9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-21 11:03:29 +01:00

\int dr2 phi_i(r2) phi_j(r2) u(r12) v_1b(r2)

This commit is contained in:
AbdAmmar 2023-07-02 00:19:17 +02:00
parent bd8218a876
commit 727c70c0fa
6 changed files with 306 additions and 27 deletions

View File

@ -212,9 +212,7 @@ subroutine NAI_pol_x_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
! Computes the following integral : ! Computes the following integral :
! !
! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$. ! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$. ! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$. ! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! !
END_DOC END_DOC
@ -279,9 +277,7 @@ subroutine NAI_pol_x_mult_erf_ao_v0(i_ao, j_ao, mu_in, C_center, LD_C, ints, LD_
! Computes the following integral : ! Computes the following integral :
! !
! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$. ! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$. ! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$. ! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! !
END_DOC END_DOC
@ -1111,3 +1107,141 @@ end
! --- ! ---
subroutine NAI_pol_x2_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_center, ints)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: beta, B_center(3), mu_in, C_center(3)
double precision, intent(out) :: ints(3)
integer :: i, j, power_Ai(3), power_Aj(3), n_pt_in, m
integer :: power_A1(3), power_A2(3)
double precision :: Ai_center(3), Aj_center(3), alphai, alphaj, coef, coefi
double precision :: integral0, integral1, integral2
double precision, external :: NAI_pol_mult_erf_with1s
ASSERT(beta .ge. 0.d0)
if(beta .lt. 1d-10) then
call NAI_pol_x2_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
return
endif
ints = 0.d0
power_Ai(1:3) = ao_power(i_ao,1:3)
power_Aj(1:3) = ao_power(j_ao,1:3)
Ai_center(1:3) = nucl_coord(ao_nucl(i_ao),1:3)
Aj_center(1:3) = nucl_coord(ao_nucl(j_ao),1:3)
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alphai = ao_expo_ordered_transp (i,i_ao)
coefi = ao_coef_normalized_ordered_transp(i,i_ao)
do m = 1, 3
power_A1 = power_Ai
power_A1(m) += 1
power_A2 = power_Ai
power_A2(m) += 2
do j = 1, ao_prim_num(j_ao)
alphaj = ao_expo_ordered_transp (j,j_ao)
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
integral0 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_Ai, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
integral1 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_A1, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
integral2 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_A2, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
ints(m) += coef * (integral2 + Ai_center(m) * (2.d0*integral1 + Ai_center(m)*integral0))
enddo
enddo
enddo
end subroutine NAI_pol_x2_mult_erf_ao_with1s
! ---
subroutine NAI_pol_x2_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: mu_in, C_center(3)
double precision, intent(out) :: ints(3)
integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in, m
integer :: power_A1(3), power_A2(3)
double precision :: A_center(3), B_center(3), alpha, beta, coef
double precision :: integral0, integral1, integral2
double precision :: NAI_pol_mult_erf
ints = 0.d0
num_A = ao_nucl(i_ao)
power_A(1:3) = ao_power(i_ao,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
num_B = ao_nucl(j_ao)
power_B(1:3) = ao_power(j_ao,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alpha = ao_expo_ordered_transp(i,i_ao)
do m = 1, 3
power_A1 = power_A
power_A1(m) += 1
power_A2 = power_A
power_A2(m) += 2
do j = 1, ao_prim_num(j_ao)
beta = ao_expo_ordered_transp(j,j_ao)
coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao)
integral0 = NAI_pol_mult_erf(A_center, B_center, power_A , power_B, alpha, beta, C_center, n_pt_in, mu_in)
integral1 = NAI_pol_mult_erf(A_center, B_center, power_A1, power_B, alpha, beta, C_center, n_pt_in, mu_in)
integral2 = NAI_pol_mult_erf(A_center, B_center, power_A2, power_B, alpha, beta, C_center, n_pt_in, mu_in)
ints(m) += coef * (integral2 + A_center(m) * (2.d0*integral1 + A_center(m)*integral0))
enddo
enddo
enddo
end subroutine NAI_pol_x2_mult_erf_ao
! ---

