9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-11-09 06:53:38 +01:00

Merge branch 'master' into ormas-clean

This commit is contained in:
Kevin Gasperich 2024-03-19 11:08:38 -05:00
commit 65d7ca1aa2
650 changed files with 71117 additions and 9340 deletions

View File

@ -48,6 +48,8 @@ jobs:
./configure -i docopt || :
./configure -i resultsFile || :
./configure -i bats || :
./configure -i trexio-nohdf5 || :
./configure -i qmckl || :
./configure -c ./config/gfortran_debug.cfg
- name: Compilation
run: |

View File

@ -22,7 +22,7 @@ jobs:
- uses: actions/checkout@v3
- name: Install dependencies
run: |
sudo apt install gfortran gcc liblapack-dev libblas-dev wget python3 make m4 pkg-config
sudo apt install gfortran gcc liblapack-dev libblas-dev wget python3 make m4 pkg-config libhdf5-dev
- name: zlib
run: |
./configure -i zlib || echo OK
@ -50,6 +50,15 @@ jobs:
- name: bats
run: |
./configure -i bats || echo OK
- name: trexio-nohdf5
run: |
./configure -i trexio-nohdf5 || echo OK
- name: trexio
run: |
./configure -i trexio || echo OK
- name: qmckl
run: |
./configure -i qmckl || echo OK
- name: Final check
run: |
./configure -c config/gfortran_debug.cfg

View File

@ -1,3 +1,10 @@
**Important**: The Intel ifx compiler is not able to produce correct
executables for Quantum Package. Please use ifort as long as you can, and
consider switching to gfortran in the long term.
---
# Quantum Package 2.2
<!--- img src="https://raw.githubusercontent.com/QuantumPackage/qp2/master/data/qp2.png" width="250" --->

View File

@ -10,7 +10,8 @@
- Added many types of integrals
- Accelerated four-index transformation
- Added transcorrelated SCF
- Added transcorrelated CIPSI
- Added bi-orthonormal transcorrelated CIPSI
- Added Cholesky decomposition of AO integrals
- Added CCSD and CCSD(T)
- Added MO localization
- Changed coupling parameters for ROHF
@ -20,7 +21,7 @@
- Removed cryptokit dependency in OCaml
- Using now standard convention in RDM
- Added molecular properties
- [ ] Added GTOs with complex exponent
- Added GTOs with complex exponent
*** TODO: take from dev
- Updated version of f77-zmq

4
bin/python Executable file
View File

@ -0,0 +1,4 @@
#!/bin/bash
exec python3 $@

View File

@ -127,6 +127,7 @@ def main(arguments):
l_repository = list(d_tmp.keys())
if l_repository == []:
l_result = []
l_plugins = []
else:
m_instance = ModuleHandler(l_repository)
l_plugins = [module for module in m_instance.l_module]

View File

@ -97,6 +97,8 @@ if [[ $dets -eq 1 ]] ; then
rm --force -- ${ezfio}/determinants/psi_{det,coef}.gz
rm --force -- ${ezfio}/determinants/n_det_qp_edit
rm --force -- ${ezfio}/determinants/psi_{det,coef}_qp_edit.gz
rm --force -- ${ezfio}/tc_bi_ortho/psi_{l,r}_coef_bi_ortho.gz
fi
if [[ $mos -eq 1 ]] ; then

View File

@ -46,7 +46,7 @@ def main(arguments):
append_bats(dirname, filenames)
else:
for (dirname, _, filenames) in os.walk(os.getcwd(), followlinks=False):
if "IRPF90_temp" not in dirname:
if "IRPF90_temp" not in dirname and "external" not in dirname:
append_bats(dirname, filenames)
l_bats = [y for _, y in sorted(l_bats)]
@ -67,6 +67,7 @@ def main(arguments):
os.system(test+" python3 bats_to_sh.py "+bats_file+
"| bash")
else:
# print(" ".join(["bats", "--verbose-run", "--trace", bats_file]))
subprocess.check_call(["bats", "--verbose-run", "--trace", bats_file], env=os.environ)

View File

@ -1,6 +1,7 @@
#!/bin/bash
export QP_ROOT=$(dirname "$(readlink -f "$0")")/..
REALPATH=$( cd "$(dirname "$0")" ; pwd -P )
export QP_ROOT=${REALPATH}/..
bash --init-file <(cat << EOF
[[ -f /etc/bashrc ]] && source /etc/bashrc

23
bin/zcat Executable file
View File

@ -0,0 +1,23 @@
#!/bin/bash
# On Darwin: try gzcat if available, otherwise use Python
if [[ $(uname -s) = Darwin ]] ; then
which gzcat &> /dev/null
if [[ $? -eq 0 ]] ; then
exec gzcat $@
else
exec python3 << EOF
import sys
import gzip
with gzip.open("$1", "rt") as f:
print(f.read())
EOF
fi
else
SCRIPTPATH="$( cd -- "$(dirname "$0")" >/dev/null 2>&1 ; pwd -P )"
command=$(which -a zcat | grep -v "$SCRIPTPATH/" | head -1)
exec $command $@
fi

62
config/flang_avx.cfg Normal file
View File

@ -0,0 +1,62 @@
# Common flags
##############
#
# -ffree-line-length-none : Needed for IRPF90 which produces long lines
# -lblas -llapack : Link with libblas and liblapack libraries provided by the system
# -I . : Include the curent directory (Mandatory)
#
# --ninja : Allow the utilisation of ninja. (Mandatory)
# --align=32 : Align all provided arrays on a 32-byte boundary
#
#
[COMMON]
FC : flang -ffree-line-length-none -I . -mavx -g -fPIC
LAPACK_LIB : -llapack -lblas
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DSET_NESTED
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -Ofast : Disregard strict standards compliance. Enables all -O3 optimizations.
# It also enables optimizations that are not valid
# for all standard-compliant programs. It turns on
# -ffast-math and the Fortran-specific
# -fno-protect-parens and -fstack-arrays.
[OPT]
FCFLAGS : -Ofast -mavx
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -Ofast
# Debugging flags
#################
#
# -fcheck=all : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
#
[DEBUG]
FCFLAGS : -fcheck=all -g
# OpenMP flags
#################
#
[OPENMP]
FC : -fopenmp
IRPF90_FLAGS : --openmp

View File

@ -10,7 +10,7 @@
#
#
[COMMON]
FC : gfortran -g -ffree-line-length-none -I . -fPIC -march=native
FC : gfortran -g -ffree-line-length-none -I . -fPIC -march=native -std=legacy
LAPACK_LIB : -lblas -llapack
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --assert -DSET_NESTED

62
config/gfortran10.cfg Normal file
View File

@ -0,0 +1,62 @@
# Common flags
##############
#
# -ffree-line-length-none : Needed for IRPF90 which produces long lines
# -lblas -llapack : Link with libblas and liblapack libraries provided by the system
# -I . : Include the curent directory (Mandatory)
#
# --ninja : Allow the utilisation of ninja. (Mandatory)
# --align=32 : Align all provided arrays on a 32-byte boundary
#
#
[COMMON]
FC : gfortran-10 -g -ffree-line-length-none -I . -fPIC
LAPACK_LIB : -lblas -llapack
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --assert -DSET_NESTED
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : DEBUG ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -Ofast : Disregard strict standards compliance. Enables all -O3 optimizations.
# It also enables optimizations that are not valid
# for all standard-compliant programs. It turns on
# -ffast-math and the Fortran-specific
# -fno-protect-parens and -fstack-arrays.
[OPT]
FCFLAGS : -Ofast
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -Ofast
# Debugging flags
#################
#
# -fcheck=all : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
#
[DEBUG]
FCFLAGS : -g -msse4.2 -fcheck=all -Waliasing -Wampersand -Wconversion -Wsurprising -Wintrinsics-std -Wno-tabs -Wintrinsic-shadow -Wline-truncation -Wreal-q-constant -Wuninitialized -fbacktrace -ffpe-trap=zero,overflow,underflow -finit-real=nan
# OpenMP flags
#################
#
[OPENMP]
FC : -fopenmp
IRPF90_FLAGS : --openmp

View File

@ -13,8 +13,8 @@
#
#
[COMMON]
FC : gfortran -g -ffree-line-length-none -I . -fPIC -march=native
LAPACK_LIB : -larmpl_lp64
FC : gfortran -g -ffree-line-length-none -I . -fPIC -march=native -std=legacy
LAPACK_LIB : -larmpl_lp64_mp
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --assert -DSET_NESTED

View File

@ -10,7 +10,7 @@
#
#
[COMMON]
FC : gfortran -ffree-line-length-none -I . -mavx -g -fPIC
FC : gfortran -ffree-line-length-none -I . -mavx -g -fPIC -std=legacy
LAPACK_LIB : -llapack -lblas
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DSET_NESTED

View File

@ -10,7 +10,7 @@
#
#
[COMMON]
FC : gfortran -g -ffree-line-length-none -I . -fPIC
FC : gfortran -g -ffree-line-length-none -I . -fPIC -std=legacy
LAPACK_LIB : -lblas -llapack
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --assert -DSET_NESTED

62
config/gfortran_macos.cfg Normal file
View File

@ -0,0 +1,62 @@
# Common flags
##############
#
# -ffree-line-length-none : Needed for IRPF90 which produces long lines
# -lblas -llapack : Link with libblas and liblapack libraries provided by the system
# -I . : Include the curent directory (Mandatory)
#
# --ninja : Allow the utilisation of ninja. (Mandatory)
# --align=32 : Align all provided arrays on a 32-byte boundary
#
#
[COMMON]
FC : gfortran -ffree-line-length-none -I . -g -fPIC -std=legacy
LAPACK_LIB : -llapack -lblas
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DSET_NESTED -DMACOS
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -Ofast : Disregard strict standards compliance. Enables all -O3 optimizations.
# It also enables optimizations that are not valid
# for all standard-compliant programs. It turns on
# -ffast-math and the Fortran-specific
# -fno-protect-parens and -fstack-arrays.
[OPT]
FCFLAGS : -Ofast -march=native
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -Ofast
# Debugging flags
#################
#
# -fcheck=all : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
#
[DEBUG]
FCFLAGS : -fcheck=all -g
# OpenMP flags
#################
#
[OPENMP]
FC : -fopenmp
IRPF90_FLAGS : --openmp

View File

@ -10,7 +10,7 @@
#
#
[COMMON]
FC : mpif90 -ffree-line-length-none -I . -g -fPIC
FC : mpif90 -ffree-line-length-none -I . -g -fPIC -std=legacy
LAPACK_LIB : -lblas -llapack
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DMPI -DSET_NESTED

View File

@ -0,0 +1,62 @@
# Common flags
##############
#
# -ffree-line-length-none : Needed for IRPF90 which produces long lines
# -lblas -llapack : Link with libblas and liblapack libraries provided by the system
# -I . : Include the curent directory (Mandatory)
#
# --ninja : Allow the utilisation of ninja. (Mandatory)
# --align=32 : Align all provided arrays on a 32-byte boundary
#
#
[COMMON]
FC : mpif90 -ffree-line-length-none -I . -g -fPIC -std=legacy
LAPACK_LIB : -lblas -llapack
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 -DMPI -DSET_NESTED
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -Ofast : Disregard strict standards compliance. Enables all -O3 optimizations.
# It also enables optimizations that are not valid
# for all standard-compliant programs. It turns on
# -ffast-math and the Fortran-specific
# -fno-protect-parens and -fstack-arrays.
[OPT]
FCFLAGS : -Ofast -msse4.2
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -Ofast -msse4.2
# Debugging flags
#################
#
# -fcheck=all : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
#
[DEBUG]
FCFLAGS : -fcheck=all -g
# OpenMP flags
#################
#
[OPENMP]
FC : -fopenmp
IRPF90_FLAGS : --openmp

View File

@ -10,7 +10,7 @@
#
#
[COMMON]
FC : gfortran -g -ffree-line-length-none -I . -fPIC -march=native
FC : gfortran -g -ffree-line-length-none -I . -fPIC -march=native -std=legacy
LAPACK_LIB : -lopenblas
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --assert -DSET_NESTED

View File

@ -0,0 +1,63 @@
# Common flags
##############
#
# -mkl=[parallel|sequential] : Use the MKL library
# --ninja : Allow the utilisation of ninja. It is mandatory !
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --define=WITHOUT_TRAILZ --define=WITHOUT_SHIFTRL -DSET_NESTED
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -xHost : Compile a binary optimized for the current architecture
# -O2 : O3 not better than O2.
# -ip : Inter-procedural optimizations
# -ftz : Flushes denormal results to zero
#
[OPT]
FC : -traceback
FCFLAGS : -xAVX -O2 -ip -ftz -g
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
# Debugging flags
#################
#
# -traceback : Activate backtrace on runtime
# -fpe0 : All floating point exaceptions
# -C : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
# -xSSE2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
# OpenMP flags
#################
#
[OPENMP]
FC : -qopenmp
IRPF90_FLAGS : --openmp

View File

@ -7,7 +7,7 @@
#
[COMMON]
FC : ifort -fpic
LAPACK_LIB : -mkl=parallel -lirc -lsvml -limf -lipps
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --assert -DINTEL -DSET_NESTED

View File

@ -0,0 +1,63 @@
# Common flags
##############
#
# -mkl=[parallel|sequential] : Use the MKL library
# --ninja : Allow the utilisation of ninja. It is mandatory !
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --define=WITHOUT_TRAILZ --define=WITHOUT_SHIFTRL
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : OPT ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -xHost : Compile a binary optimized for the current architecture
# -O2 : O3 not better than O2.
# -ip : Inter-procedural optimizations
# -ftz : Flushes denormal results to zero
#
[OPT]
FC : -traceback
FCFLAGS : -xAVX -O2 -ip -ftz -g
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -xSSE4.2 -O2 -ip -ftz
# Debugging flags
#################
#
# -traceback : Activate backtrace on runtime
# -fpe0 : All floating point exaceptions
# -C : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
# -xSSE2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -xSSE2 -C -fpe0 -implicitnone
# OpenMP flags
#################
#
[OPENMP]
FC : -qopenmp
IRPF90_FLAGS : --openmp

View File

@ -0,0 +1,66 @@
# Common flags
##############
#
# -mkl=[parallel|sequential] : Use the MKL library
# --ninja : Allow the utilisation of ninja. It is mandatory !
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=32 --assert -DINTEL
# Global options
################
#
# 1 : Activate
# 0 : Deactivate
#
[OPTION]
MODE : DEBUG ; [ OPT | PROFILE | DEBUG ] : Chooses the section below
CACHE : 0 ; Enable cache_compile.py
OPENMP : 1 ; Append OpenMP flags
# Optimization flags
####################
#
# -xHost : Compile a binary optimized for the current architecture
# -O2 : O3 not better than O2.
# -ip : Inter-procedural optimizations
# -ftz : Flushes denormal results to zero
#
[OPT]
FC : -traceback
FCFLAGS : -msse4.2 -O2 -ip -ftz -g
# Profiling flags
#################
#
[PROFILE]
FC : -p -g
FCFLAGS : -msse4.2 -O2 -ip -ftz
# Debugging flags
#################
#
# -traceback : Activate backtrace on runtime
# -fpe0 : All floating point exaceptions
# -C : Checks uninitialized variables, array subscripts, etc...
# -g : Extra debugging information
# -msse4.2 : Valgrind needs a very simple x86 executable
#
[DEBUG]
FC : -g -traceback
FCFLAGS : -msse4.2 -check all -debug all -fpe-all=0 -implicitnone
# OpenMP flags
#################
#
[OPENMP]
FC : -qopenmp
IRPF90_FLAGS : --openmp

View File

@ -6,7 +6,7 @@
# --align=32 : Align all provided arrays on a 32-byte boundary
#
[COMMON]
FC : ifort -fpic
FC : ifort -fpic -diag-disable 5462
LAPACK_LIB : -mkl=parallel
IRPF90 : irpf90
IRPF90_FLAGS : --ninja --align=64 -DINTEL

74
configure vendored
View File

@ -9,6 +9,8 @@ echo "QP_ROOT="$QP_ROOT
unset CC
unset CCXX
TREXIO_VERSION=2.3.2
# Force GCC instead of ICC for dependencies
export CC=gcc
@ -17,7 +19,11 @@ git submodule init
git submodule update
# Update ARM or x86 dependencies
ARCHITECTURE=$(uname -m)
SYSTEM=$(uname -s)
if [[ $SYSTEM = "Linux" ]] ; then
SYSTEM=""
fi
ARCHITECTURE=$(uname -m)$SYSTEM
cd ${QP_ROOT}/external/qp2-dependencies
git checkout master
git pull
@ -189,7 +195,7 @@ if [[ "${PACKAGES}.x" != ".x" ]] ; then
fi
if [[ ${PACKAGES} = all ]] ; then
PACKAGES="zlib ninja zeromq f77zmq gmp ocaml docopt resultsFile bats"
PACKAGES="zlib ninja zeromq f77zmq gmp ocaml docopt resultsFile bats trexio"
fi
@ -203,6 +209,57 @@ for PACKAGE in ${PACKAGES} ; do
mv ninja "\${QP_ROOT}"/bin/
EOF
elif [[ ${PACKAGE} = trexio-nohdf5 ]] ; then
VERSION=$TREXIO_VERSION
execute << EOF
cd "\${QP_ROOT}"/external
wget https://github.com/TREX-CoE/trexio/releases/download/v${VERSION}/trexio-${VERSION}.tar.gz
rm -rf trexio-${VERSION}
tar -zxf trexio-${VERSION}.tar.gz && rm trexio-${VERSION}.tar.gz
cd trexio-${VERSION}
./configure --prefix=\${QP_ROOT} --without-hdf5 CFLAGS='-g'
make -j 8 && make -j 8 check && make -j 8 install
tar -zxvf "\${QP_ROOT}"/external/qp2-dependencies/${ARCHITECTURE}/ninja.tar.gz
mv ninja "\${QP_ROOT}"/bin/
EOF
elif [[ ${PACKAGE} = trexio ]] ; then
VERSION=$TREXIO_VERSION
execute << EOF
cd "\${QP_ROOT}"/external
wget https://github.com/TREX-CoE/trexio/releases/download/v${VERSION}/trexio-${VERSION}.tar.gz
rm -rf trexio-${VERSION}
tar -zxf trexio-${VERSION}.tar.gz && rm trexio-${VERSION}.tar.gz
cd trexio-${VERSION}
./configure --prefix=\${QP_ROOT} CFLAGS="-g"
make -j 8 && make -j 8 check && make -j 8 install
EOF
elif [[ ${PACKAGE} = qmckl ]] ; then
VERSION=0.5.4
execute << EOF
cd "\${QP_ROOT}"/external
wget https://github.com/TREX-CoE/qmckl/releases/download/v${VERSION}/qmckl-${VERSION}.tar.gz
rm -rf qmckl-${VERSION}
tar -zxf qmckl-${VERSION}.tar.gz && rm qmckl-${VERSION}.tar.gz
cd qmckl-${VERSION}
./configure --prefix=\${QP_ROOT} --enable-hpc --disable-doc CFLAGS='-g'
make && make -j 4 check && make install
EOF
elif [[ ${PACKAGE} = qmckl-intel ]] ; then
VERSION=0.5.4
execute << EOF
cd "\${QP_ROOT}"/external
wget https://github.com/TREX-CoE/qmckl/releases/download/v${VERSION}/qmckl-${VERSION}.tar.gz
rm -rf qmckl-${VERSION}
tar -zxf qmckl-${VERSION}.tar.gz && rm qmckl-${VERSION}.tar.gz
cd qmckl-${VERSION}
./configure --prefix=\${QP_ROOT} --enable-hpc --disable-doc --with-icc --with-ifort CFLAGS='-g'
make && make -j 4 check && make install
EOF
elif [[ ${PACKAGE} = gmp ]] ; then
@ -222,6 +279,7 @@ EOF
cd "\${QP_ROOT}"/external
tar --gunzip --extract --file qp2-dependencies/zeromq-4.2.5.tar.gz
cd zeromq-*
[[ "${SYSTEM}" = "Darwin" ]] && ./autogen.sh
./configure --prefix="\$QP_ROOT" --without-libsodium --enable-libunwind=no
make -j 8
make install
@ -338,6 +396,18 @@ if [[ ${ZEROMQ} = $(not_found) ]] ; then
fail
fi
TREXIO=$(find_lib -ltrexio)
if [[ ${TREXIO} = $(not_found) ]] ; then
error "TREXIO (trexio | trexio-nohdf5) is not installed. If you don't have HDF5, use trexio-nohdf5"
fail
fi
#QMCKL=$(find_lib -lqmckl)
#if [[ ${QMCKL} = $(not_found) ]] ; then
# error "QMCkl (qmckl | qmckl-intel) is not installed."
# fail
#fi
F77ZMQ=$(find_lib -lzmq -lf77zmq -lpthread)
if [[ ${F77ZMQ} = $(not_found) ]] ; then
error "Fortran binding of ZeroMQ (f77zmq) is not installed."

