9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-07 05:53:37 +01:00

added general Slater rules

This commit is contained in:
eginer 2023-09-13 18:28:52 +02:00
parent 81cc21670a
commit 6ba3f48acb
5 changed files with 373 additions and 22 deletions

View File

@ -0,0 +1,330 @@
subroutine get_excitation_general(key_i,key_j, Nint,degree_array,holes_array, particles_array,phase)
use bitmasks
BEGIN_DOC
! returns the array, for each spin, of holes/particles between key_i and key_j
!
! with the following convention: a^+_{particle} a_{hole}|key_i> = |key_j>
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
integer, intent(out) :: holes_array(100,2),particles_array(100,2),degree_array(2)
double precision, intent(out) :: phase
integer :: ispin,k,i,pos
integer(bit_kind) :: key_hole, key_particle
integer(bit_kind) :: xorvec(N_int_max,2)
holes_array = -1
particles_array = -1
degree_array = 0
do i = 1, N_int
xorvec(i,1) = xor( key_i(i,1), key_j(i,1))
xorvec(i,2) = xor( key_i(i,2), key_j(i,2))
degree_array(1) += popcnt(xorvec(i,1))
degree_array(2) += popcnt(xorvec(i,2))
enddo
degree_array(1) = shiftr(degree_array(1),1)
degree_array(2) = shiftr(degree_array(2),1)
do ispin = 1, 2
k = 1
!!! GETTING THE HOLES
do i = 1, N_int
key_hole = iand(xorvec(i,ispin),key_i(i,ispin))
do while(key_hole .ne.0_bit_kind)
pos = trailz(key_hole)
holes_array(k,ispin) = 1+ bit_kind_size * (i-1) + pos
key_hole = ibclr(key_hole,pos)
k += 1
if(k .gt.100)then
print*,'WARNING in get_excitation_general'
print*,'More than a 100-th excitation for spin ',ispin
print*,'stoping ...'
stop
endif
enddo
enddo
enddo
do ispin = 1, 2
k = 1
!!! GETTING THE PARTICLES
do i = 1, N_int
key_particle = iand(xor(key_i(i,ispin),key_j(i,ispin)),key_j(i,ispin))
do while(key_particle .ne.0_bit_kind)
pos = trailz(key_particle)
particles_array(k,ispin) = 1+ bit_kind_size * (i-1) + pos
key_particle = ibclr(key_particle,pos)
k += 1
if(k .gt.100)then
print*,'WARNING in get_excitation_general '
print*,'More than a 100-th excitation for spin ',ispin
print*,'stoping ...'
stop
endif
enddo
enddo
enddo
integer :: h,p, i_ok
integer(bit_kind), allocatable :: det_i(:,:),det_ip(:,:)
integer :: exc(0:2,2,2)
double precision :: phase_tmp
allocate(det_i(Nint,2),det_ip(N_int,2))
det_i = key_i
phase = 1.d0
do ispin = 1, 2
do i = 1, degree_array(ispin)
h = holes_array(i,ispin)
p = particles_array(i,ispin)
det_ip = det_i
call do_single_excitation(det_ip,h,p,ispin,i_ok)
if(i_ok == -1)then
print*,'excitation was not possible '
stop
endif
call get_single_excitation(det_i,det_ip,exc,phase_tmp,Nint)
phase *= phase_tmp
det_i = det_ip
enddo
enddo
end
subroutine get_holes_general(key_i, key_j,Nint, holes_array)
use bitmasks
BEGIN_DOC
! returns the array, per spin, of holes between key_i and key_j
!
! with the following convention: a_{hole}|key_i> --> |key_j>
END_DOC
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
integer, intent(out) :: holes_array(100,2)
integer(bit_kind) :: key_hole
integer :: ispin,k,i,pos
holes_array = -1
do ispin = 1, 2
k = 1
do i = 1, N_int
key_hole = iand(xor(key_i(i,ispin),key_j(i,ispin)),key_i(i,ispin))
do while(key_hole .ne.0_bit_kind)
