Fixed get_phase_qp_to_cfg

This commit is contained in:
Anthony Scemama 2021-04-17 02:03:31 +02:00
commit 7d39c58ea9
18 changed files with 507 additions and 236 deletions

63
config/ifort_xHost.cfg Normal file
View File

@ -0,0 +1,63 @@
# Common flags
##############
#
# -mkl=[parallel|sequential] : Use the MKL library
# --ninja : Allow the utilisation of ninja. It is mandatory !
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=64
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -xHost : Compile a binary optimized for the current architecture
# -O2 : O3 not better than O2.
# -ip : Inter-procedural optimizations
# -ftz : Flushes denormal results to zero
#
[OPT]
FC : -traceback
FCFLAGS : -xHost -O2 -ip -ftz -g
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
# Debugging flags
#################
#
# -traceback : Activate backtrace on runtime
# -fpe0 : All floating point exaceptions
# -C : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
# -xSSE2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
# OpenMP flags
#################
#
[OPENMP]
FC : -qopenmp
IRPF90_FLAGS : --openmp

2
configure vendored
View File

@ -238,7 +238,7 @@ EOF
tar --gunzip --extract --file libcap.tar.gz
rm libcap.tar.gz
cd libcap-*/libcap
prefix=$QP_ROOT make install
prefix=$QP_ROOT make BUILD_GPERF=no install
EOF
elif [[ ${PACKAGE} = bwrap ]] ; then

View File

@ -116,7 +116,7 @@ subroutine ao_two_e_integrals_in_map_slave(thread,iproc)
exit
endif
if (task_id == 0) exit
read(task,*) j, l
call sscanf_dd(task, j, l)
integer, external :: task_done_to_taskserver
call compute_ao_integrals_jl(j,l,n_integrals,buffer_i,buffer_value)
if (task_done_to_taskserver(zmq_to_qp_run_socket,worker_id,task_id) == -1) then

View File

@ -187,7 +187,7 @@ subroutine ZMQ_pt2(E, pt2_data, pt2_data_err, relative_error, N_in)
if (zmq_put_ivector(zmq_to_qp_run_socket,1,'pt2_stoch_istate',pt2_stoch_istate,1) == -1) then
stop 'Unable to put pt2_stoch_istate on ZMQ server'
endif
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'threshold_generators',threshold_generators,1) == -1) then
if (zmq_put_dvector(zmq_to_qp_run_socket,1,'threshold_generators',(/threshold_generators/),1) == -1) then
stop 'Unable to put threshold_generators on ZMQ server'
endif

View File

@ -52,7 +52,7 @@ subroutine run_selection_slave(thread,iproc,energy)
ctask = ctask - 1
else
integer :: i_generator, N, subset, bsize
read(task,*) subset, i_generator, N
call sscanf_ddd(task, subset, i_generator, N)
if(buf%N == 0) then
! Only first time
call create_selection_buffer(N, N*2, buf)

