mirror of
https://github.com/QuantumPackage/qp2.git
synced 2024-12-21 11:03:29 +01:00
Added restoration of symmetry
This commit is contained in:
parent
96f26a3516
commit
6c930b70f5
@ -280,6 +280,8 @@ subroutine save_natural_mos
|
||||
! the |MO| basis
|
||||
END_DOC
|
||||
call set_natural_mos
|
||||
call nullify_small_elements(ao_num,mo_num,mo_coef,size(mo_coef,1),1.d-10)
|
||||
call orthonormalize_mos
|
||||
call save_mos
|
||||
end
|
||||
|
||||
|
@ -1,34 +1,34 @@
|
||||
program scf
|
||||
BEGIN_DOC
|
||||
!
|
||||
!
|
||||
! The :ref:`scf` program performs *Restricted* Hartree-Fock
|
||||
! calculations (the spatial part of the |MOs| is common for alpha and beta
|
||||
! spinorbitals).
|
||||
!
|
||||
!
|
||||
! It performs the following actions:
|
||||
!
|
||||
!
|
||||
! #. Compute/Read all the one- and two-electron integrals, and store them
|
||||
! in memory
|
||||
! #. Check in the |EZFIO| database if there is a set of |MOs|.
|
||||
! If there is, it will read them as initial guess. Otherwise, it will
|
||||
! create a guess.
|
||||
! #. Perform the |SCF| iterations
|
||||
!
|
||||
!
|
||||
! For the keywords related to the |SCF| procedure, see the ``scf_utils``
|
||||
! directory where you will find all options.
|
||||
!
|
||||
!
|
||||
! At each iteration, the |MOs| are saved in the |EZFIO| database. Hence,
|
||||
! if the calculation crashes for any unexpected reason, the calculation
|
||||
! can be restarted by running again the |SCF| with the same |EZFIO|
|
||||
! database.
|
||||
!
|
||||
!
|
||||
! To start again a fresh |SCF| calculation, the |MOs| can be reset by
|
||||
! running the :ref:`qp_reset` command.
|
||||
!
|
||||
! The `DIIS`_ algorithm is implemented, as well as the `level-shifting`_
|
||||
!
|
||||
! The `DIIS`_ algorithm is implemented, as well as the `level-shifting`_
|
||||
! method. If the |SCF| does not converge, try again with a higher value of
|
||||
! :option:`level_shift`.
|
||||
!
|
||||
!
|
||||
! .. _DIIS: https://en.wikipedia.org/w/index.php?title=DIIS
|
||||
! .. _level-shifting: https://doi.org/10.1002/qua.560070407
|
||||
!
|
||||
@ -55,6 +55,7 @@ subroutine create_guess
|
||||
size(mo_one_e_integrals,1), &
|
||||
size(mo_one_e_integrals,2), &
|
||||
mo_label,1,.false.)
|
||||
call nullify_small_elements(ao_num, mo_num, mo_coef, size(mo_coef,1), 1.d-10)
|
||||
SOFT_TOUCH mo_coef mo_label
|
||||
else if (mo_guess_type == "Huckel") then
|
||||
call huckel_guess
|
||||
|
@ -36,4 +36,3 @@ size: (mo_basis.mo_num)
|
||||
type: character*(32)
|
||||
doc: MD5 checksum characterizing the |AO| basis set.
|
||||
interface: ezfio
|
||||
|
||||
|
@ -8,6 +8,7 @@ subroutine hcore_guess
|
||||
call mo_as_eigvectors_of_mo_matrix(mo_one_e_integrals, &
|
||||
size(mo_one_e_integrals,1), &
|
||||
size(mo_one_e_integrals,2),label,1,.false.)
|
||||
call nullify_small_elements(ao_num, mo_num, mo_coef, size(mo_coef,1), 1.d-12 )
|
||||
call save_mos
|
||||
SOFT_TOUCH mo_coef mo_label
|
||||
end
|
||||
|
@ -1,11 +1,16 @@
|
||||
subroutine orthonormalize_mos
|
||||
implicit none
|
||||
integer :: m,p,s
|
||||
integer :: m,p,s,i
|
||||
m = size(mo_coef,1)
|
||||
p = size(mo_overlap,1)
|
||||
call ortho_lowdin(mo_overlap,p,mo_num,mo_coef,m,ao_num,lin_dep_cutoff)
|
||||
mo_label = 'Orthonormalized'
|
||||
SOFT_TOUCH mo_coef mo_label
|
||||
do i=1,4
|
||||
call ortho_lowdin(mo_overlap,p,mo_num,mo_coef,m,ao_num,lin_dep_cutoff)
|
||||
call nullify_small_elements(ao_num,mo_num,mo_coef,size(mo_coef,1),1.d-10)
|
||||
enddo
|
||||
if (restore_symm) then
|
||||
call restore_symmetry(ao_num, mo_num, mo_coef, size(mo_coef,1), 1.d-12)
|
||||
endif
|
||||
SOFT_TOUCH mo_coef
|
||||
end
|
||||
|
||||
|
||||
|
@ -51,3 +51,8 @@ doc: If true, leave untouched all the orbitals defined as core and optimize all
|
||||
interface: ezfio,provider,ocaml
|
||||
default: False
|
||||
|
||||
[restore_symm]
|
||||
type: logical
|
||||
doc: If true, try to find symmetry in the MO coefficient matrices
|
||||
interface: ezfio,provider,ocaml
|
||||
default: True
|
||||
|
@ -25,6 +25,7 @@ subroutine huckel_guess
|
||||
|
||||
TOUCH Fock_matrix_ao_alpha Fock_matrix_ao_beta
|
||||
mo_coef = eigenvectors_fock_matrix_mo
|
||||
call nullify_small_elements(ao_num, mo_num, mo_coef, size(mo_coef,1), 1.d-12 )
|
||||
SOFT_TOUCH mo_coef
|
||||
call save_mos
|
||||
deallocate(A)
|
||||
|
@ -165,6 +165,8 @@ END_DOC
|
||||
|
||||
if(.not.frozen_orb_scf)then
|
||||
call mo_as_eigvectors_of_mo_matrix(Fock_matrix_mo,size(Fock_matrix_mo,1),size(Fock_matrix_mo,2),mo_label,1,.true.)
