lambda optimization'
lambda = 0d0
! H positive definite, ||x(lambda = 0)|| > Delta
else
! Constraint solution
print*, 'H positive definite, ||x(lambda = 0)|| > Delta'
print*,'Computation of the optimal lambda...'
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
endif
! H indefinite
else
if (DABS(tmp_wtg(1)) < thresh_wtg) then
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg, - e_val(1))
print*, 'w_1^T.g <', thresh_wtg,', ||x(lambda = -e_val(1))|| =', dsqrt(norm2_x)
endif
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta
if (dsqrt(norm2_x) <= delta .and. DABS(tmp_wtg(1)) < thresh_wtg) then
! Add e_val(1) in order to have (H - e_val(1) I) positive definite
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta'
print*, 'lambda = -e_val(1), no lambda optimization'
lambda = - e_val(1)
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta
! and
! H indefinite, w_1^T.g =/= 0
else
! Constraint solution/ add lambda
if (DABS(tmp_wtg(1)) < thresh_wtg) then
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta'
else
print*, 'H indefinite, w_1^T.g =/= 0'
endif
print*, 'Computation of the optimal lambda...'
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
endif
endif
! Recomputation of the norm^2 of the step x
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda)
print*,''
print*,'Summary after the trust region:'
print*,'lambda:', lambda
print*,'||x||:', dsqrt(norm2_x)
print*,'delta:', delta
! Calculation of the step x
! x refers to $\textbf{x}^*$
! We compute x in function of lambda using its formula :
! \begin{align*}
! \textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot \textbf{g}}{h_i
! + \lambda} \cdot \textbf{w}_i
! \end{align*}
! Initialisation
x = 0d0
! Calculation of the step x
! Normal version
if (.not. absolute_eig) then
do i = 1, n
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
do j = 1, n
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (e_val(i) + lambda)
enddo
endif
enddo
! Version to use the absolute value of the eigenvalues
else
do i = 1, n
if (DABS(e_val(i)) > thresh_eig) then
do j = 1, n
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (DABS(e_val(i)) + lambda)
enddo
endif
enddo
endif
double precision :: beta, norm_x
! Test
! If w_1^T.g = 0, the lim of ||x(lambda)|| when lambda tend to -e_val(1)
! is not + infinity. So ||x(lambda=-e_val(1))|| < delta, we add the first
! eigenvectors multiply by a constant to ensure the condition
! ||x(lambda=-e_val(1))|| = delta and escape the saddle point
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
if (tmp_wtg(1) < 1d-15 .and. (1d0 - dsqrt(norm2_x)/delta) > 1d-3 ) then
! norm of x
norm_x = dnrm2(n,x,1)
! Computes the coefficient for the w_1
beta = delta**2 - norm_x**2
! Updates the step x
x = x + W(:,1) * dsqrt(beta)
! Recomputes the norm to check
norm_x = dnrm2(n,x,1)
print*, 'Add w_1 * dsqrt(delta^2 - ||x||^2):'
print*, '||x||', norm_x
endif
endif
! Transformation of x
! x is a vector of size n, so it can be write as a m by m
! antisymmetric matrix m_x cf. "mat_to_vec_index" and "vec_to_mat_index".
! ! Step transformation vector -> matrix
! ! Vector with n element -> mo_num by mo_num matrix
! do j = 1, m
! do i = 1, m
! if (i>j) then
! call mat_to_vec_index(i,j,k)
! m_x(i,j) = x(k)
! else
! m_x(i,j) = 0d0
! endif
! enddo
! enddo
!
! ! Antisymmetrization of the previous matrix
! do j = 1, m
! do i = 1, m
! if (i<j) then
! m_x(i,j) = - m_x(j,i)
! endif
! enddo
! enddo
! Deallocation, end
deallocate(tmp_wtg)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in trust_region:', t3
print*,'======================'
print*,'---End trust_region---'
print*,'======================'
print*,''
end

View File

@ -0,0 +1,726 @@
* Trust region
*Compute the next step with the trust region algorithm*
The Newton method is an iterative method to find a minimum of a given
function. It uses a Taylor series truncated at the second order of the
targeted function and gives its minimizer. The minimizer is taken as
the new position and the same thing is done. And by doing so
iteratively the method find a minimum, a local or global one depending
of the starting point and the convexity/nonconvexity of the targeted
function.
The goal of the trust region is to constrain the step size of the
Newton method in a certain area around the actual position, where the
Taylor series is a good approximation of the targeted function. This
area is called the "trust region".