View File

@ -195,7 +195,6 @@ END_PROVIDER
! --- ! ---
! TODO analytically
BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_final_grid)] BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC BEGIN_DOC
@ -217,6 +216,8 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
call wall_time(wall0) call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen provide mu_erf final_grid_points j1b_pen
PROVIDE ng_fit_jast expo_gauss_j_mu_x coef_gauss_j_mu_x
PROVIDE List_all_comb_b2_size List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
v_ij_u_cst_mu_j1b = 0.d0 v_ij_u_cst_mu_j1b = 0.d0
@ -229,7 +230,6 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, & !$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b) !$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b)
!$OMP DO !$OMP DO
!do ipoint = 1, 10
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint) r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint) r(2) = final_grid_points(2,ipoint)
@ -240,10 +240,13 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
tmp = 0.d0 tmp = 0.d0
do i_fit = 1, ng_fit_jast do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_j_mu_x(i_fit) expo_fit = expo_gauss_j_mu_x(i_fit)
coef_fit = coef_gauss_j_mu_x(i_fit) coef_fit = coef_gauss_j_mu_x(i_fit)
! do i_fit = ng_fit_jast, ng_fit_jast
! expo_fit = 5.0d0
! coef_fit = 1.0d0
! --- ! ---
coef = List_all_comb_b2_coef (1) coef = List_all_comb_b2_coef (1)
@ -253,7 +256,6 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b, (ao_num, ao_num, n_points_
B_center(3) = List_all_comb_b2_cent(3,1) B_center(3) = List_all_comb_b2_cent(3,1)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j) int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
! if(dabs(int_fit*coef) .lt. 1d-12) cycle
tmp += coef * coef_fit * int_fit tmp += coef * coef_fit * int_fit
@ -298,3 +300,137 @@ END_PROVIDER
! --- ! ---
BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12)
!
END_DOC
include 'constants.include.F'
implicit none
integer :: i, j, ipoint, i_1s
double precision :: r(3), r1_2
double precision :: int_c1, int_e1, int_o
double precision :: int_c2(3), int_e2(3)
double precision :: int_c3(3), int_e3(3)
double precision :: coef, beta, B_center(3)
double precision :: tmp, ct
double precision :: wall0, wall1
double precision, external :: overlap_gauss_r12_ao_with1s
double precision, external :: NAI_pol_mult_erf_ao_with1s
print*, ' providing v_ij_u_cst_mu_j1b_an ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
PROVIDE ng_fit_jast expo_gauss_j_mu_x coef_gauss_j_mu_x
PROVIDE List_all_comb_b2_size List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
ct = inv_sq_pi_2 / mu_erf
v_ij_u_cst_mu_j1b_an = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, &
!$OMP r1_2, tmp, int_c1, int_e1, int_o, int_c2, &
!$OMP int_e2, int_c3, int_e3) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
!$OMP final_grid_points, mu_erf, ct, &
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_an)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
r1_2 = 0.5d0 * (r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
do i = 1, ao_num
do j = i, ao_num
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
int_c1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
int_e1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c2)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e2)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c3)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e3)
int_o = overlap_gauss_r12_ao_with1s(B_center, beta, r, mu_erf*mu_erf, i, j)
tmp = coef &
* ( r1_2 * (int_c1 - int_e1) &
- r(1) * (int_c2(1) - int_e2(1)) - r(2) * (int_c2(2) - int_e2(2)) - r(3) * (int_c2(3) - int_e2(3)) &
+ 0.5d0 * (int_c3(1) + int_c3(2) + int_c3(3) - int_e3(1) - int_e3(2) - int_e3(3)) &
- ct * int_o &
)
! ---
do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
int_c1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
int_e1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c2)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e2)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c3)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e3)
int_o = overlap_gauss_r12_ao_with1s(B_center, beta, r, mu_erf*mu_erf, i, j)
tmp = tmp + coef &
* ( r1_2 * (int_c1 - int_e1) &
- r(1) * (int_c2(1) - int_e2(1)) - r(2) * (int_c2(2) - int_e2(2)) - r(3) * (int_c2(3) - int_e2(3)) &
+ 0.5d0 * (int_c3(1) + int_c3(2) + int_c3(3) - int_e3(1) - int_e3(2) - int_e3(3)) &
- ct * int_o &
)
enddo
! ---
v_ij_u_cst_mu_j1b_an(j,i,ipoint) = tmp
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_u_cst_mu_j1b_an(j,i,ipoint) = v_ij_u_cst_mu_j1b_an(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_u_cst_mu_j1b_an', wall1 - wall0
END_PROVIDER
! ---

View File

@ -36,16 +36,25 @@ END_PROVIDER
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, expo_j_xmu, (n_fit_1_erf_x) ] BEGIN_PROVIDER [ double precision, expo_j_xmu, (n_fit_1_erf_x) ]
implicit none
BEGIN_DOC BEGIN_DOC
! F(x) = x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2) is fitted with a gaussian and a Slater ! F(x) = x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2) is fitted with a gaussian and a Slater
! !
! \approx - 1/sqrt(pi) * exp(-alpha * x ) exp(-beta * x**2) ! \approx - 1/sqrt(pi) * exp(-alpha * x ) exp(-beta * x**2)
! !
! where alpha = expo_j_xmu(1) and beta = expo_j_xmu(2) ! where alpha = expo_j_xmu(1) and beta = expo_j_xmu(2)
END_DOC END_DOC
expo_j_xmu(1) = 1.7477d0
expo_j_xmu(2) = 0.668662d0 implicit none
!expo_j_xmu(1) = 1.7477d0
!expo_j_xmu(2) = 0.668662d0
!expo_j_xmu(1) = 1.74766377595541d0
!expo_j_xmu(2) = 0.668719925486403d0
expo_j_xmu(1) = 1.74770446934522d0
expo_j_xmu(2) = 0.668659706559979d0
END_PROVIDER END_PROVIDER

