9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2025-01-03 09:05:39 +01:00

Merge branch 'dev-stable' of https://github.com/QuantumPackage/qp2 into dev-stable

This commit is contained in:
eginer 2024-05-21 12:27:40 +02:00
commit 723ab06fe3
17 changed files with 867 additions and 28 deletions

View File

@ -37,14 +37,6 @@ function run_sd() {
eq $energy1 $1 $thresh
}
@test "O2 CAS" {
qp set_file o2_cas.gms.ezfio
qp set_mo_class -c "[1-2]" -a "[3-10]" -d "[11-46]"
run -149.72435425 3.e-4 10000
qp set_mo_class -c "[1-2]" -a "[3-10]" -v "[11-46]"
run_md -0.1160222327 1.e-6
}
@test "LiF RHF" {
qp set_file lif.ezfio

View File

@ -1 +1 @@
tc_scf

59
plugins/local/spher_harm/.gitignore vendored Normal file
View File

@ -0,0 +1,59 @@
IRPF90_temp/
IRPF90_man/
build.ninja
irpf90.make
ezfio_interface.irp.f
irpf90_entities
tags
Makefile
ao_basis
ao_one_e_ints
ao_two_e_erf_ints
ao_two_e_ints
aux_quantities
becke_numerical_grid
bitmask
cis
cisd
cipsi
davidson
davidson_dressed
davidson_undressed
density_for_dft
determinants
dft_keywords
dft_utils_in_r
dft_utils_one_e
dft_utils_two_body
dressing
dummy
electrons
ezfio_files
fci
generators_cas
generators_full
hartree_fock
iterations
kohn_sham
kohn_sham_rs
mo_basis
mo_guess
mo_one_e_ints
mo_two_e_erf_ints
mo_two_e_ints
mpi
mrpt_utils
nuclei
perturbation
pseudo
psiref_cas
psiref_utils
scf_utils
selectors_cassd
selectors_full
selectors_utils
single_ref_method
slave
tools
utils
zmq

View File

@ -0,0 +1 @@
dft_utils_in_r

View File

@ -0,0 +1,7 @@
==========
spher_harm
==========
Routines for spherical Harmonics evaluation in real space.
The main routine is "spher_harm_func_r3(r,l,m,re_ylm, im_ylm)".
The test routine is "test_spher_harm" where everything is explained in details.

View File

@ -0,0 +1,50 @@
double precision function plgndr(l,m,x)
integer, intent(in) :: l,m
double precision, intent(in) :: x
BEGIN_DOC
! associated Legenre polynom P_l,m(x). Used for the Y_lm(theta,phi)
! Taken from https://iate.oac.uncor.edu/~mario/materia/nr/numrec/f6-8.pdf
END_DOC
integer :: i,ll
double precision :: fact,pll,pmm,pmmp1,somx2
if(m.lt.0.or.m.gt.l.or.dabs(x).gt.1.d0)then
print*,'bad arguments in plgndr'
pause
endif
pmm=1.d0
if(m.gt.0) then
somx2=dsqrt((1.d0-x)*(1.d0+x))
fact=1.d0
do i=1,m
pmm=-pmm*fact*somx2
fact=fact+2.d0
enddo
endif ! m > 0
if(l.eq.m) then
plgndr=pmm
else
pmmp1=x*(2*m+1)*pmm ! Compute P_m+1^m
if(l.eq.m+1) then
plgndr=pmmp1
else ! Compute P_l^m, l> m+1
do ll=m+2,l
pll=(x*dble(2*ll-1)*pmmp1-dble(ll+m-1)*pmm)/(ll-m)
pmm=pmmp1
pmmp1=pll
enddo
plgndr=pll
endif ! l.eq.m+1
endif ! l.eq.m
return
end
double precision function ortho_assoc_gaus_pol(l1,m1,l2)
implicit none
integer, intent(in) :: l1,m1,l2
double precision :: fact
if(l1.ne.l2)then
ortho_assoc_gaus_pol= 0.d0
else
ortho_assoc_gaus_pol = 2.d0*fact(l1+m1) / (dble(2*l1+1)*fact(l1-m1))
endif
end

