9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-21 19:13:29 +01:00

added tc spin density

This commit is contained in:
eginer 2023-02-23 16:12:00 +01:00
parent 5aab702257
commit 656709b7c1
3 changed files with 218 additions and 35 deletions

View File

@ -0,0 +1,106 @@
BEGIN_PROVIDER [double precision, tc_spin_population, (ao_num,ao_num,N_states)]
implicit none
integer :: i,j,istate
BEGIN_DOC
! spin population on the ao basis :
! tc_spin_population(i,j) = rho_AO(alpha)(i,j) - rho_AO(beta)(i,j) * <AO_i|AO_j>
END_DOC
tc_spin_population = 0.d0
do istate = 1, N_states
do i = 1, ao_num
do j = 1, ao_num
tc_spin_population(j,i,istate) = tc_spin_transition_matrix_ao(j,i,istate,istate) * ao_overlap(j,i)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, tc_spin_population_angular_momentum, (0:ao_l_max,N_states)]
&BEGIN_PROVIDER [double precision, tc_spin_population_angular_momentum_per_atom, (0:ao_l_max,nucl_num,N_states)]
implicit none
integer :: i,istate
double precision :: accu
tc_spin_population_angular_momentum = 0.d0
tc_spin_population_angular_momentum_per_atom = 0.d0
do istate = 1, N_states
do i = 1, ao_num
tc_spin_population_angular_momentum(ao_l(i),istate) += tc_spin_gross_orbital_product(i,istate)
tc_spin_population_angular_momentum_per_atom(ao_l(i),ao_nucl(i),istate) += tc_spin_gross_orbital_product(i,istate)
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, tc_spin_gross_orbital_product, (ao_num,N_states)]
implicit none
tc_spin_gross_orbital_product = 0.d0
integer :: i,j,istate
BEGIN_DOC
! gross orbital product for the spin population
END_DOC
do istate = 1, N_states
do i = 1, ao_num
do j = 1, ao_num
tc_spin_gross_orbital_product(i,istate) += tc_spin_population(j,i,istate)
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [double precision, tc_mulliken_spin_densities, (nucl_num,N_states)]
implicit none
integer :: i,j,istate
BEGIN_DOC
!ATOMIC SPIN POPULATION (ALPHA MINUS BETA)
END_DOC
tc_mulliken_spin_densities = 0.d0
do istate = 1, N_states
do i = 1, ao_num
tc_mulliken_spin_densities(ao_nucl(i),istate) += tc_spin_gross_orbital_product(i,istate)
enddo
enddo
END_PROVIDER
subroutine tc_print_mulliken_sd
implicit none
double precision :: accu
integer :: i
integer :: j
print*,'Mulliken spin densities'
accu= 0.d0
do i = 1, nucl_num
print*,i,nucl_charge(i),tc_mulliken_spin_densities(i,1)
accu += tc_mulliken_spin_densities(i,1)
enddo
print*,'Sum of Mulliken SD = ',accu
print*,'AO SPIN POPULATIONS'
accu = 0.d0
do i = 1, ao_num
accu += tc_spin_gross_orbital_product(i,1)
write(*,'(1X,I3,1X,A4,1X,I2,1X,A4,1X,F10.7)')i,trim(element_name(int(nucl_charge(ao_nucl(i))))),ao_nucl(i),trim(l_to_character(ao_l(i))),tc_spin_gross_orbital_product(i,1)
enddo
print*,'sum = ',accu
accu = 0.d0
print*,'Angular momentum analysis'
do i = 0, ao_l_max
accu += tc_spin_population_angular_momentum(i,1)
print*,' ',trim(l_to_character(i)),tc_spin_population_angular_momentum(i,1)
print*,'sum = ',accu
enddo
print*,'Angular momentum analysis per atom'
print*,'Angular momentum analysis'
do j = 1,nucl_num
accu = 0.d0
do i = 0, ao_l_max
accu += tc_spin_population_angular_momentum_per_atom(i,j,1)
write(*,'(1X,I3,1X,A4,1X,A4,1X,F10.7)')j,trim(element_name(int(nucl_charge(j)))),trim(l_to_character(i)),tc_spin_population_angular_momentum_per_atom(i,j,1)
print*,'sum = ',accu
enddo
enddo
end