View File

@ -8,27 +8,56 @@ subroutine get_mask_phase(det1, pm, Nint)
integer(bit_kind), intent(out) :: pm(Nint,2)
integer(bit_kind) :: tmp1, tmp2
integer :: i
pm(1:Nint,1:2) = det1(1:Nint,1:2)
tmp1 = 0_8
tmp2 = 0_8
do i=1,Nint
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 1))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 1))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 2))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 2))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 4))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 4))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 8))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 8))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 16))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 16))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 32))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 32))
pm(i,1) = ieor(pm(i,1), tmp1)
pm(i,2) = ieor(pm(i,2), tmp2)
if(iand(popcnt(det1(i,1)), 1) == 1) tmp1 = not(tmp1)
if(iand(popcnt(det1(i,2)), 1) == 1) tmp2 = not(tmp2)
end do
select case (Nint)
BEGIN_TEMPLATE
case ($Nint)
do i=1,$Nint
pm(i,1) = ieor(det1(i,1), shiftl(det1(i,1), 1))
pm(i,2) = ieor(det1(i,2), shiftl(det1(i,2), 1))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 2))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 2))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 4))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 4))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 8))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 8))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 16))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 16))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 32))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 32))
pm(i,1) = ieor(pm(i,1), tmp1)
pm(i,2) = ieor(pm(i,2), tmp2)
if(iand(popcnt(det1(i,1)), 1) == 1) tmp1 = not(tmp1)
if(iand(popcnt(det1(i,2)), 1) == 1) tmp2 = not(tmp2)
end do
SUBST [ Nint ]
1;;
2;;
3;;
4;;
END_TEMPLATE
case default
do i=1,Nint
pm(i,1) = ieor(det1(i,1), shiftl(det1(i,1), 1))
pm(i,2) = ieor(det1(i,2), shiftl(det1(i,2), 1))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 2))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 2))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 4))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 4))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 8))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 8))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 16))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 16))
pm(i,1) = ieor(pm(i,1), shiftl(pm(i,1), 32))
pm(i,2) = ieor(pm(i,2), shiftl(pm(i,2), 32))
pm(i,1) = ieor(pm(i,1), tmp1)
pm(i,2) = ieor(pm(i,2), tmp2)
if(iand(popcnt(det1(i,1)), 1) == 1) tmp1 = not(tmp1)
if(iand(popcnt(det1(i,2)), 1) == 1) tmp2 = not(tmp2)
end do
end select
end subroutine
@ -450,11 +479,17 @@ subroutine select_singles_and_doubles(i_generator,hole_mask,particle_mask,fock_d
endif
do i=1,fullinteresting(0)
fullminilist(1:N_int,1:2,i) = psi_det_sorted(1:N_int,1:2,fullinteresting(i))
do k=1,N_int
fullminilist(k,1,i) = psi_det_sorted(k,1,fullinteresting(i))
fullminilist(k,2,i) = psi_det_sorted(k,2,fullinteresting(i))
enddo
enddo
do i=1,interesting(0)
minilist(1:N_int,1:2,i) = psi_det_sorted(1:N_int,1:2,interesting(i))
do k=1,N_int
minilist(k,1,i) = psi_det_sorted(k,1,interesting(i))
minilist(k,2,i) = psi_det_sorted(k,2,interesting(i))
enddo
enddo
do s2=s1,2
@ -673,10 +708,6 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
w = 0d0
! integer(bit_kind) :: occ(N_int,2), n
! call configuration_of_det(det,occ,N_int)
! call configuration_to_dets_size(occ,n,elec_alpha_num,N_int)
e_pert = 0.d0
coef = 0.d0
logical :: do_diag
@ -704,7 +735,7 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
double precision :: eigvalues(N_states+1)
double precision :: work(1+6*(N_states+1)+2*(N_states+1)**2)
integer :: iwork(3+5*(N_states+1)), info, k ,n
integer :: iwork(3+5*(N_states+1)), info, k
if (do_diag) then
double precision :: pt2_matrix(N_states+1,N_states+1)
@ -770,36 +801,43 @@ subroutine fill_buffer_double(i_generator, sp, h1, h2, bannedOrb, banned, fock_d
case(5)
! Variance selection
! w = w - alpha_h_psi * alpha_h_psi * s_weight(istate,istate)
w = min(w, - alpha_h_psi * alpha_h_psi * s_weight(istate,istate))
! do jstate=1,N_states
! if (istate == jstate) cycle
! w = w + dabs(alpha_h_psi*mat(jstate,p1,p2)) * s_weight(istate,jstate)
! enddo
if (h0_type == 'CFG') then
w = min(w, - alpha_h_psi * alpha_h_psi * s_weight(istate,istate)) &
/ c0_weight(istate)
else
w = min(w, - alpha_h_psi * alpha_h_psi * s_weight(istate,istate))
endif
case(6)
! w = w - coef(istate) * coef(istate) * s_weight(istate,istate)
w = min(w,- coef(istate) * coef(istate) * s_weight(istate,istate))
! do jstate=1,N_states
! if (istate == jstate) cycle
! w = w + dabs(coef(istate)*coef(jstate)) * s_weight(istate,jstate)
! enddo
if (h0_type == 'CFG') then
w = min(w,- coef(istate) * coef(istate) * s_weight(istate,istate)) &
/ c0_weight(istate)
else
w = min(w,- coef(istate) * coef(istate) * s_weight(istate,istate))
endif
case default
! Energy selection
! w = w + e_pert(istate) * s_weight(istate,istate)
w = min(w, e_pert(istate) * s_weight(istate,istate))
! do jstate=1,N_states
! if (istate == jstate) cycle
! w = w + dabs(X(istate)*X(jstate)) * s_weight(istate,jstate)
! enddo
if (h0_type == 'CFG') then
w = min(w, e_pert(istate) * s_weight(istate,istate)) / c0_weight(istate)
else
w = min(w, e_pert(istate) * s_weight(istate,istate))
endif
end select
end do
! w = dble(n) * w
integer(bit_kind) :: occ(N_int,2), n
if (h0_type == 'CFG') then
do k=1,N_int
occ(k,1) = ieor(det(k,1),det(k,2))
occ(k,2) = iand(det(k,1),det(k,2))
enddo
call configuration_to_dets_size(occ,n,elec_alpha_num,N_int)
n = max(n,1)
w *= dble(n)
endif
if(w <= buf%mini) then
call add_to_selection_buffer(buf, det, w)

View File

@ -38,7 +38,7 @@ subroutine update_pt2_and_variance_weights(pt2_data, N_st)
avg = sum(pt2(1:N_st)) / dble(N_st) + 1.d-32 ! Avoid future division by zero
dt = 2.d0 !* selection_factor
dt = 8.d0 !* selection_factor
do k=1,N_st
element = exp(dt*(pt2(k)/avg - 1.d0))
element = min(2.0d0 , element)