View File

@ -0,0 +1,231 @@
subroutine test_spher_harm
implicit none
BEGIN_DOC
! routine to test the generic spherical harmonics routine "spher_harm_func_r3" from R^3 --> C
!
! We test <Y_l1,m1|Y_l2,m2> = delta_m1,m2 delta_l1,l2
!
! The test is done through the integration on a sphere with the Lebedev grid.
END_DOC
include 'constants.include.F'
integer :: l1,m1,i,l2,m2,lmax
double precision :: r(3),weight,accu_re, accu_im,accu
double precision :: re_ylm_1, im_ylm_1,re_ylm_2, im_ylm_2
double precision :: theta,phi,r_abs
lmax = 5 ! Maximum angular momentum until which we are going to test orthogonality conditions
do l1 = 0,lmax
do m1 = -l1 ,l1
do l2 = 0,lmax
do m2 = -l2 ,l2
accu_re = 0.d0 ! accumulator for the REAL part of <Y_l1,m1|Y_l2,m2>
accu_im = 0.d0 ! accumulator for the IMAGINARY part of <Y_l1,m1|Y_l2,m2>
accu = 0.d0 ! accumulator for the weights ==> should be \int dOmega == 4 pi
! <l1,m1|l2,m2> = \int dOmega Y_l1,m1^* Y_l2,m2
! \approx \sum_i W_i Y_l1,m1^*(r_i) Y_l2,m2(r_i) WITH r_i being on the spher of radius 1
do i = 1, n_points_integration_angular
r(1:3) = angular_quadrature_points(i,1:3) ! ith Lebedev point (x,y,z) on the sphere of radius 1
weight = weights_angular_points(i) ! associated Lebdev weight not necessarily positive
!!!!!!!!!!! Test of the Cartesian --> Spherical coordinates
! theta MUST belong to [0,pi] and phi to [0,2pi]
! gets the cartesian to spherical change of coordinates
call cartesian_to_spherical(r,theta,phi,r_abs)
if(theta.gt.pi.or.theta.lt.0.d0)then
print*,'pb with theta, it should be in [0,pi]',theta
print*,r
endif
if(phi.gt.2.d0*pi.or.phi.lt.0.d0)then
print*,'pb with phi, it should be in [0,2 pi]',phi/pi
print*,r
endif
!!!!!!!!!!! Routines returning the Spherical harmonics on the grid point
call spher_harm_func_r3(r,l1,m1,re_ylm_1, im_ylm_1)
call spher_harm_func_r3(r,l2,m2,re_ylm_2, im_ylm_2)
!!!!!!!!!!! Integration of Y_l1,m1^*(r) Y_l2,m2(r)
! = \int dOmega (re_ylm_1 -i im_ylm_1) * (re_ylm_2 +i im_ylm_2)
! = \int dOmega (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2) +i (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
accu_re += weight * (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2)
accu_im += weight * (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
accu += weight
enddo
! Test that the sum of the weights is 4 pi
if(dabs(accu - dfour_pi).gt.1.d-6)then
print*,'Problem !! The sum of the Lebedev weight is not 4 pi ..'
print*,accu
stop
endif
! Test for the delta l1,l2 and delta m1,m2
!
! Test for the off-diagonal part of the Kronecker delta
if(l1.ne.l2.or.m1.ne.m2)then
if(dabs(accu_re).gt.1.d-6.or.dabs(accu_im).gt.1.d-6)then
print*,'pb OFF DIAG !!!!! '
print*,'l1,m1,l2,m2',l1,m1,l2,m2
print*,'accu_re = ',accu_re
print*,'accu_im = ',accu_im
endif
endif
! Test for the diagonal part of the Kronecker delta
if(l1==l2.and.m1==m2)then
if(dabs(accu_re-1.d0).gt.1.d-5.or.dabs(accu_im).gt.1.d-6)then
print*,'pb DIAG !!!!! '
print*,'l1,m1,l2,m2',l1,m1,l2,m2
print*,'accu_re = ',accu_re
print*,'accu_im = ',accu_im
endif
endif
enddo
enddo
enddo
enddo
end
subroutine test_cart
implicit none
BEGIN_DOC
! test for the cartesian --> spherical change of coordinates
!
! test the routine "cartesian_to_spherical" such that the polar angle theta ranges in [0,pi]
!
! and the asymuthal angle phi ranges in [0,2pi]
END_DOC
include 'constants.include.F'
double precision :: r(3),theta,phi,r_abs
print*,''
r = 0.d0
r(1) = 1.d0
r(2) = 1.d0
call cartesian_to_spherical(r,theta,phi,r_abs)
print*,r
print*,phi/pi
print*,''
r = 0.d0
r(1) =-1.d0
r(2) = 1.d0
call cartesian_to_spherical(r,theta,phi,r_abs)
print*,r
print*,phi/pi
print*,''
r = 0.d0
r(1) =-1.d0
r(2) =-1.d0
call cartesian_to_spherical(r,theta,phi,r_abs)
print*,r
print*,phi/pi
print*,''
r = 0.d0
r(1) = 1.d0
r(2) =-1.d0
call cartesian_to_spherical(r,theta,phi,r_abs)
print*,r
print*,phi/pi
end
subroutine test_brutal_spheric
implicit none
include 'constants.include.F'
BEGIN_DOC
! Test for the <Y_l1,m1|Y_l2,m2> = delta_m1,m2 delta_l1,l2 using the following two dimentional integration
!
! \int_0^2pi d Phi \int_-1^+1 d(cos(Theta)) Y_l1,m1^*(Theta,Phi) Y_l2,m2(Theta,Phi)
!
!= \int_0^2pi d Phi \int_0^pi dTheta sin(Theta) Y_l1,m1^*(Theta,Phi) Y_l2,m2(Theta,Phi)
!
! Allows to test for the general functions "spher_harm_func_m_pos" with "spher_harm_func_expl"
END_DOC
integer :: itheta, iphi,ntheta,nphi
double precision :: theta_min, theta_max, dtheta,theta
double precision :: phi_min, phi_max, dphi,phi
double precision :: accu_re, accu_im,weight
double precision :: re_ylm_1, im_ylm_1 ,re_ylm_2, im_ylm_2,accu
integer :: l1,m1,i,l2,m2,lmax
phi_min = 0.d0
phi_max = 2.D0 * pi
theta_min = 0.d0
theta_max = 1.D0 * pi
ntheta = 1000
nphi = 1000
dphi = (phi_max - phi_min)/dble(nphi)
dtheta = (theta_max - theta_min)/dble(ntheta)
lmax = 2
do l1 = 0,lmax
do m1 = 0 ,l1
do l2 = 0,lmax
do m2 = 0 ,l2
accu_re = 0.d0
accu_im = 0.d0
accu = 0.d0
theta = theta_min
do itheta = 1, ntheta
phi = phi_min
do iphi = 1, nphi
! call spher_harm_func_expl(l1,m1,theta,phi,re_ylm_1, im_ylm_1)
! call spher_harm_func_expl(l2,m2,theta,phi,re_ylm_2, im_ylm_2)
call spher_harm_func_m_pos(l1,m1,theta,phi,re_ylm_1, im_ylm_1)
call spher_harm_func_m_pos(l2,m2,theta,phi,re_ylm_2, im_ylm_2)
weight = dtheta * dphi * dsin(theta)
accu_re += weight * (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2)
accu_im += weight * (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
accu += weight
phi += dphi
enddo
theta += dtheta
enddo
print*,'l1,m1,l2,m2',l1,m1,l2,m2
print*,'accu_re = ',accu_re
print*,'accu_im = ',accu_im
print*,'accu = ',accu
if(l1.ne.l2.or.m1.ne.m2)then
if(dabs(accu_re).gt.1.d-6.or.dabs(accu_im).gt.1.d-6)then
print*,'pb OFF DIAG !!!!! '
endif
endif
if(l1==l2.and.m1==m2)then
if(dabs(accu_re-1.d0).gt.1.d-5.or.dabs(accu_im).gt.1.d-6)then
print*,'pb DIAG !!!!! '
endif
endif
enddo
enddo
enddo
enddo
end
subroutine test_assoc_leg_pol
implicit none
BEGIN_DOC
! Test for the associated Legendre Polynoms. The test is done through the orthogonality condition.
END_DOC
print *, 'Hello world'
integer :: l1,m1,ngrid,i,l2,m2
l1 = 0
m1 = 0
l2 = 2
m2 = 0
double precision :: x, dx,xmax,accu,xmin
double precision :: plgndr,func_1,func_2,ortho_assoc_gaus_pol
ngrid = 100000
xmax = 1.d0
xmin = -1.d0
dx = (xmax-xmin)/dble(ngrid)
do l2 = 0,10
x = xmin
accu = 0.d0
do i = 1, ngrid
func_1 = plgndr(l1,m1,x)
func_2 = plgndr(l2,m2,x)
write(33,*)x, func_1,func_2
accu += func_1 * func_2 * dx
x += dx
enddo
print*,'l2 = ',l2
print*,'accu = ',accu
print*,ortho_assoc_gaus_pol(l1,m1,l2)
enddo
end