pos = trailz(key_hole)
holes_array(k,ispin) = 1+ bit_kind_size * (i-1) + pos
key_hole = ibclr(key_hole,pos)
k += 1
if(k .gt.100)then
print*,'WARNING in get_holes_general'
print*,'More than a 100-th excitation for spin ',ispin
print*,'stoping ...'
stop
endif
enddo
enddo
enddo
end
subroutine get_particles_general(key_i, key_j,Nint,particles_array)
use bitmasks
BEGIN_DOC
! returns the array, per spin, of particles between key_i and key_j
!
! with the following convention: a^dagger_{particle}|key_i> --> |key_j>
END_DOC
implicit none
integer, intent(in) :: Nint
integer(bit_kind), intent(in) :: key_j(Nint,2),key_i(Nint,2)
integer, intent(out) :: particles_array(100,2)
integer(bit_kind) :: key_particle
integer :: ispin,k,i,pos
particles_array = -1
do ispin = 1, 2
k = 1
do i = 1, N_int
key_particle = iand(xor(key_i(i,ispin),key_j(i,ispin)),key_j(i,ispin))
do while(key_particle .ne.0_bit_kind)
pos = trailz(key_particle)
particles_array(k,ispin) = 1+ bit_kind_size * (i-1) + pos
key_particle = ibclr(key_particle,pos)
k += 1
if(k .gt.100)then
print*,'WARNING in get_holes_general'
print*,'More than a 100-th excitation for spin ',ispin
print*,'Those are the two determinants'
call debug_det(key_i, N_int)
call debug_det(key_j, N_int)
print*,'stoping ...'
stop
endif
enddo
enddo
enddo
end
subroutine get_phase_general(key_i,Nint,degree, holes_array, particles_array,phase)
implicit none
integer, intent(in) :: degree(2), Nint
integer(bit_kind), intent(in) :: key_i(Nint,2)
integer, intent(in) :: holes_array(100,2),particles_array(100,2)
double precision, intent(out) :: phase
integer :: i,ispin,h,p, i_ok
integer(bit_kind), allocatable :: det_i(:,:),det_ip(:,:)
integer :: exc(0:2,2,2)
double precision :: phase_tmp
allocate(det_i(Nint,2),det_ip(N_int,2))
det_i = key_i
phase = 1.d0
do ispin = 1, 2
do i = 1, degree(ispin)
h = holes_array(i,ispin)
p = particles_array(i,ispin)
det_ip = det_i
call do_single_excitation(det_ip,h,p,ispin,i_ok)
if(i_ok == -1)then
print*,'excitation was not possible '
stop
endif
call get_single_excitation(det_i,det_ip,exc,phase_tmp,Nint)
phase *= phase_tmp
det_i = det_ip
enddo
enddo
end
subroutine H_tc_s2_u_0_with_pure_three(v_0, s_0, u_0, N_st, sze)
BEGIN_DOC
! Computes $v_0 = H^TC | u_0\rangle$ WITH PURE TRIPLE EXCITATION TERMS
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
use bitmasks
implicit none
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u_0(sze,N_st)
double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st)
call H_tc_s2_u_0_opt(v_0, s_0, u_0, N_st, sze)
integer :: i,j,degree,ist
double precision :: hmono, htwoe, hthree, htot
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
if(degree .ne. 3)cycle
call triple_htilde_mu_mat_fock_bi_ortho(N_int, psi_det(1,1,i), psi_det(1,1,j), hmono, htwoe, hthree, htot)
do ist = 1, N_st
v_0(i,ist) += htot * u_0(j,ist)
enddo
enddo
enddo
end
! ---
subroutine H_tc_s2_dagger_u_0_with_pure_three(v_0, s_0, u_0, N_st, sze)
BEGIN_DOC
! Computes $v_0 = (H^TC)^dagger | u_0\rangle$ WITH PURE TRIPLE EXCITATION TERMS
!
! Assumes that the determinants are in psi_det
!
! istart, iend, ishift, istep are used in ZMQ parallelization.