In addition, in function of the agreement between the Taylor
development of the energy and the real energy, the size of the trust
region will be updated at each iteration. By doing so, the step sizes
are not too larges. In addition, since we add a criterion to cancel the
step if the energy increases (more precisely if rho < 0.1), so it's
impossible to diverge. \newline
References: \newline
Nocedal & Wright, Numerical Optimization, chapter 4 (1999), \newline
https://link.springer.com/book/10.1007/978-0-387-40065-5, \newline
ISBN: 978-0-387-40065-5 \newline
By using the first and the second derivatives, the Newton method gives
a step:
\begin{align*}
\textbf{x}_{(k+1)}^{\text{Newton}} = - \textbf{H}_{(k)}^{-1} \cdot
\textbf{g}_{(k)}
\end{align*}
which leads to the minimizer of the Taylor series.
!!! Warning: the Newton method gives the minimizer if and only if
$\textbf{H}$ is positive definite, else it leads to a saddle point !!!
But we want a step $\textbf{x}_{(k+1)}$ with a constraint on its (euclidian) norm:
\begin{align*}
||\textbf{x}_{(k+1)}|| \leq \Delta_{(k+1)}
\end{align*}
which is equivalent to
\begin{align*}
\textbf{x}_{(k+1)}^T \cdot \textbf{x}_{(k+1)} \leq \Delta_{(k+1)}^2
\end{align*}
with: \newline
$\textbf{x}_{(k+1)}$ is the step for the k+1-th iteration (vector of
size n) \newline
$\textbf{H}_{(k)}$ is the hessian at the k-th iteration (n by n
matrix) \newline
$\textbf{g}_{(k)}$ is the gradient at the k-th iteration (vector of
size n) \newline
$\Delta_{(k+1)}$ is the trust radius for the (k+1)-th iteration
\newline
Thus we want to constrain the step size $\textbf{x}_{(k+1)}$ into a
hypersphere of radius $\Delta_{(k+1)}$.\newline
So, if $||\textbf{x}_{(k+1)}^{\text{Newton}}|| \leq \Delta_{(k)}$ and
$\textbf{H}$ is positive definite, the
solution is the step given by the Newton method
$\textbf{x}_{(k+1)} = \textbf{x}_{(k+1)}^{\text{Newton}}$.
Else we have to constrain the step size. For simplicity we will remove
the index $_{(k)}$ and $_{(k+1)}$. To restict the step size, we have
to put a constraint on $\textbf{x}$ with a Lagrange multiplier.
Starting from the Taylor series of a function E (here, the energy)
truncated at the 2nd order, we have:
\begin{align*}
E(\textbf{x}) = E +\textbf{g}^T \cdot \textbf{x} + \frac{1}{2}
\cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x} +
\mathcal{O}(\textbf{x}^2)
\end{align*}
With the constraint on the norm of $\textbf{x}$ we can write the
Lagrangian
\begin{align*}
\mathcal{L}(\textbf{x},\lambda) = E + \textbf{g}^T \cdot \textbf{x}
+ \frac{1}{2} \cdot \textbf{x}^T \cdot \textbf{H} \cdot \textbf{x}
+ \frac{1}{2} \lambda (\textbf{x}^T \cdot \textbf{x} - \Delta^2)
\end{align*}
Where: \newline
$\lambda$ is the Lagrange multiplier \newline
$E$ is the energy at the k-th iteration $\Leftrightarrow
E(\textbf{x} = \textbf{0})$ \newline
To solve this equation, we search a stationary point where the first
derivative of $\mathcal{L}$ with respect to $\textbf{x}$ becomes 0, i.e.
\begin{align*}
\frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}=0
\end{align*}
The derivative is:
\begin{align*}
\frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
= \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
\end{align*}
So, we search $\textbf{x}$ such as:
\begin{align*}
\frac{\partial \mathcal{L}(\textbf{x},\lambda)}{\partial \textbf{x}}
= \textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x} = 0
\end{align*}
We can rewrite that as:
\begin{align*}
\textbf{g} + \textbf{H} \cdot \textbf{x} + \lambda \cdot \textbf{x}
= \textbf{g} + (\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x} = 0
\end{align*}
with $\textbf{I}$ is the identity matrix.
By doing so, the solution is:
\begin{align*}
(\textbf{H} +\textbf{I} \lambda) \cdot \textbf{x}= -\textbf{g}
\end{align*}
\begin{align*}
\textbf{x}= - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
\end{align*}
with $\textbf{x}^T \textbf{x} = \Delta^2$.