File diff suppressed because it is too large Load Diff

5
data/basis/none Normal file
View File

@ -0,0 +1,5 @@
$DATA
HYDROGEN
$END

920
data/pseudo/def2 Normal file
View File

@ -0,0 +1,920 @@
$ECP
RB-ECP GEN 28 3
1 ----- f-ul potential -----
-12.3169000 2 3.8431140
3 ----- s-f potential -----
89.5001980 2 5.0365510
0.4937610 2 1.9708490
12.3169000 2 3.8431140
3 ----- p-f potential -----
58.5689740 2 4.2583410
0.4317910 2 1.4707090
12.3169000 2 3.8431140
3 ----- d-f potential -----
26.2248980 2 3.0231270
0.9628390 2 0.6503830
12.3169000 2 3.8431140
SR-ECP GEN 28 3
1 ----- f-ul potential -----
-15.8059920 2 4.6339750
3 ----- s-f potential -----
135.4794300 2 7.4000740
17.5344630 2 3.6063790
15.8059920 2 4.6339750
3 ----- p-f potential -----
88.3597090 2 6.4848680
15.3943720 2 3.2880530
15.8059920 2 4.6339750
3 ----- d-f potential -----
29.8889870 2 4.6228410
6.6594140 2 2.2469040
15.8059920 2 4.6339750
Y-ECP GEN 28 3
2 ----- f-ul potential -----
-19.12219811 2 6.5842120
-2.43637543 2 3.2921060
4 ----- s-f potential -----
135.15384412 2 7.4880494
15.55244130 2 3.7440247
19.12219811 2 6.5842120
2.43637543 2 3.2921060
4 ----- p-f potential -----
87.78499167 2 6.4453772
11.56406599 2 3.2226886
19.12219811 2 6.5842120
2.43637543 2 3.2921060
4 ----- d-f potential -----
29.70100072 2 4.6584472
5.53996847 2 2.3292236
19.12219811 2 6.5842120
2.43637543 2 3.2921060
ZR-ECP GEN 28 3
2 ----- f-ul potential -----
-21.09377605 2 7.5400000
-3.08069427 2 3.7700000
4 ----- s-f potential -----
150.26759106 2 8.2000000
18.97621650 2 4.0897278
21.09377605 2 7.5400000
3.08069427 2 3.7700000
4 ----- p-f potential -----
99.62212372 2 7.1100000
14.16873329 2 3.5967980
21.09377605 2 7.5400000
3.08069427 2 3.7700000
4 ----- d-f potential -----
35.04512355 2 5.3500000
6.11125948 2 2.4918215
21.09377605 2 7.5400000
3.08069427 2 3.7700000
NB-ECP GEN 28 3
2 ----- f-ul potential -----
-22.92954996 2 8.4900000
-3.66630986 2 4.2500000
4 ----- s-f potential -----
165.17914349 2 8.9000000
21.99297437 2 4.4300000
22.92954996 2 8.4900000
3.66630986 2 4.2500000
4 ----- p-f potential -----
111.79441445 2 7.7700000
16.63348326 2 3.9600000
22.92954996 2 8.4900000
3.66630986 2 4.2500000
4 ----- d-f potential -----
38.11224880 2 6.0500000
8.03916727 2 2.8400000
22.92954996 2 8.4900000
3.66630986 2 4.2500000
MO-ECP GEN 28 3
2 ----- f-ul potential -----
-24.80517707 2 9.4500000
-4.15378155 2 4.7200000
4 ----- s-f potential -----
180.10310850 2 9.7145938
24.99722791 2 4.6805004
24.80517707 2 9.4500000
4.15378155 2 4.7200000
4 ----- p-f potential -----
123.77275231 2 8.1421366
19.53022800 2 4.6259863
24.80517707 2 9.4500000
4.15378155 2 4.7200000
4 ----- d-f potential -----
48.37502229 2 6.6184148
8.89205274 2 3.2487516
24.80517707 2 9.4500000
4.15378155 2 4.7200000
TC-ECP GEN 28 3
2 ----- f-ul potential -----
-26.56244747 2 10.4000000
-4.58568054 2 5.2000000
4 ----- s-f potential -----
195.15916591 2 10.4223462
28.09260333 2 5.0365160
26.56244747 2 10.4000000
4.58568054 2 5.2000000
4 ----- p-f potential -----
135.28456622 2 8.9504494
21.80650430 2 4.8544394
26.56244747 2 10.4000000
4.58568054 2 5.2000000
4 ----- d-f potential -----
54.32972942 2 6.9456968
11.15506795 2 3.9705849
26.56244747 2 10.4000000
4.58568054 2 5.2000000
RU-ECP GEN 28 3
2 ----- f-ul potential -----
-28.34061627 2 11.3600000
-4.94462923 2 5.6800000
4 ----- s-f potential -----
209.82297122 2 11.1052693
30.65472642 2 5.4147454
28.34061627 2 11.3600000
4.94462923 2 5.6800000
4 ----- p-f potential -----
146.33618228 2 9.7712707
24.12787723 2 5.0739908
28.34061627 2 11.3600000
4.94462923 2 5.6800000
4 ----- d-f potential -----
67.51589667 2 7.6714231
9.87010415 2 4.1365647
28.34061627 2 11.3600000
4.94462923 2 5.6800000
RH-ECP GEN 28 3
2 ----- f-ul potential -----
-30.09345572 2 12.3100000
-5.21848192 2 6.1600000
4 ----- s-f potential -----
225.34775353 2 11.7200000
32.82318898 2 5.8200000
30.09345572 2 12.3100000
5.21848192 2 6.1600000
4 ----- p-f potential -----
158.70941159 2 10.4200000
26.44410049 2 5.4500000
30.09345572 2 12.3100000
5.21848192 2 6.1600000
4 ----- d-f potential -----
62.75862572 2 8.8200000
10.97871947 2 3.8700000
30.09345572 2 12.3100000
5.21848192 2 6.1600000
PD-ECP GEN 28 3
2 ----- f-ul potential -----
-31.92955431 2 13.2700000
-5.39821694 2 6.6300000
4 ----- s-f potential -----
240.22904033 2 12.4300000
35.17194347 2 6.1707594
31.92955431 2 13.2700000
5.39821694 2 6.6300000
4 ----- p-f potential -----
170.41727605 2 11.0800000
28.47213287 2 5.8295541
31.92955431 2 13.2700000
5.39821694 2 6.6300000
4 ----- d-f potential -----
69.01384488 2 9.5100000
11.75086158 2 4.1397811
31.92955431 2 13.2700000
5.39821694 2 6.6300000
AG-ECP GEN 28 3
2 ----- f-ul potential -----
-33.68992012 2 14.2200000
-5.53112021 2 7.1100000
4 ----- s-f potential -----
255.13936452 2 13.1300000
36.86612154 2 6.5100000
33.68992012 2 14.2200000
5.53112021 2 7.1100000
4 ----- p-f potential -----
182.18186871 2 11.7400000
30.35775148 2 6.2000000
33.68992012 2 14.2200000
5.53112021 2 7.1100000
4 ----- d-f potential -----
73.71926087 2 10.2100000
12.50211712 2 4.3800000
33.68992012 2 14.2200000
5.53112021 2 7.1100000
CD-ECP GEN 28 3
2 ----- f-ul potential -----
-35.47662555 2 15.1847957
-5.61767685 2 7.5923978
4 ----- s-f potential -----
270.00948324 2 13.8358689
38.76730798 2 6.8572704
35.47662555 2 15.1847957
5.61767685 2 7.5923978
4 ----- p-f potential -----
193.82962939 2 12.4049710
31.89652523 2 6.5677995
35.47662555 2 15.1847957
5.61767685 2 7.5923978
4 ----- d-f potential -----
79.19364700 2 10.8969253
13.23082674 2 4.6411649
35.47662555 2 15.1847957
5.61767685 2 7.5923978
IN-ECP GEN 28 3
2 ----- f-ul potential -----
-13.72807800 2 12.53905600
-18.20686600 2 12.55256100
4 ----- s-f potential -----
281.12235000 2 15.39282200
61.90147000 2 8.05586400
13.72807800 2 12.53905600
18.20686600 2 12.55256100
6 ----- p-f potential -----
67.46215400 2 13.92867200
134.94925000 2 13.34723400
14.74614000 2 7.61413200
29.63926200 2 7.31836500
13.72807800 2 12.53905600
18.20686600 2 12.55256100
6 ----- d-f potential -----
35.49325400 2 14.03471500
53.17877300 2 14.51161600
9.17728100 2 5.55055000
12.39241000 2 5.05941500
13.72807800 2 12.53905600
18.20686600 2 12.55256100
SN-ECP GEN 28 3
2 ----- f-ul potential -----
-12.57633300 2 12.28234800
-16.59594400 2 12.27215000
4 ----- s-f potential -----
279.98868200 2 17.42041400
62.37781000 2 7.63115500
12.57633300 2 12.28234800
16.59594400 2 12.27215000
6 ----- p-f potential -----
66.16252300 2 16.13102400
132.17439600 2 15.62807700
16.33941700 2 7.32560800
32.48895900 2 6.94251900
12.57633300 2 12.28234800
16.59594400 2 12.27215000
6 ----- d-f potential -----
36.38744100 2 15.51497600
54.50784100 2 15.18816000
8.69682300 2 5.45602400
12.84020800 2 5.36310500
12.57633300 2 12.28234800
16.59594400 2 12.27215000
SB-ECP GEN 28 3
2 ----- f-ul potential -----
-15.36680100 2 14.44497800
-20.29613800 2 14.44929500
4 ----- s-f potential -----
281.07158100 2 16.33086500
61.71660400 2 8.55654200
15.36680100 2 14.44497800
20.29613800 2 14.44929500
6 ----- p-f potential -----
67.45738000 2 14.47033700
134.93350300 2 13.81619400
14.71634400 2 8.42492400
29.51851200 2 8.09272800
15.36680100 2 14.44497800
20.29613800 2 14.44929500
6 ----- d-f potential -----
35.44781500 2 14.88633100
53.14346600 2 15.14631900
9.17922300 2 5.90826700
13.24025300 2 5.59432200
15.36680100 2 14.44497800
20.29613800 2 14.44929500
TE-ECP GEN 28 3
2 ----- f-ul potential -----
-15.74545000 2 15.20616800
-20.74244800 2 15.20170200
4 ----- s-f potential -----
281.04584300 2 16.81447300
61.62065600 2 8.79352600
15.74545000 2 15.20616800
20.74244800 2 15.20170200
6 ----- p-f potential -----
67.44946400 2 14.87780100
134.90430400 2 14.26973100
14.68954700 2 8.72443500
29.41506300 2 8.29151500
15.74545000 2 15.20616800
20.74244800 2 15.20170200
6 ----- d-f potential -----
35.43205700 2 15.20500800
53.13568700 2 15.22584800
9.06980200 2 6.07176900
13.12230400 2 5.80476000
15.74545000 2 15.20616800
20.74244800 2 15.20170200
I-ECP GEN 28 3
4 ----- f-ul potential -----
-21.84204000 2 19.45860900
-28.46819100 2 19.34926000
-0.24371300 2 4.82376700
-0.32080400 2 4.88431500
7 ----- s-f potential -----
49.99429300 2 40.01583500
281.02531700 2 17.42974700
61.57332600 2 9.00548400
21.84204000 2 19.45860900
28.46819100 2 19.34926000
0.24371300 2 4.82376700
0.32080400 2 4.88431500
8 ----- p-f potential -----
67.44284100 2 15.35546600
134.88113700 2 14.97183300
14.67505100 2 8.96016400
29.37566600 2 8.25909600
21.84204000 2 19.45860900
28.46819100 2 19.34926000
0.24371300 2 4.82376700
0.32080400 2 4.88431500
10 ----- d-f potential -----
35.43952900 2 15.06890800
53.17605700 2 14.55532200
9.06719500 2 6.71864700
13.20693700 2 6.45639300
0.08933500 2 1.19177900
0.05238000 2 1.29115700
21.84204000 2 19.45860900
28.46819100 2 19.34926000
0.24371300 2 4.82376700
0.32080400 2 4.88431500
XE-ECP GEN 28 3
4 ----- f-ul potential -----
-23.08929500 2 20.88155700
-30.07447500 2 20.78344300
-0.28822700 2 5.25338900
-0.38692400 2 5.36118800
7 ----- s-f potential -----
49.99796200 2 40.00518400
281.01330300 2 17.81221400
61.53825500 2 9.30415000
23.08929500 2 20.88155700
30.07447500 2 20.78344300
0.28822700 2 5.25338900
0.38692400 2 5.36118800
8 ----- p-f potential -----
67.43914200 2 15.70177200
134.87471100 2 15.25860800
14.66330000 2 9.29218400
29.35473000 2 8.55900300
23.08929500 2 20.88155700
30.07447500 2 20.78344300
0.28822700 2 5.25338900
0.38692400 2 5.36118800
10 ----- d-f potential -----
35.43690800 2 15.18560000
53.19577200 2 14.28450000
9.04623200 2 7.12188900
13.22368100 2 6.99196300
0.08485300 2 0.62394600
0.04415500 2 0.64728400
23.08929500 2 20.88155700
30.07447500 2 20.78344300
0.28822700 2 5.25338900
0.38692400 2 5.36118800
CS-ECP GEN 46 3
1 ----- f-ul potential -----
-28.8843090 2 3.1232690
3 ----- s-f potential -----
84.5477300 2 4.0797500
16.6541730 2 2.4174060
28.8843090 2 3.1232690
3 ----- p-f potential -----
157.0490590 2 5.5140800
26.4233070 2 2.1603160
28.8843090 2 3.1232690
3 ----- d-f potential -----
13.1727530 2 1.8074100
3.3428330 2 0.8581820
28.8843090 2 3.1232690
BA-ECP GEN 46 3
1 ----- f-ul potential -----
-33.4731740 2 3.5894650
3 ----- s-f potential -----
427.8458160 2 9.5269860
204.4175300 2 4.4875100
33.4731740 2 3.5894650
3 ----- p-f potential -----
293.6058640 2 8.3159300
294.1933160 2 4.2922170
33.4731740 2 3.5894650
3 ----- d-f potential -----
112.5504020 2 5.9161080
181.7826210 2 2.8748420
33.4731740 2 3.5894650
LA-ECP GEN 46 3
1 ----- f-ul potential -----
-36.0100160 2 4.0286000
3 ----- s-f potential -----
91.9321770 2 3.3099000
-3.7887640 2 1.6550000
36.0100160 2 4.0286000
3 ----- p-f potential -----
63.7594860 2 2.8368000
-0.6479580 2 1.4184000
36.0100160 2 4.0286000
3 ----- d-f potential -----
36.1161730 2 2.0213000
0.2191140 2 1.0107000
36.0100160 2 4.0286000
CE-ECP GEN 28 5
1 ----- h-ul potential -----
0.00000000 2 1.00000000
1 ----- s-h potential -----
580.08345700 2 20.13782900
1 ----- p-h potential -----
310.30283300 2 15.99848200
1 ----- d-h potential -----
167.81394400 2 14.97418700
1 ----- f-h potential -----
-49.39022900 2 23.40245500
1 ----- g-h potential -----
-21.33187900 2 16.57055300
PR-ECP GEN 28 5
1 ----- h-ul potential -----
0.00000000 2 1.00000000
1 ----- s-h potential -----
577.57312200 2 20.76627800
1 ----- p-h potential -----
295.78584600 2 16.07844800
1 ----- d-h potential -----
150.86705500 2 14.70508900
1 ----- f-h potential -----
-48.73676600 2 23.37896900
1 ----- g-h potential -----
-22.32948800 2 17.44713800
ND-ECP GEN 28 5
1 ----- h-ul potential -----
0.00000000 2 1.00000000
1 ----- s-h potential -----
574.37098000 2 21.35226700
1 ----- p-h potential -----
280.94644000 2 16.11926500
1 ----- d-h potential -----
138.67062700 2 14.49410300
1 ----- f-h potential -----
-47.52266800 2 23.18386000
1 ----- g-h potential -----
-23.34458700 2 18.34417400
PM-ECP GEN 28 5
1 ----- h-ul potential -----
0.00000000 2 1.00000000
1 ----- s-h potential -----
575.39574900 2 21.94286500
1 ----- p-h potential -----
281.70451400 2 16.55516100
1 ----- d-h potential -----
123.52473700 2 13.96030800
1 ----- f-h potential -----
-50.74151100 2 24.03354600
1 ----- g-h potential -----
-24.37251000 2 19.26024500
SM-ECP GEN 28 5
1 ----- h-ul potential -----
0.00000000 2 1.00000000
1 ----- s-h potential -----
572.98533200 2 22.34447100
1 ----- p-h potential -----
272.35914500 2 16.69459000
1 ----- d-h potential -----
115.29390000 2 13.72770500
1 ----- f-h potential -----
-51.10839200 2 24.05909200
1 ----- g-h potential -----
-25.42188500 2 20.19724900
EU-ECP GEN 28 5
1 ----- h-ul potential -----
0.00000000 2 1.00000000
1 ----- s-h potential -----
607.65933100 2 23.47138400
1 ----- p-h potential -----
264.38547600 2 16.77247900
1 ----- d-h potential -----
115.38137500 2 13.98134300
1 ----- f-h potential -----
-49.40079400 2 23.96288800
1 ----- g-h potential -----
-26.74827300 2 21.23245800
GD-ECP GEN 28 5
1 ----- h-ul potential -----
0.00000000 2 1.00000000
1 ----- s-h potential -----
637.20086900 2 24.60215100
1 ----- p-h potential -----
261.68960100 2 16.88925000
1 ----- d-h potential -----
106.85653300 2 13.64335800
1 ----- f-h potential -----
-50.68359000 2 24.12691700
1 ----- g-h potential -----
-27.57963000 2 22.13188700
TB-ECP GEN 28 5
1 ----- h-ul potential -----
0.00000000 2 1.00000000
1 ----- s-h potential -----
668.59715500 2 24.95295600
1 ----- p-h potential -----
266.98047500 2 17.61089900
1 ----- d-h potential -----
97.50659600 2 12.97600900
1 ----- f-h potential -----
-52.17575700 2 24.24886900
1 ----- g-h potential -----
-28.69426800 2 23.13067200
DY-ECP GEN 28 5
1 ----- h-ul potential -----
0.00000000 2 1.00000000
1 ----- s-h potential -----
705.67122100 2 26.42958600
1 ----- p-h potential -----
254.86698900 2 17.31703400
1 ----- d-h potential -----
95.04518700 2 12.91359900
1 ----- f-h potential -----
-54.57409300 2 24.90787800
1 ----- g-h potential -----
-29.82827700 2 24.14875300
HO-ECP GEN 28 5
1 ----- h-ul potential -----
0.00000000 2 1.00000000
1 ----- s-h potential -----
755.70313600 2 28.39725700
1 ----- p-h potential -----
253.55199800 2 17.43863300
1 ----- d-h potential -----
89.63567700 2 12.43421200
1 ----- f-h potential -----
-55.48203600 2 25.38701000
1 ----- g-h potential -----
-30.99112500 2 25.18850100
ER-ECP GEN 28 5
1 ----- h-ul potential -----
0.00000000 2 1.00000000
1 ----- s-h potential -----
800.95287600 2 29.79859200
1 ----- p-h potential -----
262.01986900 2 18.11423700
1 ----- d-h potential -----
80.17055200 2 11.36958700
1 ----- f-h potential -----
-42.33628500 2 21.82123300
1 ----- g-h potential -----
-32.18527800 2 26.25073500
TM-ECP GEN 28 5
1 ----- h-ul potential -----
0.00000000 2 1.00000000
1 ----- s-h potential -----
845.51074300 2 31.14412200
1 ----- p-h potential -----
258.58523900 2 18.09235300
1 ----- d-h potential -----
80.72905900 2 11.46915900
1 ----- f-h potential -----
-48.70126600 2 23.60554400
1 ----- g-h potential -----
-33.39549600 2 27.32978100
YB-ECP GEN 28 5
1 ----- h-ul potential -----
0.00000000 2 1.00000000
1 ----- s-h potential -----
891.01377700 2 32.42448400
1 ----- p-h potential -----
264.03695300 2 18.65623200
1 ----- d-h potential -----
73.92391900 2 10.49022200
1 ----- f-h potential -----
-39.59217300 2 20.77418300
1 ----- g-h potential -----
-34.63863800 2 28.43102800
LU-ECP GEN 28 5
1 ----- h-ul potential -----
0.00000000 2 1.00000000
1 ----- s-h potential -----
989.99558400 2 35.16209700
1 ----- p-h potential -----
278.86565200 2 19.46440200
1 ----- d-h potential -----
71.00917800 2 10.00686500
1 ----- f-h potential -----
-47.40589000 2 23.51793200
1 ----- g-h potential -----
-35.55714600 2 29.41223800
HF-ECP GEN 60 3
1 ----- f-ul potential -----
10.04672251 2 1.78576984
3 ----- s-f potential -----
1499.28471073 2 14.76995900
40.28210136 2 7.38497940
-10.04672251 2 1.78576984
3 ----- p-f potential -----
397.73300533 2 9.84948950
19.31640586 2 4.92474450
-10.04672251 2 1.78576984
3 ----- d-f potential -----
101.32980526 2 6.09675640
5.87343821 2 3.04837820
-10.04672251 2 1.78576984
TA-ECP GEN 60 3
1 ----- f-ul potential -----
12.01796094 2 2.01788111
3 ----- s-f potential -----
1345.88064703 2 14.54640770
36.76680620 2 7.27320380
-12.01796094 2 2.01788111
3 ----- p-f potential -----
378.42530145 2 9.93556529
22.29309086 2 4.96778243
-12.01796094 2 2.01788111
3 ----- d-f potential -----
104.88395571 2 6.34737691
8.75584805 2 3.17368846
-12.01796094 2 2.01788111
W-ECP GEN 60 3
1 ----- f-ul potential -----
14.15257947 2 2.25888846
3 ----- s-f potential -----
1192.39588226 2 14.32285640
32.52293315 2 7.16142810
-14.15257947 2 2.25888846
3 ----- p-f potential -----
359.03196711 2 10.02164110
24.03038019 2 5.01082040
-14.15257947 2 2.25888846
3 ----- d-f potential -----
108.30134897 2 6.59799743
10.98252827 2 3.29899871
-14.15257947 2 2.25888846
RE-ECP GEN 60 3
1 ----- f-ul potential -----
16.44985227 2 2.50865059
3 ----- s-f potential -----
1038.95157226 2 14.09930510
29.56173830 2 7.04965250
-16.44985227 2 2.50865059
3 ----- p-f potential -----
339.54350965 2 10.10771690
24.91369646 2 5.05385830
-16.44985227 2 2.50865059
3 ----- d-f potential -----
111.69965275 2 6.84861794
12.62432927 2 3.42430897
-16.44985227 2 2.50865059
OS-ECP GEN 60 3
1 ----- f-ul potential -----
18.90945701 2 2.76707510
3 ----- s-f potential -----
885.40571914 2 13.87575390
25.96704014 2 6.93787690
-18.90945701 2 2.76707510
3 ----- p-f potential -----
320.08390185 2 10.19379260
26.14876493 2 5.09689620
-18.90945701 2 2.76707510
3 ----- d-f potential -----
115.04484313 2 7.09923846
13.62257457 2 3.54961923
-18.90945701 2 2.76707510
IR-ECP GEN 60 3
1 ----- f-ul potential -----
21.53103107 2 3.03407192
3 ----- s-f potential -----
732.26919978 2 13.65220260
26.48472087 2 6.82610130
-21.53103107 2 3.03407192
3 ----- p-f potential -----
299.48947357 2 10.27986840
26.46623354 2 5.13993410
-21.53103107 2 3.03407192
3 ----- d-f potential -----
124.45759451 2 7.34985897
14.03599518 2 3.67492949
-21.53103107 2 3.03407192
PT-ECP GEN 60 3
1 ----- f-ul potential -----
24.31437573 2 3.30956857
3 ----- s-f potential -----
579.22386092 2 13.42865130
29.66949062 2 6.71432560
-24.31437573 2 3.30956857
3 ----- p-f potential -----
280.86077422 2 10.36594420
26.74538204 2 5.18297210
-24.31437573 2 3.30956857
3 ----- d-f potential -----
120.39644429 2 7.60047949
15.81092058 2 3.80023974
-24.31437573 2 3.30956857
AU-ECP GEN 60 3
2 ----- f-ul potential -----
30.49008890 2 4.78982000
5.17107381 2 2.39491000
4 ----- s-f potential -----
426.84667920 2 13.20510000
37.00708285 2 6.60255000
-30.49008890 2 4.78982000
-5.17107381 2 2.39491000
4 ----- p-f potential -----
261.19958038 2 10.45202000
26.96249604 2 5.22601000
-30.49008890 2 4.78982000
-5.17107381 2 2.39491000
4 ----- d-f potential -----
124.79066561 2 7.85110000
16.30072573 2 3.92555000
-30.49008890 2 4.78982000
-5.17107381 2 2.39491000
HG-ECP GEN 60 3
1 ----- f-ul potential -----
30.36499643 2 3.88579112
3 ----- s-f potential -----
275.73721174 2 12.98154870
49.08921249 2 6.49077440
-30.36499643 2 3.88579112
3 ----- p-f potential -----
241.54007398 2 10.53809580
27.39659081 2 5.26904790
-30.36499643 2 3.88579112
3 ----- d-f potential -----
127.86700761 2 8.10172051
16.60831151 2 4.05086026
-30.36499643 2 3.88579112
TL-ECP GEN 60 3
4 ----- f-ul potential -----
15.82548800 2 5.62639900
21.10402100 2 5.54895200
2.91512700 2 2.87494600
3.89690300 2 2.82145100
6 ----- s-f potential -----
281.28466300 2 12.16780500
62.43425100 2 8.29490900
-15.82548800 2 5.62639900
-21.10402100 2 5.54895200
-2.91512700 2 2.87494600
-3.89690300 2 2.82145100
8 ----- p-f potential -----
4.63340800 2 7.15149200
9.34175600 2 5.17286500
72.29925300 2 9.89107200
144.55803700 2 9.00339100
-15.82548800 2 5.62639900
-21.10402100 2 5.54895200
-2.91512700 2 2.87494600
-3.89690300 2 2.82145100
8 ----- d-f potential -----
35.94303900 2 7.13021800
53.90959300 2 6.92690600
10.38193900 2 5.41757000
15.58382200 2 5.13868100
-15.82548800 2 5.62639900
-21.10402100 2 5.54895200
-2.91512700 2 2.87494600
-3.89690300 2 2.82145100
PB-ECP GEN 60 3
2 ----- f-ul potential -----
12.20989200 2 3.88751200
16.19029100 2 3.81196300
4 ----- s-f potential -----
281.28549900 2 12.29630300
62.52021700 2 8.63263400
-12.20989200 2 3.88751200
-16.19029100 2 3.81196300
6 ----- p-f potential -----
72.27689700 2 10.24179000
144.59108300 2 8.92417600
4.75869300 2 6.58134200
9.94062100 2 6.25540300
-12.20989200 2 3.88751200
-16.19029100 2 3.81196300
6 ----- d-f potential -----
35.84850700 2 7.75433600
53.72434200 2 7.72028100
10.11525600 2 4.97026400
14.83373100 2 4.56378900
-12.20989200 2 3.88751200
-16.19029100 2 3.81196300
BI-ECP GEN 60 3
2 ----- f-ul potential -----
13.71338300 2 4.21454600
18.19430800 2 4.13340000
4 ----- s-f potential -----
283.26422700 2 13.04309000
62.47195900 2 8.22168200
-13.71338300 2 4.21454600
-18.19430800 2 4.13340000
6 ----- p-f potential -----
72.00149900 2 10.46777700
144.00227700 2 9.11890100
5.00794500 2 6.75479100
9.99155000 2 6.25259200
-13.71338300 2 4.21454600
-18.19430800 2 4.13340000
6 ----- d-f potential -----
36.39625900 2 8.08147400
54.59766400 2 7.89059500
9.98429400 2 4.95555600
14.98148500 2 4.70455900
-13.71338300 2 4.21454600
-18.19430800 2 4.13340000
PO-ECP GEN 60 3
4 ----- f-ul potential -----
17.42829500 2 5.01327000
23.38035300 2 4.98464000
0.16339200 2 1.32676000
0.32456600 2 1.52875800
6 ----- s-f potential -----
283.24470600 2 13.27722700
62.39646100 2 8.39951800
-17.42829500 2 5.01327000
-23.38035300 2 4.98464000
-0.16339200 2 1.32676000
-0.32456600 2 1.52875800
8 ----- p-f potential -----
71.99171600 2 10.66568200
143.97187100 2 9.28375300
4.94961500 2 6.87274900
9.74049900 2 6.32615000
-17.42829500 2 5.01327000
-23.38035300 2 4.98464000
-0.16339200 2 1.32676000
-0.32456600 2 1.52875800
8 ----- d-f potential -----
36.37838300 2 8.21486600
54.56271500 2 8.00869600
9.88949900 2 5.05522700
14.69387700 2 4.78255300
-17.42829500 2 5.01327000
-23.38035300 2 4.98464000
-0.16339200 2 1.32676000
-0.32456600 2 1.52875800
AT-ECP GEN 60 3
4 ----- f-ul potential -----
19.87019800 2 5.81216300
26.41645200 2 5.75371500
0.99497000 2 2.51347200
1.49070100 2 2.53626100
7 ----- s-f potential -----
49.95715800 2 30.20083200
283.21037100 2 13.61230600
62.28105200 2 8.52934000
-19.87019800 2 5.81216300
-26.41645200 2 5.75371500
-0.99497000 2 2.51347200
-1.49070100 2 2.53626100
8 ----- p-f potential -----
71.98237100 2 10.85406500
143.90353200 2 9.46822900
4.87175900 2 7.03111400
8.98305900 2 6.14385800
-19.87019800 2 5.81216300
-26.41645200 2 5.75371500
-0.99497000 2 2.51347200
-1.49070100 2 2.53626100
8 ----- d-f potential -----
36.36323700 2 8.31351500
54.54897000 2 7.99896500
9.77628500 2 5.17996600
14.26475500 2 4.94222600
-19.87019800 2 5.81216300
-26.41645200 2 5.75371500
-0.99497000 2 2.51347200
-1.49070100 2 2.53626100
RN-ECP GEN 60 3
4 ----- f-ul potential -----
21.79729000 2 6.34857100
28.94680500 2 6.29594900
1.44736500 2 2.88211800
2.17796400 2 2.90804800
7 ----- s-f potential -----
49.96555100 2 30.15124200
283.07000000 2 14.52124100
62.00287000 2 8.05203800
-21.79729000 2 6.34857100
-28.94680500 2 6.29594900
-1.44736500 2 2.88211800
-2.17796400 2 2.90804800
8 ----- p-f potential -----
71.96911900 2 11.00994200
143.86055900 2 9.61762500
4.71476100 2 7.33600800
9.01306500 2 6.40625300
-21.79729000 2 6.34857100
-28.94680500 2 6.29594900
-1.44736500 2 2.88211800
-2.17796400 2 2.90804800
8 ----- d-f potential -----
36.36836500 2 8.36922000
54.55176100 2 8.11697500
9.63448700 2 5.35365600
14.38790200 2 5.09721200
-21.79729000 2 6.34857100
-28.94680500 2 6.29594900
-1.44736500 2 2.88211800
-2.17796400 2 2.90804800
$END