View File

@ -21,7 +21,7 @@
allocate(dm_tmp(mo_num,mo_num), fock_diag(mo_num)) allocate(dm_tmp(mo_num,mo_num), fock_diag(mo_num))
dm_tmp(:,:) = -tc_transition_matrix(:,:,1,1) dm_tmp(1:mo_num,1:mo_num) = -tc_transition_matrix_mo(1:mo_num,1:mo_num,1,1)
print *, ' dm_tmp' print *, ' dm_tmp'
do i = 1, mo_num do i = 1, mo_num

View File

@ -1,8 +1,11 @@
BEGIN_PROVIDER [ double precision, tc_transition_matrix, (mo_num, mo_num,N_states,N_states) ] BEGIN_PROVIDER [ double precision, tc_transition_matrix_mo_beta, (mo_num, mo_num,N_states,N_states) ]
&BEGIN_PROVIDER [ double precision, tc_transition_matrix_mo_alpha, (mo_num, mo_num,N_states,N_states) ]
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! tc_transition_matrix(p,h,istate,jstate) = <Chi_istate| a^\dagger_p a_h |Phi_jstate> ! tc_transition_matrix_mo_alpha(p,h,istate,jstate) = <Chi_istate| a^\dagger_p,alpha a_h,alpha |Phi_jstate>
!
! tc_transition_matrix_mo_beta(p,h,istate,jstate) = <Chi_istate| a^\dagger_p,beta a_h,beta |Phi_jstate>
! !
! where <Chi_istate| and |Phi_jstate> are the left/right eigenvectors on a bi-ortho basis ! where <Chi_istate| and |Phi_jstate> are the left/right eigenvectors on a bi-ortho basis
END_DOC END_DOC
@ -11,43 +14,65 @@ BEGIN_PROVIDER [ double precision, tc_transition_matrix, (mo_num, mo_num,N_state
integer, allocatable :: occ(:,:) integer, allocatable :: occ(:,:)
integer :: n_occ_ab(2),degree,exc(0:2,2,2) integer :: n_occ_ab(2),degree,exc(0:2,2,2)
allocate(occ(N_int*bit_kind_size,2)) allocate(occ(N_int*bit_kind_size,2))
tc_transition_matrix = 0.d0 tc_transition_matrix_mo_alpha = 0.d0
do istate = 1, N_states tc_transition_matrix_mo_beta = 0.d0
do jstate = 1, N_states
do i = 1, N_det do i = 1, N_det
do j = 1, N_det do j = 1, N_det
call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int) call get_excitation_degree(psi_det(1,1,i),psi_det(1,1,j),degree,N_int)
if(degree.gt.1)then if(degree.gt.1)cycle
cycle do istate = 1, N_states
else if (degree == 0)then do jstate = 1, N_states
call bitstring_to_list_ab(psi_det(1,1,i), occ, n_occ_ab, N_int) if (degree == 0)then
do p = 1, n_occ_ab(1) ! browsing the alpha electrons call bitstring_to_list_ab(psi_det(1,1,i), occ, n_occ_ab, N_int)
m = occ(p,1) do p = 1, n_occ_ab(1) ! browsing the alpha electrons
tc_transition_matrix(m,m,istate,jstate)+= psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate) m = occ(p,1)
enddo tc_transition_matrix_mo_alpha(m,m,istate,jstate)+= psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
do p = 1, n_occ_ab(2) ! browsing the beta electrons enddo
m = occ(p,1) do p = 1, n_occ_ab(2) ! browsing the beta electrons
tc_transition_matrix(m,m,istate,jstate)+= psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate) m = occ(p,1)
enddo tc_transition_matrix_mo_beta(m,m,istate,jstate)+= psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
else enddo
call get_single_excitation(psi_det(1,1,j),psi_det(1,1,i),exc,phase,N_int) else
if (exc(0,1,1) == 1) then call get_single_excitation(psi_det(1,1,j),psi_det(1,1,i),exc,phase,N_int)
! Single alpha if (exc(0,1,1) == 1) then
h = exc(1,1,1) ! hole in psi_det(1,1,j) ! Single alpha
p = exc(1,2,1) ! particle in psi_det(1,1,j) h = exc(1,1,1) ! hole in psi_det(1,1,j)
else p = exc(1,2,1) ! particle in psi_det(1,1,j)
! Single beta tc_transition_matrix_mo_alpha(p,h,istate,jstate)+= phase * psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