View File

@ -62,41 +62,43 @@ subroutine get_phase_qp_to_cfg(Ialpha, Ibeta, phaseout)
integer(bit_kind),intent(in) :: Ialpha(N_int)
integer(bit_kind),intent(in) :: Ibeta(N_int)
real*8,intent(out) :: phaseout
integer(bit_kind) :: mask(N_int), deta(N_int), detb(N_int)
integer(bit_kind) :: mask, deta(N_int), detb(N_int)
integer :: nbetas
integer :: count, k
if (N_int >1 ) then
stop 'TODO: get_phase_qp_to_cfg '
endif
integer :: k
nbetas = 0
mask = 0_bit_kind
count = 0
! Initliaze deta and detb
deta = Ialpha
detb = Ibeta
! remove the domos
mask = IAND(deta,detb)
deta = IEOR(deta,mask)
detb = IEOR(detb,mask)
mask = 0
phaseout = 1.0
k = 1
do while((deta(k)).GT.0_8)
mask(k) = ISHFT(1_8,count)
if(POPCNT(IAND(deta(k),mask(k))).EQ.1)then
if(IAND(nbetas,1).EQ.0) then
phaseout *= 1.0d0
else
phaseout *= -1.0d0
endif
deta(k) = IEOR(deta(k),mask(k))
else
if(POPCNT(IAND(detb(k),mask(k))).EQ.1) then
nbetas += 1
detb(k) = IEOR(detb(k),mask(k))
endif
endif
count += 1
! Find how many alpha electrons there are in all the N_ints
integer :: Na(N_int)
do k=1,N_int
Na(k) = popcnt(deta(k))
enddo
integer :: shift, ipos, nperm
phaseout = 1.d0
do k=1,N_int
do while(detb(k) /= 0_bit_kind)
! Find the lowest beta electron and clear it
ipos = trailz(detb(k))
detb(k) = ibclr(detb(k),ipos)
! Create a mask will all MOs higher than the beta electron
mask = not(shiftl(1_bit_kind,ipos + 1) - 1_bit_kind)
! Apply the mask to the alpha string to count how many electrons to cross
nperm = popcnt( iand(mask, deta(k)) )
! Count how many alpha electrons are above the beta electron in the other integers
nperm = nperm + sum(Na(k+1:N_int))
if (iand(nperm,1) == 1) then
phaseout = -phaseout
endif
enddo
enddo
end subroutine get_phase_qp_to_cfg

View File

@ -440,7 +440,7 @@ subroutine H_S2_u_0_nstates_zmq(v_0,s_0,u_0,N_st,sze)
ipos=1
do imin=1,N_det,tasksize
imax = min(N_det,imin-1+tasksize)
if (imin==1) then
if (imin<=N_det/2) then
istep = 2
else
istep = 1
@ -507,7 +507,9 @@ subroutine H_S2_u_0_nstates_zmq(v_0,s_0,u_0,N_st,sze)
print *, irp_here, ': Failed in zmq_set_running'
endif
call omp_set_max_active_levels(4)
call omp_set_max_active_levels(5)
!$OMP PARALLEL DEFAULT(shared) NUM_THREADS(2) PRIVATE(ithread)
ithread = omp_get_thread_num()
if (ithread == 0 ) then

View File

@ -57,7 +57,8 @@ END_PROVIDER
if (diag_algorithm == "Davidson") then
if (s2_eig.and.only_expected_s2.and.expected_s2==0.d0) then
if (s2_eig.and.only_expected_s2) then
! if (s2_eig.and.only_expected_s2.and.expected_s2==0.d0) then
call davidson_diag_H_csf(psi_det,CI_eigenvectors, &
size(CI_eigenvectors,1),CI_electronic_energy, &
N_det,N_csf,min(N_det,N_states),min(N_det,N_states_diag),N_int,0,converged)
@ -78,6 +79,7 @@ END_PROVIDER
TOUCH N_states_diag
if (s2_eig.and.only_expected_s2) then
! if (s2_eig.and.only_expected_s2.and.expected_s2==0.d0) then
allocate (CI_electronic_energy_tmp (N_states_diag) )
allocate (CI_eigenvectors_tmp (N_det,N_states_diag) )

