diff --git a/src/ao_two_e_ints/two_e_integrals.irp.f b/src/ao_two_e_ints/two_e_integrals.irp.f index 3734d4a0..e4bd9d1d 100644 --- a/src/ao_two_e_ints/two_e_integrals.irp.f +++ b/src/ao_two_e_ints/two_e_integrals.irp.f @@ -40,8 +40,11 @@ double precision function ao_two_e_integral(i, j, k, l) double precision, external :: ao_two_e_integral_erf double precision, external :: ao_two_e_integral_cgtos double precision, external :: ao_two_e_integral_schwartz_accel + double precision, external :: ao_two_e_integral_general + double precision, external :: general_primitive_integral logical, external :: do_schwartz_accel + double precision :: coef1, coef2, coef3, coef4 if(use_cgtos) then @@ -58,83 +61,44 @@ double precision function ao_two_e_integral(i, j, k, l) else - dim1 = n_pt_max_integrals - num_i = ao_nucl(i) num_j = ao_nucl(j) num_k = ao_nucl(k) num_l = ao_nucl(l) ao_two_e_integral = 0.d0 - if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k)then - do p = 1, 3 - I_power(p) = ao_power(i,p) - J_power(p) = ao_power(j,p) - K_power(p) = ao_power(k,p) - L_power(p) = ao_power(l,p) - I_center(p) = nucl_coord(num_i,p) - J_center(p) = nucl_coord(num_j,p) - K_center(p) = nucl_coord(num_k,p) - L_center(p) = nucl_coord(num_l,p) - enddo + if (num_i /= num_j .or. num_k /= num_l .or. num_j /= num_k) then - double precision :: coef1, coef2, coef3, coef4 - double precision :: p_inv,q_inv - double precision :: general_primitive_integral + ao_two_e_integral = ao_two_e_integral_general(i,j,k,l,general_primitive_integral) - do p = 1, ao_prim_num(i) - coef1 = ao_coef_normalized_ordered_transp(p,i) - do q = 1, ao_prim_num(j) - coef2 = coef1*ao_coef_normalized_ordered_transp(q,j) - call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,& - ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), & - I_power,J_power,I_center,J_center,dim1) - p_inv = 1.d0/pp - do r = 1, ao_prim_num(k) - coef3 = coef2*ao_coef_normalized_ordered_transp(r,k) - do s = 1, ao_prim_num(l) - coef4 = coef3*ao_coef_normalized_ordered_transp(s,l) - call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,& - ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), & - K_power,L_power,K_center,L_center,dim1) - q_inv = 1.d0/qq - integral = general_primitive_integral(dim1, & - P_new,P_center,fact_p,pp,p_inv,iorder_p, & - Q_new,Q_center,fact_q,qq,q_inv,iorder_q) - ao_two_e_integral = ao_two_e_integral + coef4 * integral - enddo ! s - enddo ! r - enddo ! q - enddo ! p + else - else + do p = 1, 3 + I_power(p) = ao_power(i,p) + J_power(p) = ao_power(j,p) + K_power(p) = ao_power(k,p) + L_power(p) = ao_power(l,p) + enddo + double precision :: ERI - do p = 1, 3 - I_power(p) = ao_power(i,p) - J_power(p) = ao_power(j,p) - K_power(p) = ao_power(k,p) - L_power(p) = ao_power(l,p) - enddo - double precision :: ERI - - do p = 1, ao_prim_num(i) - coef1 = ao_coef_normalized_ordered_transp(p,i) - do q = 1, ao_prim_num(j) - coef2 = coef1*ao_coef_normalized_ordered_transp(q,j) - do r = 1, ao_prim_num(k) - coef3 = coef2*ao_coef_normalized_ordered_transp(r,k) - do s = 1, ao_prim_num(l) - coef4 = coef3*ao_coef_normalized_ordered_transp(s,l) - integral = ERI( & - ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),& - I_power(1),J_power(1),K_power(1),L_power(1), & - I_power(2),J_power(2),K_power(2),L_power(2), & - I_power(3),J_power(3),K_power(3),L_power(3)) - ao_two_e_integral = ao_two_e_integral + coef4 * integral - enddo ! s - enddo ! r - enddo ! q - enddo ! p + do p = 1, ao_prim_num(i) + coef1 = ao_coef_normalized_ordered_transp(p,i) + do q = 1, ao_prim_num(j) + coef2 = coef1*ao_coef_normalized_ordered_transp(q,j) + do r = 1, ao_prim_num(k) + coef3 = coef2*ao_coef_normalized_ordered_transp(r,k) + do s = 1, ao_prim_num(l) + coef4 = coef3*ao_coef_normalized_ordered_transp(s,l) + integral = ERI( & + ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j),ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l),& + I_power(1),J_power(1),K_power(1),L_power(1), & + I_power(2),J_power(2),K_power(2),L_power(2), & + I_power(3),J_power(3),K_power(3),L_power(3)) + ao_two_e_integral = ao_two_e_integral + coef4 * integral + enddo ! s + enddo ! r + enddo ! q + enddo ! p endif @@ -144,6 +108,76 @@ end ! --- +double precision function ao_two_e_integral_general(i, j, k, l, op) + + BEGIN_DOC + ! integral of the AO basis or (ij|kl) + ! i(r1) j(r1) 1/r12 k(r2) l(r2) + END_DOC + + implicit none + include 'utils/constants.include.F' + + integer, intent(in) :: i, j, k, l + double precision, external :: op ! Operator function + + integer :: p, q, r, s + integer :: num_i,num_j,num_k,num_l,dim1,I_power(3),J_power(3),K_power(3),L_power(3) + integer :: iorder_p(3), iorder_q(3) + double precision :: I_center(3), J_center(3), K_center(3), L_center(3) + double precision :: integral + double precision :: P_new(0:max_dim,3),P_center(3),fact_p,pp + double precision :: Q_new(0:max_dim,3),Q_center(3),fact_q,qq + + dim1 = n_pt_max_integrals + + num_i = ao_nucl(i) + num_j = ao_nucl(j) + num_k = ao_nucl(k) + num_l = ao_nucl(l) + ao_two_e_integral_general = 0.d0 + + do p = 1, 3 + I_power(p) = ao_power(i,p) + J_power(p) = ao_power(j,p) + K_power(p) = ao_power(k,p) + L_power(p) = ao_power(l,p) + I_center(p) = nucl_coord(num_i,p) + J_center(p) = nucl_coord(num_j,p) + K_center(p) = nucl_coord(num_k,p) + L_center(p) = nucl_coord(num_l,p) + enddo + + double precision :: coef1, coef2, coef3, coef4 + double precision :: p_inv,q_inv + + do p = 1, ao_prim_num(i) + coef1 = ao_coef_normalized_ordered_transp(p,i) + do q = 1, ao_prim_num(j) + coef2 = coef1*ao_coef_normalized_ordered_transp(q,j) + call give_explicit_poly_and_gaussian(P_new,P_center,pp,fact_p,iorder_p,& + ao_expo_ordered_transp(p,i),ao_expo_ordered_transp(q,j), & + I_power,J_power,I_center,J_center,dim1) + p_inv = 1.d0/pp + do r = 1, ao_prim_num(k) + coef3 = coef2*ao_coef_normalized_ordered_transp(r,k) + do s = 1, ao_prim_num(l) + coef4 = coef3*ao_coef_normalized_ordered_transp(s,l) + call give_explicit_poly_and_gaussian(Q_new,Q_center,qq,fact_q,iorder_q,& + ao_expo_ordered_transp(r,k),ao_expo_ordered_transp(s,l), & + K_power,L_power,K_center,L_center,dim1) + q_inv = 1.d0/qq + integral = op(dim1, & + P_new,P_center,fact_p,pp,p_inv,iorder_p, & + Q_new,Q_center,fact_q,qq,q_inv,iorder_q) + ao_two_e_integral_general = ao_two_e_integral_general + coef4 * integral + enddo ! s + enddo ! r + enddo ! q + enddo ! p + +end + double precision function ao_two_e_integral_schwartz_accel(i,j,k,l) implicit none BEGIN_DOC @@ -512,7 +546,7 @@ double precision function general_primitive_integral(dim, & double precision :: a,b,c,d,e,f,accu,pq,const double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2,pq_inv_2 integer :: n_pt_tmp,n_pt_out, iorder - double precision :: d1(0:max_dim),d_poly(0:max_dim),rint,d1_screened(0:max_dim) + double precision :: d1(0:max_dim),d_poly(0:max_dim),d1_screened(0:max_dim) general_primitive_integral = 0.d0