We have to solve this previous equation to find this $\textbf{x}$ in the
trust region, i.e. $||\textbf{x}|| = \Delta$. Now, this problem is
just a one dimension problem because we can express $\textbf{x}$ as a
function of $\lambda$:
\begin{align*}
\textbf{x}(\lambda) = - (\textbf{H} + \textbf{I} \lambda)^{-1} \cdot \textbf{g}
\end{align*}
We start from the fact that the hessian is diagonalizable. So we have:
\begin{align*}
\textbf{H} = \textbf{W} \cdot \textbf{h} \cdot \textbf{W}^T
\end{align*}
with: \newline
$\textbf{H}$, the hessian matrix \newline
$\textbf{W}$, the matrix containing the eigenvectors \newline
$\textbf{w}_i$, the i-th eigenvector, i.e. i-th column of $\textbf{W}$ \newline
$\textbf{h}$, the matrix containing the eigenvalues in ascending order \newline
$h_i$, the i-th eigenvalue in ascending order \newline
Now we use the fact that adding a constant on the diagonal just shifts
the eigenvalues:
\begin{align*}
\textbf{H} + \textbf{I} \lambda = \textbf{W} \cdot (\textbf{h}
+\textbf{I} \lambda) \cdot \textbf{W}^T
\end{align*}
By doing so we can express $\textbf{x}$ as a function of $\lambda$
\begin{align*}
\textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
\textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
\end{align*}
with $\lambda \neq - h_i$.
An interesting thing in our case is the norm of $\textbf{x}$,
because we want $||\textbf{x}|| = \Delta$. Due to the orthogonality of
the eigenvectors $\left\{\textbf{w} \right\} _{i=1}^n$ we have:
\begin{align*}
||\textbf{x}(\lambda)||^2 = \sum_{i=1}^n \frac{(\textbf{w}_i^T \cdot
\textbf{g})^2}{(h_i + \lambda)^2}
\end{align*}
So the $||\textbf{x}(\lambda)||^2$ is just a function of $\lambda$.
And if we study the properties of this function we see that:
\begin{align*}
\lim_{\lambda\to\infty} ||\textbf{x}(\lambda)|| = 0
\end{align*}
and if $\textbf{w}_i^T \cdot \textbf{g} \neq 0$:
\begin{align*}
\lim_{\lambda\to -h_i} ||\textbf{x}(\lambda)|| = + \infty
\end{align*}
From these limits and knowing that $h_1$ is the lowest eigenvalue, we
can conclude that $||\textbf{x}(\lambda)||$ is a continuous and
strictly decreasing function on the interval $\lambda \in
(-h_1;\infty)$. Thus, there is one $\lambda$ in this interval which
gives $||\textbf{x}(\lambda)|| = \Delta$, consequently there is one
solution.
Since $\textbf{x} = - (\textbf{H} + \lambda \textbf{I})^{-1} \cdot
\textbf{g}$ and we want to reduce the norm of $\textbf{x}$, clearly,
$\lambda > 0$ ($\lambda = 0$ is the unconstraint solution). But the
Newton method is only defined for a positive definite hessian matrix,
so $(\textbf{H} + \textbf{I} \lambda)$ must be positive
definite. Consequently, in the case where $\textbf{H}$ is not positive
definite, to ensure the positive definiteness, $\lambda$ must be
greater than $- h_1$.
\begin{align*}
\lambda > 0 \quad \text{and} \quad \lambda \geq - h_1
\end{align*}
From that there are five cases:
- if $\textbf{H}$ is positive definite, $-h_1 < 0$, $\lambda \in (0,\infty)$
- if $\textbf{H}$ is not positive definite and $\textbf{w}_1^T \cdot
\textbf{g} \neq 0$, $(\textbf{H} + \textbf{I}
\lambda)$
must be positve definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty)$
- if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
\textbf{g} = 0$ and $||\textbf{x}(-h_1)|| > \Delta$ by removing
$j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
positive definite, $-h_1 > 0$, $\lambda \in (-h_1, \infty$)
- if $\textbf{H}$ is not positive definite , $\textbf{w}_1^T \cdot
\textbf{g} = 0$ and $||\textbf{x}(-h_1)|| \leq \Delta$ by removing
$j=1$ in the sum, $(\textbf{H} + \textbf{I} \lambda)$ must be
positive definite, $-h_1 > 0$, $\lambda = -h_1$). This case is
similar to the case where $\textbf{H}$ and $||\textbf{x}(\lambda =
0)|| \leq \Delta$
but we can also add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
time a constant to ensure the condition $||\textbf{x}(\lambda =
-h_1)|| = \Delta$ and escape from the saddle point
Thus to find the solution, we can write:
\begin{align*}
||\textbf{x}(\lambda)|| = \Delta
\end{align*}
\begin{align*}
||\textbf{x}(\lambda)|| - \Delta = 0
\end{align*}
Taking the square of this equation
\begin{align*}
(||\textbf{x}(\lambda)|| - \Delta)^2 = 0
\end{align*}
we have a function with one minimum for the optimal $\lambda$.