View File

@ -674,6 +674,19 @@ subroutine create_wf_of_psi_bilinear_matrix(truncate)
! of $\alpha$ and $\beta$ determinants
END_DOC
logical, intent(in) :: truncate
call generate_all_alpha_beta_det_products
call update_wf_of_psi_bilinear_matrix(truncate)
end
subroutine update_wf_of_psi_bilinear_matrix(truncate)
use bitmasks
implicit none
BEGIN_DOC
! Updates a wave function when psi_bilinear_matrix was modified
END_DOC
logical, intent(in) :: truncate
integer :: i,j,k
integer(bit_kind) :: tmp_det(N_int,2)
integer :: idx
@ -681,7 +694,6 @@ subroutine create_wf_of_psi_bilinear_matrix(truncate)
double precision :: norm(N_states)
PROVIDE psi_bilinear_matrix
call generate_all_alpha_beta_det_products
norm = 0.d0
!$OMP PARALLEL DO DEFAULT(NONE) &
!$OMP PRIVATE(i,j,k,idx,tmp_det) &
@ -717,7 +729,7 @@ subroutine create_wf_of_psi_bilinear_matrix(truncate)
enddo
psi_det = psi_det_sorted_bit
psi_coef = psi_coef_sorted_bit
TOUCH psi_det psi_coef
TOUCH psi_det psi_coef N_det_beta_unique N_det_alpha_unique psi_det_beta_unique psi_det_alpha_unique
psi_det = psi_det_sorted
psi_coef = psi_coef_sorted
norm(1) = 0.d0
@ -733,7 +745,7 @@ subroutine create_wf_of_psi_bilinear_matrix(truncate)
endif
enddo
N_det = min(i,N_det)
SOFT_TOUCH psi_det psi_coef N_det
SOFT_TOUCH psi_det psi_coef N_det N_det_beta_unique N_det_alpha_unique psi_det_beta_unique psi_det_alpha_unique
end
@ -773,7 +785,7 @@ subroutine generate_all_alpha_beta_det_products
deallocate(tmp_det)
!$OMP END PARALLEL
call copy_H_apply_buffer_to_wf
SOFT_TOUCH psi_det psi_coef N_det
SOFT_TOUCH psi_det psi_coef N_det N_det_beta_unique N_det_alpha_unique psi_det_alpha_unique psi_det_beta_unique
end
@ -1063,19 +1075,17 @@ subroutine get_all_spin_singles_and_doubles_1(buffer, idx, spindet, size_buffer,
integer :: i
include 'utils/constants.include.F'
integer :: degree
integer :: add_double(0:64) = (/ 0, 0, 0, 0, 1, (0, i=1,60) /)
integer :: add_single(0:64) = (/ 0, 0, 1, 0, 0, (0, i=1,60) /)
n_singles = 1
n_doubles = 1
do i=1,size_buffer
degree = popcnt( xor( spindet, buffer(i) ) )
if ( degree == 4 ) then
doubles(n_doubles) = idx(i)
n_doubles = n_doubles+1
else if ( degree == 2 ) then
singles(n_singles) = idx(i)
n_singles = n_singles+1
endif
doubles(n_doubles) = idx(i)
singles(n_singles) = idx(i)
n_doubles = n_doubles+add_double(degree)
n_singles = n_singles+add_single(degree)
enddo
n_singles = n_singles-1
n_doubles = n_doubles-1
@ -1101,15 +1111,14 @@ subroutine get_all_spin_singles_1(buffer, idx, spindet, size_buffer, singles, n_
integer :: i
integer(bit_kind) :: v
integer :: degree
integer :: add_single(0:64) = (/ 0, 0, 1, 0, 0, (0, i=1,60) /)
include 'utils/constants.include.F'
n_singles = 1
do i=1,size_buffer
degree = popcnt(xor( spindet, buffer(i) ))
if (degree == 2) then
singles(n_singles) = idx(i)
n_singles = n_singles+1
endif
singles(n_singles) = idx(i)
n_singles = n_singles+add_single(degree)
enddo
n_singles = n_singles-1
@ -1133,14 +1142,13 @@ subroutine get_all_spin_doubles_1(buffer, idx, spindet, size_buffer, doubles, n_
integer :: i
include 'utils/constants.include.F'
integer :: degree
integer :: add_double(0:64) = (/ 0, 0, 0, 0, 1, (0, i=1,60) /)
n_doubles = 1
do i=1,size_buffer
degree = popcnt(xor( spindet, buffer(i) ))
if ( degree == 4 ) then
doubles(n_doubles) = idx(i)
n_doubles = n_doubles+1
endif
doubles(n_doubles) = idx(i)
n_doubles = n_doubles+add_double(degree)
enddo
n_doubles = n_doubles-1
@ -1181,16 +1189,10 @@ subroutine get_all_spin_singles_and_doubles_$N_int(buffer, idx, spindet, size_bu
xorvec(k) = xor( spindet(k), buffer(k,i) )
enddo
if (xorvec(1) /= 0_8) then
degree = popcnt(xorvec(1))
else
degree = 0
endif
degree = 0
do k=2,$N_int
if ( (degree <= 4).and.(xorvec(k) /= 0_8) ) then
do k=1,$N_int
degree = degree + popcnt(xorvec(k))
endif
enddo
if ( degree == 4 ) then
@ -1235,23 +1237,19 @@ subroutine get_all_spin_singles_$N_int(buffer, idx, spindet, size_buffer, single
xorvec(k) = xor( spindet(k), buffer(k,i) )
enddo
if (xorvec(1) /= 0_8) then
degree = popcnt(xorvec(1))
else
degree = 0
endif
degree = 0
do k=2,$N_int
if ( (degree <= 2).and.(xorvec(k) /= 0_8) ) then
do k=1,$N_int
degree = degree + popcnt(xorvec(k))
endif
enddo
if ( degree == 2 ) then
singles(n_singles) = idx(i)
n_singles = n_singles+1
if ( degree /= 2 ) then
cycle
endif
singles(n_singles) = idx(i)
n_singles = n_singles+1
enddo
n_singles = n_singles-1
@ -1284,23 +1282,19 @@ subroutine get_all_spin_doubles_$N_int(buffer, idx, spindet, size_buffer, double
xorvec(k) = xor( spindet(k), buffer(k,i) )
enddo
if (xorvec(1) /= 0_8) then
degree = popcnt(xorvec(1))
else
degree = 0
endif
degree = 0
do k=2,$N_int
if ( (degree <= 4).and.(xorvec(k) /= 0_8) ) then
do k=1,$N_int
degree = degree + popcnt(xorvec(k))
endif
enddo
if ( degree == 4 ) then
doubles(n_doubles) = idx(i)
n_doubles = n_doubles+1
if ( degree /= 4 ) then
cycle
endif
doubles(n_doubles) = idx(i)
n_doubles = n_doubles+1
enddo
n_doubles = n_doubles-1