View File

@ -0,0 +1,7 @@
program spher_harm
implicit none
! call test_spher_harm
! call test_cart
call test_brutal_spheric
end

View File

@ -0,0 +1,151 @@
subroutine spher_harm_func_r3(r,l,m,re_ylm, im_ylm)
implicit none
integer, intent(in) :: l,m
double precision, intent(in) :: r(3)
double precision, intent(out) :: re_ylm, im_ylm
double precision :: theta, phi,r_abs
call cartesian_to_spherical(r,theta,phi,r_abs)
call spher_harm_func(l,m,theta,phi,re_ylm, im_ylm)
end
subroutine spher_harm_func_m_pos(l,m,theta,phi,re_ylm, im_ylm)
include 'constants.include.F'
implicit none
BEGIN_DOC
! Y_lm(theta,phi) with m >0
!
END_DOC
double precision, intent(in) :: theta, phi
integer, intent(in) :: l,m
double precision, intent(out):: re_ylm,im_ylm
double precision :: prefact,fact,cos_theta,plgndr,p_lm
double precision :: tmp
prefact = dble(2*l+1)*fact(l-m)/(dfour_pi * fact(l+m))
prefact = dsqrt(prefact)
cos_theta = dcos(theta)
p_lm = plgndr(l,m,cos_theta)
tmp = prefact * p_lm
re_ylm = dcos(dble(m)*phi) * tmp
im_ylm = dsin(dble(m)*phi) * tmp
end
subroutine spher_harm_func(l,m,theta,phi,re_ylm, im_ylm)
implicit none
BEGIN_DOC
! Y_lm(theta,phi) with -l<m<+l
!
END_DOC
double precision, intent(in) :: theta, phi
integer, intent(in) :: l,m
double precision, intent(out):: re_ylm,im_ylm
double precision :: re_ylm_pos,im_ylm_pos,tmp
integer :: minus_m
if(abs(m).gt.l)then
print*,'|m| > l in spher_harm_func !! stopping ...'
stop
endif
if(m.ge.0)then
call spher_harm_func_m_pos(l,m,theta,phi,re_ylm_pos, im_ylm_pos)
re_ylm = re_ylm_pos
im_ylm = im_ylm_pos
else
minus_m = -m !> 0
call spher_harm_func_m_pos(l,minus_m,theta,phi,re_ylm_pos, im_ylm_pos)
tmp = (-1)**minus_m
re_ylm = tmp * re_ylm_pos
im_ylm = -tmp * im_ylm_pos ! complex conjugate
endif
end
subroutine cartesian_to_spherical(r,theta,phi,r_abs)
implicit none
double precision, intent(in) :: r(3)
double precision, intent(out):: theta, phi,r_abs
double precision :: r_2,x_2_y_2,tmp
include 'constants.include.F'
x_2_y_2 = r(1)*r(1) + r(2)*r(2)
r_2 = x_2_y_2 + r(3)*r(3)
r_abs = dsqrt(r_2)
if(r_abs.gt.1.d-20)then
theta = dacos(r(3)/r_abs)
else
theta = 0.d0
endif
if(.true.)then
if(dabs(r(1)).gt.0.d0)then
tmp = datan(r(2)/r(1))
! phi = datan2(r(2),r(1))
endif
! From Wikipedia on Spherical Harmonics
if(r(1).gt.0.d0)then
phi = tmp
else if(r(1).lt.0.d0.and.r(2).ge.0.d0)then
phi = tmp + pi
else if(r(1).lt.0.d0.and.r(2).lt.0.d0)then
phi = tmp - pi
else if(r(1)==0.d0.and.r(2).gt.0.d0)then
phi = 0.5d0*pi
else if(r(1)==0.d0.and.r(2).lt.0.d0)then
phi =-0.5d0*pi
else if(r(1)==0.d0.and.r(2)==0.d0)then
phi = 0.d0
endif
if(r(2).lt.0.d0.and.r(1).le.0.d0)then
tmp = pi - dabs(phi)
phi = pi + tmp
else if(r(2).lt.0.d0.and.r(1).gt.0.d0)then
phi = dtwo_pi + phi
endif
endif
if(.false.)then
x_2_y_2 = dsqrt(x_2_y_2)
if(dabs(x_2_y_2).gt.1.d-20.and.dabs(r(2)).gt.1.d-20)then
phi = dabs(r(2))/r(2) * dacos(r(1)/x_2_y_2)
else
phi = 0.d0
endif
endif
end
subroutine spher_harm_func_expl(l,m,theta,phi,re_ylm, im_ylm)
implicit none
BEGIN_DOC
! Y_lm(theta,phi) with -l<m<+l and 0<= l <=2
!
END_DOC
double precision, intent(in) :: theta, phi
integer, intent(in) :: l,m
double precision, intent(out):: re_ylm,im_ylm
double precision :: tmp
include 'constants.include.F'
if(l==0.and.m==0)then
re_ylm = 0.5d0 * inv_sq_pi
im_ylm = 0.d0
else if(l==1.and.m==1)then
tmp = - inv_sq_pi * dsqrt(3.d0/8.d0) * dsin(theta)
re_ylm = tmp * dcos(phi)
im_ylm = tmp * dsin(phi)
else if(l==1.and.m==0)then
tmp = inv_sq_pi * dsqrt(3.d0/4.d0) * dcos(theta)
re_ylm = tmp
im_ylm = 0.d0
else if(l==2.and.m==2)then
tmp = 0.25d0 * inv_sq_pi * dsqrt(0.5d0*15.d0) * dsin(theta)*dsin(theta)
re_ylm = tmp * dcos(2.d0*phi)
im_ylm = tmp * dsin(2.d0*phi)
else if(l==2.and.m==1)then
tmp = - inv_sq_pi * dsqrt(15.d0/8.d0) * dsin(theta) * dcos(theta)
re_ylm = tmp * dcos(phi)
im_ylm = tmp * dsin(phi)
else if(l==2.and.m==0)then
tmp = dsqrt(5.d0/4.d0) * inv_sq_pi* (1.5d0*dcos(theta)*dcos(theta)-0.5d0)
re_ylm = tmp
im_ylm = 0.d0
endif
end