View File

@ -32,7 +32,7 @@ export PYTHONPATH=$(qp_prepend_export "PYTHONPATH" "${QP_EZFIO}/Python":"${QP_PY
export PATH=$(qp_prepend_export "PATH" "${QP_PYTHON}":"${QP_ROOT}"/bin:"${QP_ROOT}"/ocaml)
export LD_LIBRARY_PATH=$(qp_prepend_export "LD_LIBRARY_PATH" "${QP_ROOT}"/lib)
export LD_LIBRARY_PATH=$(qp_prepend_export "LD_LIBRARY_PATH" "${QP_ROOT}"/lib:"${QP_ROOT}"/lib64)
export LIBRARY_PATH=$(qp_prepend_export "LIBRARY_PATH" "${QP_ROOT}"/lib:"${QP_ROOT}"/lib64)

View File

@ -110,6 +110,11 @@ function qp()
unset COMMAND
;;
"test")
shift
qp_test $@
;;
*)
which "qp_$1" &> /dev/null
if [[ $? -eq 0 ]] ; then
@ -183,7 +188,18 @@ _qp_Complete()
;;
esac;;
set_file)
COMPREPLY=( $(compgen -W "$(for i in * ; do [[ -f ${i}/ezfio/.version ]] && echo $i ; done)" -- ${cur} ) )
# Array to store directory names
dirs=""
# Find directories containing "ezfio/.version" file recursively
for i in $(find . -name ezfio | sed 's/ezfio$/.version/')
do
dir_name=${i%/.version} # Remove the ".version" suffix
dir_name=${dir_name#./} # Remove the leading "./"
dirs+="./$dir_name "
done
COMPREPLY=( $(compgen -W "$dirs" -- ${cur} ) )
return 0
;;
plugins)
@ -215,10 +231,15 @@ _qp_Complete()
return 0
;;
esac;;
test)
COMPREPLY=( $(compgen -W "-v -a " -- $cur ) )
return 0
;;
*)
COMPREPLY=( $(compgen -W 'plugins set_file \
unset_file man \
create_ezfio \
test \
convert_output_to_ezfio \
-h update' -- $cur ) )

2
external/ezfio vendored

@ -1 +1 @@
Subproject commit d5805497fa0ef30e70e055cde1ecec2963303e93
Subproject commit dba01c4fe0ff7b84c5ecfb1c7c77ec68781311b3

2
external/irpf90 vendored

@ -1 +1 @@
Subproject commit 0007f72f677fe7d61c5e1ed461882cb239517102
Subproject commit 4ab1b175fc7ed0d96c1912f13dc53579b24157a6

View File

@ -44,8 +44,12 @@ end = struct
let get_default = Qpackage.get_ezfio_default "ao_basis";;
let read_ao_basis () =
let result =
Ezfio.get_ao_basis_ao_basis ()
|> AO_basis_name.of_string
in
if result <> "None" then
AO_basis_name.of_string result
else failwith "No basis"
;;
let read_ao_num () =
@ -247,8 +251,7 @@ end = struct
let read () =
if (Ezfio.has_ao_basis_ao_basis ()) then
begin
try
let result =
{ ao_basis = read_ao_basis ();
ao_num = read_ao_num () ;
@ -267,9 +270,11 @@ end = struct
|> MD5.to_string
|> Ezfio.set_ao_basis_ao_md5 ;
Some result
end
else
None
with
| _ -> ( "None"
|> Digest.string
|> Digest.to_hex
|> Ezfio.set_ao_basis_ao_md5 ; None)
;;

View File

@ -56,7 +56,10 @@ end = struct
let read_ao_md5 () =
let ao_md5 =
match (Input_ao_basis.Ao_basis.read ()) with
| None -> failwith "Unable to read AO basis"
| None -> ("None"
|> Digest.string
|> Digest.to_hex
|> MD5.of_string)
| Some result -> Input_ao_basis.Ao_basis.to_md5 result
in
let result =

View File

@ -478,6 +478,7 @@ let run ?o b au c d m p cart xyz_file =
let nmax =
Nucl_number.get_max ()
in
let rec do_work (accu:(Atom.t*Nucl_number.t) list) (n:int) = function
| [] -> accu
| e::tail ->
@ -520,6 +521,8 @@ let run ?o b au c d m p cart xyz_file =
in
let long_basis = Long_basis.of_basis basis in
let ao_num = List.length long_basis in
if ao_num > 0 then
begin
Ezfio.set_ao_basis_ao_num ao_num;
Ezfio.set_ao_basis_ao_basis b;
Ezfio.set_basis_basis b;
@ -655,6 +658,7 @@ let run ?o b au c d m p cart xyz_file =
match Input.Ao_basis.read () with
| None -> failwith "Error in basis"
| Some x -> Input.Ao_basis.write x
end
in
let () =
try write_file () with
@ -781,7 +785,7 @@ If a file with the same name as the basis set exists, this file will be read. O
run ?o:output basis au charge dummy multiplicity pseudo cart xyz_filename
)
with
| Failure txt -> Printf.eprintf "Fatal error: %s\n%!" txt
(* | Failure txt -> Printf.eprintf "Fatal error: %s\n%!" txt *)
| Command_line.Error txt -> Printf.eprintf "Command line error: %s\n%!" txt

View File

@ -38,7 +38,8 @@ let run slave ?prefix exe ezfio_file =
| Unix.Unix_error _ -> try_new_port (port_number+100)
in
let result =
try_new_port 41279
let port = 10*(Unix.getpid () mod 2823) + 32_769 in
try_new_port port
in
Zmq.Socket.close dummy_socket;
Zmq.Context.terminate zmq_context;

View File

@ -1,4 +1,4 @@
#!/usr/bin/python
#!/usr/bin/env python3
import zmq
import sys, os

View File

@ -1,4 +1,4 @@
#!/usr/bin/python
#!/usr/bin/env python3
import zmq
import sys, os

1
plugins/.gitignore vendored
View File

@ -1,2 +1 @@
*

View File

@ -3,3 +3,4 @@ ao_two_e_ints
becke_numerical_grid
mo_one_e_ints
dft_utils_in_r
tc_keywords

View File

@ -212,9 +212,7 @@ subroutine NAI_pol_x_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
@ -279,9 +277,7 @@ subroutine NAI_pol_x_mult_erf_ao_v0(i_ao, j_ao, mu_in, C_center, LD_C, ints, LD_
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr y * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! $\int_{-\infty}^{infty} dr z * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
@ -1111,3 +1107,295 @@ end
! ---
subroutine NAI_pol_x2_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_center, ints)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: beta, B_center(3), mu_in, C_center(3)
double precision, intent(out) :: ints(3)
integer :: i, j, power_Ai(3), power_Aj(3), n_pt_in, m
integer :: power_A1(3), power_A2(3)
double precision :: Ai_center(3), Aj_center(3), alphai, alphaj, coef, coefi
double precision :: integral0, integral1, integral2
double precision, external :: NAI_pol_mult_erf_with1s
ASSERT(beta .ge. 0.d0)
if(beta .lt. 1d-10) then
call NAI_pol_x2_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
return
endif
ints = 0.d0
power_Ai(1:3) = ao_power(i_ao,1:3)
power_Aj(1:3) = ao_power(j_ao,1:3)
Ai_center(1:3) = nucl_coord(ao_nucl(i_ao),1:3)
Aj_center(1:3) = nucl_coord(ao_nucl(j_ao),1:3)
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alphai = ao_expo_ordered_transp (i,i_ao)
coefi = ao_coef_normalized_ordered_transp(i,i_ao)
do m = 1, 3
power_A1 = power_Ai
power_A1(m) += 1
power_A2 = power_Ai
power_A2(m) += 2
do j = 1, ao_prim_num(j_ao)
alphaj = ao_expo_ordered_transp (j,j_ao)
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
integral0 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_Ai, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
integral1 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_A1, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
integral2 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_A2, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
ints(m) += coef * (integral2 + Ai_center(m) * (2.d0*integral1 + Ai_center(m)*integral0))
enddo
enddo
enddo
end subroutine NAI_pol_x2_mult_erf_ao_with1s
! ---
subroutine NAI_pol_x2_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
BEGIN_DOC
!
! Computes the following integral :
!
! $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: mu_in, C_center(3)
double precision, intent(out) :: ints(3)
integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in, m
integer :: power_A1(3), power_A2(3)
double precision :: A_center(3), B_center(3), alpha, beta, coef
double precision :: integral0, integral1, integral2
double precision :: NAI_pol_mult_erf
ints = 0.d0
num_A = ao_nucl(i_ao)
power_A(1:3) = ao_power(i_ao,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
num_B = ao_nucl(j_ao)
power_B(1:3) = ao_power(j_ao,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alpha = ao_expo_ordered_transp(i,i_ao)
do m = 1, 3
power_A1 = power_A
power_A1(m) += 1
power_A2 = power_A
power_A2(m) += 2
do j = 1, ao_prim_num(j_ao)
beta = ao_expo_ordered_transp(j,j_ao)
coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao)
integral0 = NAI_pol_mult_erf(A_center, B_center, power_A , power_B, alpha, beta, C_center, n_pt_in, mu_in)
integral1 = NAI_pol_mult_erf(A_center, B_center, power_A1, power_B, alpha, beta, C_center, n_pt_in, mu_in)
integral2 = NAI_pol_mult_erf(A_center, B_center, power_A2, power_B, alpha, beta, C_center, n_pt_in, mu_in)
ints(m) += coef * (integral2 + A_center(m) * (2.d0*integral1 + A_center(m)*integral0))
enddo
enddo
enddo
end subroutine NAI_pol_x2_mult_erf_ao
! ---
subroutine NAI_pol_012_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_center, ints)
BEGIN_DOC
!
! Computes the following integral :
!
! ints(1) = $\int_{-\infty}^{infty} dr x^0 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! ints(2) = $\int_{-\infty}^{infty} dr x^1 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! ints(3) = $\int_{-\infty}^{infty} dr y^1 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! ints(4) = $\int_{-\infty}^{infty} dr z^1 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! ints(5) = $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! ints(6) = $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! ints(7) = $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: beta, B_center(3), mu_in, C_center(3)
double precision, intent(out) :: ints(7)
integer :: i, j, power_Ai(3), power_Aj(3), n_pt_in, m
integer :: power_A1(3), power_A2(3)
double precision :: Ai_center(3), Aj_center(3), alphai, alphaj, coef, coefi
double precision :: integral0, integral1, integral2
double precision, external :: NAI_pol_mult_erf_with1s
ASSERT(beta .ge. 0.d0)
if(beta .lt. 1d-10) then
call NAI_pol_012_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
return
endif
ints = 0.d0
power_Ai(1:3) = ao_power(i_ao,1:3)
power_Aj(1:3) = ao_power(j_ao,1:3)
Ai_center(1:3) = nucl_coord(ao_nucl(i_ao),1:3)
Aj_center(1:3) = nucl_coord(ao_nucl(j_ao),1:3)
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alphai = ao_expo_ordered_transp (i,i_ao)
coefi = ao_coef_normalized_ordered_transp(i,i_ao)
do j = 1, ao_prim_num(j_ao)
alphaj = ao_expo_ordered_transp (j,j_ao)
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
integral0 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_Ai, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
ints(1) += coef * integral0
do m = 1, 3
power_A1 = power_Ai
power_A1(m) += 1
integral1 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_A1, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
ints(1+m) += coef * (integral1 + Ai_center(m)*integral0)
power_A2 = power_Ai
power_A2(m) += 2
integral2 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_A2, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
ints(4+m) += coef * (integral2 + Ai_center(m) * (2.d0*integral1 + Ai_center(m)*integral0))
enddo
enddo
enddo
end subroutine NAI_pol_012_mult_erf_ao_with1s
! ---
subroutine NAI_pol_012_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
BEGIN_DOC
!
! Computes the following integral :
!
! int(1) = $\int_{-\infty}^{infty} dr x^0 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! int(2) = $\int_{-\infty}^{infty} dr x^1 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! int(3) = $\int_{-\infty}^{infty} dr y^1 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! int(4) = $\int_{-\infty}^{infty} dr z^1 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! int(5) = $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! int(6) = $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! int(7) = $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: mu_in, C_center(3)
double precision, intent(out) :: ints(7)
integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in, m
integer :: power_A1(3), power_A2(3)
double precision :: A_center(3), B_center(3), alpha, beta, coef
double precision :: integral0, integral1, integral2
double precision :: NAI_pol_mult_erf
ints = 0.d0
num_A = ao_nucl(i_ao)
power_A(1:3) = ao_power(i_ao,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
num_B = ao_nucl(j_ao)
power_B(1:3) = ao_power(j_ao,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alpha = ao_expo_ordered_transp(i,i_ao)
do j = 1, ao_prim_num(j_ao)
beta = ao_expo_ordered_transp(j,j_ao)
coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao)
integral0 = NAI_pol_mult_erf(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in)
ints(1) += coef * integral0
do m = 1, 3
power_A1 = power_A
power_A1(m) += 1
integral1 = NAI_pol_mult_erf(A_center, B_center, power_A1, power_B, alpha, beta, C_center, n_pt_in, mu_in)
ints(1+m) += coef * (integral1 + A_center(m)*integral0)
power_A2 = power_A
power_A2(m) += 2
integral2 = NAI_pol_mult_erf(A_center, B_center, power_A2, power_B, alpha, beta, C_center, n_pt_in, mu_in)
ints(4+m) += coef * (integral2 + A_center(m) * (2.d0*integral1 + A_center(m)*integral0))
enddo
enddo
enddo
end subroutine NAI_pol_012_mult_erf_ao
! ---

View File

@ -38,7 +38,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test, (ao_num, ao_n
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo, &
!$OMP List_comb_thr_b3_cent, int2_grad1u2_grad2u2_j1b2_test, ao_abs_comb_b3_j1b, &
!$OMP ao_overlap_abs,sq_pi_3_2)
!$OMP ao_overlap_abs,sq_pi_3_2,thrsh_cycle_tc)
!$OMP DO SCHEDULE(dynamic)
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
@ -46,7 +46,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test, (ao_num, ao_n
r(3) = final_grid_points(3,ipoint)
do i = 1, ao_num
do j = i, ao_num
if(ao_overlap_abs(j,i) .lt. 1.d-12) then
if(ao_overlap_abs(j,i) .lt. thrsh_cycle_tc) then
cycle
endif
@ -58,7 +58,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test, (ao_num, ao_n
do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_1_erf_x_2(i_fit)
coef_fit = -0.25d0 * coef_gauss_1_erf_x_2(i_fit)
if(dabs(coef_fit*int_j1b*sq_pi_3_2*(expo_fit)**(-1.5d0)).lt.1.d-10)cycle
! if(dabs(coef_fit*int_j1b*sq_pi_3_2*(expo_fit)**(-1.5d0)).lt.thrsh_cycle_tc)cycle
int_gauss = overlap_gauss_r12_ao(r, expo_fit, i, j)
int2_grad1u2_grad2u2_j1b2_test(j,i,ipoint) += coef_fit * int_gauss
enddo
@ -81,8 +81,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test, (ao_num, ao_n
!DIR$ FORCEINLINE
call gaussian_product(expo_fit,r,beta,B_center,factor_ij_1s,beta_ij,center_ij_1s)
coef_fit = -0.25d0 * coef_gauss_1_erf_x_2(i_fit) * coef
! if(dabs(coef_fit*factor_ij_1s*int_j1b).lt.1.d-10)cycle ! old version
if(dabs(coef_fit*factor_ij_1s*int_j1b*sq_pi_3_2*(beta_ij)**(-1.5d0)).lt.1.d-10)cycle
! if(dabs(coef_fit*factor_ij_1s*int_j1b*sq_pi_3_2*(beta_ij)**(-1.5d0)).lt.thrsh_cycle_tc)cycle
! call overlap_gauss_r12_ao_with1s_v(B_center, beta, final_grid_points_transp, &
! expo_fit, i, j, int_fit_v, n_points_final_grid)
int_gauss = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
@ -145,14 +144,14 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test_v, (ao_num, ao
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2, &
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo, &
!$OMP List_comb_thr_b3_cent, big_array,&
!$OMP ao_abs_comb_b3_j1b,ao_overlap_abs)
!$OMP ao_abs_comb_b3_j1b,ao_overlap_abs,thrsh_cycle_tc)
!
allocate(int_fit_v(n_points_final_grid))
!$OMP DO SCHEDULE(dynamic)
do i = 1, ao_num
do j = i, ao_num
if(ao_overlap_abs(j,i) .lt. 1.d-12) then
if(ao_overlap_abs(j,i) .lt. thrsh_cycle_tc) then
cycle
endif
@ -161,7 +160,6 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2_test_v, (ao_num, ao
coef = List_comb_thr_b3_coef (i_1s,j,i)
beta = List_comb_thr_b3_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b3_j1b(i_1s,j,i)
! if(dabs(coef)*dabs(int_j1b).lt.1.d-15)cycle
B_center(1) = List_comb_thr_b3_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b3_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b3_cent(3,i_1s,j,i)
@ -243,7 +241,7 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2_test, (ao_num, ao_num, n_points_
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_x_2, coef_gauss_j_mu_x_2, &
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo,sq_pi_3_2, &
!$OMP List_comb_thr_b3_cent, int2_u2_j1b2_test,ao_abs_comb_b3_j1b)
!$OMP List_comb_thr_b3_cent, int2_u2_j1b2_test,ao_abs_comb_b3_j1b,thrsh_cycle_tc)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
@ -260,11 +258,11 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2_test, (ao_num, ao_num, n_points_
! --- --- ---
int_j1b = ao_abs_comb_b3_j1b(1,j,i)
if(dabs(int_j1b).lt.1.d-10) cycle
if(dabs(int_j1b).lt.thrsh_cycle_tc) cycle
do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_j_mu_x_2(i_fit)
coef_fit = coef_gauss_j_mu_x_2(i_fit)
if(dabs(coef_fit*int_j1b*sq_pi_3_2*(expo_fit)**(-1.5d0)).lt.1.d-10)cycle
! if(dabs(coef_fit*int_j1b*sq_pi_3_2*(expo_fit)**(-1.5d0)).lt.thrsh_cycle_tc)cycle
int_fit = overlap_gauss_r12_ao(r, expo_fit, i, j)
tmp += coef_fit * int_fit
enddo
@ -278,7 +276,7 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2_test, (ao_num, ao_num, n_points_
coef = List_comb_thr_b3_coef (i_1s,j,i)
beta = List_comb_thr_b3_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b3_j1b(i_1s,j,i)
if(dabs(coef)*dabs(int_j1b).lt.1.d-10)cycle
! if(dabs(coef)*dabs(int_j1b).lt.thrsh_cycle_tc)cycle
B_center(1) = List_comb_thr_b3_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b3_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b3_cent(3,i_1s,j,i)
@ -288,8 +286,7 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2_test, (ao_num, ao_num, n_points_
coef_fit = coef_gauss_j_mu_x_2(i_fit)
!DIR$ FORCEINLINE
call gaussian_product(expo_fit,r,beta,B_center,factor_ij_1s,beta_ij,center_ij_1s)
! if(dabs(coef_fit*coef*factor_ij_1s*int_j1b).lt.1.d-10)cycle ! old version
if(dabs(coef_fit*coef*factor_ij_1s*int_j1b*sq_pi_3_2*(beta_ij)**(-1.5d0)).lt.1.d-10)cycle
! if(dabs(coef_fit*coef*factor_ij_1s*int_j1b*sq_pi_3_2*(beta_ij)**(-1.5d0)).lt.thrsh_cycle_tc)cycle
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
tmp += coef * coef_fit * int_fit
enddo
@ -350,7 +347,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_test, (ao_num, ao_num, n
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo, &
!$OMP List_comb_thr_b3_cent, int2_u_grad1u_x_j1b2_test,ao_abs_comb_b3_j1b,sq_pi_3_2)
!$OMP List_comb_thr_b3_cent, int2_u_grad1u_x_j1b2_test,ao_abs_comb_b3_j1b,sq_pi_3_2,thrsh_cycle_tc)
!$OMP DO
do ipoint = 1, n_points_final_grid
@ -369,7 +366,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_test, (ao_num, ao_num, n
coef = List_comb_thr_b3_coef (i_1s,j,i)
beta = List_comb_thr_b3_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b3_j1b(i_1s,j,i)
if(dabs(coef)*dabs(int_j1b).lt.1.d-10)cycle
if(dabs(coef)*dabs(int_j1b).lt.thrsh_cycle_tc)cycle
B_center(1) = List_comb_thr_b3_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b3_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b3_cent(3,i_1s,j,i)
@ -392,8 +389,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2_test, (ao_num, ao_num, n
expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist
coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
sq_alpha = alpha_1s_inv * dsqrt(alpha_1s_inv)
! if(dabs(coef_tmp*int_j1b) .lt. 1d-10) cycle ! old version
if(dabs(coef_tmp*int_j1b*sq_pi_3_2*sq_alpha) .lt. 1d-10) cycle
! if(dabs(coef_tmp*int_j1b*sq_pi_3_2*sq_alpha) .lt. thrsh_cycle_tc) cycle
call NAI_pol_x_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r, int_fit)
@ -470,13 +466,13 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
!$OMP expo_gauss_j_mu_1_erf, coef_gauss_j_mu_1_erf, &
!$OMP ao_prod_dist_grid, ao_prod_sigma, ao_overlap_abs_grid,ao_prod_center,dsqpi_3_2, &
!$OMP List_comb_thr_b3_coef, List_comb_thr_b3_expo, ao_abs_comb_b3_j1b, &
!$OMP List_comb_thr_b3_cent, int2_u_grad1u_j1b2_test)
!$OMP List_comb_thr_b3_cent, int2_u_grad1u_j1b2_test,thrsh_cycle_tc)
!$OMP DO
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = i, ao_num
if(dabs(ao_overlap_abs_grid(j,i)).lt.1.d-10) cycle
if(dabs(ao_overlap_abs_grid(j,i)).lt.thrsh_cycle_tc) cycle
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
@ -489,10 +485,10 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
! --- --- ---
int_j1b = ao_abs_comb_b3_j1b(1,j,i)
if(dabs(int_j1b).lt.1.d-10) cycle
! if(dabs(int_j1b).lt.thrsh_cycle_tc) cycle
do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_j_mu_1_erf(i_fit)
if(dabs(int_j1b)*dsqpi_3_2*expo_fit**(-1.5d0).lt.1.d-15) cycle
! if(dabs(int_j1b)*dsqpi_3_2*expo_fit**(-1.5d0).lt.thrsh_cycle_tc) cycle
coef_fit = coef_gauss_j_mu_1_erf(i_fit)
int_fit = NAI_pol_mult_erf_ao_with1s(i, j, expo_fit, r, 1.d+9, r)
tmp += coef_fit * int_fit
@ -507,7 +503,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
coef = List_comb_thr_b3_coef (i_1s,j,i)
beta = List_comb_thr_b3_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b3_j1b(i_1s,j,i)
if(dabs(coef)*dabs(int_j1b).lt.1.d-10)cycle
! if(dabs(coef)*dabs(int_j1b).lt.thrsh_cycle_tc)cycle
B_center(1) = List_comb_thr_b3_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b3_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b3_cent(3,i_1s,j,i)
@ -517,7 +513,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_j_mu_1_erf(i_fit)
call gaussian_product(expo_fit,r,beta,B_center,factor_ij_1s,beta_ij,center_ij_1s)
if(factor_ij_1s*dabs(coef*int_j1b)*dsqpi_3_2*beta_ij**(-1.5d0).lt.1.d-15)cycle
! if(factor_ij_1s*dabs(coef*int_j1b)*dsqpi_3_2*beta_ij**(-1.5d0).lt.thrsh_cycle_tc)cycle
coef_fit = coef_gauss_j_mu_1_erf(i_fit)
alpha_1s = beta + expo_fit
@ -527,9 +523,9 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2_test, (ao_num, ao_num, n_p
centr_1s(3) = alpha_1s_inv * (beta * B_center(3) + expo_fit * r(3))
expo_coef_1s = beta * expo_fit * alpha_1s_inv * dist
if(expo_coef_1s .gt. 20.d0) cycle
! if(expo_coef_1s .gt. 20.d0) cycle
coef_tmp = coef * coef_fit * dexp(-expo_coef_1s)
if(dabs(coef_tmp) .lt. 1d-08) cycle
! if(dabs(coef_tmp) .lt. 1d-08) cycle
int_fit = NAI_pol_mult_erf_ao_with1s(i, j, alpha_1s, centr_1s, 1.d+9, r)