Since we have the formula of $||\textbf{x}(\lambda)||^2$, we solve
\begin{align*}
(||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
\end{align*}
But in practice, it is more effective to solve:
\begin{align*}
(\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
\end{align*}
To do that, we just use the Newton method with "trust_newton" using
first and second derivative of $(||\textbf{x}(\lambda)||^2 -
\Delta^2)^2$ with respect to $\textbf{x}$.
This will give the optimal $\lambda$ to compute the
solution $\textbf{x}$ with the formula seen previously:
\begin{align*}
\textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
\textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
\end{align*}
The solution $\textbf{x}(\lambda)$ with the optimal $\lambda$ is our
step to go from the (k)-th to the (k+1)-th iteration, is noted $\textbf{x}^*$.
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
#+END_SRC
** Evolution of the trust region
We initialize the trust region at the first iteration using a radius
\begin{align*}
\Delta = ||\textbf{x}(\lambda=0)||
\end{align*}
And for the next iteration the trust region will evolves depending of
the agreement of the energy prediction based on the Taylor series
truncated at the 2nd order and the real energy. If the Taylor series
truncated at the 2nd order represents correctly the energy landscape
the trust region will be extent else it will be reduced. In order to
mesure this agreement we use the ratio rho cf. "rho_model" and
"trust_e_model". From that we use the following values:
- if $\rho \geq 0.75$, then $\Delta = 2 \Delta$,
- if $0.5 \geq \rho < 0.75$, then $\Delta = \Delta$,
- if $0.25 \geq \rho < 0.5$, then $\Delta = 0.5 \Delta$,
- if $\rho < 0.25$, then $\Delta = 0.25 \Delta$.
In addition, if $\rho < 0.1$ the iteration is cancelled, so it
restarts with a smaller trust region until the energy decreases.
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
#+END_SRC
** Summary
To summarize, knowing the hessian (eigenvectors and eigenvalues), the
gradient and the radius of the trust region we can compute the norm of
the Newton step
\begin{align*}
||\textbf{x}(\lambda = 0)||^2 = ||- \textbf{H}^{-1} \cdot \textbf{g}||^2 = \sum_{i=1}^n
\frac{(\textbf{w}_i^T \cdot \textbf{g})^2}{(h_i + \lambda)^2}, \quad h_i \neq 0
\end{align*}
- if $h_1 \geq 0$, $||\textbf{x}(\lambda = 0)|| \leq \Delta$ and
$\textbf{x}(\lambda=0)$ is in the trust region and it is not
necessary to put a constraint on $\textbf{x}$, the solution is the
unconstrained one, $\textbf{x}^* = \textbf{x}(\lambda = 0)$.
- else if $h_1 < 0$, $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
$||\textbf{x}(\lambda = -h_1)|| \leq \Delta$ (by removing $j=1$ in
the sum), the solution is $\textbf{x}^* = \textbf{x}(\lambda =
-h_1)$, similarly to the previous case.
But we can add to $\textbf{x}$, the first eigenvector $\textbf{W}_1$
time a constant to ensure the condition $||\textbf{x}(\lambda =
-h_1)|| = \Delta$ and escape from the saddle point
- else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} \neq 0$ we
have to search $\lambda \in (-h_1, \infty)$ such as
$\textbf{x}(\lambda) = \Delta$ by solving with the Newton method
\begin{align*}
(||\textbf{x}(\lambda)||^2 - \Delta^2)^2 = 0
\end{align*}
or
\begin{align*}
(\frac{1}{||\textbf{x}(\lambda)||^2} - \frac{1}{\Delta^2})^2 = 0
\end{align*}
which is numerically more stable. And finally compute
\begin{align*}
\textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot
\textbf{g}}{h_i + \lambda} \cdot \textbf{w}_i
\end{align*}
- else if $h_1 \geq 0$ and $||\textbf{x}(\lambda = 0)|| > \Delta$ we
do exactly the same thing that the previous case but we search
$\lambda \in (0, \infty)$
- else if $h_1 < 0$ and $\textbf{w}_1^T \cdot \textbf{g} = 0$ and
$||\textbf{x}(\lambda = -h_1)|| > \Delta$ (by removing $j=1$ in the
sum), again we do exactly the same thing that the previous case
searching $\lambda \in (-h_1, \infty)$.