View File

@ -23,6 +23,10 @@ END_DOC
error_matrix_DIIS(ao_num,ao_num,max_dim_DIIS) &
)
Fock_matrix_DIIS = 0.d0
error_matrix_DIIS = 0.d0
mo_coef_save = 0.d0
call write_time(6)
print*,'Energy of the guess = ',SCF_energy
@ -198,7 +202,7 @@ END_DOC
double precision,allocatable :: C_vector_DIIS(:)
double precision,allocatable :: scratch(:,:)
integer :: i,j,k,i_DIIS,j_DIIS
integer :: i,j,k,l,i_DIIS,j_DIIS
double precision :: rcond, ferr, berr
integer, allocatable :: iwork(:)
integer :: lwork
@ -214,28 +218,22 @@ END_DOC
scratch(ao_num,ao_num) &
)
! Compute the matrices B and X
! Compute the matrices B and X
B_matrix_DIIS(:,:) = 0.d0
do j=1,dim_DIIS
j_DIIS = min(dim_DIIS,mod(iteration_SCF-j,max_dim_DIIS)+1)
do i=1,dim_DIIS
do i=1,dim_DIIS
i_DIIS = min(dim_DIIS,mod(iteration_SCF-i,max_dim_DIIS)+1)
! Compute product of two errors vectors
call dgemm('N','N',ao_num,ao_num,ao_num, &
1.d0, &
error_matrix_DIIS(1,1,i_DIIS),size(error_matrix_DIIS,1), &
error_matrix_DIIS(1,1,j_DIIS),size(error_matrix_DIIS,1), &
0.d0, &
scratch,size(scratch,1))
! Compute Trace
do k=1,ao_num
B_matrix_DIIS(i,j) = B_matrix_DIIS(i,j) + scratch(k,k)
! Compute product of two errors vectors
do l=1,ao_num
do k=1,ao_num
B_matrix_DIIS(i,j) = B_matrix_DIIS(i,j) + &
error_matrix_DIIS(k,l,i_DIIS) * error_matrix_DIIS(k,l,j_DIIS)
enddo
enddo
enddo
enddo
@ -308,6 +306,7 @@ END_DOC
do k=1,dim_DIIS
if (dabs(X_vector_DIIS(k)) < 1.d-10) cycle
do i=1,ao_num
! FPE here
Fock_matrix_AO_(i,j) = Fock_matrix_AO_(i,j) + &
X_vector_DIIS(k)*Fock_matrix_DIIS(i,j,dim_DIIS-k+1)
enddo

View File

@ -14,24 +14,5 @@ end
subroutine run
implicit none
integer :: i,j
double precision :: i_H_psi_array(N_states)
double precision :: E(N_states)
double precision :: norm(N_states)
E(1:N_states) = nuclear_repulsion
norm(1:N_states) = 0.d0
do i=1,N_det
call i_H_psi(psi_det(1,1,i), psi_det, psi_coef, N_int, N_det, &
size(psi_coef,1), N_states, i_H_psi_array)
do j=1,N_states
norm(j) += psi_coef(i,j)*psi_coef(i,j)
E(j) += i_H_psi_array(j) * psi_coef(i,j)
enddo
enddo
print *, 'Energy:'
do i=1,N_states
print *, E(i)/norm(i)
enddo
print *, psi_energy + nuclear_repulsion
end

View File

@ -0,0 +1,40 @@
BEGIN_PROVIDER [double precision, two_e_dm_mo, (mo_num,mo_num,mo_num,mo_num,1)]
implicit none
BEGIN_DOC
! two_e_dm_bb_mo(i,j,k,l,istate) = STATE SPECIFIC physicist notation for 2RDM of beta/beta electrons
!
! <Psi| a^{\dagger}_{i \beta} a^{\dagger}_{j \beta} a_{l \beta} a_{k \beta} |Psi>
!
! WHERE ALL ORBITALS (i,j,k,l) BELONGS TO ALL OCCUPIED ORBITALS : core, inactive and active
!
! THE NORMALIZATION (i.e. sum of diagonal elements) IS SET TO N_{elec} * (N_{elec} - 1)/2
!
! !!!!! WARNING !!!!! ALL SLATER DETERMINANTS IN PSI_DET MUST BELONG TO AN ACTIVE SPACE DEFINED BY "list_act"
!
! !!!!! WARNING !!!!! IF "no_core_density" then all elements involving at least one CORE MO is set to zero
! The two-electron energy of each state can be computed as:
!
! \sum_{i,j,k,l = 1, n_core_inact_act_orb} two_e_dm_mo(i,j,k,l,istate) * < ii jj | kk ll >
!
! with ii = list_core_inact_act(i), jj = list_core_inact_act(j), kk = list_core_inact_act(k), ll = list_core_inact_act(l)
END_DOC
two_e_dm_mo = 0.d0
integer :: i,j,k,l,iorb,jorb,korb,lorb,istate
do l=1,mo_num
lorb = list_core_inact_act(l)
do k=1,mo_num
korb = list_core_inact_act(k)
do j=1,mo_num
jorb = list_core_inact_act(j)
do i=1,mo_num
iorb = list_core_inact_act(i)
two_e_dm_mo(iorb,jorb,korb,lorb,1) = state_av_full_occ_2_rdm_spin_trace_mo(i,j,k,l)
enddo
enddo
enddo
enddo
two_e_dm_mo(:,:,:,:,:) = two_e_dm_mo(:,:,:,:,:) * 2.d0
END_PROVIDER