END_DOC
use bitmasks
implicit none
integer, intent(in) :: N_st,sze
double precision, intent(in) :: u_0(sze,N_st)
double precision, intent(out) :: v_0(sze,N_st), s_0(sze,N_st)
call H_tc_s2_dagger_u_0_opt(v_0, s_0, u_0, N_st, sze)
integer :: i,j,degree,ist
double precision :: hmono, htwoe, hthree, htot
do i = 1, N_det
do j = 1, N_det
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
if(degree .ne. 3)cycle
call triple_htilde_mu_mat_fock_bi_ortho(N_int, psi_det(1,1,j), psi_det(1,1,i), hmono, htwoe, hthree, htot)
do ist = 1, N_st
v_0(i,ist) += htot * u_0(j,ist)
enddo
enddo
enddo
end
! ---
subroutine triple_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot)
use bitmasks
BEGIN_DOC
! <key_j | H_tilde | key_i> for triple excitation
!!
!! WARNING !!
!
! Genuine triple excitations of the same spin are not yet implemented
END_DOC
implicit none
integer(bit_kind), intent(in) :: key_j(N_int,2),key_i(N_int,2)
integer, intent(in) :: Nint
double precision, intent(out) :: hmono, htwoe, hthree, htot
integer :: occ(N_int*bit_kind_size,2)
integer :: Ne(2),i,j,ii,jj,ispin,jspin,k,kk
integer :: degree,exc_double(0:2,2,2),exc_single(0:2,2,2)
integer :: degree_alpha,degree_beta
integer :: h1, p1, h2, p2, s1, s2, h3, p3, s3, h4, p4, s4
double precision :: phase_double, phase_single
integer(bit_kind) :: key_j_alpha(N_int,2),key_i_alpha(N_int,2)
integer(bit_kind) :: key_j_beta(N_int,2),key_i_beta(N_int,2)
integer :: other_spin(2)
hmono = 0.d0
htwoe = 0.d0
hthree = 0.d0
htot = 0.d0
call bitstring_to_list_ab(key_i,occ,Ne,N_int)
call get_excitation_degree(key_i,key_j,degree,N_int)
if(degree.ne.3)then
return
endif
other_spin(1) = 2
other_spin(2) = 1
do i = 1, N_int
key_j_alpha(i,1) = key_j(i,1)
key_j_alpha(i,2) = 0_bit_kind
key_i_alpha(i,1) = key_i(i,1)
key_i_alpha(i,2) = 0_bit_kind
key_j_beta(i,2) = key_j(i,2)
key_j_beta(i,1) = 0_bit_kind
key_i_beta(i,2) = key_i(i,2)
key_i_beta(i,1) = 0_bit_kind
enddo
! check whether it is a triple excitation of the same spin
call get_excitation_degree(key_i_alpha,key_j_alpha,degree_alpha,N_int)
call get_excitation_degree(key_i_beta,key_j_beta,degree_beta,N_int)
if(degree_alpha==3.or.degree_beta==3)then
return
else
if(degree_alpha == 2.and.degree_beta == 1)then ! double alpha + single beta
call get_double_excitation(key_i_alpha,key_j_alpha,exc_double,phase_double,N_int)
call decode_exc(exc_double,2,h1,p1,h2,p2,s1,s2)
call get_single_excitation(key_i_beta,key_j_beta,exc_single,phase_single,N_int)
call decode_exc(exc_single,1,h3,p3,h4,p4,s3,s4)
else if(degree_beta == 2 .and. degree_alpha == 1)then ! double beta + single alpha
call get_double_excitation(key_i_beta,key_j_beta,exc_double,phase_double,N_int)
call decode_exc(exc_double,2,h1,p1,h2,p2,s1,s2)
call get_single_excitation(key_i_alpha,key_j_alpha,exc_single,phase_single,N_int)
call decode_exc(exc_single,1,h3,p3,h4,p4,s3,s4)
else
print*,'PB !!'
print*,'degree_beta, degree_alpha',degree_beta, degree_alpha
print*,'degree',degree
stop
endif
hthree = three_body_ints_bi_ort(p3,p2,p1,h3,h2,h1) - three_body_ints_bi_ort(p3,p2,p1,h3,h1,h2)
hthree *= phase_single * phase_double
endif
htot = hthree
end