For the cases where $\textbf{w}_1^T \cdot \textbf{g} = 0$ it is not
necessary in fact to remove the $j = 1$ in the sum since the term
where $h_i - \lambda < 10^{-6}$ are not computed.
After that, we take this vector $\textbf{x}^*$, called "x", and we do
the transformation to an antisymmetric matrix $\textbf{X}$, called
m_x. This matrix $\textbf{X}$ will be used to compute a rotation
matrix $\textbf{R}= \exp(\textbf{X})$ in "rotation_matrix".
NB:
An improvement can be done using a elleptical trust region.
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
#+END_SRC
** Code
Provided:
| mo_num | integer | number of MOs |
Cf. qp_edit in orbital optimization section, for some constants/thresholds
Input:
| m | integer | number of MOs |
| n | integer | m*(m-1)/2 |
| H(n, n) | double precision | hessian |
| v_grad(n) | double precision | gradient |
| e_val(n) | double precision | eigenvalues of the hessian |
| W(n, n) | double precision | eigenvectors of the hessian |
| rho | double precision | agreement between the model and the reality, |
| | | represents the quality of the energy prediction |
| nb_iter | integer | number of iteration |
Input/Ouput:
| delta | double precision | radius of the trust region |
Output:
| x(n) | double precision | vector containing the step |
Internal:
| accu | double precision | temporary variable to compute the step |
| lambda | double precision | lagrange multiplier |
| trust_radius2 | double precision | square of the radius of the trust region |
| norm2_x | double precision | norm^2 of the vector x |
| norm2_g | double precision | norm^2 of the vector containing the gradient |
| tmp_wtg(n) | double precision | tmp_wtg(i) = w_i^T . g |
| i, j, k | integer | indexes |
Function:
| dnrm2 | double precision | Blas function computing the norm |
| f_norm_trust_region_omp | double precision | compute the value of norm(x(lambda)^2) |
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
subroutine trust_region_step(n,nb_iter,v_grad,rho,e_val,w,x,delta)
include 'pi.h'
BEGIN_DOC
! Compuet the step in the trust region
END_DOC
implicit none
! Variables
! in
integer, intent(in) :: n
double precision, intent(in) :: v_grad(n), rho
integer, intent(inout) :: nb_iter
double precision, intent(in) :: e_val(n), w(n,n)
! inout
double precision, intent(inout) :: delta
! out
double precision, intent(out) :: x(n)
! Internal
double precision :: accu, lambda, trust_radius2
double precision :: norm2_x, norm2_g
double precision, allocatable :: tmp_wtg(:)
integer :: i,j,k
double precision :: t1,t2,t3
integer :: n_neg_eval
! Functions
double precision :: ddot, dnrm2
double precision :: f_norm_trust_region_omp
print*,''
print*,'=================='
print*,'---Trust_region---'
print*,'=================='
call wall_time(t1)
! Allocation
allocate(tmp_wtg(n))
#+END_SRC
*** Initialization and norm
The norm of the step size will be useful for the trust region
algorithm. We start from a first guess and the radius of the trust
region will evolve during the optimization.