View File

@ -0,0 +1,53 @@
program my_program_to_print_stuffs
implicit none
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
integer :: i,j,k,l,m
double precision :: integral, accu, accu_tot, integral_cholesky
double precision :: get_ao_two_e_integral, get_two_e_integral ! declaration of the functions
print*,'AO integrals, physicist notations : <i j|k l>'
accu_tot = 0.D0
do i = 1, ao_num
do j = 1, ao_num
do k = 1, ao_num
do l = 1, ao_num
integral = get_ao_two_e_integral(i, j, k, l, ao_integrals_map)
integral_cholesky = 0.D0
do m = 1, cholesky_ao_num
integral_cholesky += cholesky_ao_transp(m,i,k) * cholesky_ao_transp(m,j,l)
enddo
accu = dabs(integral_cholesky-integral)
accu_tot += accu
if(accu.gt.1.d-10)then
print*,i,j,k,l
print*,accu, integral, integral_cholesky
endif
enddo
enddo
enddo
enddo
print*,'accu_tot',accu_tot
print*,'MO integrals, physicist notations : <i j|k l>'
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
integral = get_two_e_integral(i, j, k, l, mo_integrals_map)
accu = 0.D0
integral_cholesky = 0.D0
do m = 1, cholesky_mo_num
integral_cholesky += cholesky_mo_transp(m,i,k) * cholesky_mo_transp(m,j,l)
enddo
accu = dabs(integral_cholesky-integral)
accu_tot += accu
if(accu.gt.1.d-10)then
print*,i,j,k,l
print*,accu, integral, integral_cholesky
endif
enddo
enddo
enddo
enddo
end

View File

@ -6,7 +6,7 @@ BEGIN_PROVIDER [ double precision, cholesky_ao_transp, (cholesky_ao_num, ao_num,
integer :: i,j,k
do j=1,ao_num
do i=1,ao_num
do k=1,ao_num
do k=1,cholesky_ao_num
cholesky_ao_transp(k,i,j) = cholesky_ao(i,j,k)
enddo
enddo

View File

@ -48,7 +48,7 @@
integer :: i,j
do i = 1, n_points_final_grid
do j = 1, mo_num
mos_in_r_array_transp(i,j) = mos_in_r_array(j,i)
mos_in_r_array_transp(i,j) = mos_in_r_array_omp(j,i)
enddo
enddo
END_PROVIDER

View File

@ -115,9 +115,6 @@ rm -rf $EZFIO
run hco.ezfio -113.1841002944744
}
@test "HBO" { # 0.805600 1.4543s
run hbo.ezfio -100.018582259096
}
@test "H2S" { # 1.655600 4.21402s
run h2s.ezfio -398.6944130421982
@ -127,9 +124,6 @@ rm -rf $EZFIO
run h3coh.ezfio -114.9865030596373
}
@test "H2O" { # 1.811100 1.84387s
run h2o.ezfio -0.760270218692179E+02
}
@test "H2O2" { # 2.217000 8.50267s
run h2o2.ezfio -150.7806608469964
@ -187,13 +181,6 @@ rm -rf $EZFIO
run oh.ezfio -75.42025413469165
}
@test "[Cu(NH3)4]2+" { # 59.610100 4.18766m
[[ -n $TRAVIS ]] && skip
qp set_file cu_nh3_4_2plus.ezfio
qp set scf_utils thresh_scf 1.e-10
run cu_nh3_4_2plus.ezfio -1862.97590358903
}
@test "SO2" { # 71.894900 3.22567m
[[ -n $TRAVIS ]] && skip
run so2.ezfio -41.55800401346361