View File

@ -1,4 +1,72 @@
! ---
BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! -\frac{1}{4} x int dr2 phi_i(r2) phi_j(r2) [1 - erf(mu r12)]^2
!
END_DOC
implicit none
integer :: i, j, ipoint, i_fit
double precision :: r(3), expo_fit, coef_fit
double precision :: tmp
double precision :: wall0, wall1
double precision, external :: overlap_gauss_r12_ao
print*, ' providing int2_grad1u2_grad2u2 ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
int2_grad1u2_grad2u2 = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_fit, r, coef_fit, expo_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_1_erf_x_2, coef_gauss_1_erf_x_2,int2_grad1u2_grad2u2)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do i = 1, ao_num
do j = i, ao_num
tmp = 0.d0
do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_1_erf_x_2(i_fit)
coef_fit = coef_gauss_1_erf_x_2(i_fit)
tmp += -0.25d0 * coef_fit * overlap_gauss_r12_ao(r, expo_fit, i, j)
enddo
int2_grad1u2_grad2u2(j,i,ipoint) = tmp
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
int2_grad1u2_grad2u2(j,i,ipoint) = int2_grad1u2_grad2u2(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for int2_grad1u2_grad2u2 =', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n_points_final_grid)]
@ -60,6 +128,7 @@ BEGIN_PROVIDER [ double precision, int2_grad1u2_grad2u2_j1b2, (ao_num, ao_num, n
do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
@ -154,6 +223,7 @@ BEGIN_PROVIDER [ double precision, int2_u2_j1b2, (ao_num, ao_num, n_points_final
do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
@ -254,6 +324,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_x_j1b2, (ao_num, ao_num, n_poin
do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)
@ -368,6 +439,7 @@ BEGIN_PROVIDER [ double precision, int2_u_grad1u_j1b2, (ao_num, ao_num, n_points
do i_1s = 2, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b3_expo (i_1s)
B_center(1) = List_all_comb_b3_cent(1,i_1s)
B_center(2) = List_all_comb_b3_cent(2,i_1s)

View File

@ -31,7 +31,7 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_num,
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_thr_b2_size, final_grid_points, &
!$OMP List_comb_thr_b2_coef, List_comb_thr_b2_expo, List_comb_thr_b2_cent,ao_abs_comb_b2_j1b, &
!$OMP v_ij_erf_rk_cst_mu_j1b_test, mu_erf, &
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2)
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2,thrsh_cycle_tc)
!$OMP DO
!do ipoint = 1, 10
do ipoint = 1, n_points_final_grid
@ -41,7 +41,7 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_num,
do i = 1, ao_num
do j = i, ao_num
if(dabs(ao_overlap_abs_grid(j,i)).lt.1.d-20)cycle
if(dabs(ao_overlap_abs_grid(j,i)).lt.thrsh_cycle_tc)cycle
tmp = 0.d0
do i_1s = 1, List_comb_thr_b2_size(j,i)
@ -49,7 +49,7 @@ BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_num,
coef = List_comb_thr_b2_coef (i_1s,j,i)
beta = List_comb_thr_b2_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b2_j1b(i_1s,j,i)
if(dabs(coef)*dabs(int_j1b).lt.1.d-10)cycle
! if(dabs(coef)*dabs(int_j1b).lt.thrsh_cycle_tc)cycle
B_center(1) = List_comb_thr_b2_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b2_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b2_cent(3,i_1s,j,i)
@ -110,7 +110,7 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_nu
!$OMP SHARED (n_points_final_grid, ao_num, List_comb_thr_b2_size, final_grid_points,&
!$OMP List_comb_thr_b2_coef, List_comb_thr_b2_expo, List_comb_thr_b2_cent, &
!$OMP x_v_ij_erf_rk_cst_mu_j1b_test, mu_erf,ao_abs_comb_b2_j1b, &
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma)
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,thrsh_cycle_tc)
! !$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2,expo_erfc_mu_gauss)
!$OMP DO
do ipoint = 1, n_points_final_grid
@ -120,7 +120,7 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_nu
do i = 1, ao_num
do j = i, ao_num
if(dabs(ao_overlap_abs_grid(j,i)).lt.1.d-10)cycle
if(dabs(ao_overlap_abs_grid(j,i)).lt.thrsh_cycle_tc)cycle
tmp_x = 0.d0
tmp_y = 0.d0
@ -130,19 +130,11 @@ BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b_test, (ao_num, ao_nu
coef = List_comb_thr_b2_coef (i_1s,j,i)
beta = List_comb_thr_b2_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b2_j1b(i_1s,j,i)
if(dabs(coef)*dabs(int_j1b).lt.1.d-10)cycle
! if(dabs(coef)*dabs(int_j1b).lt.thrsh_cycle_tc)cycle
B_center(1) = List_comb_thr_b2_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b2_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b2_cent(3,i_1s,j,i)
! if(ao_prod_center(1,j,i).ne.10000.d0)then
! ! approximate 1 - erf(mu r12) by a gaussian * 10
! !DIR$ FORCEINLINE
! call gaussian_product(expo_erfc_mu_gauss,r, &
! ao_prod_sigma(j,i),ao_prod_center(1,j,i), &
! factor_ij_1s,beta_ij,center_ij_1s)
! if(dabs(coef * factor_ij_1s*int_j1b*10.d0 * dsqpi_3_2 * beta_ij**(-1.5d0)).lt.1.d-10)cycle
! endif
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, ints )
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, ints_coulomb)
@ -216,7 +208,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_test, (ao_num, ao_num, n_po
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
!$OMP List_comb_thr_b2_coef, List_comb_thr_b2_expo,List_comb_thr_b2_size, &
!$OMP List_comb_thr_b2_cent, v_ij_u_cst_mu_j1b_test,ao_abs_comb_b2_j1b, &
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2)
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2,thrsh_cycle_tc)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
@ -225,7 +217,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_test, (ao_num, ao_num, n_po
do i = 1, ao_num
do j = i, ao_num
if(dabs(ao_overlap_abs_grid(j,i)).lt.1.d-20)cycle
if(dabs(ao_overlap_abs_grid(j,i)).lt.thrsh_cycle_tc)cycle
tmp = 0.d0
@ -234,11 +226,11 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_test, (ao_num, ao_num, n_po
! --- --- ---
int_j1b = ao_abs_comb_b2_j1b(1,j,i)
if(dabs(int_j1b).lt.1.d-10) cycle
! if(dabs(int_j1b).lt.thrsh_cycle_tc) cycle
do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_j_mu_x(i_fit)
coef_fit = coef_gauss_j_mu_x(i_fit)
if(ao_overlap_abs_grid(j,i).lt.1.d-15) cycle
! if(ao_overlap_abs_grid(j,i).lt.thrsh_cycle_tc) cycle
int_fit = overlap_gauss_r12_ao(r, expo_fit, i, j)
tmp += coef_fit * int_fit
enddo
@ -251,7 +243,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_test, (ao_num, ao_num, n_po
coef = List_comb_thr_b2_coef (i_1s,j,i)
beta = List_comb_thr_b2_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b2_j1b(i_1s,j,i)
if(dabs(coef)*dabs(int_j1b).lt.1.d-10)cycle
! if(dabs(coef)*dabs(int_j1b).lt.thrsh_cycle_tc)cycle
B_center(1) = List_comb_thr_b2_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b2_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b2_cent(3,i_1s,j,i)
@ -259,9 +251,9 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_test, (ao_num, ao_num, n_po
expo_fit = expo_gauss_j_mu_x(i_fit)
coef_fit = coef_gauss_j_mu_x(i_fit)
coeftot = coef * coef_fit
if(dabs(coeftot).lt.1.d-15)cycle
! if(dabs(coeftot).lt.thrsh_cycle_tc)cycle
call gaussian_product(beta,B_center,expo_fit,r,factor_ij_1s_u,beta_ij_u,center_ij_1s_u)
if(factor_ij_1s_u*ao_overlap_abs_grid(j,i).lt.1.d-15)cycle
! if(factor_ij_1s_u*ao_overlap_abs_grid(j,i).lt.thrsh_cycle_tc)cycle
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
tmp += coef * coef_fit * int_fit
enddo
@ -325,7 +317,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_ng_1_test, (ao_num, ao_num,
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
!$OMP List_comb_thr_b2_coef, List_comb_thr_b2_expo,List_comb_thr_b2_size, &
!$OMP List_comb_thr_b2_cent, v_ij_u_cst_mu_j1b_ng_1_test,ao_abs_comb_b2_j1b, &
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2)
!$OMP ao_overlap_abs_grid,ao_prod_center,ao_prod_sigma,dsqpi_3_2,thrsh_cycle_tc)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
@ -334,7 +326,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_ng_1_test, (ao_num, ao_num,
do i = 1, ao_num
do j = i, ao_num
if(dabs(ao_overlap_abs_grid(j,i)).lt.1.d-20)cycle
if(dabs(ao_overlap_abs_grid(j,i)).lt.thrsh_cycle_tc)cycle
tmp = 0.d0
@ -343,7 +335,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_ng_1_test, (ao_num, ao_num,
! --- --- ---
int_j1b = ao_abs_comb_b2_j1b(1,j,i)
if(dabs(int_j1b).lt.1.d-10) cycle
! if(dabs(int_j1b).lt.thrsh_cycle_tc) cycle
expo_fit = expo_good_j_mu_1gauss
int_fit = overlap_gauss_r12_ao(r, expo_fit, i, j)
tmp += int_fit
@ -356,7 +348,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_ng_1_test, (ao_num, ao_num,
coef = List_comb_thr_b2_coef (i_1s,j,i)
beta = List_comb_thr_b2_expo (i_1s,j,i)
int_j1b = ao_abs_comb_b2_j1b(i_1s,j,i)
if(dabs(coef)*dabs(int_j1b).lt.1.d-10)cycle
! if(dabs(coef)*dabs(int_j1b).lt.thrsh_cycle_tc)cycle
B_center(1) = List_comb_thr_b2_cent(1,i_1s,j,i)
B_center(2) = List_comb_thr_b2_cent(2,i_1s,j,i)
B_center(3) = List_comb_thr_b2_cent(3,i_1s,j,i)
@ -364,9 +356,9 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_ng_1_test, (ao_num, ao_num,
expo_fit = expo_good_j_mu_1gauss
coef_fit = 1.d0
coeftot = coef * coef_fit
if(dabs(coeftot).lt.1.d-15)cycle
if(dabs(coeftot).lt.thrsh_cycle_tc)cycle
call gaussian_product(beta,B_center,expo_fit,r,factor_ij_1s_u,beta_ij_u,center_ij_1s_u)
if(factor_ij_1s_u*ao_overlap_abs_grid(j,i).lt.1.d-15)cycle
if(factor_ij_1s_u*ao_overlap_abs_grid(j,i).lt.thrsh_cycle_tc)cycle
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
tmp += coef * coef_fit * int_fit
! enddo

View File

@ -0,0 +1,552 @@
! ---
BEGIN_PROVIDER [ double precision, v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr phi_i(r) phi_j(r) 1s_j1b(r) (erf(mu(R) |r - R| - 1) / |r - R|
!
END_DOC
implicit none
integer :: i, j, ipoint, i_1s
double precision :: r(3), int_mu, int_coulomb
double precision :: coef, beta, B_center(3)
double precision :: tmp
double precision :: wall0, wall1
double precision, external :: NAI_pol_mult_erf_ao_with1s
print *, ' providing v_ij_erf_rk_cst_mu_j1b ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
v_ij_erf_rk_cst_mu_j1b = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, int_mu, int_coulomb, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, final_grid_points, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, List_all_comb_b2_cent, &
!$OMP v_ij_erf_rk_cst_mu_j1b, mu_erf)
!$OMP DO
!do ipoint = 1, 10
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do i = 1, ao_num
do j = i, ao_num
tmp = 0.d0
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
int_mu = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
int_coulomb = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
! if(dabs(coef)*dabs(int_mu - int_coulomb) .lt. 1d-12) cycle
tmp += coef * (int_mu - int_coulomb)
! ---
do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
int_mu = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
int_coulomb = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
tmp += coef * (int_mu - int_coulomb)
enddo
! ---
v_ij_erf_rk_cst_mu_j1b(j,i,ipoint) = tmp
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_erf_rk_cst_mu_j1b(j,i,ipoint) = v_ij_erf_rk_cst_mu_j1b(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_erf_rk_cst_mu_j1b', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, x_v_ij_erf_rk_cst_mu_j1b, (ao_num, ao_num, n_points_final_grid, 3)]
BEGIN_DOC
! int dr x phi_i(r) phi_j(r) 1s_j1b(r) (erf(mu(R) |r - R|) - 1)/|r - R|
END_DOC
implicit none
integer :: i, j, ipoint, i_1s
double precision :: coef, beta, B_center(3), r(3), ints(3), ints_coulomb(3)
double precision :: tmp_x, tmp_y, tmp_z
double precision :: wall0, wall1
print*, ' providing x_v_ij_erf_rk_cst_mu_j1b ...'
call wall_time(wall0)
x_v_ij_erf_rk_cst_mu_j1b = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, ints, ints_coulomb, &
!$OMP tmp_x, tmp_y, tmp_z) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, final_grid_points,&
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, List_all_comb_b2_cent, &
!$OMP x_v_ij_erf_rk_cst_mu_j1b, mu_erf)
!$OMP DO
!do ipoint = 1, 10
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do i = 1, ao_num
do j = i, ao_num
tmp_x = 0.d0
tmp_y = 0.d0
tmp_z = 0.d0
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, ints )
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, ints_coulomb)
! if( dabs(coef)*(dabs(ints(1)-ints_coulomb(1)) + dabs(ints(2)-ints_coulomb(2)) + dabs(ints(3)-ints_coulomb(3))) .lt. 3d-10) cycle
tmp_x += coef * (ints(1) - ints_coulomb(1))
tmp_y += coef * (ints(2) - ints_coulomb(2))
tmp_z += coef * (ints(3) - ints_coulomb(3))
! ---
do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, ints )
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, ints_coulomb)
tmp_x += coef * (ints(1) - ints_coulomb(1))
tmp_y += coef * (ints(2) - ints_coulomb(2))
tmp_z += coef * (ints(3) - ints_coulomb(3))
enddo
! ---
x_v_ij_erf_rk_cst_mu_j1b(j,i,ipoint,1) = tmp_x
x_v_ij_erf_rk_cst_mu_j1b(j,i,ipoint,2) = tmp_y
x_v_ij_erf_rk_cst_mu_j1b(j,i,ipoint,3) = tmp_z
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
x_v_ij_erf_rk_cst_mu_j1b(j,i,ipoint,1) = x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,1)
x_v_ij_erf_rk_cst_mu_j1b(j,i,ipoint,2) = x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,2)
x_v_ij_erf_rk_cst_mu_j1b(j,i,ipoint,3) = x_v_ij_erf_rk_cst_mu_j1b(i,j,ipoint,3)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for x_v_ij_erf_rk_cst_mu_j1b =', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_fit, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12)
!
END_DOC
implicit none
integer :: i, j, ipoint, i_1s, i_fit
double precision :: r(3), int_fit, expo_fit, coef_fit
double precision :: coef, beta, B_center(3)
double precision :: tmp
double precision :: wall0, wall1
double precision, external :: overlap_gauss_r12_ao_with1s
print*, ' providing v_ij_u_cst_mu_j1b_fit ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
PROVIDE ng_fit_jast expo_gauss_j_mu_x coef_gauss_j_mu_x
PROVIDE List_all_comb_b2_size List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
v_ij_u_cst_mu_j1b_fit = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, i_fit, r, coef, beta, B_center, &
!$OMP coef_fit, expo_fit, int_fit, tmp) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
!$OMP final_grid_points, ng_fit_jast, &
!$OMP expo_gauss_j_mu_x, coef_gauss_j_mu_x, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_fit)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
do i = 1, ao_num
do j = i, ao_num
tmp = 0.d0
do i_fit = 1, ng_fit_jast
expo_fit = expo_gauss_j_mu_x(i_fit)
coef_fit = coef_gauss_j_mu_x(i_fit)
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
tmp += coef * coef_fit * int_fit
! ---
do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
int_fit = overlap_gauss_r12_ao_with1s(B_center, beta, r, expo_fit, i, j)
tmp += coef * coef_fit * int_fit
enddo
! ---
enddo
v_ij_u_cst_mu_j1b_fit(j,i,ipoint) = tmp
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_u_cst_mu_j1b_fit(j,i,ipoint) = v_ij_u_cst_mu_j1b_fit(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_u_cst_mu_j1b_fit', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an_old, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12)
!
END_DOC
include 'constants.include.F'
implicit none
integer :: i, j, ipoint, i_1s
double precision :: r(3), r1_2
double precision :: int_c1, int_e1, int_o
double precision :: int_c2(3), int_e2(3)
double precision :: int_c3(3), int_e3(3)
double precision :: coef, beta, B_center(3)
double precision :: tmp, ct
double precision :: wall0, wall1
double precision, external :: overlap_gauss_r12_ao_with1s
double precision, external :: NAI_pol_mult_erf_ao_with1s
print*, ' providing v_ij_u_cst_mu_j1b_an_old ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
PROVIDE List_all_comb_b2_size List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
ct = inv_sq_pi_2 / mu_erf
v_ij_u_cst_mu_j1b_an_old = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, &
!$OMP r1_2, tmp, int_c1, int_e1, int_o, int_c2, &
!$OMP int_e2, int_c3, int_e3) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
!$OMP final_grid_points, mu_erf, ct, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_an_old)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
r1_2 = 0.5d0 * (r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
do i = 1, ao_num
do j = i, ao_num
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
int_c1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
int_e1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c2)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e2)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c3)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e3)
int_o = overlap_gauss_r12_ao_with1s(B_center, beta, r, mu_erf*mu_erf, i, j)
tmp = coef &
* ( r1_2 * (int_c1 - int_e1) &
- r(1) * (int_c2(1) - int_e2(1)) - r(2) * (int_c2(2) - int_e2(2)) - r(3) * (int_c2(3) - int_e2(3)) &
+ 0.5d0 * (int_c3(1) + int_c3(2) + int_c3(3) - int_e3(1) - int_e3(2) - int_e3(3)) &
- ct * int_o &
)
! ---
do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
int_c1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r)
int_e1 = NAI_pol_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c2)
call NAI_pol_x_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e2)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c3)
call NAI_pol_x2_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e3)
int_o = overlap_gauss_r12_ao_with1s(B_center, beta, r, mu_erf*mu_erf, i, j)
tmp = tmp + coef &
* ( r1_2 * (int_c1 - int_e1) &
- r(1) * (int_c2(1) - int_e2(1)) - r(2) * (int_c2(2) - int_e2(2)) - r(3) * (int_c2(3) - int_e2(3)) &
+ 0.5d0 * (int_c3(1) + int_c3(2) + int_c3(3) - int_e3(1) - int_e3(2) - int_e3(3)) &
- ct * int_o &
)
enddo
! ---
v_ij_u_cst_mu_j1b_an_old(j,i,ipoint) = tmp
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_u_cst_mu_j1b_an_old(j,i,ipoint) = v_ij_u_cst_mu_j1b_an_old(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_u_cst_mu_j1b_an_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12)
!
END_DOC
include 'constants.include.F'
implicit none
integer :: i, j, ipoint, i_1s
double precision :: r(3), r1_2
double precision :: int_o
double precision :: int_c(7), int_e(7)
double precision :: coef, beta, B_center(3)
double precision :: tmp, ct
double precision :: wall0, wall1
double precision, external :: overlap_gauss_r12_ao_with1s
double precision, external :: NAI_pol_mult_erf_ao_with1s
print*, ' providing v_ij_u_cst_mu_j1b_an ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
PROVIDE List_all_comb_b2_size List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
ct = inv_sq_pi_2 / mu_erf
v_ij_u_cst_mu_j1b_an = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, &
!$OMP r1_2, tmp, int_c, int_e, int_o) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
!$OMP final_grid_points, mu_erf, ct, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_an)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
r1_2 = 0.5d0 * (r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
do i = 1, ao_num
do j = i, ao_num
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c)
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e)
int_o = overlap_gauss_r12_ao_with1s(B_center, beta, r, mu_erf*mu_erf, i, j)
tmp = coef &
* ( r1_2 * (int_c(1) - int_e(1)) &
- r(1) * (int_c(2) - int_e(2)) - r(2) * (int_c(3) - int_e(3)) - r(3) * (int_c(4) - int_e(4)) &
+ 0.5d0 * (int_c(5) + int_c(6) + int_c(7) - int_e(5) - int_e(6) - int_e(7)) &
- ct * int_o &
)
! ---
do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c)
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e)
int_o = overlap_gauss_r12_ao_with1s(B_center, beta, r, mu_erf*mu_erf, i, j)
tmp = tmp + coef &
* ( r1_2 * (int_c(1) - int_e(1)) &
- r(1) * (int_c(2) - int_e(2)) - r(2) * (int_c(3) - int_e(3)) - r(3) * (int_c(4) - int_e(4)) &
+ 0.5d0 * (int_c(5) + int_c(6) + int_c(7) - int_e(5) - int_e(6) - int_e(7)) &
- ct * int_o &
)
enddo
! ---
v_ij_u_cst_mu_j1b_an(j,i,ipoint) = tmp
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_u_cst_mu_j1b_an(j,i,ipoint) = v_ij_u_cst_mu_j1b_an(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_u_cst_mu_j1b_an', wall1 - wall0
END_PROVIDER
! ---

