mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-03 09:05:39 +01:00
Vectorizing integrals
This commit is contained in:
parent
c1bdfe7e93
commit
76eeade4d5
@ -160,7 +160,7 @@ subroutine overlap_gauss_r12_ao_v(D_center, delta, i, j, resv, n_points)
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: i, j, n_points
|
||||
double precision, intent(in) :: D_center(3,n_points), delta
|
||||
double precision, intent(in) :: D_center(n_points,3), delta
|
||||
double precision, intent(out) :: resv(n_points)
|
||||
|
||||
integer :: power_A(3), power_B(3), l, k
|
||||
@ -284,7 +284,7 @@ subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, delta, i, j,
|
||||
|
||||
implicit none
|
||||
integer, intent(in) :: i, j, n_points
|
||||
double precision, intent(in) :: B_center(3), beta, D_center(3,n_points), delta
|
||||
double precision, intent(in) :: B_center(3), beta, D_center(n_points,3), delta
|
||||
double precision, intent(out) :: resv(n_points)
|
||||
|
||||
integer :: power_A1(3), power_A2(3), l, k
|
||||
@ -321,19 +321,19 @@ subroutine overlap_gauss_r12_ao_with1s_v(B_center, beta, D_center, delta, i, j,
|
||||
A1_center(1:3) = nucl_coord(ao_nucl(i),1:3)
|
||||
A2_center(1:3) = nucl_coord(ao_nucl(j),1:3)
|
||||
|
||||
allocate (fact_g(n_points), G_center(3,n_points), analytical_j(n_points) )
|
||||
allocate (fact_g(n_points), G_center(n_points,3), analytical_j(n_points) )
|
||||
|
||||
bg = beta * gama_inv
|
||||
dg = delta * gama_inv
|
||||
bdg = bg * delta
|
||||
do ipoint=1,n_points
|
||||
G_center(1,ipoint) = bg * B_center(1) + dg * D_center(1,ipoint)
|
||||
G_center(2,ipoint) = bg * B_center(2) + dg * D_center(2,ipoint)
|
||||
G_center(3,ipoint) = bg * B_center(3) + dg * D_center(3,ipoint)
|
||||
G_center(ipoint,1) = bg * B_center(1) + dg * D_center(ipoint,1)
|
||||
G_center(ipoint,2) = bg * B_center(2) + dg * D_center(ipoint,2)
|
||||
G_center(ipoint,3) = bg * B_center(3) + dg * D_center(ipoint,3)
|
||||
fact_g(ipoint) = bdg * ( &
|
||||
(B_center(1) - D_center(1,ipoint)) * (B_center(1) - D_center(1,ipoint)) &
|
||||
+ (B_center(2) - D_center(2,ipoint)) * (B_center(2) - D_center(2,ipoint)) &
|
||||
+ (B_center(3) - D_center(3,ipoint)) * (B_center(3) - D_center(3,ipoint)) )
|
||||
(B_center(1) - D_center(ipoint,1)) * (B_center(1) - D_center(ipoint,1)) &
|
||||
+ (B_center(2) - D_center(ipoint,2)) * (B_center(2) - D_center(ipoint,2)) &
|
||||
+ (B_center(3) - D_center(ipoint,3)) * (B_center(3) - D_center(ipoint,3)) )
|
||||
|
||||
if(fact_g(ipoint) < 10d0) then
|
||||
fact_g(ipoint) = dexp(-fact_g(ipoint))
|
||||
|
@ -19,7 +19,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
|
||||
double precision, allocatable :: int_fit_v(:)
|
||||
double precision, external :: overlap_gauss_r12_ao_with1s
|
||||
|
||||
provide mu_erf final_grid_points j1b_pen
|
||||
provide mu_erf final_grid_points_transp j1b_pen
|
||||
call wall_time(wall0)
|
||||
|
||||
allocate(int_fit_v(n_points_final_grid))
|
||||
@ -29,7 +29,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
|
||||
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center,&
|
||||
!$OMP coef_fit, expo_fit, int_fit_v, tmp) &
|
||||
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b3_size,&
|
||||
!$OMP final_grid_points, n_max_fit_slat, &
|
||||
!$OMP final_grid_points_transp, n_max_fit_slat, &
|
||||
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
|
||||
!$OMP List_all_comb_b3_coef, List_all_comb_b3_expo, &
|
||||
!$OMP List_all_comb_b3_cent, int2_grad1u2_grad2u2_j1b2,&
|
||||
@ -55,7 +55,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
|
||||
expo_fit = expo_gauss_1_erf_x_2(i_fit)
|
||||
coef_fit = -0.25d0 * coef_gauss_1_erf_x_2(i_fit) * coef
|
||||
|
||||
call overlap_gauss_r12_ao_with1s_v(B_center, beta, final_grid_points, expo_fit, i, j, int_fit_v, n_points_final_grid)
|
||||
call overlap_gauss_r12_ao_with1s_v(B_center, beta, final_grid_points_transp, expo_fit, i, j, int_fit_v, n_points_final_grid)
|
||||
|
||||
do ipoint = 1, n_points_final_grid
|
||||
int2_grad1u2_grad2u2_j1b2(j,i,ipoint) += coef_fit * int_fit_v(ipoint)
|
||||
|
@ -56,7 +56,7 @@ end
|
||||
|
||||
!---
|
||||
|
||||
subroutine overlap_gauss_r12_v(D_center,delta,A_center,B_center,power_A,power_B,alpha,beta,rvec,n_points)
|
||||
subroutine overlap_gauss_r12_v(D_center_,delta,A_center,B_center,power_A,power_B,alpha,beta,rvec,n_points)
|
||||
BEGIN_DOC
|
||||
! Computes the following integral :
|
||||
!