avoid_saddle is actually a test to avoid saddle points
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
! Initialization of the Lagrange multiplier
lambda = 0d0
! List of w^T.g, to avoid the recomputation
tmp_wtg = 0d0
do j = 1, n
do i = 1, n
tmp_wtg(j) = tmp_wtg(j) + w(i,j) * v_grad(i)
enddo
enddo
! Replacement of the small tmp_wtg corresponding to a negative eigenvalue
! in the case of avoid_saddle
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
i = 2
! Number of negative eigenvalues
do while (e_val(i) < - thresh_eig)
if (tmp_wtg(i) < thresh_wtg2) then
if (version_avoid_saddle == 1) then
tmp_wtg(i) = 1d0
elseif (version_avoid_saddle == 2) then
tmp_wtg(i) = DABS(e_val(i))
elseif (version_avoid_saddle == 3) then
tmp_wtg(i) = dsqrt(DABS(e_val(i)))
else
tmp_wtg(i) = thresh_wtg2
endif
endif
i = i + 1
enddo
! For the fist one it's a little bit different
if (tmp_wtg(1) < thresh_wtg2) then
tmp_wtg(1) = 0d0
endif
endif
! Norm^2 of x, ||x||^2
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
! We just use this norm for the nb_iter = 0 in order to initialize the trust radius delta
! We don't care about the sign of the eigenvalue we just want the size of the step in a normal Newton-Raphson algorithm
! Anyway if the step is too big it will be reduced
print*,'||x||^2 :', norm2_x
! Norm^2 of the gradient, ||v_grad||^2
norm2_g = (dnrm2(n,v_grad,1))**2
print*,'||grad||^2 :', norm2_g
#+END_SRC
*** Trust radius initialization
At the first iteration (nb_iter = 0) we initialize the trust region
with the norm of the step generate by the Newton's method ($\textbf{x}_1 =
(\textbf{H}_0)^{-1} \cdot \textbf{g}_0$,
we compute this norm using f_norm_trust_region_omp as explain just
below)
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
! trust radius
if (nb_iter == 0) then
trust_radius2 = norm2_x
! To avoid infinite loop of cancellation of this first step
! without changing delta
nb_iter = 1
! Compute delta, delta = sqrt(trust_radius)
delta = dsqrt(trust_radius2)
endif
#+END_SRC
*** Modification of the trust radius
In function of rho (which represents the agreement between the model
and the reality, cf. rho_model) the trust region evolves. We update
delta (the radius of the trust region).
To avoid too big trust region we put a maximum size.
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
! Modification of the trust radius in function of rho
if (rho >= 0.75d0) then
delta = 2d0 * delta
elseif (rho >= 0.5d0) then
delta = delta
elseif (rho >= 0.25d0) then
delta = 0.5d0 * delta
else
delta = 0.25d0 * delta
endif
! Maximum size of the trust region
!if (delta > 0.5d0 * n * pi) then
! delta = 0.5d0 * n * pi
! print*,'Delta > delta_max, delta = 0.5d0 * n * pi'
!endif
if (delta > 1d10) then
delta = 1d10
endif
print*, 'Delta :', delta
#+END_SRC
*** Calculation of the optimal lambda
We search the solution of $(||x||^2 - \Delta^2)^2 = 0$
- If $||\textbf{x}|| > \Delta$ or $h_1 < 0$ we have to add a constant
$\lambda > 0 \quad \text{and} \quad \lambda > -h_1$
- If $||\textbf{x}|| \leq \Delta$ and $h_1 \geq 0$ the solution is the
unconstrained one, $\lambda = 0$
You will find more details at the beginning
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
! By giving delta, we search (||x||^2 - delta^2)^2 = 0
! and not (||x||^2 - delta)^2 = 0
! Research of lambda to solve ||x(lambda)|| = Delta
! Display
print*, 'e_val(1) = ', e_val(1)
print*, 'w_1^T.g =', tmp_wtg(1)
! H positive definite
if (e_val(1) > - thresh_eig) then
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,0d0)
print*, '||x(0)||=', dsqrt(norm2_x)
print*, 'Delta=', delta
! H positive definite, ||x(lambda = 0)|| <= Delta
if (dsqrt(norm2_x) <= delta) then
print*, 'H positive definite, ||x(lambda = 0)|| <= Delta'
print*, 'lambda = 0, no lambda optimization'
lambda = 0d0
! H positive definite, ||x(lambda = 0)|| > Delta
else
! Constraint solution
print*, 'H positive definite, ||x(lambda = 0)|| > Delta'
print*,'Computation of the optimal lambda...'
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
endif
! H indefinite
else
if (DABS(tmp_wtg(1)) < thresh_wtg) then
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg, - e_val(1))
print*, 'w_1^T.g <', thresh_wtg,', ||x(lambda = -e_val(1))|| =', dsqrt(norm2_x)
endif
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta
if (dsqrt(norm2_x) <= delta .and. DABS(tmp_wtg(1)) < thresh_wtg) then
! Add e_val(1) in order to have (H - e_val(1) I) positive definite
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| <= Delta'
print*, 'lambda = -e_val(1), no lambda optimization'
lambda = - e_val(1)
! H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta
! and
! H indefinite, w_1^T.g =/= 0
else
! Constraint solution/ add lambda
if (DABS(tmp_wtg(1)) < thresh_wtg) then
print*, 'H indefinite, w_1^T.g = 0, ||x(lambda = -e_val(1))|| > Delta'
else
print*, 'H indefinite, w_1^T.g =/= 0'
endif
print*, 'Computation of the optimal lambda...'