View File

@ -114,3 +114,48 @@ BEGIN_PROVIDER [double precision, basis_mos_in_r_array, (n_basis_orb,n_points_fi
enddo
enddo
END_PROVIDER
! BEGIN_PROVIDER [integer, n_docc_val_orb_for_cas]
!&BEGIN_PROVIDER [integer, n_max_docc_val_orb_for_cas]
! implicit none
! BEGIN_DOC
! ! Number of DOUBLY OCCUPIED VALENCE ORBITALS for the CAS wave function
! !
! ! This determines the size of the space \mathcal{A} of Eqs. (15-16) of Phys.Chem.Lett.2019, 10, 2931 2937
! END_DOC
! integer :: i
! n_docc_val_orb_for_cas = 0
! ! You browse the BETA ELECTRONS and check if its not a CORE ORBITAL
! do i = 1, elec_beta_num
! if( trim(mo_class(i))=="Inactive" &
! .or. trim(mo_class(i))=="Active" &
! .or. trim(mo_class(i))=="Virtual" )then
! n_docc_val_orb_for_cas +=1
! endif
! enddo
! n_max_docc_val_orb_for_cas = maxval(n_docc_val_orb_for_cas)
!
!END_PROVIDER
!
!BEGIN_PROVIDER [integer, list_doc_valence_orb_for_cas, (n_max_docc_val_orb_for_cas)]
! implicit none
! BEGIN_DOC
! ! List of OCCUPIED valence orbitals for each spin to build the f_{HF}(r_1,r_2) function
! !
! ! This corresponds to ALL OCCUPIED orbitals in the HF wave function, except those defined as "core"
! !
! ! This determines the space \mathcal{A} of Eqs. (15-16) of Phys.Chem.Lett.2019, 10, 2931 2937
! END_DOC
! j = 0
! ! You browse the BETA ELECTRONS and check if its not a CORE ORBITAL
! do i = 1, elec_beta_num
! if( trim(mo_class(i))=="Inactive" &
! .or. trim(mo_class(i))=="Active" &
! .or. trim(mo_class(i))=="Virtual" )then
! j +=1
! list_doc_valence_orb_for_cas(j) = i
! endif
! enddo
!
!END_PROVIDER