|
||||
@ -70,59 +70,66 @@ subroutine overlap_gauss_r12_v(D_center,delta,A_center,B_center,power_A,power_B,
|
||||
implicit none
|
||||
include 'constants.include.F'
|
||||
integer, intent(in) :: n_points
|
||||
double precision, intent(in) :: D_center(3,n_points), delta ! pure gaussian "D"
|
||||
double precision, intent(in) :: D_center_(n_points,3), delta ! pure gaussian "D"
|
||||
double precision, intent(in) :: A_center(3),B_center(3),alpha,beta ! gaussian/polynoms "A" and "B"
|
||||
integer, intent(in) :: power_A(3),power_B(3)
|
||||
double precision, intent(out) :: rvec(n_points)
|
||||
|
||||
double precision :: overlap_x,overlap_y,overlap_z,overlap
|
||||
double precision, allocatable :: overlap(:)
|
||||
double precision :: overlap_x, overlap_y, overlap_z
|
||||
|
||||
integer :: maxab
|
||||
integer, allocatable :: iorder_a_new(:)
|
||||
double precision, allocatable :: A_new(:,:,:), A_center_new(:,:)
|
||||
double precision, allocatable :: fact_a_new(:)
|
||||
double precision :: alpha_new
|
||||
double precision :: accu,coefx,coefy,coefz,coefxy,coefxyz,thr
|
||||
double precision :: accu,thr, coefxy
|
||||
integer :: d(3),i,lx,ly,lz,iorder_tmp(3),dim1, ipoint
|
||||
|
||||
dim1=100
|
||||
thr = 1.d-10
|
||||
d(:) = 0
|
||||
|
||||
! maxab = maxval(d(1:3))
|
||||
maxab = max_dim
|
||||
maxab = maxval(d(1:3))
|
||||
|
||||
double precision, allocatable :: D_center(:,:)
|
||||
allocate(D_center(3,n_points))
|
||||
D_center(1,1:n_points) = D_center_(1:n_points,1)
|
||||
D_center(2,1:n_points) = D_center_(1:n_points,2)
|
||||
D_center(3,1:n_points) = D_center_(1:n_points,3)
|
||||
|
||||
|
||||
allocate (A_new(0:maxab, 3, n_points), A_center_new(3, n_points), &
|
||||
fact_a_new(n_points), iorder_a_new(3))
|
||||
fact_a_new(n_points), iorder_a_new(3), overlap(n_points) )
|
||||
|
||||
call give_explicit_poly_and_gaussian_v(A_new, maxab, A_center_new, &
|
||||
alpha_new, fact_a_new, iorder_a_new , delta, alpha, d, power_A, &
|
||||
D_center, A_center, n_points)
|
||||
|
||||
do ipoint=1,n_points
|
||||
rvec(ipoint) = 0.d0
|
||||
enddo
|
||||
|
||||
! The new gaussian exp(-delta (r - D)^2 ) (x-A_x)^a \exp(-\alpha (x-A_x)^2
|
||||
accu = 0.d0
|
||||
do lx = 0, iorder_a_new(1)
|
||||
coefx = A_new(lx,1,ipoint)
|
||||
if(dabs(coefx).lt.thr)cycle
|
||||
iorder_tmp(1) = lx
|
||||
do ly = 0, iorder_a_new(2)
|
||||
coefy = A_new(ly,2,ipoint)
|
||||
coefxy = coefx * coefy
|
||||
if(dabs(coefxy).lt.thr)cycle
|
||||
iorder_tmp(2) = ly
|
||||
do lz = 0, iorder_a_new(3)
|
||||
coefz = A_new(lz,3,ipoint)
|
||||
coefxyz = coefxy * coefz
|
||||
if(dabs(coefxyz).lt.thr)cycle
|
||||
iorder_tmp(3) = lz
|
||||
call overlap_gaussian_xyz(A_center_new(1,ipoint),B_center,alpha_new,beta,iorder_tmp,power_B,overlap_x,overlap_y,overlap_z,overlap,dim1)
|
||||
accu += coefxyz * overlap
|
||||
do lx = 0, iorder_a_new(1)
|
||||
iorder_tmp(1) = lx
|
||||
do ly = 0, iorder_a_new(2)
|
||||
iorder_tmp(2) = ly
|
||||
do lz = 0, iorder_a_new(3)
|
||||