View File

@ -85,8 +85,8 @@ subroutine htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree,
hthree = 0.D0 hthree = 0.D0
call get_excitation_degree(key_i, key_j, degree, Nint) call get_excitation_degree(key_i, key_j, degree, Nint)
if(.not.pure_three_body_h_tc)then
if(degree.gt.2) return if(degree.gt.2) return
if(degree == 0) then if(degree == 0) then
call diag_htilde_mu_mat_fock_bi_ortho (Nint, key_i, hmono, htwoe, hthree, htot) call diag_htilde_mu_mat_fock_bi_ortho (Nint, key_i, hmono, htwoe, hthree, htot)
else if (degree == 1) then else if (degree == 1) then
@ -94,6 +94,21 @@ subroutine htilde_mu_mat_opt_bi_ortho(key_j, key_i, Nint, hmono, htwoe, hthree,
else if(degree == 2) then else if(degree == 2) then
call double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot) call double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot)
endif endif
else
if(degree==3)then
print*,'degree == 3'
endif
if(degree.gt.3) return
if(degree == 0) then
call diag_htilde_mu_mat_fock_bi_ortho (Nint, key_i, hmono, htwoe, hthree, htot)
else if (degree == 1) then
call single_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i , hmono, htwoe, hthree, htot)
else if(degree == 2) then
call double_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot)
else
call triple_htilde_mu_mat_fock_bi_ortho(Nint, key_j, key_i, hmono, htwoe, hthree, htot)
endif
endif
if(degree==0) then if(degree==0) then
htot += nuclear_repulsion htot += nuclear_repulsion

View File

@ -225,6 +225,8 @@ end
external H_tc_dagger_u_0_opt external H_tc_dagger_u_0_opt
external H_tc_s2_dagger_u_0_opt external H_tc_s2_dagger_u_0_opt
external H_tc_s2_u_0_opt external H_tc_s2_u_0_opt
external H_tc_s2_dagger_u_0_with_pure_three
external H_tc_s2_u_0_with_pure_three
allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag)) allocate(H_jj(N_det),vec_tmp(N_det,n_states_diag))
@ -250,7 +252,11 @@ end
converged = .False. converged = .False.
i_it = 0 i_it = 0
do while (.not.converged) do while (.not.converged)
if(.not.pure_three_body_h_tc)then
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, n_it_max, converged, H_tc_s2_dagger_u_0_opt) call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, n_it_max, converged, H_tc_s2_dagger_u_0_opt)
else
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_left_tc_bi_orth, N_det, n_states, n_states_diag, n_it_max, converged, H_tc_s2_dagger_u_0_with_pure_three)
endif
i_it += 1 i_it += 1
if(i_it .gt. 5) exit if(i_it .gt. 5) exit
enddo enddo
@ -275,7 +281,11 @@ end
converged = .False. converged = .False.
i_it = 0 i_it = 0
do while (.not. converged) do while (.not. converged)
if(.not.pure_three_body_h_tc)then
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, n_it_max, converged, H_tc_s2_u_0_opt) call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, n_it_max, converged, H_tc_s2_u_0_opt)
else
call davidson_hs2_nonsym_b1space(vec_tmp, H_jj, s2_eigvec_tc_bi_orth, eigval_right_tc_bi_orth, N_det, n_states, n_states_diag, n_it_max, converged, H_tc_s2_u_0_with_pure_three)
endif
i_it += 1 i_it += 1
if(i_it .gt. 5) exit if(i_it .gt. 5) exit
enddo enddo