View File

@ -1,6 +1,40 @@
#include <unistd.h>
#include <stdio.h>
#include <string.h>
void usleep_c(int s)
{
usleep((useconds_t) s);
}
void sscanf_ssds_c(const char* str, char* s1, char* s2, int* i, char* s3)
{
sscanf(str, "%s %s %d %s", s1, s2, i, s3);
s1[strlen(s1)] = ' ';
s2[strlen(s2)] = ' ';
s3[strlen(s3)] = ' ';
}
void sscanf_dd_c(const char* str, int* i1, int* i2)
{
sscanf(str, "%d %d", i1, i2);
}
void sscanf_ddd_c(const char* str, int* i1, int* i2, int* i3)
{
sscanf(str, "%d %d %d", i1, i2, i3);
}
void sscanf_ss_c(const char* str, char* s1, char* s2)
{
sscanf(str, "%s %s", s1, s2);
s1[strlen(s1)] = ' ';
s2[strlen(s2)] = ' ';
}
void sscanf_sd_c(const char* str, char* s1, int* i)
{
sscanf(str, "%s %d", s1, i);
s1[strlen(s1)] = ' ';
}

View File

@ -2,20 +2,133 @@ module c_functions
use iso_c_binding
interface
subroutine usleep_c(us) bind (C,name="usleep_c")
use iso_c_binding
integer(c_int), value :: us
end subroutine usleep_c
subroutine usleep_c(us) bind (C,name="usleep_c")
use iso_c_binding
integer(c_int), value :: us
end subroutine usleep_c
end interface
end module
interface
integer(c_int) function atoi_c(a) bind (C,name="atoi")
use iso_c_binding
character(kind=c_char), intent(in) :: a(*)
end function atoi_c
end interface
subroutine usleep(us)
interface
subroutine sscanf_ss_c(str,s1, s2) bind (C)
use iso_c_binding
character(kind=c_char), intent(in ) :: str(*)
character(kind=c_char), intent(out) :: s1(*),s2(*)
end subroutine sscanf_ss_c
end interface
interface
subroutine sscanf_ssds_c(str, s1, s2, i, s3) bind (C)
use iso_c_binding
character(kind=c_char), intent(in ) :: str(*)
character(kind=c_char), intent(out) :: s1(*),s2(*),s3(*)
integer(kind=c_int) , intent(out) :: i
end subroutine sscanf_ssds_c
end interface
interface
subroutine sscanf_dd_c(str, i1, i2) bind (C)
use iso_c_binding
character(kind=c_char), intent(in ) :: str(*)
integer(kind=c_int) , intent(out) :: i1, i2
end subroutine sscanf_dd_c
end interface
interface
subroutine sscanf_ddd_c(str, i1, i2, i3) bind (C)
use iso_c_binding
character(kind=c_char), intent(in ) :: str(*)
integer(kind=c_int) , intent(out) :: i1, i2, i3
end subroutine sscanf_ddd_c
end interface
interface
subroutine sscanf_sd_c(str,s1, i) bind (C)
use iso_c_binding
character(kind=c_char), intent(in ) :: str(*)
character(kind=c_char), intent(out) :: s1(*)
integer(kind=c_int) , intent(out) :: i
end subroutine sscanf_sd_c
end interface
contains
integer function atoi(a)
implicit none
character(len=*), intent(in) :: a
atoi = atoi_c(trim(a)//c_null_char)
end function atoi
end module c_functions
subroutine sscanf_ss(str, s1,s2)
use c_functions
use iso_c_binding
implicit none
character(*), intent(in) :: str
character(*), intent(out) :: s1,s2
s1 = ' '
s2 = ' '
call sscanf_ss_c(trim(str)//c_null_char, s1, s2)
end subroutine sscanf_ss
subroutine sscanf_sd(str, s1,i)
use c_functions
use iso_c_binding
implicit none
character(*), intent(in) :: str
character(*), intent(out) :: s1
integer, intent(out) :: i
s1 = ' '
call sscanf_sd_c(trim(str)//c_null_char, s1, i)
end subroutine sscanf_sd
subroutine sscanf_ssds(str, s1,s2,i,s3)
use c_functions
use iso_c_binding
implicit none
character(*), intent(in) :: str
character(*), intent(out) :: s1,s2,s3
integer, intent(out) :: i
s1 = ' '
s2 = ' '
s3 = ' '
call sscanf_ssds_c(trim(str)//c_null_char, s1, s2, i, s3)
end subroutine sscanf_ssds
subroutine sscanf_dd(str, i1,i2)
use c_functions
use iso_c_binding
implicit none
character(*), intent(in) :: str
integer, intent(out) :: i1, i2
call sscanf_dd_c(trim(str)//c_null_char, i1, i2)
end subroutine sscanf_dd
subroutine sscanf_ddd(str, i1,i2,i3)
use c_functions
use iso_c_binding
implicit none
character(*), intent(in) :: str
integer, intent(out) :: i1, i2, i3
call sscanf_ddd_c(trim(str)//c_null_char, i1, i2, i3)
end subroutine sscanf_ddd
subroutine usleep(us)
use iso_c_binding
use c_functions
implicit none
integer, intent(in) :: us
integer(c_int) :: u
u = us
call usleep_c(u)
end
end subroutine usleep