iorder_tmp(3) = lz
|
||||
call overlap_gaussian_xyz_v(A_center_new,B_center,alpha_new,beta,iorder_tmp,power_B,overlap,dim1,n_points)
|
||||
do ipoint=1,n_points
|
||||
rvec(ipoint) = rvec(ipoint) + A_new(lx,1,ipoint) * &
|
||||
A_new(ly,2,ipoint) * &
|
||||
A_new(lz,3,ipoint) * overlap(ipoint)
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
rvec(ipoint) = fact_a_new(ipoint) * accu
|
||||
end do
|
||||
enddo
|
||||
|
||||
do ipoint=1,n_points
|
||||
rvec(ipoint) = rvec(ipoint) * fact_a_new(ipoint)
|
||||
enddo
|
||||
deallocate(A_new, A_center_new, fact_a_new, iorder_a_new, overlap)
|
||||
end
|
||||
|
||||
!---
|
||||
|
@ -403,6 +403,46 @@ subroutine gaussian_product_x(a,xa,b,xb,k,p,xp)
|
||||
end subroutine
|
||||
|
||||
|
||||
!-
|
||||
|
||||
subroutine gaussian_product_x_v(a,xa,b,xb,k,p,xp,n_points)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Gaussian product in 1D with multiple xa
|
||||
! e^{-a (x-x_A)^2} e^{-b (x-x_B)^2} = K_{ab}^x e^{-p (x-x_P)^2}
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: n_points
|
||||
double precision , intent(in) :: a,b ! Exponents
|
||||
double precision , intent(in) :: xa(n_points),xb ! Centers
|
||||
double precision , intent(out) :: p(n_points) ! New exponent
|
||||
double precision , intent(out) :: xp(n_points) ! New center
|
||||
double precision , intent(out) :: k(n_points) ! Constant
|
||||
|
||||
double precision :: p_inv
|
||||
integer :: ipoint
|
||||
|
||||
ASSERT (a>0.)
|
||||
ASSERT (b>0.)
|
||||
|
||||
double precision :: xab, ab
|
||||
|
||||
p = a+b
|
||||
p_inv = 1.d0/(a+b)
|
||||
ab = a*b*p_inv
|
||||
do ipoint = 1, n_points
|
||||
xab = xa(ipoint)-xb
|
||||
k(ipoint) = ab*xab*xab
|
||||
if (k(ipoint) > 40.d0) then
|
||||
k(ipoint)=0.d0
|
||||
cycle
|
||||
endif
|
||||
k(ipoint) = exp(-k(ipoint))
|
||||
xp(ipoint) = (a*xa(ipoint)+b*xb)*p_inv
|
||||
enddo
|
||||
end subroutine
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -154,7 +154,7 @@ end
|
||||
! ---
|
||||
|
||||
subroutine overlap_gaussian_xyz_v(A_center,B_center,alpha,beta,power_A,&
|
||||
power_B,overlap_x,overlap_y,overlap_z,overlap,dim, n_points)
|
||||
power_B,overlap,dim, n_points)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
!.. math::
|
||||
@ -165,53 +165,57 @@ subroutine overlap_gaussian_xyz_v(A_center,B_center,alpha,beta,power_A,&
|
||||
END_DOC
|
||||
include 'constants.include.F'
|
||||
integer,intent(in) :: dim, n_points
|
||||
double precision,intent(in) :: A_center(3),B_center(3) ! center of the x1 functions
|
||||
double precision,intent(in) :: A_center(3,n_points),B_center(3) ! center of the x1 functions
|
||||
double precision, intent(in) :: alpha,beta
|
||||
integer,intent(in) :: power_A(3), power_B(3) ! power of the x1 functions
|
||||
double precision, intent(out) :: overlap_x(n_points),overlap_y(n_points),overlap_z(n_points),overlap(n_points)
|
||||
double precision :: P_new(0:max_dim,3),P_center(3),fact_p,p
|
||||
double precision, intent(out) :: overlap(n_points)