View File

@ -35,19 +35,15 @@ subroutine test
do h2 = 1, mo_num do h2 = 1, mo_num
do p2 = 1, mo_num do p2 = 1, mo_num
integral = mo_bi_ortho_tc_two_e(p2,p1,h2,h1) integral = mo_bi_ortho_tc_two_e(p2,p1,h2,h1)
rdm = tc_two_rdm(p1,h1,p2,h2) rdm = tc_two_rdm(p2,p1,h2,h1)
accu += integral * rdm accu += integral * rdm
rdm_new = 0.d0 rdm_new = 0.d0
do s2 = 1, 2 do s2 = 1, 2
do s1 = 1, 2 do s1 = 1, 2
rdm_new += tc_two_rdm_chemist_s1s2(p1,h1,p2,h2,s1,s2) rdm_new += tc_two_rdm_s1s2(p2,p1,h2,h1,s1,s2)
enddo enddo
enddo enddo
accu_new += integral * rdm_new accu_new += integral * rdm_new
! if(dabs(rdm).gt.1.d-10)then
! print*,h1,p1,h2,p2
! print*,rdm,integral,rdm*integral
! endif
enddo enddo
enddo enddo
enddo enddo

View File

@ -32,7 +32,7 @@
enddo enddo
if(degree == 2)then if(degree == 2)then
call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist,mo_num,contrib) call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist,mo_num,contrib)
! call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist_s1s2(1,1,1,1,s1,s2) ,mo_num,contrib) call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist_s1s2(1,1,1,1,s1,s2) ,mo_num,contrib)
else if(degree==1)then else if(degree==1)then
! occupation of the determinant psi_det(j) ! occupation of the determinant psi_det(j)
call bitstring_to_list_ab(psi_det(1,1,j), occ, n_occ_ab, N_int) call bitstring_to_list_ab(psi_det(1,1,j), occ, n_occ_ab, N_int)
@ -44,7 +44,7 @@
h2 = m h2 = m
p2 = m p2 = m
call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist,mo_num,contrib) call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist,mo_num,contrib)
! call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist_s1s2(1,1,1,1,s1,s2) ,mo_num,contrib) call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist_s1s2(1,1,1,1,s1,s2) ,mo_num,contrib)
enddo enddo
! run over the electrons of same spin than the excitation ! run over the electrons of same spin than the excitation
s2 = s1 s2 = s1
@ -53,7 +53,7 @@
h2 = m h2 = m
p2 = m p2 = m
call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist,mo_num,contrib) call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist,mo_num,contrib)
! call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist_s1s2(1,1,1,1,s1,s2) ,mo_num,contrib) call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist_s1s2(1,1,1,1,s1,s2) ,mo_num,contrib)
enddo enddo
endif endif
else if(degree == 0)then else if(degree == 0)then
@ -75,7 +75,7 @@
h2 = m h2 = m
p2 = m p2 = m
call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist,mo_num,contrib) call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist,mo_num,contrib)
! call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist_s1s2(1,1,1,1,s1,s2) ,mo_num,contrib) call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist_s1s2(1,1,1,1,s1,s2) ,mo_num,contrib)
enddo enddo
! run over the couple of alpha-alpha electrons ! run over the couple of alpha-alpha electrons
s2 = s1 s2 = s1
@ -85,7 +85,7 @@
p2 = m p2 = m
if(h2.le.h1)cycle if(h2.le.h1)cycle
call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist,mo_num,contrib) call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist,mo_num,contrib)
! call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist_s1s2(1,1,1,1,s1,s2) ,mo_num,contrib) call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist_s1s2(1,1,1,1,s1,s2) ,mo_num,contrib)
enddo enddo
enddo enddo
s1 = 2 s1 = 2
@ -100,7 +100,7 @@
p2 = m p2 = m
if(h2.le.h1)cycle if(h2.le.h1)cycle
call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist,mo_num,contrib) call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist,mo_num,contrib)
! call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist_s1s2(1,1,1,1,s1,s2) ,mo_num,contrib) call update_tc_rdm(h1,p1,h2,p2,s1,s2,tc_two_rdm_chemist_s1s2(1,1,1,1,s1,s2) ,mo_num,contrib)
enddo enddo
enddo enddo
endif endif