View File

@ -0,0 +1,218 @@
BEGIN_PROVIDER [integer, list_couple_hf_orb_r1, (2,n_couple_orb_r1)]
implicit none
integer :: ii,i,mm,m,itmp
itmp = 0
do ii = 1, n_occ_val_orb_for_hf(1)
i = list_valence_orb_for_hf(ii,1)
do mm = 1, n_basis_orb ! electron 1
m = list_basis(mm)
itmp += 1
list_couple_hf_orb_r1(1,itmp) = i
list_couple_hf_orb_r1(2,itmp) = m
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [integer, list_couple_hf_orb_r2, (2,n_couple_orb_r2)]
implicit none
integer :: ii,i,mm,m,itmp
itmp = 0
do ii = 1, n_occ_val_orb_for_hf(2)
i = list_valence_orb_for_hf(ii,2)
do mm = 1, n_basis_orb ! electron 1
m = list_basis(mm)
itmp += 1
list_couple_hf_orb_r2(1,itmp) = i
list_couple_hf_orb_r2(2,itmp) = m
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [integer, n_couple_orb_r1]
implicit none
BEGIN_DOC
! number of couples of alpha occupied times any basis orbital
END_DOC
n_couple_orb_r1 = n_occ_val_orb_for_hf(1) * n_basis_orb
END_PROVIDER
BEGIN_PROVIDER [integer, n_couple_orb_r2]
implicit none
BEGIN_DOC
! number of couples of beta occupied times any basis orbital
END_DOC
n_couple_orb_r2 = n_occ_val_orb_for_hf(2) * n_basis_orb
END_PROVIDER
BEGIN_PROVIDER [ double precision, mos_times_cholesky_r1, (cholesky_mo_num,n_points_final_grid)]
implicit none
BEGIN_DOC
! V1_AR = \sum_{I}V_AI Phi_IR where "R" specifies the index of the grid point and A the number of cholesky point
!
! here Phi_IR is phi_i(R)xphi_b(R) for r1 and V_AI = (ib|A) chollesky vector
END_DOC
double precision, allocatable :: mos_ib_r1(:,:),mo_chol_r1(:,:)
double precision, allocatable :: test(:,:)
double precision :: mo_i_r1,mo_b_r1
integer :: ii,i,mm,m,itmp,ipoint,ll
allocate(mos_ib_r1(n_couple_orb_r1,n_points_final_grid))
allocate(mo_chol_r1(cholesky_mo_num,n_couple_orb_r1))
do ipoint = 1, n_points_final_grid
itmp = 0
do ii = 1, n_occ_val_orb_for_hf(1)
i = list_valence_orb_for_hf(ii,1)
mo_i_r1 = mos_in_r_array_omp(i,ipoint)
do mm = 1, n_basis_orb ! electron 1
m = list_basis(mm)
mo_b_r1 = mos_in_r_array_omp(m,ipoint)
itmp += 1
mos_ib_r1(itmp,ipoint) = mo_i_r1 * mo_b_r1
enddo
enddo
enddo
itmp = 0
do ii = 1, n_occ_val_orb_for_hf(1)
i = list_valence_orb_for_hf(ii,1)
do mm = 1, n_basis_orb ! electron 1
m = list_basis(mm)
itmp += 1
do ll = 1, cholesky_mo_num
mo_chol_r1(ll,itmp) = cholesky_mo_transp(ll,m,i)
enddo
enddo
enddo
call get_AB_prod(mo_chol_r1,cholesky_mo_num,n_couple_orb_r1,mos_ib_r1,n_points_final_grid,mos_times_cholesky_r1)
END_PROVIDER
BEGIN_PROVIDER [ double precision, mos_times_cholesky_r2, (cholesky_mo_num,n_points_final_grid)]
implicit none
BEGIN_DOC
! V1_AR = \sum_{I}V_AI Phi_IR where "R" specifies the index of the grid point and A the number of cholesky point
!
! here Phi_IR is phi_i(R)xphi_b(R) for r2 and V_AI = (ib|A) chollesky vector
END_DOC
double precision, allocatable :: mos_ib_r2(:,:),mo_chol_r2(:,:)
double precision, allocatable :: test(:,:)
double precision :: mo_i_r2,mo_b_r2
integer :: ii,i,mm,m,itmp,ipoint,ll
allocate(mos_ib_r2(n_couple_orb_r2,n_points_final_grid))
allocate(mo_chol_r2(cholesky_mo_num,n_couple_orb_r2))
do ipoint = 1, n_points_final_grid
itmp = 0
do ii = 1, n_occ_val_orb_for_hf(2)
i = list_valence_orb_for_hf(ii,2)