|
||||
double precision :: F_integral_tab(0:max_dim)
|
||||
integer :: iorder_p(3)
|
||||
|
||||
call give_explicit_poly_and_gaussian(P_new,P_center,p,fact_p,iorder_p,alpha,beta,power_A,power_B,A_center,B_center,dim)
|
||||
if(fact_p.lt.1d-20)then
|
||||
overlap_x = 1.d-10
|
||||
overlap_y = 1.d-10
|
||||
overlap_z = 1.d-10
|
||||
overlap = 1.d-10
|
||||
return
|
||||
endif
|
||||
double precision :: p, overlap_x, overlap_y, overlap_z
|
||||
double precision, allocatable :: P_new(:,:,:),P_center(:,:),fact_p(:), fact_pp(:), pp(:)
|
||||
integer :: iorder_p(3), ipoint, ldp
|
||||
integer :: nmax
|
||||
double precision :: F_integral
|
||||
|
||||
ldp = max_dim
|
||||
allocate(P_new(0:ldp,3,n_points), P_center(3,n_points), fact_p(n_points), &
|
||||
fact_pp(n_points), pp(n_points))
|
||||
|
||||
call give_explicit_poly_and_gaussian_v(P_new, ldp, P_center,p,fact_p,iorder_p,alpha,beta,power_A,power_B,A_center,B_center,n_points)
|
||||
|
||||
nmax = maxval(iorder_p)
|
||||
do i = 0,nmax
|
||||
do i=0, nmax
|
||||
F_integral_tab(i) = F_integral(i,p)
|
||||
enddo
|
||||
overlap_x = P_new(0,1) * F_integral_tab(0)
|
||||
overlap_y = P_new(0,2) * F_integral_tab(0)
|
||||
overlap_z = P_new(0,3) * F_integral_tab(0)
|
||||
|
||||
integer :: i
|
||||
do i = 1,iorder_p(1)
|
||||
overlap_x = overlap_x + P_new(i,1) * F_integral_tab(i)
|
||||
|
||||
call gaussian_product_v(alpha,A_center,beta,B_center,fact_pp,pp,P_center,n_points)
|
||||
|
||||
do ipoint=1,n_points
|
||||
if(fact_p(ipoint).lt.1d-20)then
|
||||
overlap(ipoint) = 1.d-10
|
||||
cycle
|
||||
endif
|
||||
|
||||
overlap_x = P_new(0,1,ipoint) * F_integral_tab(0)
|
||||
do i = 1,iorder_p(1)
|
||||
overlap_x = overlap_x + P_new(i,1,ipoint) * F_integral_tab(i)
|
||||
enddo
|
||||
|
||||
overlap_y = P_new(0,2,ipoint) * F_integral_tab(0)
|
||||
do i = 1,iorder_p(2)
|
||||
overlap_y = overlap_y + P_new(i,2,ipoint) * F_integral_tab(i)
|
||||
enddo
|
||||
|
||||
overlap_z = P_new(0,3,ipoint) * F_integral_tab(0)
|
||||
do i = 1,iorder_p(3)
|
||||
overlap_z = overlap_z + P_new(i,3,ipoint) * F_integral_tab(i)
|
||||
enddo
|
||||
|
||||
overlap(ipoint) = overlap_x * overlap_y * overlap_z * fact_pp(ipoint)
|
||||
enddo
|
||||
call gaussian_product_x(alpha,A_center(1),beta,B_center(1),fact_p,p,P_center(1))
|
||||
overlap_x *= fact_p
|
||||
|
||||
do i = 1,iorder_p(2)
|
||||
overlap_y = overlap_y + P_new(i,2) * F_integral_tab(i)
|
||||
enddo
|
||||
call gaussian_product_x(alpha,A_center(2),beta,B_center(2),fact_p,p,P_center(2))
|
||||
overlap_y *= fact_p
|
||||
|
||||
do i = 1,iorder_p(3)
|
||||
overlap_z = overlap_z + P_new(i,3) * F_integral_tab(i)
|
||||
enddo
|
||||
call gaussian_product_x(alpha,A_center(3),beta,B_center(3),fact_p,p,P_center(3))
|
||||
overlap_z *= fact_p
|
||||
|
||||
overlap = overlap_x * overlap_y * overlap_z
|
||||
|
||||
deallocate(P_new, P_center, fact_p, pp, fact_pp)
|
||||
end
|
||||
|
||||
! ---
|
||||
|
Loading…
Reference in New Issue
Block a user