View File

@ -0,0 +1,366 @@
! ---
BEGIN_PROVIDER [integer, List_all_comb_b2_size]
implicit none
PROVIDE j1b_type
if((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
List_all_comb_b2_size = 2**nucl_num
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
List_all_comb_b2_size = nucl_num + 1
else
print *, 'j1b_type = ', j1b_type, 'is not implemented'
stop
endif
print *, ' nb of linear terms in the envelope is ', List_all_comb_b2_size
END_PROVIDER
! ---
BEGIN_PROVIDER [integer, List_all_comb_b2, (nucl_num, List_all_comb_b2_size)]
implicit none
integer :: i, j
if(nucl_num .gt. 32) then
print *, ' nucl_num = ', nucl_num, '> 32'
stop
endif
List_all_comb_b2 = 0
do i = 0, List_all_comb_b2_size-1
do j = 0, nucl_num-1
if (btest(i,j)) then
List_all_comb_b2(j+1,i+1) = 1
endif
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, List_all_comb_b2_coef, ( List_all_comb_b2_size)]
&BEGIN_PROVIDER [ double precision, List_all_comb_b2_expo, ( List_all_comb_b2_size)]
&BEGIN_PROVIDER [ double precision, List_all_comb_b2_cent, (3, List_all_comb_b2_size)]
implicit none
integer :: i, j, k, phase
double precision :: tmp_alphaj, tmp_alphak
double precision :: tmp_cent_x, tmp_cent_y, tmp_cent_z
provide j1b_pen
provide j1b_pen_coef
List_all_comb_b2_coef = 0.d0
List_all_comb_b2_expo = 0.d0
List_all_comb_b2_cent = 0.d0
if((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
do i = 1, List_all_comb_b2_size
tmp_cent_x = 0.d0
tmp_cent_y = 0.d0
tmp_cent_z = 0.d0
do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
List_all_comb_b2_expo(i) += tmp_alphaj
tmp_cent_x += tmp_alphaj * nucl_coord(j,1)
tmp_cent_y += tmp_alphaj * nucl_coord(j,2)
tmp_cent_z += tmp_alphaj * nucl_coord(j,3)
enddo
if(List_all_comb_b2_expo(i) .lt. 1d-10) cycle
List_all_comb_b2_cent(1,i) = tmp_cent_x / List_all_comb_b2_expo(i)
List_all_comb_b2_cent(2,i) = tmp_cent_y / List_all_comb_b2_expo(i)
List_all_comb_b2_cent(3,i) = tmp_cent_z / List_all_comb_b2_expo(i)
enddo
! ---
do i = 1, List_all_comb_b2_size
do j = 2, nucl_num, 1
tmp_alphaj = dble(List_all_comb_b2(j,i)) * j1b_pen(j)
do k = 1, j-1, 1
tmp_alphak = dble(List_all_comb_b2(k,i)) * j1b_pen(k)
List_all_comb_b2_coef(i) += tmp_alphaj * tmp_alphak * ( (nucl_coord(j,1) - nucl_coord(k,1)) * (nucl_coord(j,1) - nucl_coord(k,1)) &
+ (nucl_coord(j,2) - nucl_coord(k,2)) * (nucl_coord(j,2) - nucl_coord(k,2)) &
+ (nucl_coord(j,3) - nucl_coord(k,3)) * (nucl_coord(j,3) - nucl_coord(k,3)) )
enddo
enddo
if(List_all_comb_b2_expo(i) .lt. 1d-10) cycle
List_all_comb_b2_coef(i) = List_all_comb_b2_coef(i) / List_all_comb_b2_expo(i)
enddo
! ---
do i = 1, List_all_comb_b2_size
phase = 0
do j = 1, nucl_num
phase += List_all_comb_b2(j,i)
enddo
List_all_comb_b2_coef(i) = (-1.d0)**dble(phase) * dexp(-List_all_comb_b2_coef(i))
enddo
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
List_all_comb_b2_coef( 1) = 1.d0
List_all_comb_b2_expo( 1) = 0.d0
List_all_comb_b2_cent(1:3,1) = 0.d0
do i = 1, nucl_num
List_all_comb_b2_coef( i+1) = -1.d0 * j1b_pen_coef(i)
List_all_comb_b2_expo( i+1) = j1b_pen(i)
List_all_comb_b2_cent(1,i+1) = nucl_coord(i,1)
List_all_comb_b2_cent(2,i+1) = nucl_coord(i,2)
List_all_comb_b2_cent(3,i+1) = nucl_coord(i,3)
enddo
else
print *, 'j1b_type = ', j1b_type, 'is not implemented'
stop
endif
!print *, ' coeff, expo & cent of list b2'
!do i = 1, List_all_comb_b2_size
! print*, i, List_all_comb_b2_coef(i), List_all_comb_b2_expo(i)
! print*, List_all_comb_b2_cent(1,i), List_all_comb_b2_cent(2,i), List_all_comb_b2_cent(3,i)
!enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ integer, List_all_comb_b3_size]
implicit none
double precision :: tmp
if((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
List_all_comb_b3_size = 3**nucl_num
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
tmp = 0.5d0 * dble(nucl_num) * (dble(nucl_num) + 3.d0)
List_all_comb_b3_size = int(tmp) + 1
else
print *, 'j1b_type = ', j1b_type, 'is not implemented'
stop
endif
print *, ' nb of linear terms in the square of the envelope is ', List_all_comb_b3_size
END_PROVIDER
! ---
BEGIN_PROVIDER [integer, List_all_comb_b3, (nucl_num, List_all_comb_b3_size)]
implicit none
integer :: i, j, ii, jj
integer, allocatable :: M(:,:), p(:)
if(nucl_num .gt. 32) then
print *, ' nucl_num = ', nucl_num, '> 32'
stop
endif
List_all_comb_b3(:,:) = 0
List_all_comb_b3(:,List_all_comb_b3_size) = 2
allocate(p(nucl_num))
p = 0
do i = 2, List_all_comb_b3_size-1
do j = 1, nucl_num
ii = 0
do jj = 1, j-1, 1
ii = ii + p(jj) * 3**(jj-1)
enddo
p(j) = modulo(i-1-ii, 3**j) / 3**(j-1)
List_all_comb_b3(j,i) = p(j)
enddo
enddo
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, List_all_comb_b3_coef, ( List_all_comb_b3_size)]
&BEGIN_PROVIDER [ double precision, List_all_comb_b3_expo, ( List_all_comb_b3_size)]
&BEGIN_PROVIDER [ double precision, List_all_comb_b3_cent, (3, List_all_comb_b3_size)]
implicit none
integer :: i, j, k, phase
integer :: ii
double precision :: tmp_alphaj, tmp_alphak, facto
double precision :: tmp1, tmp2, tmp3, tmp4
double precision :: xi, yi, zi, xj, yj, zj
double precision :: dx, dy, dz, r2
provide j1b_pen
provide j1b_pen_coef
List_all_comb_b3_coef = 0.d0
List_all_comb_b3_expo = 0.d0
List_all_comb_b3_cent = 0.d0
if((j1b_type .eq. 3) .or. (j1b_type .eq. 103)) then
do i = 1, List_all_comb_b3_size
do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb_b3(j,i)) * j1b_pen(j)
List_all_comb_b3_expo(i) += tmp_alphaj
List_all_comb_b3_cent(1,i) += tmp_alphaj * nucl_coord(j,1)
List_all_comb_b3_cent(2,i) += tmp_alphaj * nucl_coord(j,2)
List_all_comb_b3_cent(3,i) += tmp_alphaj * nucl_coord(j,3)
enddo
if(List_all_comb_b3_expo(i) .lt. 1d-10) cycle
ASSERT(List_all_comb_b3_expo(i) .gt. 0d0)
List_all_comb_b3_cent(1,i) = List_all_comb_b3_cent(1,i) / List_all_comb_b3_expo(i)
List_all_comb_b3_cent(2,i) = List_all_comb_b3_cent(2,i) / List_all_comb_b3_expo(i)
List_all_comb_b3_cent(3,i) = List_all_comb_b3_cent(3,i) / List_all_comb_b3_expo(i)
enddo
! ---
do i = 1, List_all_comb_b3_size
do j = 2, nucl_num, 1
tmp_alphaj = dble(List_all_comb_b3(j,i)) * j1b_pen(j)
do k = 1, j-1, 1
tmp_alphak = dble(List_all_comb_b3(k,i)) * j1b_pen(k)
List_all_comb_b3_coef(i) += tmp_alphaj * tmp_alphak * ( (nucl_coord(j,1) - nucl_coord(k,1)) * (nucl_coord(j,1) - nucl_coord(k,1)) &
+ (nucl_coord(j,2) - nucl_coord(k,2)) * (nucl_coord(j,2) - nucl_coord(k,2)) &
+ (nucl_coord(j,3) - nucl_coord(k,3)) * (nucl_coord(j,3) - nucl_coord(k,3)) )
enddo
enddo
if(List_all_comb_b3_expo(i) .lt. 1d-10) cycle
List_all_comb_b3_coef(i) = List_all_comb_b3_coef(i) / List_all_comb_b3_expo(i)
enddo
! ---
do i = 1, List_all_comb_b3_size
facto = 1.d0
phase = 0
do j = 1, nucl_num
tmp_alphaj = dble(List_all_comb_b3(j,i))
facto *= 2.d0 / (gamma(tmp_alphaj+1.d0) * gamma(3.d0-tmp_alphaj))
phase += List_all_comb_b3(j,i)
enddo
List_all_comb_b3_coef(i) = (-1.d0)**dble(phase) * facto * dexp(-List_all_comb_b3_coef(i))
enddo
elseif((j1b_type .eq. 4) .or. (j1b_type .eq. 104)) then
ii = 1
List_all_comb_b3_coef( ii) = 1.d0
List_all_comb_b3_expo( ii) = 0.d0
List_all_comb_b3_cent(1:3,ii) = 0.d0
do i = 1, nucl_num
ii = ii + 1
List_all_comb_b3_coef( ii) = -2.d0 * j1b_pen_coef(i)
List_all_comb_b3_expo( ii) = j1b_pen(i)
List_all_comb_b3_cent(1,ii) = nucl_coord(i,1)
List_all_comb_b3_cent(2,ii) = nucl_coord(i,2)
List_all_comb_b3_cent(3,ii) = nucl_coord(i,3)
enddo
do i = 1, nucl_num
ii = ii + 1
List_all_comb_b3_coef( ii) = 1.d0 * j1b_pen_coef(i) * j1b_pen_coef(i)
List_all_comb_b3_expo( ii) = 2.d0 * j1b_pen(i)
List_all_comb_b3_cent(1,ii) = nucl_coord(i,1)
List_all_comb_b3_cent(2,ii) = nucl_coord(i,2)
List_all_comb_b3_cent(3,ii) = nucl_coord(i,3)
enddo
do i = 1, nucl_num-1
tmp1 = j1b_pen(i)
xi = nucl_coord(i,1)
yi = nucl_coord(i,2)
zi = nucl_coord(i,3)
do j = i+1, nucl_num
tmp2 = j1b_pen(j)
tmp3 = tmp1 + tmp2
tmp4 = 1.d0 / tmp3
xj = nucl_coord(j,1)
yj = nucl_coord(j,2)
zj = nucl_coord(j,3)
dx = xi - xj
dy = yi - yj
dz = zi - zj
r2 = dx*dx + dy*dy + dz*dz
ii = ii + 1
! x 2 to avoid doing integrals twice
List_all_comb_b3_coef( ii) = 2.d0 * dexp(-tmp1*tmp2*tmp4*r2) * j1b_pen_coef(i) * j1b_pen_coef(j)
List_all_comb_b3_expo( ii) = tmp3
List_all_comb_b3_cent(1,ii) = tmp4 * (tmp1 * xi + tmp2 * xj)
List_all_comb_b3_cent(2,ii) = tmp4 * (tmp1 * yi + tmp2 * yj)
List_all_comb_b3_cent(3,ii) = tmp4 * (tmp1 * zi + tmp2 * zj)
enddo
enddo
else
print *, 'j1b_type = ', j1b_type, 'is not implemented'
stop
endif
!print *, ' coeff, expo & cent of list b3'
!do i = 1, List_all_comb_b3_size
! print*, i, List_all_comb_b3_coef(i), List_all_comb_b3_expo(i)
! print*, List_all_comb_b3_cent(1,i), List_all_comb_b3_cent(2,i), List_all_comb_b3_cent(3,i)
!enddo
END_PROVIDER
! ---

View File

@ -3,15 +3,16 @@
&BEGIN_PROVIDER [ integer, max_List_comb_thr_b2_size]
implicit none
integer :: i_1s,i,j,ipoint
double precision :: coef,beta,center(3),int_j1b,thr
double precision :: coef,beta,center(3),int_j1b
double precision :: r(3),weight,dist
thr = 1.d-15
List_comb_thr_b2_size = 0
print*,'List_all_comb_b2_size = ',List_all_comb_b2_size
! pause
do i = 1, ao_num
do j = i, ao_num
do i_1s = 1, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef).lt.1.d-15)cycle
if(dabs(coef).lt.thrsh_cycle_tc)cycle
beta = List_all_comb_b2_expo (i_1s)
beta = max(beta,1.d-12)
center(1:3) = List_all_comb_b2_cent(1:3,i_1s)
@ -24,7 +25,7 @@
dist += ( center(3) - r(3) )*( center(3) - r(3) )
int_j1b += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
enddo
if(dabs(coef)*dabs(int_j1b).gt.thr)then
if(dabs(coef)*dabs(int_j1b).gt.thrsh_cycle_tc)then
List_comb_thr_b2_size(j,i) += 1
endif
enddo
@ -40,6 +41,7 @@
list(i) = maxval(List_comb_thr_b2_size(:,i))
enddo
max_List_comb_thr_b2_size = maxval(list)
print*,'max_List_comb_thr_b2_size = ',max_List_comb_thr_b2_size
END_PROVIDER
@ -49,16 +51,15 @@ END_PROVIDER
&BEGIN_PROVIDER [ double precision, ao_abs_comb_b2_j1b, ( max_List_comb_thr_b2_size ,ao_num, ao_num)]
implicit none
integer :: i_1s,i,j,ipoint,icount
double precision :: coef,beta,center(3),int_j1b,thr
double precision :: coef,beta,center(3),int_j1b
double precision :: r(3),weight,dist
thr = 1.d-15
ao_abs_comb_b2_j1b = 10000000.d0
do i = 1, ao_num
do j = i, ao_num
icount = 0
do i_1s = 1, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef).lt.1.d-12)cycle
if(dabs(coef).lt.thrsh_cycle_tc)cycle
beta = List_all_comb_b2_expo (i_1s)
center(1:3) = List_all_comb_b2_cent(1:3,i_1s)
int_j1b = 0.d0
@ -70,7 +71,7 @@ END_PROVIDER
dist += ( center(3) - r(3) )*( center(3) - r(3) )
int_j1b += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
enddo
if(dabs(coef)*dabs(int_j1b).gt.thr)then
if(dabs(coef)*dabs(int_j1b).gt.thrsh_cycle_tc)then
icount += 1
List_comb_thr_b2_coef(icount,j,i) = coef
List_comb_thr_b2_expo(icount,j,i) = beta
@ -98,17 +99,17 @@ END_PROVIDER
&BEGIN_PROVIDER [ integer, max_List_comb_thr_b3_size]
implicit none
integer :: i_1s,i,j,ipoint
double precision :: coef,beta,center(3),int_j1b,thr
double precision :: coef,beta,center(3),int_j1b
double precision :: r(3),weight,dist
thr = 1.d-15
List_comb_thr_b3_size = 0
print*,'List_all_comb_b3_size = ',List_all_comb_b3_size
do i = 1, ao_num
do j = 1, ao_num
do i_1s = 1, List_all_comb_b3_size
coef = List_all_comb_b3_coef (i_1s)
beta = List_all_comb_b3_expo (i_1s)
center(1:3) = List_all_comb_b3_cent(1:3,i_1s)
if(dabs(coef).lt.thr)cycle
if(dabs(coef).lt.thrsh_cycle_tc)cycle
int_j1b = 0.d0
do ipoint = 1, n_points_extra_final_grid
r(1:3) = final_grid_points_extra(1:3,ipoint)
@ -118,7 +119,7 @@ END_PROVIDER
dist += ( center(3) - r(3) )*( center(3) - r(3) )
int_j1b += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
enddo
if(dabs(coef)*dabs(int_j1b).gt.thr)then
if(dabs(coef)*dabs(int_j1b).gt.thrsh_cycle_tc)then
List_comb_thr_b3_size(j,i) += 1
endif
enddo
@ -144,9 +145,8 @@ END_PROVIDER
&BEGIN_PROVIDER [ double precision, ao_abs_comb_b3_j1b, ( max_List_comb_thr_b3_size ,ao_num, ao_num)]
implicit none
integer :: i_1s,i,j,ipoint,icount
double precision :: coef,beta,center(3),int_j1b,thr
double precision :: coef,beta,center(3),int_j1b
double precision :: r(3),weight,dist
thr = 1.d-15
ao_abs_comb_b3_j1b = 10000000.d0
do i = 1, ao_num
do j = 1, ao_num
@ -156,7 +156,7 @@ END_PROVIDER
beta = List_all_comb_b3_expo (i_1s)
beta = max(beta,1.d-12)
center(1:3) = List_all_comb_b3_cent(1:3,i_1s)
if(dabs(coef).lt.thr)cycle
if(dabs(coef).lt.thrsh_cycle_tc)cycle
int_j1b = 0.d0
do ipoint = 1, n_points_extra_final_grid
r(1:3) = final_grid_points_extra(1:3,ipoint)
@ -166,7 +166,7 @@ END_PROVIDER
dist += ( center(3) - r(3) )*( center(3) - r(3) )
int_j1b += dabs(aos_in_r_array_extra_transp(ipoint,i) * aos_in_r_array_extra_transp(ipoint,j))*dexp(-beta*dist) * weight
enddo
if(dabs(coef)*dabs(int_j1b).gt.thr)then
if(dabs(coef)*dabs(int_j1b).gt.thrsh_cycle_tc)then
icount += 1
List_comb_thr_b3_coef(icount,j,i) = coef
List_comb_thr_b3_expo(icount,j,i) = beta
@ -177,15 +177,5 @@ END_PROVIDER
enddo
enddo
! do i = 1, ao_num
! do j = 1, i-1
! do icount = 1, List_comb_thr_b3_size(j,i)
! List_comb_thr_b3_coef(icount,j,i) = List_comb_thr_b3_coef(icount,i,j)
! List_comb_thr_b3_expo(icount,j,i) = List_comb_thr_b3_expo(icount,i,j)
! List_comb_thr_b3_cent(1:3,icount,j,i) = List_comb_thr_b3_cent(1:3,icount,i,j)
! enddo
! enddo
! enddo
END_PROVIDER

View File

@ -1,4 +1,4 @@
ao_two_e_erf_ints
ao_two_e_ints
mo_one_e_ints
ao_many_one_e_ints
dft_utils_in_r

View File

@ -53,13 +53,13 @@ subroutine compute_ao_tc_sym_two_e_pot_jl(j, l, n_integrals, buffer_i, buffer_va
integral_erf = ao_two_e_integral_erf(i, k, j, l)
integral = integral_erf + integral_pot
if( j1b_type .eq. 1 ) then
!print *, ' j1b type 1 is added'
integral = integral + j1b_gauss_2e_j1(i, k, j, l)
elseif( j1b_type .eq. 2 ) then
!print *, ' j1b type 2 is added'
integral = integral + j1b_gauss_2e_j2(i, k, j, l)
endif
!if( j1b_type .eq. 1 ) then
! !print *, ' j1b type 1 is added'
! integral = integral + j1b_gauss_2e_j1(i, k, j, l)
!elseif( j1b_type .eq. 2 ) then
! !print *, ' j1b type 2 is added'
! integral = integral + j1b_gauss_2e_j2(i, k, j, l)
!endif
if(abs(integral) < thr) then
cycle

View File

@ -36,7 +36,7 @@ END_PROVIDER
END_PROVIDER
BEGIN_PROVIDER [ double precision, expo_j_xmu, (n_fit_1_erf_x) ]
implicit none
BEGIN_DOC
! F(x) = x * (1 - erf(x)) - 1/sqrt(pi) * exp(-x**2) is fitted with a gaussian and a Slater
!
@ -44,8 +44,17 @@ BEGIN_PROVIDER [ double precision, expo_j_xmu, (n_fit_1_erf_x) ]
!
! where alpha = expo_j_xmu(1) and beta = expo_j_xmu(2)
END_DOC
expo_j_xmu(1) = 1.7477d0
expo_j_xmu(2) = 0.668662d0
implicit none
!expo_j_xmu(1) = 1.7477d0
!expo_j_xmu(2) = 0.668662d0
!expo_j_xmu(1) = 1.74766377595541d0
!expo_j_xmu(2) = 0.668719925486403d0
expo_j_xmu(1) = 1.74770446934522d0
expo_j_xmu(2) = 0.668659706559979d0
END_PROVIDER

View File

@ -10,8 +10,8 @@ function run() {
qp set perturbation do_pt2 False
qp set determinants n_det_max 8000
qp set determinants n_states 1
qp set davidson threshold_davidson 1.e-10
qp set davidson n_states_diag 8
qp set davidson_keywords threshold_davidson 1.e-10
qp set davidson_keywords n_states_diag 8
qp run fci
energy1="$(ezfio get fci energy | tr '[]' ' ' | cut -d ',' -f 1)"
eq $energy1 $1 $thresh