mo_i_r2 = mos_in_r_array_omp(i,ipoint)
do mm = 1, n_basis_orb ! electron 1
m = list_basis(mm)
mo_b_r2 = mos_in_r_array_omp(m,ipoint)
itmp += 1
mos_ib_r2(itmp,ipoint) = mo_i_r2 * mo_b_r2
enddo
enddo
enddo
itmp = 0
do ii = 1, n_occ_val_orb_for_hf(2)
i = list_valence_orb_for_hf(ii,2)
do mm = 1, n_basis_orb ! electron 1
m = list_basis(mm)
itmp += 1
do ll = 1, cholesky_mo_num
mo_chol_r2(ll,itmp) = cholesky_mo_transp(ll,m,i)
enddo
enddo
enddo
call get_AB_prod(mo_chol_r2,cholesky_mo_num,n_couple_orb_r2,mos_ib_r2,n_points_final_grid,mos_times_cholesky_r2)
END_PROVIDER
BEGIN_PROVIDER [ double precision, f_hf_cholesky, (n_points_final_grid)]
implicit none
integer :: ipoint,m,k
!!f(R) = \sum_{I} \sum_{J} Phi_I(R) Phi_J(R) V_IJ
!! = \sum_{I}\sum_{J}\sum_A Phi_I(R) Phi_J(R) V_AI V_AJ
!! = \sum_A \sum_{I}Phi_I(R)V_AI \sum_{J}V_AJ Phi_J(R)
!! = \sum_A V_AR G_AR
!! V_AR = \sum_{I}Phi_IR V_AI = \sum_{I}Phi^t_RI V_AI
double precision :: u_dot_v,wall0,wall1
if(elec_alpha_num == elec_beta_num)then
provide mos_times_cholesky_r1
print*,'providing f_hf_cholesky ...'
call wall_time(wall0)
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint,m) &
!$OMP ShARED (mos_times_cholesky_r1,cholesky_mo_num,f_hf_cholesky,n_points_final_grid)
do ipoint = 1, n_points_final_grid
f_hf_cholesky(ipoint) = 0.d0
do m = 1, cholesky_mo_num
f_hf_cholesky(ipoint) = f_hf_cholesky(ipoint) + &
mos_times_cholesky_r1(m,ipoint) * mos_times_cholesky_r1(m,ipoint)
enddo
f_hf_cholesky(ipoint) *= 2.D0
enddo
!$OMP END PARALLEL DO
call wall_time(wall1)
print*,'Time to provide f_hf_cholesky = ',wall1-wall0
free mos_times_cholesky_r1
else
provide mos_times_cholesky_r2 mos_times_cholesky_r1
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint,m) &
!$OMP ShARED (mos_times_cholesky_r2,mos_times_cholesky_r1,cholesky_mo_num,f_hf_cholesky,n_points_final_grid)
do ipoint = 1, n_points_final_grid
f_hf_cholesky(ipoint) = 0.D0
do m = 1, cholesky_mo_num
f_hf_cholesky(ipoint) = f_hf_cholesky(ipoint) + &
mos_times_cholesky_r2(m,ipoint)*mos_times_cholesky_r1(m,ipoint)
enddo
f_hf_cholesky(ipoint) *= 2.D0
enddo
!$OMP END PARALLEL DO
call wall_time(wall1)
print*,'Time to provide f_hf_cholesky = ',wall1-wall0
free mos_times_cholesky_r2 mos_times_cholesky_r1
endif
END_PROVIDER
BEGIN_PROVIDER [ double precision, on_top_hf_grid, (n_points_final_grid)]
implicit none
integer :: ipoint,i,ii
double precision :: dm_a, dm_b,wall0,wall1
print*,'providing on_top_hf_grid ...'
provide mos_in_r_array_omp
call wall_time(wall0)
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint,dm_a,dm_b,ii,i) &
!$OMP ShARED (n_points_final_grid,n_occ_val_orb_for_hf,mos_in_r_array_omp,list_valence_orb_for_hf,on_top_hf_grid)
do ipoint = 1, n_points_final_grid
dm_a = 0.d0
do ii = 1, n_occ_val_orb_for_hf(1)
i = list_valence_orb_for_hf(ii,1)
dm_a += mos_in_r_array_omp(i,ipoint)*mos_in_r_array_omp(i,ipoint)
enddo
dm_b = 0.d0
do ii = 1, n_occ_val_orb_for_hf(2)
i = list_valence_orb_for_hf(ii,2)
dm_b += mos_in_r_array_omp(i,ipoint)*mos_in_r_array_omp(i,ipoint)
enddo
on_top_hf_grid(ipoint) = 2.D0 * dm_a*dm_b
enddo
!$OMP END PARALLEL DO
call wall_time(wall1)
print*,'Time to provide on_top_hf_grid = ',wall1-wall0
END_PROVIDER