View File

@ -447,7 +447,7 @@ double precision function rint(n,rho)
else
u_inv=1.d0/dsqrt(rho)
u=rho*u_inv
rint=0.5d0*u_inv*sqpi*erf(u)
rint=0.5d0*u_inv*sqpi*derf(u)
endif
return
endif
@ -463,7 +463,7 @@ double precision function rint(n,rho)
endif
u=rho*u_inv
two_rho_inv = 0.5d0*u_inv*u_inv
val0=0.5d0*u_inv*sqpi*erf(u)
val0=0.5d0*u_inv*sqpi*derf(u)
rint=(val0-v)*two_rho_inv
do k=2,n
rint=(rint*dfloat(k+k-1)-v)*two_rho_inv
@ -496,7 +496,7 @@ double precision function rint_sum(n_pt_out,rho,d1)
else
u_inv=1.d0/dsqrt(rho)
u=rho*u_inv
rint_sum=0.5d0*u_inv*sqpi*erf(u) *d1(0)
rint_sum=0.5d0*u_inv*sqpi*derf(u) *d1(0)
endif
do i=2,n_pt_out,2
@ -515,7 +515,7 @@ double precision function rint_sum(n_pt_out,rho,d1)
u_inv=1.d0/dsqrt(rho)
u=rho*u_inv
two_rho_inv = 0.5d0*u_inv*u_inv
val0=0.5d0*u_inv*sqpi*erf(u)
val0=0.5d0*u_inv*sqpi*derf(u)
rint_sum=val0*d1(0)
rint_tmp=(val0-v)*two_rho_inv
di = 3.d0