call trust_region_optimal_lambda(n,e_val,tmp_wtg,delta,lambda)
endif
endif
! Recomputation of the norm^2 of the step x
norm2_x = f_norm_trust_region_omp(n,e_val,tmp_wtg,lambda)
print*,''
print*,'Summary after the trust region:'
print*,'lambda:', lambda
print*,'||x||:', dsqrt(norm2_x)
print*,'delta:', delta
#+END_SRC
*** Calculation of the step x
x refers to $\textbf{x}^*$
We compute x in function of lambda using its formula :
\begin{align*}
\textbf{x}^* = \textbf{x}(\lambda) = - \sum_{i=1}^n \frac{\textbf{w}_i^T \cdot \textbf{g}}{h_i
+ \lambda} \cdot \textbf{w}_i
\end{align*}
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
! Initialisation
x = 0d0
! Calculation of the step x
! Normal version
if (.not. absolute_eig) then
do i = 1, n
if (DABS(e_val(i)) > thresh_eig .and. DABS(e_val(i)+lambda) > thresh_eig) then
do j = 1, n
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (e_val(i) + lambda)
enddo
endif
enddo
! Version to use the absolute value of the eigenvalues
else
do i = 1, n
if (DABS(e_val(i)) > thresh_eig) then
do j = 1, n
x(j) = x(j) - tmp_wtg(i) * W(j,i) / (DABS(e_val(i)) + lambda)
enddo
endif
enddo
endif
double precision :: beta, norm_x
! Test
! If w_1^T.g = 0, the lim of ||x(lambda)|| when lambda tend to -e_val(1)
! is not + infinity. So ||x(lambda=-e_val(1))|| < delta, we add the first
! eigenvectors multiply by a constant to ensure the condition
! ||x(lambda=-e_val(1))|| = delta and escape the saddle point
if (avoid_saddle .and. e_val(1) < - thresh_eig) then
if (tmp_wtg(1) < 1d-15 .and. (1d0 - dsqrt(norm2_x)/delta) > 1d-3 ) then
! norm of x
norm_x = dnrm2(n,x,1)
! Computes the coefficient for the w_1
beta = delta**2 - norm_x**2
! Updates the step x
x = x + W(:,1) * dsqrt(beta)
! Recomputes the norm to check
norm_x = dnrm2(n,x,1)
print*, 'Add w_1 * dsqrt(delta^2 - ||x||^2):'
print*, '||x||', norm_x
endif
endif
#+END_SRC
*** Transformation of x
x is a vector of size n, so it can be write as a m by m
antisymmetric matrix m_x cf. "mat_to_vec_index" and "vec_to_mat_index".
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
! ! Step transformation vector -> matrix
! ! Vector with n element -> mo_num by mo_num matrix
! do j = 1, m
! do i = 1, m
! if (i>j) then
! call mat_to_vec_index(i,j,k)
! m_x(i,j) = x(k)
! else
! m_x(i,j) = 0d0
! endif
! enddo
! enddo
!
! ! Antisymmetrization of the previous matrix
! do j = 1, m
! do i = 1, m
! if (i<j) then
! m_x(i,j) = - m_x(j,i)
! endif
! enddo
! enddo
#+END_SRC
*** Deallocation, end
#+BEGIN_SRC f90 :comments org :tangle trust_region_step.irp.f
deallocate(tmp_wtg)
call wall_time(t2)
t3 = t2 - t1
print*,'Time in trust_region:', t3
print*,'======================'
print*,'---End trust_region---'
print*,'======================'
print*,''
end
#+END_SRC

View File

@ -0,0 +1,71 @@
! Vector to matrix indexes
! *Compute the indexes p,q of a matrix element with the vector index i*
! Vector (i) -> lower diagonal matrix (p,q), p > q
! If a matrix is antisymmetric it can be reshaped as a vector. And the
! vector can be reshaped as an antisymmetric matrix
! \begin{align*}
! \begin{pmatrix}
! 0 & -1 & -2 & -4 \\
! 1 & 0 & -3 & -5 \\
! 2 & 3 & 0 & -6 \\
! 4 & 5 & 6 & 0
! \end{pmatrix}
! \Leftrightarrow
! \begin{pmatrix}
! 1 & 2 & 3 & 4 & 5 & 6
! \end{pmatrix}
! \end{align*}
! !!! Here the algorithm only work for the lower diagonal !!!