View File

@ -0,0 +1,475 @@
! ---
program bi_ort_ints
BEGIN_DOC
! TODO : Put the documentation of the program here
END_DOC
implicit none
my_grid_becke = .True.
PROVIDE tc_grid1_a tc_grid1_r
my_n_pt_r_grid = tc_grid1_r
my_n_pt_a_grid = tc_grid1_a
touch my_grid_becke my_n_pt_r_grid my_n_pt_a_grid
! call test_3e
! call test_5idx
! call test_5idx2
call test_4idx()
!call test_4idx_n4()
!call test_4idx2()
!call test_5idx2
!call test_5idx
end
subroutine test_5idx2
PROVIDE three_e_5_idx_cycle_2_bi_ort
end
subroutine test_4idx2()
!PROVIDE three_e_4_idx_direct_bi_ort
PROVIDE three_e_4_idx_exch23_bi_ort
end
subroutine test_3e
implicit none
integer :: i,k,j,l,m,n,ipoint
double precision :: accu, contrib,new,ref
i = 1
k = 1
n = 0
accu = 0.d0
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
do n = 1, mo_num
call give_integrals_3_body_bi_ort(n, l, k, m, j, i, new)
call give_integrals_3_body_bi_ort_old(n, l, k, m, j, i, ref)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. 1.d-10)then
print*,'pb !!'
print*,i,k,j,l,m,n
print*,ref,new,contrib
stop
endif
enddo
enddo
enddo
enddo
enddo
enddo
print*,'accu = ',accu/dble(mo_num)**6
end
subroutine test_5idx
implicit none
integer :: i,k,j,l,m,n,ipoint
double precision :: accu, contrib,new,ref
double precision, external :: three_e_5_idx_exch12_bi_ort
i = 1
k = 1
n = 0
accu = 0.d0
PROVIDE three_e_5_idx_direct_bi_ort_old
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
! if (dabs(three_e_5_idx_direct_bi_ort(m,l,j,k,i) - three_e_5_idx_exch12_bi_ort(m,l,i,k,j)) > 1.d-10) then
! stop
! endif
new = three_e_5_idx_direct_bi_ort(m,l,j,k,i)
ref = three_e_5_idx_direct_bi_ort_old(m,l,j,k,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. 1.d-10)then
print*,'direct'
print*,i,k,j,l,m
print*,ref,new,contrib
stop
endif
!
! new = three_e_5_idx_exch12_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'exch12'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
!
! new = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'cycle1'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
! new = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'cycle2'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
! new = three_e_5_idx_exch23_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'exch23'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
! new = three_e_5_idx_exch13_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'exch13'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
! new = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'cycle1'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
! new = three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'cycle2'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
! new = three_e_5_idx_exch23_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'exch23'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
! new = three_e_5_idx_exch13_bi_ort(m,l,j,k,i)
! ref = three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i)
! contrib = dabs(new - ref)
! accu += contrib
! if(contrib .gt. 1.d-10)then
! print*,'exch13'
! print*,i,k,j,l,m
! print*,ref,new,contrib
! stop
! endif
!
enddo
enddo
enddo
enddo
enddo
print*,'accu = ',accu/dble(mo_num)**5
end
! ---
subroutine test_4idx_n4()
implicit none
integer :: i, j, k, l
double precision :: accu, contrib, new, ref, thr
thr = 1d-10
PROVIDE three_e_4_idx_direct_bi_ort_old
PROVIDE three_e_4_idx_direct_bi_ort_n4
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_direct_bi_ort_n4 (l,k,j,i)
ref = three_e_4_idx_direct_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_direct_bi_ort_n4'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_direct_bi_ort_n4 = ', accu / dble(mo_num)**4
! ---
PROVIDE three_e_4_idx_exch13_bi_ort_old
PROVIDE three_e_4_idx_exch13_bi_ort_n4
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_exch13_bi_ort_n4 (l,k,j,i)
ref = three_e_4_idx_exch13_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_exch13_bi_ort_n4'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_exch13_bi_ort_n4 = ', accu / dble(mo_num)**4
! ---
PROVIDE three_e_4_idx_cycle_1_bi_ort_old
PROVIDE three_e_4_idx_cycle_1_bi_ort_n4
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_cycle_1_bi_ort_n4 (l,k,j,i)
ref = three_e_4_idx_cycle_1_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_cycle_1_bi_ort_n4'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_cycle_1_bi_ort_n4 = ', accu / dble(mo_num)**4
! ---
PROVIDE three_e_4_idx_exch23_bi_ort_old
PROVIDE three_e_4_idx_exch23_bi_ort_n4
accu = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_exch23_bi_ort_n4 (l,k,j,i)
ref = three_e_4_idx_exch23_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
accu += contrib
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_exch23_bi_ort_n4'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_exch23_bi_ort_n4 = ', accu / dble(mo_num)**4
! ---
return
end
! ---
subroutine test_4idx()
implicit none
integer :: i, j, k, l
double precision :: accu, contrib, new, ref, thr, norm
thr = 1d-10
PROVIDE three_e_4_idx_direct_bi_ort_old
PROVIDE three_e_4_idx_direct_bi_ort
accu = 0.d0
norm = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_direct_bi_ort (l,k,j,i)
ref = three_e_4_idx_direct_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_direct_bi_ort'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
accu += contrib
norm += dabs(ref)
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_direct_bi_ort (%) = ', 100.d0 * accu / norm
! ---
PROVIDE three_e_4_idx_exch13_bi_ort_old
PROVIDE three_e_4_idx_exch13_bi_ort
accu = 0.d0
norm = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_exch13_bi_ort (l,k,j,i)
ref = three_e_4_idx_exch13_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_exch13_bi_ort'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
accu += contrib
norm += dabs(ref)
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_exch13_bi_ort (%) = ', 100.d0 * accu / norm
! ---
PROVIDE three_e_4_idx_cycle_1_bi_ort_old
PROVIDE three_e_4_idx_cycle_1_bi_ort
accu = 0.d0
norm = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_cycle_1_bi_ort (l,k,j,i)
ref = three_e_4_idx_cycle_1_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_cycle_1_bi_ort'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
accu += contrib
norm += dabs(ref)
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_cycle_1_bi_ort (%) = ', 100.d0 * accu / norm
! ---
PROVIDE three_e_4_idx_exch23_bi_ort_old
PROVIDE three_e_4_idx_exch23_bi_ort
accu = 0.d0
norm = 0.d0
do i = 1, mo_num
do j = 1, mo_num
do k = 1, mo_num
do l = 1, mo_num
new = three_e_4_idx_exch23_bi_ort (l,k,j,i)
ref = three_e_4_idx_exch23_bi_ort_old(l,k,j,i)
contrib = dabs(new - ref)
if(contrib .gt. thr) then
print*, ' problem in three_e_4_idx_exch23_bi_ort'
print*, l, k, j, i
print*, ref, new, contrib
stop
endif
accu += contrib
norm += dabs(ref)
enddo
enddo
enddo
enddo
print*, ' accu on three_e_4_idx_exch23_bi_ort (%) = ', 100.d0 * accu / norm
! ---
return
end

File diff suppressed because it is too large Load Diff

View File

@ -0,0 +1,66 @@
! ---
BEGIN_PROVIDER [double precision, energy_1e_noL_HF]
implicit none
integer :: i
PROVIDE mo_bi_ortho_tc_one_e
energy_1e_noL_HF = 0.d0
do i = 1, elec_beta_num
energy_1e_noL_HF += mo_bi_ortho_tc_one_e(i,i)
enddo
do i = 1, elec_alpha_num
energy_1e_noL_HF += mo_bi_ortho_tc_one_e(i,i)
enddo
print*, "energy_1e_noL_HF = ", energy_1e_noL_HF
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, energy_2e_noL_HF]
implicit none
integer :: i, j
PROVIDE mo_bi_ortho_tc_two_e
energy_2e_noL_HF = 0.d0
! down-down & down-down
do i = 1, elec_beta_num
do j = 1, elec_beta_num
energy_2e_noL_HF += (mo_bi_ortho_tc_two_e(i,j,i,j) - mo_bi_ortho_tc_two_e(j,i,i,j))
enddo
enddo
! down-down & up-up
do i = 1, elec_beta_num
do j = 1, elec_alpha_num
energy_2e_noL_HF += mo_bi_ortho_tc_two_e(i,j,i,j)
enddo
enddo
! up-up & down-down
do i = 1, elec_alpha_num
do j = 1, elec_beta_num
energy_2e_noL_HF += mo_bi_ortho_tc_two_e(i,j,i,j)
enddo
enddo
! up-up & up-up
do i = 1, elec_alpha_num
do j = 1, elec_alpha_num
energy_2e_noL_HF += (mo_bi_ortho_tc_two_e(i,j,i,j) - mo_bi_ortho_tc_two_e(j,i,i,j))
enddo
enddo
! 0.5 x is in the Slater-Condon rules and not in the integrals
energy_2e_noL_HF = 0.5d0 * energy_2e_noL_HF
print*, "energy_2e_noL_HF = ", energy_2e_noL_HF
END_PROVIDER
! ---

View File

@ -0,0 +1,512 @@
! ---
BEGIN_PROVIDER [double precision, noL_0e_naive]
implicit none
integer :: ii, jj, kk
integer :: i, j, k
double precision :: sigma_i, sigma_j, sigma_k
double precision :: I_ijk_ijk, I_ijk_kij, I_ijk_jki, I_ijk_jik, I_ijk_kji, I_ijk_ikj
double precision :: t0, t1
double precision, allocatable :: tmp(:)
print*, " Providing noL_0e_naive ..."
call wall_time(t0)
allocate(tmp(elec_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ii, i, sigma_i, jj, j, sigma_j, kk, k, sigma_k, &
!$OMP I_ijk_ijk, I_ijk_kij, I_ijk_jki, I_ijk_jik, &
!$OMP I_ijk_kji, I_ijk_ikj) &
!$OMP SHARED (elec_beta_num, elec_num, tmp)
!$OMP DO
do ii = 1, elec_num
if(ii .le. elec_beta_num) then
i = ii
sigma_i = -1.d0
else
i = ii - elec_beta_num
sigma_i = +1.d0
endif
tmp(ii) = 0.d0
do jj = 1, elec_num
if(jj .le. elec_beta_num) then
j = jj
sigma_j = -1.d0
else
j = jj - elec_beta_num
sigma_j = +1.d0
endif
do kk = 1, elec_num
if(kk .le. elec_beta_num) then
k = kk
sigma_k = -1.d0
else
k = kk - elec_beta_num
sigma_k = +1.d0
endif
call give_integrals_3_body_bi_ort_spin( i, sigma_i, j, sigma_j, k, sigma_k &
, i, sigma_i, j, sigma_j, k, sigma_k &
, I_ijk_ijk)
call give_integrals_3_body_bi_ort_spin( i, sigma_i, j, sigma_j, k, sigma_k &
, k, sigma_k, i, sigma_i, j, sigma_j &
, I_ijk_kij)
call give_integrals_3_body_bi_ort_spin( i, sigma_i, j, sigma_j, k, sigma_k &
, j, sigma_j, k, sigma_k, i, sigma_i &
, I_ijk_jki)
call give_integrals_3_body_bi_ort_spin( i, sigma_i, j, sigma_j, k, sigma_k &
, j, sigma_j, i, sigma_i, k, sigma_k &
, I_ijk_jik)
call give_integrals_3_body_bi_ort_spin( i, sigma_i, j, sigma_j, k, sigma_k &
, k, sigma_k, j, sigma_j, i, sigma_i &
, I_ijk_kji)
call give_integrals_3_body_bi_ort_spin( i, sigma_i, j, sigma_j, k, sigma_k &
, i, sigma_i, k, sigma_k, j, sigma_j &
, I_ijk_ikj)
tmp(ii) = tmp(ii) + I_ijk_ijk + I_ijk_kij + I_ijk_jki - I_ijk_jik - I_ijk_kji - I_ijk_ikj
! = tmp(ii) + I_ijk_ijk + 2.d0 * I_ijk_kij - 3.d0 * I_ijk_jik
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
noL_0e_naive = -1.d0 * (sum(tmp)) / 6.d0
deallocate(tmp)
call wall_time(t1)
print*, " Wall time for noL_0e_naive (min) = ", (t1 - t0)/60.d0
print*, " noL_0e_naive = ", noL_0e_naive
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, noL_1e_naive, (mo_num, mo_num)]
BEGIN_DOC
!
! < p | H(1) | s > is dressed with noL_1e_naive(p,s)
!
END_DOC
implicit none
integer :: ii, jj
integer :: i, j, p, s
double precision :: sigma_i, sigma_j, sigma_p, sigma_s
double precision :: I_pij_sji, I_pij_sij, I_pij_jis, I_pij_ijs, I_pij_isj, I_pij_jsi
double precision :: t0, t1
print*, " Providing noL_1e_naive ..."
call wall_time(t0)
! ----
! up-up part
sigma_p = +1.d0
sigma_s = +1.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ii, i, sigma_i, jj, j, sigma_j, &
!$OMP I_pij_sji, I_pij_sij, I_pij_jis, &
!$OMP I_pij_ijs, I_pij_isj, I_pij_jsi ) &
!$OMP SHARED (mo_num, elec_beta_num, elec_num, &
!$OMP sigma_p, sigma_s, noL_1e_naive)
!$OMP DO COLLAPSE (2)
do s = 1, mo_num
do p = 1, mo_num
noL_1e_naive(p,s) = 0.d0
do ii = 1, elec_num
if(ii .le. elec_beta_num) then
i = ii
sigma_i = -1.d0
else
i = ii - elec_beta_num
sigma_i = +1.d0
endif
do jj = 1, elec_num
if(jj .le. elec_beta_num) then
j = jj
sigma_j = -1.d0
else
j = jj - elec_beta_num
sigma_j = +1d0
endif
call give_integrals_3_body_bi_ort_spin( p, sigma_p, i, sigma_i, j, sigma_j &
, s, sigma_s, j, sigma_j, i, sigma_i &
, I_pij_sji)
call give_integrals_3_body_bi_ort_spin( p, sigma_p, i, sigma_i, j, sigma_j &
, s, sigma_s, i, sigma_i, j, sigma_j &
, I_pij_sij)
call give_integrals_3_body_bi_ort_spin( p, sigma_p, i, sigma_i, j, sigma_j &
, j, sigma_j, i, sigma_i, s, sigma_s &
, I_pij_jis)
call give_integrals_3_body_bi_ort_spin( p, sigma_p, i, sigma_i, j, sigma_j &
, i, sigma_i, j, sigma_j, s, sigma_s &
, I_pij_ijs)
call give_integrals_3_body_bi_ort_spin( p, sigma_p, i, sigma_i, j, sigma_j &
, i, sigma_i, s, sigma_s, j, sigma_j &
, I_pij_isj)
call give_integrals_3_body_bi_ort_spin( p, sigma_p, i, sigma_i, j, sigma_j &
, j, sigma_j, s, sigma_s, i, sigma_i &
, I_pij_jsi)
! x 0.5 because we consider 0.5 (up + down)
noL_1e_naive(p,s) = noL_1e_naive(p,s) - 0.25d0 * (I_pij_sji - I_pij_sij + I_pij_jis - I_pij_ijs + I_pij_isj - I_pij_jsi)
enddo ! j
enddo ! i
enddo ! s
enddo ! p
!$OMP END DO
!$OMP END PARALLEL
! ----
! down-down part
sigma_p = -1.d0
sigma_s = -1.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ii, i, sigma_i, jj, j, sigma_j, &
!$OMP I_pij_sji, I_pij_sij, I_pij_jis, &
!$OMP I_pij_ijs, I_pij_isj, I_pij_jsi ) &
!$OMP SHARED (mo_num, elec_beta_num, elec_num, &
!$OMP sigma_p, sigma_s, noL_1e_naive)
!$OMP DO COLLAPSE (2)
do s = 1, mo_num
do p = 1, mo_num
do ii = 1, elec_num
if(ii .le. elec_beta_num) then
i = ii
sigma_i = -1.d0
else
i = ii - elec_beta_num
sigma_i = +1.d0
endif
do jj = 1, elec_num
if(jj .le. elec_beta_num) then
j = jj
sigma_j = -1.d0
else
j = jj - elec_beta_num
sigma_j = +1d0
endif
call give_integrals_3_body_bi_ort_spin( p, sigma_p, i, sigma_i, j, sigma_j &
, s, sigma_s, j, sigma_j, i, sigma_i &
, I_pij_sji)
call give_integrals_3_body_bi_ort_spin( p, sigma_p, i, sigma_i, j, sigma_j &
, s, sigma_s, i, sigma_i, j, sigma_j &
, I_pij_sij)
call give_integrals_3_body_bi_ort_spin( p, sigma_p, i, sigma_i, j, sigma_j &
, j, sigma_j, i, sigma_i, s, sigma_s &
, I_pij_jis)
call give_integrals_3_body_bi_ort_spin( p, sigma_p, i, sigma_i, j, sigma_j &
, i, sigma_i, j, sigma_j, s, sigma_s &
, I_pij_ijs)
call give_integrals_3_body_bi_ort_spin( p, sigma_p, i, sigma_i, j, sigma_j &
, i, sigma_i, s, sigma_s, j, sigma_j &
, I_pij_isj)
call give_integrals_3_body_bi_ort_spin( p, sigma_p, i, sigma_i, j, sigma_j &
, j, sigma_j, s, sigma_s, i, sigma_i &
, I_pij_jsi)
! x 0.5 because we consider 0.5 (up + down)
noL_1e_naive(p,s) = noL_1e_naive(p,s) - 0.25d0 * (I_pij_sji - I_pij_sij + I_pij_jis - I_pij_ijs + I_pij_isj - I_pij_jsi)
enddo ! j
enddo ! i
enddo ! s
enddo ! p
!$OMP END DO
!$OMP END PARALLEL
! ---
call wall_time(t1)
print*, " Wall time for noL_1e_naive (min) = ", (t1 - t0)/60.d0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, noL_2e_naive, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! < p q | H(2) | s t > is dressed with noL_2e_naive(p,q,s,t)
!
END_DOC
implicit none
integer :: ii
integer :: i, p, q, s, t
double precision :: sigma_i, sigma_p, sigma_q, sigma_s, sigma_t
double precision :: I_ipq_ist, I_ipq_sit, I_ipq_tsi
double precision :: t0, t1
print*, " Providing noL_2e_naive ..."
call wall_time(t0)
! ----
! up-up & up-up part
sigma_p = +1.d0
sigma_s = +1.d0
sigma_q = +1.d0
sigma_t = +1.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ii, i, sigma_i, p, q, s, t, &
!$OMP I_ipq_ist, I_ipq_sit, I_ipq_tsi) &
!$OMP SHARED (mo_num, elec_beta_num, elec_num, &
!$OMP sigma_p, sigma_q, sigma_s, sigma_t, &
!$OMP noL_2e_naive)
!$OMP DO COLLAPSE (4)
do t = 1, mo_num
do s = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
noL_2e_naive(p,q,s,t) = 0.d0
do ii = 1, elec_num
if(ii .le. elec_beta_num) then
i = ii
sigma_i = -1.d0
else
i = ii - elec_beta_num
sigma_i = +1.d0
endif
call give_integrals_3_body_bi_ort_spin( i, sigma_i, p, sigma_p, q, sigma_q &
, i, sigma_i, s, sigma_s, t, sigma_t &
, I_ipq_ist)
call give_integrals_3_body_bi_ort_spin( i, sigma_i, p, sigma_p, q, sigma_q &
, s, sigma_s, i, sigma_i, t, sigma_t &
, I_ipq_sit)
call give_integrals_3_body_bi_ort_spin( i, sigma_i, p, sigma_p, q, sigma_q &
, t, sigma_t, s, sigma_s, i, sigma_i &
, I_ipq_tsi)
! x 0.25 because we consider 0.25 (up-up + up-down + down-up + down-down)
noL_2e_naive(p,q,s,t) = noL_2e_naive(p,q,s,t) - 0.125d0 * (I_ipq_ist - I_ipq_sit - I_ipq_tsi)
enddo ! i
enddo ! p
enddo ! q
enddo ! s
enddo ! t
!$OMP END DO
!$OMP END PARALLEL
! ----
! up-up & down-down part
sigma_p = +1.d0
sigma_s = +1.d0
sigma_q = -1.d0
sigma_t = -1.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ii, i, sigma_i, p, q, s, t, &
!$OMP I_ipq_ist, I_ipq_sit, I_ipq_tsi) &
!$OMP SHARED (mo_num, elec_beta_num, elec_num, &
!$OMP sigma_p, sigma_q, sigma_s, sigma_t, &
!$OMP noL_2e_naive)
!$OMP DO COLLAPSE (4)
do t = 1, mo_num
do s = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
do ii = 1, elec_num
if(ii .le. elec_beta_num) then
i = ii
sigma_i = -1.d0
else
i = ii - elec_beta_num
sigma_i = +1.d0
endif
call give_integrals_3_body_bi_ort_spin( i, sigma_i, p, sigma_p, q, sigma_q &
, i, sigma_i, s, sigma_s, t, sigma_t &
, I_ipq_ist)
call give_integrals_3_body_bi_ort_spin( i, sigma_i, p, sigma_p, q, sigma_q &
, s, sigma_s, i, sigma_i, t, sigma_t &
, I_ipq_sit)
call give_integrals_3_body_bi_ort_spin( i, sigma_i, p, sigma_p, q, sigma_q &
, t, sigma_t, s, sigma_s, i, sigma_i &
, I_ipq_tsi)
! x 0.25 because we consider 0.25 (up-up + up-down + down-up + down-down)
noL_2e_naive(p,q,s,t) = noL_2e_naive(p,q,s,t) - 0.125d0 * (I_ipq_ist - I_ipq_sit - I_ipq_tsi)
enddo ! i
enddo ! p
enddo ! q
enddo ! s
enddo ! t
!$OMP END DO
!$OMP END PARALLEL
! ----
! down-down & up-up part
sigma_p = -1.d0
sigma_s = -1.d0
sigma_q = +1.d0
sigma_t = +1.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ii, i, sigma_i, p, q, s, t, &
!$OMP I_ipq_ist, I_ipq_sit, I_ipq_tsi) &
!$OMP SHARED (mo_num, elec_beta_num, elec_num, &
!$OMP sigma_p, sigma_q, sigma_s, sigma_t, &
!$OMP noL_2e_naive)
!$OMP DO COLLAPSE (4)
do t = 1, mo_num
do s = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
do ii = 1, elec_num
if(ii .le. elec_beta_num) then
i = ii
sigma_i = -1.d0
else
i = ii - elec_beta_num
sigma_i = +1.d0
endif
call give_integrals_3_body_bi_ort_spin( i, sigma_i, p, sigma_p, q, sigma_q &
, i, sigma_i, s, sigma_s, t, sigma_t &
, I_ipq_ist)
call give_integrals_3_body_bi_ort_spin( i, sigma_i, p, sigma_p, q, sigma_q &
, s, sigma_s, i, sigma_i, t, sigma_t &
, I_ipq_sit)
call give_integrals_3_body_bi_ort_spin( i, sigma_i, p, sigma_p, q, sigma_q &
, t, sigma_t, s, sigma_s, i, sigma_i &
, I_ipq_tsi)
! x 0.25 because we consider 0.25 (up-up + up-down + down-up + down-down)
noL_2e_naive(p,q,s,t) = noL_2e_naive(p,q,s,t) - 0.125d0 * (I_ipq_ist - I_ipq_sit - I_ipq_tsi)
enddo ! i
enddo ! p
enddo ! q
enddo ! s
enddo ! t
!$OMP END DO
!$OMP END PARALLEL
! ----
! down-down & down-down part
sigma_p = -1.d0
sigma_s = -1.d0
sigma_q = -1.d0
sigma_t = -1.d0
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ii, i, sigma_i, p, q, s, t, &
!$OMP I_ipq_ist, I_ipq_sit, I_ipq_tsi) &
!$OMP SHARED (mo_num, elec_beta_num, elec_num, &
!$OMP sigma_p, sigma_q, sigma_s, sigma_t, &
!$OMP noL_2e_naive)
!$OMP DO COLLAPSE (4)
do t = 1, mo_num
do s = 1, mo_num
do q = 1, mo_num
do p = 1, mo_num
do ii = 1, elec_num
if(ii .le. elec_beta_num) then
i = ii
sigma_i = -1.d0
else
i = ii - elec_beta_num
sigma_i = +1.d0
endif
call give_integrals_3_body_bi_ort_spin( i, sigma_i, p, sigma_p, q, sigma_q &
, i, sigma_i, s, sigma_s, t, sigma_t &
, I_ipq_ist)
call give_integrals_3_body_bi_ort_spin( i, sigma_i, p, sigma_p, q, sigma_q &
, s, sigma_s, i, sigma_i, t, sigma_t &
, I_ipq_sit)
call give_integrals_3_body_bi_ort_spin( i, sigma_i, p, sigma_p, q, sigma_q &
, t, sigma_t, s, sigma_s, i, sigma_i &
, I_ipq_tsi)
! x 0.25 because we consider 0.25 (up-up + up-down + down-up + down-down)
noL_2e_naive(p,q,s,t) = noL_2e_naive(p,q,s,t) - 0.125d0 * (I_ipq_ist - I_ipq_sit - I_ipq_tsi)
enddo ! i
enddo ! p
enddo ! q
enddo ! s
enddo ! t
!$OMP END DO
!$OMP END PARALLEL
call wall_time(t1)
print*, " Wall time for noL_2e_naive (min) = ", (t1 - t0)/60.d0
END_PROVIDER
! ---

View File

@ -8,19 +8,22 @@ BEGIN_PROVIDER [double precision, ao_one_e_integrals_tc_tot, (ao_num,ao_num)]
ao_one_e_integrals_tc_tot = ao_one_e_integrals
provide j1b_type
!provide j1b_type
if( (j1b_type .eq. 1) .or. (j1b_type .eq. 2) ) then
!if( (j1b_type .eq. 1) .or. (j1b_type .eq. 2) ) then
!
! print *, ' do things properly !'
! stop
do i = 1, ao_num
do j = 1, ao_num
ao_one_e_integrals_tc_tot(j,i) += ( j1b_gauss_hermI (j,i) &
+ j1b_gauss_hermII (j,i) &
+ j1b_gauss_nonherm(j,i) )
enddo
enddo
! !do i = 1, ao_num
! ! do j = 1, ao_num
! ! ao_one_e_integrals_tc_tot(j,i) += ( j1b_gauss_hermI (j,i) &
! ! + j1b_gauss_hermII (j,i) &
! ! + j1b_gauss_nonherm(j,i) )
! ! enddo
! !enddo
endif
!endif
END_PROVIDER
@ -38,6 +41,11 @@ BEGIN_PROVIDER [ double precision, mo_bi_ortho_tc_one_e, (mo_num, mo_num)]
call ao_to_mo_bi_ortho(ao_one_e_integrals_tc_tot, ao_num, mo_bi_ortho_tc_one_e, mo_num)
if(noL_standard) then
PROVIDE noL_1e
mo_bi_ortho_tc_one_e = mo_bi_ortho_tc_one_e + noL_1e
endif
END_PROVIDER
! ---
@ -45,11 +53,13 @@ END_PROVIDER
BEGIN_PROVIDER [double precision, mo_bi_orth_bipole_x , (mo_num,mo_num)]
&BEGIN_PROVIDER [double precision, mo_bi_orth_bipole_y , (mo_num,mo_num)]
&BEGIN_PROVIDER [double precision, mo_bi_orth_bipole_z , (mo_num,mo_num)]
BEGIN_DOC
! array of the integrals of Left MO_i * x Right MO_j
! array of the integrals of Left MO_i * y Right MO_j
! array of the integrals of Left MO_i * z Right MO_j
END_DOC
implicit none
call ao_to_mo_bi_ortho( &