View File

@ -16,6 +16,7 @@ END_PROVIDER
BEGIN_PROVIDER [ character*(128), qp_run_address ]
&BEGIN_PROVIDER [ integer, zmq_port_start ]
use f77_zmq
use c_functions
implicit none
BEGIN_DOC
! Address of the qp_run socket
@ -32,14 +33,15 @@ END_PROVIDER
do i=len(buffer),1,-1
if ( buffer(i:i) == ':') then
qp_run_address = trim(buffer(1:i-1))
read(buffer(i+1:), *, err=10,end=10) zmq_port_start
zmq_port_start = atoi(buffer(i+1:))
exit
endif
enddo
return
10 continue
print *, irp_here, ': Error in read'
stop -1
if (zmq_port_start == 0) then
print *, irp_here, ': zmq_port_start is 0'
stop -1
endif
END_PROVIDER
BEGIN_PROVIDER [ character*(128), zmq_socket_pull_tcp_address ]
@ -84,6 +86,7 @@ end
subroutine switch_qp_run_to_master
use f77_zmq
use c_functions
implicit none
BEGIN_DOC
! Address of the master qp_run socket
@ -102,16 +105,17 @@ subroutine switch_qp_run_to_master
do i=len(buffer),1,-1
if ( buffer(i:i) == ':') then
qp_run_address = trim(buffer(1:i-1))
read(buffer(i+1:), *, end=10, err=10) zmq_port_start
zmq_port_start = atoi(buffer(i+1:))
exit
endif
enddo
call reset_zmq_addresses
return
10 continue
print *, irp_here, ': Error in read'
stop -1
if (zmq_port_start == 0) then
print *, irp_here, ': zmq_port_start is 0'
stop -1
endif
end
@ -650,12 +654,17 @@ integer function connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread)
rc = f77_zmq_recv(zmq_to_qp_run_socket, message, 510, 0)
message = trim(message(1:rc))
if(message(1:5) == "error") then
go to 10
connect_to_taskserver = -1
return
end if
read(message,*, end=10, err=10) reply, state, worker_id, address
call sscanf_ssds(message, reply, state, worker_id, address)
if (trim(reply) /= 'connect_reply') then
go to 10
connect_to_taskserver = -1
return
endif
if (trim(state) /= zmq_state) then
integer, external :: disconnect_from_taskserver_state
if (disconnect_from_taskserver_state(zmq_to_qp_run_socket, worker_id, state) == -1) then
@ -663,13 +672,8 @@ integer function connect_to_taskserver(zmq_to_qp_run_socket,worker_id,thread)
continue
endif
connect_to_taskserver = -1
return
endif
return
10 continue
! print *, irp_here//': '//trim(message)
connect_to_taskserver = -1
end
integer function disconnect_from_taskserver(zmq_to_qp_run_socket, worker_id)
@ -698,11 +702,11 @@ integer function disconnect_from_taskserver_state(zmq_to_qp_run_socket, worker_i
character*(512) :: message, reply
character*(128) :: state_tmp
disconnect_from_taskserver_state = 0
disconnect_from_taskserver_state = -1
write(message,*) 'disconnect '//trim(state), worker_id
sze = len(trim(message))
sze = min(510,len(trim(message)))
rc = f77_zmq_send(zmq_to_qp_run_socket, trim(message), sze, 0)
if (rc /= sze) then
@ -711,23 +715,22 @@ integer function disconnect_from_taskserver_state(zmq_to_qp_run_socket, worker_i
endif
rc = f77_zmq_recv(zmq_to_qp_run_socket, message, 510, 0)
if (rc <= 0) then
disconnect_from_taskserver_state = -3
return
endif
rc = min(510,rc)
message = trim(message(1:rc))
read(message,*, end=10, err=10) reply, state_tmp
if ((trim(reply) == 'disconnect_reply').and.(trim(state_tmp) == trim(state))) then
return
endif
if (trim(message) == 'error Wrong state') then
disconnect_from_taskserver_state = -1
return
else if (trim(message) == 'error No job is running') then
disconnect_from_taskserver_state = -1
call sscanf_ss(message, reply, state_tmp)
if (trim(state_tmp) /= trim(state)) then
return
endif
return
10 continue
disconnect_from_taskserver_state = -1
if ((trim(reply) == 'disconnect_reply')) then
disconnect_from_taskserver_state = 0
endif
end
integer function add_task_to_taskserver(zmq_to_qp_run_socket,task)
@ -893,7 +896,7 @@ integer function get_task_from_taskserver(zmq_to_qp_run_socket,worker_id,task_id
character*(1024) :: message
character*(64) :: reply
integer :: rc, sze
integer :: rc, sze, i
get_task_from_taskserver = 0
@ -906,16 +909,16 @@ integer function get_task_from_taskserver(zmq_to_qp_run_socket,worker_id,task_id
return
endif
message = repeat(' ',1024)
task_id = 0
message = ' '
rc = f77_zmq_recv(zmq_to_qp_run_socket, message, 1024, 0)
if (rc <= 0) then
print *, rc
stop "rc"
end if
rc = min(1024,rc)
read(message(1:rc),*, end=10, err=10) reply
if (trim(reply) == 'get_task_reply') then
read(message(1:rc),*, end=10, err=10) reply, task_id
i = 1
do while (message(i:i) /= ' ')
i = i+1
enddo
reply = message(1:i-1)
if (reply == 'get_task_reply') then
call sscanf_sd(message, reply, task_id)
rc = 15
do while (rc < 1024 .and. message(rc:rc) == ' ')
rc += 1
@ -926,27 +929,21 @@ integer function get_task_from_taskserver(zmq_to_qp_run_socket,worker_id,task_id
rc += 1
task = message(rc:)
else if (trim(reply) == 'terminate') then
task_id = 0
task = 'terminate'
else if (trim(message) == 'error No job is running') then
task_id = 0
task = 'terminate'
else if (trim(message) == 'error Wrong state') then
task_id = 0
task = 'terminate'
else
get_task_from_taskserver = -1
return
endif
return
10 continue
get_task_from_taskserver = -1
end
integer function get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id,task_id,task,n_tasks)
use c_functions
use f77_zmq
implicit none
BEGIN_DOC
@ -964,7 +961,7 @@ integer function get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id,task_i
get_tasks_from_taskserver = 0
write(message,*) 'get_tasks '//trim(zmq_state), worker_id, n_tasks
write(message,'(A,A,X,I10,I10)') 'get_tasks ', trim(zmq_state), worker_id, n_tasks
sze = len(trim(message))
rc = f77_zmq_send(zmq_to_qp_run_socket, message, sze, 0)
@ -975,8 +972,10 @@ integer function get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id,task_i
message = repeat(' ',1024)
rc = f77_zmq_recv(zmq_to_qp_run_socket, message, 1024, 0)
rc = min(1024,rc)
read(message(1:rc),*, end=10, err=10) reply
if (rc <= 0) then
get_tasks_from_taskserver = -1
return
endif
if (trim(message) == 'get_tasks_reply ok') then
continue
else if (trim(message) == 'terminate') then
@ -994,18 +993,22 @@ integer function get_tasks_from_taskserver(zmq_to_qp_run_socket,worker_id,task_i
do i=1,n_tasks
message = repeat(' ',512)
rc = f77_zmq_recv(zmq_to_qp_run_socket, message, 1024, 0)
if (rc <= 0) then
get_tasks_from_taskserver = -1
return
endif
rc = min(1024,rc)
read(message(1:rc),*, end=10, err=10) task_id(i)
task_id(i) = atoi(message(1:rc))
if (task_id(i) == 0) then
task(i) = 'terminate'
n_tasks = i
exit
endif
rc = 1
do while (message(rc:rc) == ' ')
do while (rc < 1024 .and. message(rc:rc) == ' ')
rc += 1
enddo
do while (message(rc:rc) /= ' ')
do while (rc < 1024 .and. message(rc:rc) /= ' ')
rc += 1
enddo
rc += 1