! Input:
! | i | integer | index in the vector |
! Ouput:
! | p,q | integer | corresponding indexes in the lower diagonal of a matrix |
! | | | p > q, |
! | | | p -> row, |
! | | | q -> column |
subroutine vec_to_mat_index(i,p,q)
include 'pi.h'
BEGIN_DOC
! Compute the indexes (p,q) of the element in the lower diagonal matrix knowing
! its index i a vector
END_DOC
implicit none
! Variables
! in
integer,intent(in) :: i
! out
integer, intent(out) :: p,q
! internal
integer :: a,b
double precision :: da
da = 0.5d0*(1+ sqrt(1d0+8d0*DBLE(i)))
a = INT(da)
if ((a*(a-1))/2==i) then
p = a-1
else
p = a
endif
b = p*(p-1)/2
! Matrix element indexes
p = p + 1
q = i - b
end subroutine

View File

@ -0,0 +1,72 @@
* Vector to matrix indexes
*Compute the indexes p,q of a matrix element with the vector index i*
Vector (i) -> lower diagonal matrix (p,q), p > q
If a matrix is antisymmetric it can be reshaped as a vector. And the
vector can be reshaped as an antisymmetric matrix
\begin{align*}
\begin{pmatrix}
0 & -1 & -2 & -4 \\
1 & 0 & -3 & -5 \\
2 & 3 & 0 & -6 \\
4 & 5 & 6 & 0
\end{pmatrix}
\Leftrightarrow
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6
\end{pmatrix}
\end{align*}
!!! Here the algorithm only work for the lower diagonal !!!
Input:
| i | integer | index in the vector |
Ouput:
| p,q | integer | corresponding indexes in the lower diagonal of a matrix |
| | | p > q, |
| | | p -> row, |
| | | q -> column |
#+BEGIN_SRC f90 :comments org :tangle vec_to_mat_index.irp.f
subroutine vec_to_mat_index(i,p,q)
include 'pi.h'
BEGIN_DOC
! Compute the indexes (p,q) of the element in the lower diagonal matrix knowing
! its index i a vector
END_DOC
implicit none
! Variables
! in
integer,intent(in) :: i
! out
integer, intent(out) :: p,q
! internal
integer :: a,b
double precision :: da
da = 0.5d0*(1+ sqrt(1d0+8d0*DBLE(i)))
a = INT(da)
if ((a*(a-1))/2==i) then
p = a-1
else
p = a
endif
b = p*(p-1)/2
! Matrix element indexes
p = p + 1
q = i - b
end subroutine
#+END_SRC

View File

@ -0,0 +1,39 @@
! Vect to antisymmetric matrix using mat_to_vec_index
! Vector to antisymmetric matrix transformation using mat_to_vec_index
! subroutine.
! Can be done in OMP (for the first part and with omp critical for the second)
subroutine vec_to_mat_v2(n,m,v_x,m_x)
BEGIN_DOC
! Vector to antisymmetric matrix
END_DOC
implicit none
integer, intent(in) :: n,m
double precision, intent(in) :: v_x(n)
double precision, intent(out) :: m_x(m,m)
integer :: i,j,k
! 1D -> 2D lower diagonal
m_x = 0d0
do j = 1, m - 1
do i = j + 1, m
call mat_to_vec_index(i,j,k)
m_x(i,j) = v_x(k)
enddo
enddo
! Antisym
do i = 1, m - 1
do j = i + 1, m
m_x(i,j) = - m_x(j,i)
enddo
enddo
end

View File

@ -0,0 +1,40 @@
* Vect to antisymmetric matrix using mat_to_vec_index
Vector to antisymmetric matrix transformation using mat_to_vec_index
subroutine.
Can be done in OMP (for the first part and with omp critical for the second)
#+BEGIN_SRC f90 :comments org :tangle vec_to_mat_v2.irp.f
subroutine vec_to_mat_v2(n,m,v_x,m_x)
BEGIN_DOC
! Vector to antisymmetric matrix
END_DOC
implicit none
integer, intent(in) :: n,m
double precision, intent(in) :: v_x(n)
double precision, intent(out) :: m_x(m,m)
integer :: i,j,k
! 1D -> 2D lower diagonal
m_x = 0d0
do j = 1, m - 1
do i = j + 1, m
call mat_to_vec_index(i,j,k)
m_x(i,j) = v_x(k)
enddo
enddo
! Antisym
do i = 1, m - 1
do j = i + 1, m
m_x(i,j) = - m_x(j,i)
enddo
enddo
end
#+END_SRC

View File

@ -1 +0,0 @@
../../include/f77_zmq_free.h

View File

@ -1,4 +1,4 @@
module f77_zmq
include 'f77_zmq_free.h'
#include "f77_zmq_free.h"
end module