View File

@ -70,14 +70,14 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 4)) then elseif((j1b_type .eq. 3) .or. (j1b_type .eq. 4)) then
PROVIDE v_1b_grad v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b x_v_ij_erf_rk_cst_mu_j1b PROVIDE v_1b_grad v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b_an x_v_ij_erf_rk_cst_mu_j1b
int2_grad1_u12_ao = 0.d0 int2_grad1_u12_ao = 0.d0
!$OMP PARALLEL & !$OMP PARALLEL &
!$OMP DEFAULT (NONE) & !$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, x, y, z, tmp0, tmp1, tmp2, tmp_x, tmp_y, tmp_z) & !$OMP PRIVATE (ipoint, i, j, x, y, z, tmp0, tmp1, tmp2, tmp_x, tmp_y, tmp_z) &
!$OMP SHARED ( ao_num, n_points_final_grid, final_grid_points, v_1b, v_1b_grad & !$OMP SHARED ( ao_num, n_points_final_grid, final_grid_points, v_1b, v_1b_grad &
!$OMP , v_ij_erf_rk_cst_mu_j1b, v_ij_u_cst_mu_j1b, x_v_ij_erf_rk_cst_mu_j1b, int2_grad1_u12_ao) !$OMP , v_ij_erf_rk_cst_mu_j1b, v_ij_u_cst_mu_j1b_an, x_v_ij_erf_rk_cst_mu_j1b, int2_grad1_u12_ao)
!$OMP DO SCHEDULE (static) !$OMP DO SCHEDULE (static)
do ipoint = 1, n_points_final_grid do ipoint = 1, n_points_final_grid
x = final_grid_points(1,ipoint) x = final_grid_points(1,ipoint)
@ -90,7 +90,7 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
do j = 1, ao_num do j = 1, ao_num
do i = 1, ao_num do i = 1, ao_num
tmp1 = tmp0 * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint) tmp1 = tmp0 * v_ij_erf_rk_cst_mu_j1b(i,j,ipoint)
tmp2 = v_ij_u_cst_mu_j1b(i,j,ipoint) tmp2 = v_ij_u_cst_mu_j1b_an(i,j,ipoint)
int2_grad1_u12_ao(i,j,ipoint,1) = tmp1 * x - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,1) - tmp2 * tmp_x int2_grad1_u12_ao(i,j,ipoint,1) = tmp1 * x - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,1) - tmp2 * tmp_x
int2_grad1_u12_ao(i,j,ipoint,2) = tmp1 * y - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,2) - tmp2 * tmp_y int2_grad1_u12_ao(i,j,ipoint,2) = tmp1 * y - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,2) - tmp2 * tmp_y
int2_grad1_u12_ao(i,j,ipoint,3) = tmp1 * z - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,3) - tmp2 * tmp_z int2_grad1_u12_ao(i,j,ipoint,3) = tmp1 * z - tmp0 * x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,3) - tmp2 * tmp_z
@ -100,7 +100,7 @@ BEGIN_PROVIDER [double precision, int2_grad1_u12_ao, (ao_num, ao_num, n_points_f
!$OMP END DO !$OMP END DO
!$OMP END PARALLEL !$OMP END PARALLEL
FREE v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b x_v_ij_erf_rk_cst_mu_j1b FREE v_ij_erf_rk_cst_mu_j1b v_ij_u_cst_mu_j1b_an x_v_ij_erf_rk_cst_mu_j1b
elseif(j1b_type .ge. 100) then elseif(j1b_type .ge. 100) then

View File

@ -9,11 +9,11 @@ program print_tc_energy
print *, 'Hello world' print *, 'Hello world'
my_grid_becke = .True. my_grid_becke = .True.
my_n_pt_r_grid = 30 !my_n_pt_r_grid = 30
my_n_pt_a_grid = 50 !my_n_pt_a_grid = 50
!my_n_pt_r_grid = 100 my_n_pt_r_grid = 100
!my_n_pt_a_grid = 170 my_n_pt_a_grid = 170
!my_n_pt_r_grid = 100 !my_n_pt_r_grid = 100
!my_n_pt_a_grid = 266 !my_n_pt_a_grid = 266

View File

@ -418,7 +418,7 @@ subroutine gaussian_product_x(a,xa,b,xb,k,p,xp)
xab = xa-xb xab = xa-xb
ab = ab*p_inv ab = ab*p_inv
k = ab*xab*xab k = ab*xab*xab
if (k > 40.d0) then if (k > 400.d0) then
k=0.d0 k=0.d0
return return
endif endif