View File

@ -61,7 +61,7 @@
END_DOC
integer :: ipoint
double precision :: wall0,wall1,f_hf,on_top,w_hf,sqpi
PROVIDE mo_two_e_integrals_in_map mo_integrals_map big_array_exchange_integrals
PROVIDE f_hf_cholesky on_top_hf_grid
print*,'providing mu_of_r_hf ...'
call wall_time(wall0)
sqpi = dsqrt(dacos(-1.d0))
@ -69,10 +69,10 @@
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint,f_hf,on_top,w_hf) &
!$OMP ShARED (n_points_final_grid,mu_of_r_hf,f_psi_hf_ab,on_top_hf_mu_r,sqpi)
!$OMP ShARED (n_points_final_grid,mu_of_r_hf,f_hf_cholesky,on_top_hf_grid,sqpi)
do ipoint = 1, n_points_final_grid
f_hf = f_psi_hf_ab(ipoint)
on_top = on_top_hf_mu_r(ipoint)
f_hf = f_hf_cholesky(ipoint)
on_top = on_top_hf_grid(ipoint)
if(on_top.le.1.d-12.or.f_hf.le.0.d0.or.f_hf * on_top.lt.0.d0)then
w_hf = 1.d+10
else
@ -85,6 +85,44 @@
print*,'Time to provide mu_of_r_hf = ',wall1-wall0
END_PROVIDER
BEGIN_PROVIDER [double precision, mu_of_r_hf_old, (n_points_final_grid) ]
implicit none
BEGIN_DOC
! mu(r) computed with a HF wave function (assumes that HF MOs are stored in the EZFIO)
!
! corresponds to Eq. (37) of J. Chem. Phys. 149, 194301 (2018) but for \Psi^B = HF^B
!
! !!!!!! WARNING !!!!!! if no_core_density == .True. then all contributions from the core orbitals
!
! in the two-body density matrix are excluded
END_DOC
integer :: ipoint
double precision :: wall0,wall1,f_hf,on_top,w_hf,sqpi
PROVIDE mo_two_e_integrals_in_map mo_integrals_map big_array_exchange_integrals
print*,'providing mu_of_r_hf_old ...'
call wall_time(wall0)
sqpi = dsqrt(dacos(-1.d0))
provide f_psi_hf_ab
!$OMP PARALLEL DO &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint,f_hf,on_top,w_hf) &
!$OMP ShARED (n_points_final_grid,mu_of_r_hf_old,f_psi_hf_ab,on_top_hf_mu_r,sqpi)
do ipoint = 1, n_points_final_grid
f_hf = f_psi_hf_ab(ipoint)
on_top = on_top_hf_mu_r(ipoint)
if(on_top.le.1.d-12.or.f_hf.le.0.d0.or.f_hf * on_top.lt.0.d0)then
w_hf = 1.d+10
else
w_hf = f_hf / on_top
endif
mu_of_r_hf_old(ipoint) = w_hf * sqpi * 0.5d0
enddo
!$OMP END PARALLEL DO
call wall_time(wall1)
print*,'Time to provide mu_of_r_hf_old = ',wall1-wall0
END_PROVIDER
BEGIN_PROVIDER [double precision, mu_of_r_psi_cas, (n_points_final_grid,N_states) ]
implicit none
BEGIN_DOC