View File

@ -111,6 +111,9 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_transp, (ao_num, ao_num, 3,
call wall_time(wall0)
if(test_cycle_tc) then
PROVIDE int2_grad1_u12_ao_test
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = 1, ao_num
@ -120,7 +123,13 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_transp, (ao_num, ao_num, 3,
enddo
enddo
enddo
FREE int2_grad1_u12_ao_test
else
PROVIDE int2_grad1_u12_ao
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = 1, ao_num
@ -130,9 +139,12 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_transp, (ao_num, ao_num, 3,
enddo
enddo
enddo
endif
call wall_time(wall1)
print *, ' wall time for int2_grad1_u12_ao_transp ', wall1 - wall0
call print_memory_usage()
END_PROVIDER
@ -144,9 +156,12 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num,
integer :: ipoint
double precision :: wall0, wall1
!print *, ' providing int2_grad1_u12_bimo_transp'
PROVIDE mo_l_coef mo_r_coef
PROVIDE int2_grad1_u12_ao_transp
!print *, ' providing int2_grad1_u12_bimo_transp'
!call wall_time(wall0)
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (ipoint) &
@ -163,16 +178,26 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_transp, (mo_num, mo_num,
!$OMP END DO
!$OMP END PARALLEL
call wall_time(wall1)
!call wall_time(wall1)
!print *, ' Wall time for providing int2_grad1_u12_bimo_transp',wall1 - wall0
!call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_t, (n_points_final_grid, 3, mo_num, mo_num)]
implicit none
integer :: i, j, ipoint
double precision :: wall0, wall1
!call wall_time(wall0)
!print *, ' Providing int2_grad1_u12_bimo_t ...'
PROVIDE mo_l_coef mo_r_coef
PROVIDE int2_grad1_u12_bimo_transp
do ipoint = 1, n_points_final_grid
do i = 1, mo_num
do j = 1, mo_num
@ -182,6 +207,13 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_bimo_t, (n_points_final_grid,3
enddo
enddo
enddo
FREE int2_grad1_u12_bimo_transp
!call wall_time(wall1)
!print *, ' wall time for int2_grad1_u12_bimo_t,', wall1 - wall0
!call print_memory_usage()
END_PROVIDER
! ---
@ -191,6 +223,8 @@ BEGIN_PROVIDER [ double precision, int2_grad1_u12_ao_t, (n_points_final_grid, 3,
implicit none
integer :: i, j, ipoint
PROVIDE int2_grad1_u12_ao
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = 1, ao_num

View File

@ -17,11 +17,14 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_direct_bi_ort, (mo_num, mo_num,
integer :: i, j, m
double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
three_e_3_idx_direct_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_direct_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
call give_integrals_3_body_bi_ort(1, 1, 1, 1, 1, 1, integral)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
@ -49,6 +52,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_direct_bi_ort, (mo_num, mo_num,
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_direct_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
@ -76,6 +80,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_cycle_1_bi_ort, (mo_num, mo_num
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
call give_integrals_3_body_bi_ort(1, 1, 1, 1, 1, 1, integral)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
@ -102,6 +107,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_cycle_1_bi_ort, (mo_num, mo_num
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_cycle_1_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
@ -123,12 +129,15 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_cycle_2_bi_ort, (mo_num, mo_num
integer :: i, j, m
double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_cycle_2_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_cycle_2_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
call give_integrals_3_body_bi_ort(1, 1, 1, 1, 1, 1, integral)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
@ -155,6 +164,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_cycle_2_bi_ort, (mo_num, mo_num
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_cycle_2_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
@ -176,12 +186,15 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch23_bi_ort, (mo_num, mo_num,
integer :: i, j, m
double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_exch23_bi_ort = 0.d0
print*,'Providing the three_e_3_idx_exch23_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
call give_integrals_3_body_bi_ort(1, 1, 1, 1, 1, 1, integral)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
@ -208,6 +221,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch23_bi_ort, (mo_num, mo_num,
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_exch23_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
@ -229,12 +243,15 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch13_bi_ort, (mo_num, mo_num,
integer :: i,j,m
double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_exch13_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_exch13_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
call give_integrals_3_body_bi_ort(1, 1, 1, 1, 1, 1, integral)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
@ -261,6 +278,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch13_bi_ort, (mo_num, mo_num,
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_exch13_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
@ -282,12 +300,15 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch12_bi_ort, (mo_num, mo_num,
integer :: i, j, m
double precision :: integral, wall1, wall0
PROVIDE mo_l_coef mo_r_coef
three_e_3_idx_exch12_bi_ort = 0.d0
print *, ' Providing the three_e_3_idx_exch12_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
call give_integrals_3_body_bi_ort(1, 1, 1, 1, 1, 1, integral)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
@ -306,6 +327,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch12_bi_ort, (mo_num, mo_num,
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_exch12_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
@ -333,6 +355,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch12_bi_ort_new, (mo_num, mo_
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
call give_integrals_3_body_bi_ort(1, 1, 1, 1, 1, 1, integral)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,m,integral) &
@ -359,6 +382,7 @@ BEGIN_PROVIDER [ double precision, three_e_3_idx_exch12_bi_ort_new, (mo_num, mo_
call wall_time(wall1)
print *, ' wall time for three_e_3_idx_exch12_bi_ort_new', wall1 - wall0
call print_memory_usage()
END_PROVIDER

View File

@ -0,0 +1,231 @@
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort , (mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort , (mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort , (mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_direct_bi_ort (m,j,k,i) = < m j k | -L | m j i > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_exch13_bi_ort (m,j,k,i) = < m j k | -L | i j m > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_exch23_bi_ort (m,j,k,i) = < m j k | -L | j m i > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = < m j k | -L | j i m > ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_4_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
! three_e_4_idx_direct_bi_ort (m,j,k,i) : Lk Ri Imm Ijj + Lj Rj Imm Iki + Lm Rm Ijj Iki
! three_e_4_idx_exch13_bi_ort (m,j,k,i) : Lk Rm Imi Ijj + Lj Rj Imi Ikm + Lm Ri Ijj Ikm
! three_e_4_idx_exch23_bi_ort (m,j,k,i) : Lk Ri Imj Ijm + Lj Rm Imj Iki + Lm Rj Ijm Iki
! three_e_4_idx_cycle_1_bi_ort(m,j,k,i) : Lk Rm Imj Iji + Lj Ri Imj Ikm + Lm Rj Iji Ikm
!
END_DOC
implicit none
integer :: ipoint, i, j, k, m, n
double precision :: wall1, wall0
double precision :: tmp_loc_1, tmp_loc_2
double precision, allocatable :: tmp1(:,:,:), tmp2(:,:,:)
double precision, allocatable :: tmp_2d(:,:)
double precision, allocatable :: tmp_aux_1(:,:,:), tmp_aux_2(:,:)
print *, ' Providing the three_e_4_idx_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
! to reduce the number of operations
allocate(tmp_aux_1(n_points_final_grid,4,mo_num))
allocate(tmp_aux_2(n_points_final_grid,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (n, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp_aux_1, tmp_aux_2)
!$OMP DO
do n = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp_aux_1(ipoint,1,n) = int2_grad1_u12_bimo_t(ipoint,1,n,n) * final_weight_at_r_vector(ipoint)
tmp_aux_1(ipoint,2,n) = int2_grad1_u12_bimo_t(ipoint,2,n,n) * final_weight_at_r_vector(ipoint)
tmp_aux_1(ipoint,3,n) = int2_grad1_u12_bimo_t(ipoint,3,n,n) * final_weight_at_r_vector(ipoint)
tmp_aux_1(ipoint,4,n) = mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,n) * final_weight_at_r_vector(ipoint)
tmp_aux_2(ipoint,n) = mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,n)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
! loops approach to break the O(N^4) scaling in memory
call set_multiple_levels_omp(.false.)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (k, i, j, m, n, ipoint, tmp_loc_1, tmp_loc_2, tmp_2d, tmp1, tmp2) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp_aux_1, tmp_aux_2, &
!$OMP three_e_4_idx_direct_bi_ort, three_e_4_idx_exch13_bi_ort, &
!$OMP three_e_4_idx_exch23_bi_ort, three_e_4_idx_cycle_1_bi_ort)
allocate(tmp_2d(mo_num,mo_num))
allocate(tmp1(n_points_final_grid,4,mo_num))
allocate(tmp2(n_points_final_grid,4,mo_num))
!$OMP DO
do k = 1, mo_num
! ---
do i = 1, mo_num
! ---
do n = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp_loc_1 = mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,i)
tmp_loc_2 = tmp_aux_2(ipoint,n)
tmp1(ipoint,1,n) = int2_grad1_u12_bimo_t(ipoint,1,n,n) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,1,k,i) * tmp_loc_2
tmp1(ipoint,2,n) = int2_grad1_u12_bimo_t(ipoint,2,n,n) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,2,k,i) * tmp_loc_2
tmp1(ipoint,3,n) = int2_grad1_u12_bimo_t(ipoint,3,n,n) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,3,k,i) * tmp_loc_2
tmp1(ipoint,4,n) = int2_grad1_u12_bimo_t(ipoint,1,n,n) * int2_grad1_u12_bimo_t(ipoint,1,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,n) * int2_grad1_u12_bimo_t(ipoint,2,k,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,n) * int2_grad1_u12_bimo_t(ipoint,3,k,i)
enddo
enddo
call dgemm( 'T', 'N', mo_num, mo_num, 4*n_points_final_grid, 1.d0 &
, tmp_aux_1(1,1,1), 4*n_points_final_grid, tmp1(1,1,1), 4*n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_direct_bi_ort(m,j,k,i) = -tmp_2d(m,j)
enddo
enddo
! ---
do n = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp_loc_1 = mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,n)
tmp_loc_2 = mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,i)
tmp1(ipoint,1,n) = int2_grad1_u12_bimo_t(ipoint,1,n,i) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,1,k,n) * tmp_loc_2
tmp1(ipoint,2,n) = int2_grad1_u12_bimo_t(ipoint,2,n,i) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,2,k,n) * tmp_loc_2
tmp1(ipoint,3,n) = int2_grad1_u12_bimo_t(ipoint,3,n,i) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,3,k,n) * tmp_loc_2
tmp1(ipoint,4,n) = int2_grad1_u12_bimo_t(ipoint,1,n,i) * int2_grad1_u12_bimo_t(ipoint,1,k,n) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,i) * int2_grad1_u12_bimo_t(ipoint,2,k,n) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,i) * int2_grad1_u12_bimo_t(ipoint,3,k,n)
tmp2(ipoint,1,n) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,i,n)
tmp2(ipoint,2,n) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,i,n)
tmp2(ipoint,3,n) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,i,n)
tmp2(ipoint,4,n) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,n)
enddo
enddo
! ---
call dgemm( 'T', 'N', mo_num, mo_num, 4*n_points_final_grid, 1.d0 &
, tmp1(1,1,1), 4*n_points_final_grid, tmp_aux_1(1,1,1), 4*n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch13_bi_ort(m,j,k,i) = -tmp_2d(m,j)
enddo
enddo
! ---
call dgemm( 'T', 'N', mo_num, mo_num, 4*n_points_final_grid, 1.d0 &
, tmp1(1,1,1), 4*n_points_final_grid, tmp2(1,1,1), 4*n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_cycle_1_bi_ort(m,i,k,j) = -tmp_2d(m,j)
enddo
enddo
! ---
enddo ! i
! ---
do j = 1, mo_num
do n = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp_loc_1 = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,j) * mos_r_in_r_array_transp(ipoint,n)
tmp_loc_2 = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,n) * mos_r_in_r_array_transp(ipoint,j)
tmp1(ipoint,1,n) = int2_grad1_u12_bimo_t(ipoint,1,n,j) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,1,j,n) * tmp_loc_2
tmp1(ipoint,2,n) = int2_grad1_u12_bimo_t(ipoint,2,n,j) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,2,j,n) * tmp_loc_2
tmp1(ipoint,3,n) = int2_grad1_u12_bimo_t(ipoint,3,n,j) * tmp_loc_1 + int2_grad1_u12_bimo_t(ipoint,3,j,n) * tmp_loc_2
tmp1(ipoint,4,n) = int2_grad1_u12_bimo_t(ipoint,1,n,j) * int2_grad1_u12_bimo_t(ipoint,1,j,n) &
+ int2_grad1_u12_bimo_t(ipoint,2,n,j) * int2_grad1_u12_bimo_t(ipoint,2,j,n) &
+ int2_grad1_u12_bimo_t(ipoint,3,n,j) * int2_grad1_u12_bimo_t(ipoint,3,j,n)
tmp2(ipoint,1,n) = int2_grad1_u12_bimo_t(ipoint,1,k,n)
tmp2(ipoint,2,n) = int2_grad1_u12_bimo_t(ipoint,2,k,n)
tmp2(ipoint,3,n) = int2_grad1_u12_bimo_t(ipoint,3,k,n)
tmp2(ipoint,4,n) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,k) * mos_r_in_r_array_transp(ipoint,n)
enddo
enddo
call dgemm( 'T', 'N', mo_num, mo_num, 4*n_points_final_grid, 1.d0 &
, tmp1(1,1,1), 4*n_points_final_grid, tmp2(1,1,1), 4*n_points_final_grid &
, 0.d0, tmp_2d(1,1), mo_num)
do i = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch23_bi_ort(m,j,k,i) = -tmp_2d(m,i)
enddo
enddo
enddo ! j
! ---
enddo !k
!$OMP END DO
deallocate(tmp_2d)
deallocate(tmp1)
deallocate(tmp2)
!$OMP END PARALLEL
deallocate(tmp_aux_1)
deallocate(tmp_aux_2)
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---

View File

@ -0,0 +1,486 @@
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort_n4 , (mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort_n4 , (mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort_n4, (mo_num, mo_num, mo_num, mo_num)]
!&BEGIN_PROVIDER [ double precision, three_e_4_idx_exch12_bi_ort_n4, (mo_num, mo_num, mo_num, mo_num)]
!&BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_2_bi_ort_n4, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_direct_bi_ort_n4 (m,j,k,i) = < m j k | -L | m j i > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_exch13_bi_ort_n4 (m,j,k,i) = < m j k | -L | i j m > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_exch12_bi_ort_n4 (m,j,k,i) = < m j k | -L | m i j > ::: notice that i is the RIGHT MO and k is the LEFT MO
! = three_e_4_idx_exch13_bi_ort_n4 (j,m,k,i)
! three_e_4_idx_cycle_1_bi_ort_n4(m,j,k,i) = < m j k | -L | j i m > ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_cycle_2_bi_ort_n4(m,j,k,i) = < m j k | -L | i m j > ::: notice that i is the RIGHT MO and k is the LEFT MO
! = three_e_4_idx_cycle_1_bi_ort_n4(j,m,k,i)
!
! notice the -1 sign: in this way three_e_4_idx_direct_bi_ort_n4 can be directly used to compute Slater rules with a + sign
!
! three_e_4_idx_direct_bi_ort_n4 (m,j,k,i) : Lk Ri Imm Ijj + Lj Rj Imm Iki + Lm Rm Ijj Iki
! three_e_4_idx_exch13_bi_ort_n4 (m,j,k,i) : Lk Rm Imi Ijj + Lj Rj Imi Ikm + Lm Ri Ijj Ikm
! three_e_4_idx_cycle_1_bi_ort_n4(m,j,k,i) : Lk Rm Imj Iji + Lj Ri Imj Ikm + Lm Rj Iji Ikm
!
END_DOC
implicit none
integer :: ipoint, i, j, k, l, m
double precision :: wall1, wall0
double precision, allocatable :: tmp1(:,:,:,:), tmp2(:,:,:,:), tmp3(:,:,:,:)
double precision, allocatable :: tmp_4d(:,:,:,:)
double precision, allocatable :: tmp4(:,:,:)
double precision, allocatable :: tmp5(:,:)
double precision, allocatable :: tmp_3d(:,:,:)
print *, ' Providing the O(N^4) three_e_4_idx_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
allocate(tmp_4d(mo_num,mo_num,mo_num,mo_num))
allocate(tmp1(n_points_final_grid,3,mo_num,mo_num))
allocate(tmp2(n_points_final_grid,3,mo_num,mo_num))
allocate(tmp3(n_points_final_grid,3,mo_num,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1, tmp2, tmp3)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,l) * mos_l_in_r_array_transp(ipoint,i) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,l,l) * mos_l_in_r_array_transp(ipoint,i) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,l,l) * mos_l_in_r_array_transp(ipoint,i) * final_weight_at_r_vector(ipoint)
tmp2(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,l) * mos_r_in_r_array_transp(ipoint,i)
tmp2(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,l,l) * mos_r_in_r_array_transp(ipoint,i)
tmp2(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,l,l) * mos_r_in_r_array_transp(ipoint,i)
tmp3(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,i) * mos_r_in_r_array_transp(ipoint,l)
tmp3(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,l,i) * mos_r_in_r_array_transp(ipoint,l)
tmp3(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,l,i) * mos_r_in_r_array_transp(ipoint,l)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1,1), 3*n_points_final_grid, tmp2(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_direct_bi_ort_n4(m,j,k,i) = -tmp_4d(m,k,j,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp3(1,1,1,1), 3*n_points_final_grid, tmp1(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch13_bi_ort_n4(m,j,k,i) = -tmp_4d(m,i,j,k)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = int2_grad1_u12_bimo_t(ipoint,1,i,l) * mos_l_in_r_array_transp(ipoint,l) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,2,l,i) = int2_grad1_u12_bimo_t(ipoint,2,i,l) * mos_l_in_r_array_transp(ipoint,l) * final_weight_at_r_vector(ipoint)
tmp1(ipoint,3,l,i) = int2_grad1_u12_bimo_t(ipoint,3,i,l) * mos_l_in_r_array_transp(ipoint,l) * final_weight_at_r_vector(ipoint)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1,1), 3*n_points_final_grid, tmp2(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
deallocate(tmp2)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch13_bi_ort_n4(m,j,k,i) = three_e_4_idx_exch13_bi_ort_n4(m,j,k,i) - tmp_4d(m,k,j,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1,1), 3*n_points_final_grid, tmp3(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
deallocate(tmp3)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_cycle_1_bi_ort_n4(m,j,k,i) = -tmp_4d(m,k,j,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,l,l) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
tmp1(ipoint,2,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,l,l) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
tmp1(ipoint,3,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,l,l) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1,1), 3*n_points_final_grid, int2_grad1_u12_bimo_t(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
deallocate(tmp1)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_direct_bi_ort_n4(m,j,k,i) = three_e_4_idx_direct_bi_ort_n4(m,j,k,i) - tmp_4d(m,j,k,i) - tmp_4d(j,m,k,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
deallocate(tmp_4d)
allocate(tmp_3d(mo_num,mo_num,mo_num))
allocate(tmp5(n_points_final_grid,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP final_weight_at_r_vector, &
!$OMP tmp5)
!$OMP DO
do i = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp5(ipoint,i) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,i)
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
allocate(tmp4(n_points_final_grid,mo_num,mo_num))
do m = 1, mo_num
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, k, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, m, &
!$OMP int2_grad1_u12_bimo_t, &
!$OMP tmp4)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp4(ipoint,k,i) = int2_grad1_u12_bimo_t(ipoint,1,k,m) * int2_grad1_u12_bimo_t(ipoint,1,m,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,k,m) * int2_grad1_u12_bimo_t(ipoint,2,m,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,k,m) * int2_grad1_u12_bimo_t(ipoint,3,m,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num, mo_num*mo_num, n_points_final_grid, 1.d0 &
, tmp5(1,1), n_points_final_grid, tmp4(1,1,1), n_points_final_grid &
, 0.d0, tmp_3d(1,1,1), mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
three_e_4_idx_exch13_bi_ort_n4(m,j,k,i) = three_e_4_idx_exch13_bi_ort_n4(m,j,k,i) - tmp_3d(j,k,i)
enddo
enddo
enddo
!$OMP END PARALLEL DO
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (j, k, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, m, &
!$OMP mos_l_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp4)
!$OMP DO COLLAPSE(2)
do k = 1, mo_num
do j = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp4(ipoint,j,k) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,j) &
* ( int2_grad1_u12_bimo_t(ipoint,1,m,j) * int2_grad1_u12_bimo_t(ipoint,1,k,m) &
+ int2_grad1_u12_bimo_t(ipoint,2,m,j) * int2_grad1_u12_bimo_t(ipoint,2,k,m) &
+ int2_grad1_u12_bimo_t(ipoint,3,m,j) * int2_grad1_u12_bimo_t(ipoint,3,k,m) )
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, n_points_final_grid, 1.d0 &
, tmp4(1,1,1), n_points_final_grid, mos_r_in_r_array_transp(1,1), n_points_final_grid &
, 0.d0, tmp_3d(1,1,1), mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(i,j,k)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
three_e_4_idx_cycle_1_bi_ort_n4(m,j,k,i) = three_e_4_idx_cycle_1_bi_ort_n4(m,j,k,i) - tmp_3d(j,k,i)
enddo
enddo
enddo
!$OMP END PARALLEL DO
enddo
deallocate(tmp5)
deallocate(tmp_3d)
do i = 1, mo_num
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (m, j, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, i, &
!$OMP mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp4)
!$OMP DO COLLAPSE(2)
do j = 1, mo_num
do m = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp4(ipoint,m,j) = final_weight_at_r_vector(ipoint) * mos_r_in_r_array_transp(ipoint,m) &
* ( int2_grad1_u12_bimo_t(ipoint,1,m,j) * int2_grad1_u12_bimo_t(ipoint,1,j,i) &
+ int2_grad1_u12_bimo_t(ipoint,2,m,j) * int2_grad1_u12_bimo_t(ipoint,2,j,i) &
+ int2_grad1_u12_bimo_t(ipoint,3,m,j) * int2_grad1_u12_bimo_t(ipoint,3,j,i) )
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num, n_points_final_grid, -1.d0 &
, tmp4(1,1,1), n_points_final_grid, mos_l_in_r_array_transp(1,1), n_points_final_grid &
, 1.d0, three_e_4_idx_cycle_1_bi_ort_n4(1,1,1,i), mo_num*mo_num)
enddo
deallocate(tmp4)
! !$OMP PARALLEL DO PRIVATE(i,j,k,m)
! do i = 1, mo_num
! do k = 1, mo_num
! do j = 1, mo_num
! do m = 1, mo_num
! three_e_4_idx_exch12_bi_ort_n4 (m,j,k,i) = three_e_4_idx_exch13_bi_ort_n4 (j,m,k,i)
! three_e_4_idx_cycle_2_bi_ort_n4(m,j,k,i) = three_e_4_idx_cycle_1_bi_ort_n4(j,m,k,i)
! enddo
! enddo
! enddo
! enddo
! !$OMP END PARALLEL DO
call wall_time(wall1)
print *, ' wall time for O(N^4) three_e_4_idx_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort_n4 , (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_exch23_bi_ort_n4 (m,j,k,i) = < m j k | -L | j m i > ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_4_idx_direct_bi_ort_n4 can be directly used to compute Slater rules with a + sign
!
! three_e_4_idx_exch23_bi_ort_n4 (m,j,k,i) : Lk Ri Imj Ijm + Lj Rm Imj Iki + Lm Rj Ijm Iki
!
END_DOC
implicit none
integer :: i, j, k, l, m, ipoint
double precision :: wall1, wall0
double precision, allocatable :: tmp1(:,:,:,:), tmp_4d(:,:,:,:)
double precision, allocatable :: tmp5(:,:,:), tmp6(:,:,:)
print *, ' Providing the O(N^4) three_e_4_idx_exch23_bi_ort_n4 ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
allocate(tmp5(n_points_final_grid,mo_num,mo_num))
allocate(tmp6(n_points_final_grid,mo_num,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp5, tmp6)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp5(ipoint,l,i) = int2_grad1_u12_bimo_t(ipoint,1,l,i) * int2_grad1_u12_bimo_t(ipoint,1,i,l) &
+ int2_grad1_u12_bimo_t(ipoint,2,l,i) * int2_grad1_u12_bimo_t(ipoint,2,i,l) &
+ int2_grad1_u12_bimo_t(ipoint,3,l,i) * int2_grad1_u12_bimo_t(ipoint,3,i,l)
tmp6(ipoint,l,i) = final_weight_at_r_vector(ipoint) * mos_l_in_r_array_transp(ipoint,l) * mos_r_in_r_array_transp(ipoint,i)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, n_points_final_grid, -1.d0 &
, tmp5(1,1,1), n_points_final_grid, tmp6(1,1,1), n_points_final_grid &
, 0.d0, three_e_4_idx_exch23_bi_ort_n4(1,1,1,1), mo_num*mo_num)
deallocate(tmp5)
deallocate(tmp6)
allocate(tmp_4d(mo_num,mo_num,mo_num,mo_num))
allocate(tmp1(n_points_final_grid,3,mo_num,mo_num))
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i, l, ipoint) &
!$OMP SHARED (mo_num, n_points_final_grid, &
!$OMP mos_l_in_r_array_transp, mos_r_in_r_array_transp, &
!$OMP int2_grad1_u12_bimo_t, final_weight_at_r_vector, &
!$OMP tmp1)
!$OMP DO COLLAPSE(2)
do i = 1, mo_num
do l = 1, mo_num
do ipoint = 1, n_points_final_grid
tmp1(ipoint,1,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,1,l,i) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,l)
tmp1(ipoint,2,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,2,l,i) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,l)
tmp1(ipoint,3,l,i) = final_weight_at_r_vector(ipoint) * int2_grad1_u12_bimo_t(ipoint,3,l,i) * mos_l_in_r_array_transp(ipoint,i) * mos_r_in_r_array_transp(ipoint,l)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
call dgemm( 'T', 'N', mo_num*mo_num, mo_num*mo_num, 3*n_points_final_grid, 1.d0 &
, tmp1(1,1,1,1), 3*n_points_final_grid, int2_grad1_u12_bimo_t(1,1,1,1), 3*n_points_final_grid &
, 0.d0, tmp_4d(1,1,1,1), mo_num*mo_num)
deallocate(tmp1)
!$OMP PARALLEL DO PRIVATE(i,j,k,m)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
three_e_4_idx_exch23_bi_ort_n4(m,j,k,i) = three_e_4_idx_exch23_bi_ort_n4(m,j,k,i) - tmp_4d(m,j,k,i) - tmp_4d(j,m,k,i)
enddo
enddo
enddo
enddo
!$OMP END PARALLEL DO
deallocate(tmp_4d)
call wall_time(wall1)
print *, ' wall time for O(N^4) three_e_4_idx_exch23_bi_ort_n4', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---