|
||||
call nullify_small_elements(ao_num, mo_num, mo_coef, size(mo_coef,1), 1.d-10)
|
||||
call orthonormalize_mos
|
||||
call save_mos
|
||||
endif
|
||||
|
||||
@ -303,7 +305,7 @@ END_DOC
|
||||
Fock_matrix_AO_(i,j) = 0.d0
|
||||
enddo
|
||||
do k=1,dim_DIIS
|
||||
if (dabs(X_vector_DIIS(k)) < 1.d-10) cycle
|
||||
if (dabs(X_vector_DIIS(k)) < 1.d-12) cycle
|
||||
do i=1,ao_num
|
||||
Fock_matrix_AO_(i,j) = Fock_matrix_AO_(i,j) + &
|
||||
X_vector_DIIS(k)*Fock_matrix_DIIS(i,j,dim_DIIS-k+1)
|
||||
|
@ -10,5 +10,7 @@ program save_ortho_mos
|
||||
! Thanks to the Lowdin orthonormalization, the new MOs are the most similar to the guess MOs.
|
||||
END_DOC
|
||||
call orthonormalize_mos
|
||||
mo_label = 'Orthonormalized'
|
||||
SOFT_TOUCH mo_label
|
||||
call save_mos
|
||||
end
|
||||
|
@ -1367,3 +1367,92 @@ subroutine lapack_diag(eigvalues,eigvectors,H,nmax,n)
|
||||
deallocate(A,eigenvalues)
|
||||
end
|
||||
|
||||
subroutine nullify_small_elements(m,n,A,LDA,thresh)
|
||||
implicit none
|
||||
integer, intent(in) :: m,n,LDA
|
||||
double precision, intent(inout) :: A(LDA,n)
|
||||
double precision, intent(in) :: thresh
|
||||
integer :: i,j
|
||||
double precision :: amax
|
||||
|
||||
! Find max value
|
||||
amax = 0.d0
|
||||
do j=1,n
|
||||
do i=1,m
|
||||
amax = max(dabs(A(i,j)), amax)
|
||||
enddo
|
||||
enddo
|
||||
amax = 1.d0/amax
|
||||
|
||||
! Remove tiny elements
|
||||
do j=1,n
|
||||
do i=1,m
|
||||
if ( dabs(A(i,j) * amax) < thresh ) then
|
||||
A(i,j) = 0.d0
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
|
||||
subroutine restore_symmetry(m,n,A,LDA,thresh)
|
||||
implicit none
|
||||
integer, intent(in) :: m,n,LDA
|
||||
double precision, intent(inout) :: A(LDA,n)
|
||||
double precision, intent(in) :: thresh
|
||||
integer :: i,j,k,l
|
||||
logical, allocatable :: done(:,:)
|
||||
double precision :: f, g, count, thresh2
|
||||
thresh2 = dsqrt(thresh)
|
||||
call nullify_small_elements(m,n,A,LDA,thresh)
|
||||
|
||||
allocate(done(m,n))
|
||||
|
||||
do j=1,n
|
||||
do i=1,m
|
||||
done(i,j) = A(i,j) == 0.d0
|
||||
enddo
|
||||
enddo
|
||||
|
||||
do j=1,n
|
||||
do i=1,m
|
||||
if ( done(i,j) ) cycle
|
||||
done(i,j) = .True.
|
||||
count = 1.d0
|
||||
f = 1.d0/A(i,j)
|
||||
do l=1,n
|
||||
do k=1,m
|
||||
if ( done(k,l) ) cycle
|
||||
g = f * A(k,l)
|
||||
if ( dabs(dabs(g) - 1.d0) < thresh2 ) then
|
||||
count = count + 1.d0
|
||||
if (g>0.d0) then
|
||||
A(i,j) = A(i,j) + A(k,l)
|
||||
else
|
||||
A(i,j) = A(i,j) - A(k,l)
|
||||
end if
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
if (count > 1.d0) then
|
||||
A(i,j) = A(i,j) / count
|
||||
do l=1,n
|
||||
do k=1,m
|
||||
if ( done(k,l) ) cycle
|
||||
g = f * A(k,l)
|
||||
if ( dabs(dabs(g) - 1.d0) < thresh2 ) then
|
||||
done(k,l) = .True.
|
||||
if (g>0.d0) then
|
||||
A(k,l) = A(i,j)
|
||||
else
|
||||
A(k,l) = -A(i,j)
|
||||
end if
|
||||
endif
|
||||
enddo
|
||||
enddo
|
||||
endif
|
||||
|
||||
enddo
|
||||
enddo
|
||||
|
||||
end
|
||||
|
Loading…
Reference in New Issue
Block a user