View File

@ -1,13 +1,13 @@
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_direct_bi_ort(m,j,k,i) = <mjk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_direct_bi_ort_old(m,j,k,i) = <mjk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
@ -17,8 +17,8 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort, (mo_num, mo_num,
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_direct_bi_ort = 0.d0
print *, ' Providing the three_e_4_idx_direct_bi_ort ...'
three_e_4_idx_direct_bi_ort_old = 0.d0
print *, ' Providing the three_e_4_idx_direct_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
@ -26,14 +26,14 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort, (mo_num, mo_num,
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_direct_bi_ort)
!$OMP DO SCHEDULE (dynamic)
!$OMP SHARED (mo_num,three_e_4_idx_direct_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, m, j, i, integral)
three_e_4_idx_direct_bi_ort(m,j,k,i) = -1.d0 * integral
three_e_4_idx_direct_bi_ort_old(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
@ -42,19 +42,20 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_direct_bi_ort, (mo_num, mo_num,
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_direct_bi_ort', wall1 - wall0
print *, ' wall time for three_e_4_idx_direct_bi_ort_old', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = <mjk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_cycle_1_bi_ort_old(m,j,k,i) = <mjk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
@ -64,8 +65,8 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort, (mo_num, mo_num
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_cycle_1_bi_ort = 0.d0
print *, ' Providing the three_e_4_idx_cycle_1_bi_ort ...'
three_e_4_idx_cycle_1_bi_ort_old = 0.d0
print *, ' Providing the three_e_4_idx_cycle_1_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
@ -73,14 +74,14 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort, (mo_num, mo_num
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_cycle_1_bi_ort)
!$OMP DO SCHEDULE (dynamic)
!$OMP SHARED (mo_num,three_e_4_idx_cycle_1_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, j, i, m, integral)
three_e_4_idx_cycle_1_bi_ort(m,j,k,i) = -1.d0 * integral
three_e_4_idx_cycle_1_bi_ort_old(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
@ -89,19 +90,20 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_1_bi_ort, (mo_num, mo_num
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_cycle_1_bi_ort', wall1 - wall0
print *, ' wall time for three_e_4_idx_cycle_1_bi_ort_old', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! --
BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_2_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_cycle_2_bi_ort(m,j,k,i) = <mjk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_cycle_2_bi_ort_old(m,j,k,i) = <mjk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
@ -111,8 +113,8 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_2_bi_ort, (mo_num, mo_num
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_cycle_2_bi_ort = 0.d0
print *, ' Providing the three_e_4_idx_cycle_2_bi_ort ...'
three_e_4_idx_cycle_2_bi_ort_old = 0.d0
print *, ' Providing the three_e_4_idx_cycle_2_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
@ -120,14 +122,14 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_2_bi_ort, (mo_num, mo_num
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_cycle_2_bi_ort)
!$OMP DO SCHEDULE (dynamic)
!$OMP SHARED (mo_num,three_e_4_idx_cycle_2_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, i, m, j, integral)
three_e_4_idx_cycle_2_bi_ort(m,j,k,i) = -1.d0 * integral
three_e_4_idx_cycle_2_bi_ort_old(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
@ -136,19 +138,20 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_cycle_2_bi_ort, (mo_num, mo_num
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_cycle_2_bi_ort', wall1 - wall0
print *, ' wall time for three_e_4_idx_cycle_2_bi_ort_old', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_exch23_bi_ort(m,j,k,i) = <mjk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_exch23_bi_ort_old(m,j,k,i) = <mjk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
@ -158,8 +161,8 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort, (mo_num, mo_num,
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_exch23_bi_ort = 0.d0
print *, ' Providing the three_e_4_idx_exch23_bi_ort ...'
three_e_4_idx_exch23_bi_ort_old = 0.d0
print *, ' Providing the three_e_4_idx_exch23_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
@ -167,14 +170,14 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort, (mo_num, mo_num,
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_exch23_bi_ort)
!$OMP DO SCHEDULE (dynamic)
!$OMP SHARED (mo_num,three_e_4_idx_exch23_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, j, m, i, integral)
three_e_4_idx_exch23_bi_ort(m,j,k,i) = -1.d0 * integral
three_e_4_idx_exch23_bi_ort_old(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
@ -183,19 +186,20 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_exch23_bi_ort, (mo_num, mo_num,
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_exch23_bi_ort', wall1 - wall0
print *, ' wall time for three_e_4_idx_exch23_bi_ort_old', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_exch13_bi_ort(m,j,k,i) = <mjk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_exch13_bi_ort_old(m,j,k,i) = <mjk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
END_DOC
@ -204,8 +208,8 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort, (mo_num, mo_num,
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_exch13_bi_ort = 0.d0
print *, ' Providing the three_e_4_idx_exch13_bi_ort ...'
three_e_4_idx_exch13_bi_ort_old = 0.d0
print *, ' Providing the three_e_4_idx_exch13_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
@ -213,14 +217,14 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort, (mo_num, mo_num,
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_exch13_bi_ort)
!$OMP DO SCHEDULE (dynamic)
!$OMP SHARED (mo_num,three_e_4_idx_exch13_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, i, j, m, integral)
three_e_4_idx_exch13_bi_ort(m,j,k,i) = -1.d0 * integral
three_e_4_idx_exch13_bi_ort_old(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
@ -229,19 +233,20 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_exch13_bi_ort, (mo_num, mo_num,
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_exch13_bi_ort', wall1 - wall0
print *, ' wall time for three_e_4_idx_exch13_bi_ort_old', wall1 - wall0
call print_memory_usage()
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_4_idx_exch12_bi_ort_old, (mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF SINGLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_4_idx_exch12_bi_ort(m,j,k,i) = <mjk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_4_idx_exch12_bi_ort_old(m,j,k,i) = <mjk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
@ -251,8 +256,8 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_exch12_bi_ort, (mo_num, mo_num,
integer :: i, j, k, m
double precision :: integral, wall1, wall0
three_e_4_idx_exch12_bi_ort = 0.d0
print *, ' Providing the three_e_4_idx_exch12_bi_ort ...'
three_e_4_idx_exch12_bi_ort_old = 0.d0
print *, ' Providing the three_e_4_idx_exch12_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
@ -260,14 +265,14 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_exch12_bi_ort, (mo_num, mo_num,
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,integral) &
!$OMP SHARED (mo_num,three_e_4_idx_exch12_bi_ort)
!$OMP DO SCHEDULE (dynamic)
!$OMP SHARED (mo_num,three_e_4_idx_exch12_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, j, k, m, i, j, integral)
three_e_4_idx_exch12_bi_ort(m,j,k,i) = -1.d0 * integral
three_e_4_idx_exch12_bi_ort_old(m,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
@ -276,7 +281,8 @@ BEGIN_PROVIDER [ double precision, three_e_4_idx_exch12_bi_ort, (mo_num, mo_num,
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_4_idx_exch12_bi_ort', wall1 - wall0
print *, ' wall time for three_e_4_idx_exch12_bi_ort_old', wall1 - wall0
call print_memory_usage()
END_PROVIDER

View File

@ -0,0 +1,245 @@
! ---
double precision function three_e_5_idx_exch12_bi_ort(m,l,i,k,j) result(integral)
implicit none
integer, intent(in) :: m,l,j,k,i
integral = three_e_5_idx_direct_bi_ort(m,l,j,k,i)
end
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort , (mo_num, mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
&BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_direct_bi_ort(m,l,j,k,i) = <mlk|-L|mji> :: : notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
END_DOC
implicit none
integer :: i, j, k, m, l
double precision :: wall1, wall0
integer :: ipoint
double precision, allocatable :: grad_mli(:,:), orb_mat(:,:,:)
double precision, allocatable :: lk_grad_mi(:,:,:,:), rk_grad_im(:,:,:)
double precision, allocatable :: lm_grad_ik(:,:,:,:), rm_grad_ik(:,:,:)
double precision, allocatable :: tmp_mat(:,:,:)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
call print_memory_usage
print *, ' Providing the three_e_5_idx_bi_ort ...'
call wall_time(wall0)
three_e_5_idx_direct_bi_ort (:,:,:,:,:) = 0.d0
three_e_5_idx_cycle_1_bi_ort(:,:,:,:,:) = 0.d0
three_e_5_idx_cycle_2_bi_ort(:,:,:,:,:) = 0.d0
three_e_5_idx_exch23_bi_ort (:,:,:,:,:) = 0.d0
three_e_5_idx_exch13_bi_ort (:,:,:,:,:) = 0.d0
call print_memory_usage
allocate(tmp_mat(mo_num,mo_num,mo_num))
allocate(orb_mat(n_points_final_grid,mo_num,mo_num))
!$OMP PARALLEL DO PRIVATE (i,l,ipoint)
do i=1,mo_num
do l=1,mo_num
do ipoint=1, n_points_final_grid
orb_mat(ipoint,l,i) = final_weight_at_r_vector(ipoint) &
* mos_l_in_r_array_transp(ipoint,l) &
* mos_r_in_r_array_transp(ipoint,i)
enddo
enddo
enddo
!$OMP END PARALLEL DO
tmp_mat = 0.d0
call print_memory_usage
do m = 1, mo_num
allocate(grad_mli(n_points_final_grid,mo_num))
do i=1,mo_num
!$OMP PARALLEL DO PRIVATE (l,ipoint)
do l=1,mo_num
do ipoint=1, n_points_final_grid
grad_mli(ipoint,l) = &
int2_grad1_u12_bimo_t(ipoint,1,m,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i) +&
int2_grad1_u12_bimo_t(ipoint,2,m,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i) +&
int2_grad1_u12_bimo_t(ipoint,3,m,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i)
enddo
enddo
!$OMP END PARALLEL DO
call dgemm('T','N', mo_num*mo_num, mo_num, n_points_final_grid, 1.d0,&
orb_mat, n_points_final_grid, &
grad_mli, n_points_final_grid, 0.d0, &
tmp_mat, mo_num*mo_num)
!$OMP PARALLEL PRIVATE(j,k,l)
!$OMP DO
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = three_e_5_idx_direct_bi_ort(m,l,j,k,i) - tmp_mat(l,j,k)
enddo
enddo
enddo
!$OMP END DO
!$OMP DO
do j = 1, mo_num
do l = 1, mo_num
do k = 1, mo_num
three_e_5_idx_direct_bi_ort(m,k,i,l,j) = three_e_5_idx_direct_bi_ort(m,k,i,l,j) - tmp_mat(l,j,k)
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
enddo
deallocate(grad_mli)
allocate(lm_grad_ik(n_points_final_grid,3,mo_num,mo_num))
allocate(lk_grad_mi(n_points_final_grid,3,mo_num,mo_num))
!$OMP PARALLEL DO PRIVATE (i,l,ipoint)
do i=1,mo_num
do l=1,mo_num
do ipoint=1, n_points_final_grid
lm_grad_ik(ipoint,1,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i) * final_weight_at_r_vector(ipoint)
lm_grad_ik(ipoint,2,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i) * final_weight_at_r_vector(ipoint)
lm_grad_ik(ipoint,3,l,i) = mos_l_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i) * final_weight_at_r_vector(ipoint)
lk_grad_mi(ipoint,1,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,1,m,i) * final_weight_at_r_vector(ipoint)
lk_grad_mi(ipoint,2,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,2,m,i) * final_weight_at_r_vector(ipoint)
lk_grad_mi(ipoint,3,l,i) = mos_l_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,3,m,i) * final_weight_at_r_vector(ipoint)
enddo
enddo
enddo
!$OMP END PARALLEL DO
allocate(rm_grad_ik(n_points_final_grid,3,mo_num))
allocate(rk_grad_im(n_points_final_grid,3,mo_num))
do i=1,mo_num
!$OMP PARALLEL DO PRIVATE (l,ipoint)
do l=1,mo_num
do ipoint=1, n_points_final_grid
rm_grad_ik(ipoint,1,l) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,1,l,i)
rm_grad_ik(ipoint,2,l) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,2,l,i)
rm_grad_ik(ipoint,3,l) = mos_r_in_r_array_transp(ipoint,m) * int2_grad1_u12_bimo_t(ipoint,3,l,i)
rk_grad_im(ipoint,1,l) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,1,i,m)
rk_grad_im(ipoint,2,l) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,2,i,m)
rk_grad_im(ipoint,3,l) = mos_r_in_r_array_transp(ipoint,l) * int2_grad1_u12_bimo_t(ipoint,3,i,m)
enddo
enddo
!$OMP END PARALLEL DO
call dgemm('T','N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 1.d0,&
lm_grad_ik, 3*n_points_final_grid, &
rm_grad_ik, 3*n_points_final_grid, 0.d0, &
tmp_mat, mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(j,k,l)
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = three_e_5_idx_direct_bi_ort(m,l,j,k,i) - tmp_mat(l,j,k)
enddo
enddo
enddo
!$OMP END PARALLEL DO
call dgemm('T','N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 1.d0,&
lm_grad_ik, 3*n_points_final_grid, &
rk_grad_im, 3*n_points_final_grid, 0.d0, &
tmp_mat, mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(j,k,l)
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
three_e_5_idx_cycle_1_bi_ort(m,l,j,i,k) = three_e_5_idx_cycle_1_bi_ort(m,l,j,i,k) - tmp_mat(l,k,j)
three_e_5_idx_cycle_2_bi_ort(m,i,j,k,l) = three_e_5_idx_cycle_2_bi_ort(m,i,j,k,l) - tmp_mat(k,j,l)
three_e_5_idx_exch23_bi_ort (m,i,j,k,l) = three_e_5_idx_exch23_bi_ort (m,i,j,k,l) - tmp_mat(k,l,j)
three_e_5_idx_exch13_bi_ort (m,l,j,i,k) = three_e_5_idx_exch13_bi_ort (m,l,j,i,k) - tmp_mat(l,j,k)
enddo
enddo
enddo
!$OMP END PARALLEL DO
call dgemm('T','N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 1.d0,&
lk_grad_mi, 3*n_points_final_grid, &
rm_grad_ik, 3*n_points_final_grid, 0.d0, &
tmp_mat, mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(j,k,l)
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) - tmp_mat(k,j,l)
three_e_5_idx_cycle_2_bi_ort(m,l,i,k,j) = three_e_5_idx_cycle_2_bi_ort(m,l,i,k,j) - tmp_mat(l,j,k)
three_e_5_idx_exch23_bi_ort (m,l,j,k,i) = three_e_5_idx_exch23_bi_ort (m,l,j,k,i) - tmp_mat(l,j,k)
three_e_5_idx_exch13_bi_ort (m,l,i,k,j) = three_e_5_idx_exch13_bi_ort (m,l,i,k,j) - tmp_mat(k,j,l)
enddo
enddo
enddo
!$OMP END PARALLEL DO
call dgemm('T','N', mo_num*mo_num, mo_num, 3*n_points_final_grid, 1.d0,&
lk_grad_mi, 3*n_points_final_grid, &
rk_grad_im, 3*n_points_final_grid, 0.d0, &
tmp_mat, mo_num*mo_num)
!$OMP PARALLEL DO PRIVATE(j,k,l)
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
three_e_5_idx_cycle_1_bi_ort(m,l,j,i,k) = three_e_5_idx_cycle_1_bi_ort(m,l,j,i,k) - tmp_mat(l,j,k)
three_e_5_idx_cycle_2_bi_ort(m,i,j,k,l) = three_e_5_idx_cycle_2_bi_ort(m,i,j,k,l) - tmp_mat(k,l,j)
three_e_5_idx_exch23_bi_ort (m,i,j,k,l) = three_e_5_idx_exch23_bi_ort (m,i,j,k,l) - tmp_mat(k,j,l)
three_e_5_idx_exch13_bi_ort (m,l,j,i,k) = three_e_5_idx_exch13_bi_ort (m,l,j,i,k) - tmp_mat(l,k,j)
enddo
enddo
enddo
!$OMP END PARALLEL DO
enddo
deallocate(rm_grad_ik)
deallocate(rk_grad_im)
deallocate(lk_grad_mi)
deallocate(lm_grad_ik)
enddo
deallocate(tmp_mat)
deallocate(orb_mat)
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_bi_ort', wall1 - wall0
call print_memory_usage()
END_PROVIDER

View File

@ -1,13 +1,13 @@
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_direct_bi_ort(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = <mlk|-L|mji> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
END_DOC
@ -16,8 +16,8 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num,
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_direct_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_direct_bi_ort ...'
three_e_5_idx_direct_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_direct_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
@ -25,15 +25,15 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num,
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort)
!$OMP DO SCHEDULE (dynamic)
!$OMP SHARED (mo_num,three_e_5_idx_direct_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, j, i, integral)
three_e_5_idx_direct_bi_ort(m,l,j,k,i) = -1.d0 * integral
three_e_5_idx_direct_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
@ -43,19 +43,19 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_direct_bi_ort, (mo_num, mo_num,
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_direct_bi_ort', wall1 - wall0
print *, ' wall time for three_e_5_idx_direct_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = <mlk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = <mlk|-L|jim> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
@ -65,8 +65,8 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_1_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_cycle_1_bi_ort ...'
three_e_5_idx_cycle_1_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_cycle_1_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
@ -74,15 +74,15 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort)
!$OMP DO SCHEDULE (dynamic)
!$OMP SHARED (mo_num,three_e_5_idx_cycle_1_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, i, m, integral)
three_e_5_idx_cycle_1_bi_ort(m,l,j,k,i) = -1.d0 * integral
three_e_5_idx_cycle_1_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
@ -92,19 +92,19 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_1_bi_ort, (mo_num, mo_num
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_1_bi_ort', wall1 - wall0
print *, ' wall time for three_e_5_idx_cycle_1_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE FIRST CYCLIC PERMUTATION TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = <mlk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = <mlk|-L|imj> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
@ -114,8 +114,8 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_cycle_2_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_cycle_2_bi_ort ...'
three_e_5_idx_cycle_2_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_cycle_2_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
@ -123,15 +123,15 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort)
!$OMP DO SCHEDULE (dynamic)
!$OMP SHARED (mo_num,three_e_5_idx_cycle_2_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do m = 1, mo_num
do l = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, m, j, integral)
three_e_5_idx_cycle_2_bi_ort(m,l,j,k,i) = -1.d0 * integral
three_e_5_idx_cycle_2_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
@ -141,19 +141,19 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_cycle_2_bi_ort, (mo_num, mo_num
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_cycle_2_bi_ort', wall1 - wall0
print *, ' wall time for three_e_5_idx_cycle_2_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = <mlk|-L|jmi> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
@ -163,8 +163,8 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort, (mo_num, mo_num,
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch23_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_exch23_bi_ort ...'
three_e_5_idx_exch23_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_exch23_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
@ -172,15 +172,15 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort, (mo_num, mo_num,
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort)
!$OMP DO SCHEDULE (dynamic)
!$OMP SHARED (mo_num,three_e_5_idx_exch23_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, j, m, i, integral)
three_e_5_idx_exch23_bi_ort(m,l,j,k,i) = -1.d0 * integral
three_e_5_idx_exch23_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
@ -190,19 +190,19 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch23_bi_ort, (mo_num, mo_num,
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch23_bi_ort', wall1 - wall0
print *, ' wall time for three_e_5_idx_exch23_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = <mlk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = <mlk|-L|ijm> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
@ -212,8 +212,8 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort, (mo_num, mo_num,
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch13_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_exch13_bi_ort ...'
three_e_5_idx_exch13_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_exch13_bi_ort_old ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
@ -221,15 +221,15 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort, (mo_num, mo_num,
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort)
!$OMP DO SCHEDULE (dynamic)
!$OMP SHARED (mo_num,three_e_5_idx_exch13_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, i, j, m, integral)
three_e_5_idx_exch13_bi_ort(m,l,j,k,i) = -1.d0 * integral
three_e_5_idx_exch13_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
@ -239,19 +239,19 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch13_bi_ort, (mo_num, mo_num,
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch13_bi_ort', wall1 - wall0
print *, ' wall time for three_e_5_idx_exch13_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort_old, (mo_num, mo_num, mo_num, mo_num, mo_num)]
BEGIN_DOC
!
! matrix element of the -L three-body operator FOR THE DIRECT TERMS OF DOUBLE EXCITATIONS AND BI ORTHO MOs
!
! three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = <mlk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
! three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = <mlk|-L|mij> ::: notice that i is the RIGHT MO and k is the LEFT MO
!
! notice the -1 sign: in this way three_e_3_idx_direct_bi_ort can be directly used to compute Slater rules with a + sign
!
@ -261,24 +261,25 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num,
integer :: i, j, k, m, l
double precision :: integral, wall1, wall0
three_e_5_idx_exch12_bi_ort = 0.d0
print *, ' Providing the three_e_5_idx_exch12_bi_ort ...'
call wall_time(wall0)
provide mos_r_in_r_array_transp mos_l_in_r_array_transp
PROVIDE mo_l_coef mo_r_coef int2_grad1_u12_bimo_t
three_e_5_idx_exch12_bi_ort_old = 0.d0
print *, ' Providing the three_e_5_idx_exch12_bi_ort_old ...'
call wall_time(wall0)
!$OMP PARALLEL &
!$OMP DEFAULT (NONE) &
!$OMP PRIVATE (i,j,k,m,l,integral) &
!$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort)
!$OMP DO SCHEDULE (dynamic)
!$OMP SHARED (mo_num,three_e_5_idx_exch12_bi_ort_old)
!$OMP DO SCHEDULE (dynamic) COLLAPSE(2)
do i = 1, mo_num
do k = 1, mo_num
do j = 1, mo_num
do l = 1, mo_num
do m = 1, mo_num
call give_integrals_3_body_bi_ort(m, l, k, m, i, j, integral)
three_e_5_idx_exch12_bi_ort(m,l,j,k,i) = -1.d0 * integral
three_e_5_idx_exch12_bi_ort_old(m,l,j,k,i) = -1.d0 * integral
enddo
enddo
enddo
@ -288,9 +289,7 @@ BEGIN_PROVIDER [ double precision, three_e_5_idx_exch12_bi_ort, (mo_num, mo_num,
!$OMP END PARALLEL
call wall_time(wall1)
print *, ' wall time for three_e_5_idx_exch12_bi_ort', wall1 - wall0
print *, ' wall time for three_e_5_idx_exch12_bi_ort_old', wall1 - wall0
END_PROVIDER
! ---

Some files were not shown because too many files have changed in this diff Show More