h = exc(1,1,2) ! hole in psi_det(1,1,j) else
p = exc(1,2,2) ! particle in psi_det(1,1,j) ! Single beta
endif h = exc(1,1,2) ! hole in psi_det(1,1,j)
tc_transition_matrix(p,h,istate,jstate)+= phase * psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate) p = exc(1,2,2) ! particle in psi_det(1,1,j)
endif tc_transition_matrix_mo_beta(p,h,istate,jstate)+= phase * psi_l_coef_bi_ortho(i,istate) * psi_r_coef_bi_ortho(j,jstate)
endif
endif
enddo
enddo enddo
enddo
enddo enddo
enddo enddo
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [double precision, tc_transition_matrix_mo, (mo_num, mo_num,N_states,N_states) ]
implicit none
BEGIN_DOC
! tc_transition_matrix_mo(p,h,istate,jstate) = \sum_{sigma=alpha,beta} <Chi_istate| a^\dagger_p,sigma a_h,sigma |Phi_jstate>
!
! where <Chi_istate| and |Phi_jstate> are the left/right eigenvectors on a bi-ortho basis
END_DOC
tc_transition_matrix_mo = tc_transition_matrix_mo_beta + tc_transition_matrix_mo_alpha
END_PROVIDER
BEGIN_PROVIDER [double precision, tc_spin_transition_matrix_mo, (mo_num, mo_num,N_states,N_states) ]
implicit none
BEGIN_DOC
! tc_spin_transition_matrix_mo = tc_transition_matrix_mo_alpha - tc_transition_matrix_mo_beta
!
! where <Chi_istate| and |Phi_jstate> are the left/right eigenvectors on a bi-ortho basis
END_DOC
tc_spin_transition_matrix_mo = tc_transition_matrix_mo_alpha - tc_transition_matrix_mo_beta
END_PROVIDER
BEGIN_PROVIDER [double precision, tc_bi_ortho_dipole, (3,N_states)] BEGIN_PROVIDER [double precision, tc_bi_ortho_dipole, (3,N_states)]
implicit none implicit none
@ -57,9 +82,9 @@ BEGIN_PROVIDER [ double precision, tc_transition_matrix, (mo_num, mo_num,N_state
do istate = 1, N_states do istate = 1, N_states
do i = 1, mo_num do i = 1, mo_num
do j = 1, mo_num do j = 1, mo_num
tc_bi_ortho_dipole(1,istate) += -(tc_transition_matrix(j,i,istate,istate)) * mo_bi_orth_bipole_x(j,i) tc_bi_ortho_dipole(1,istate) += -(tc_transition_matrix_mo(j,i,istate,istate)) * mo_bi_orth_bipole_x(j,i)
tc_bi_ortho_dipole(2,istate) += -(tc_transition_matrix(j,i,istate,istate)) * mo_bi_orth_bipole_y(j,i) tc_bi_ortho_dipole(2,istate) += -(tc_transition_matrix_mo(j,i,istate,istate)) * mo_bi_orth_bipole_y(j,i)
tc_bi_ortho_dipole(3,istate) += -(tc_transition_matrix(j,i,istate,istate)) * mo_bi_orth_bipole_z(j,i) tc_bi_ortho_dipole(3,istate) += -(tc_transition_matrix_mo(j,i,istate,istate)) * mo_bi_orth_bipole_z(j,i)
enddo enddo
enddo enddo
enddo enddo
@ -78,3 +103,55 @@ BEGIN_PROVIDER [ double precision, tc_transition_matrix, (mo_num, mo_num,N_state
enddo enddo
END_PROVIDER END_PROVIDER
BEGIN_PROVIDER [ double precision, tc_transition_matrix_ao, (ao_num, ao_num,N_states,N_states) ]
implicit none
BEGIN_DOC
! tc_transition_matrix(p,h,istate,jstate) in the AO basis
END_DOC
integer :: i,j,k,l
double precision :: dm_mo
tc_transition_matrix_ao = 0.d0
integer :: istate,jstate
do istate = 1, N_states
do jstate = 1, N_states
do i = 1, mo_num
do j = 1, mo_num
dm_mo = tc_transition_matrix_mo(j,i,jstate,istate)
do k = 1, ao_num
do l = 1, ao_num
tc_transition_matrix_ao(l,k,jstate,istate) += mo_l_coef(l,j) * mo_r_coef(k,i) * dm_mo
enddo
enddo
enddo
enddo
enddo
enddo
END_PROVIDER
BEGIN_PROVIDER [ double precision, tc_spin_transition_matrix_ao, (ao_num, ao_num,N_states,N_states) ]
implicit none
BEGIN_DOC
! tc_spin_transition_matrix_ao(p,h,istate,jstate) in the AO basis
END_DOC
integer :: i,j,k,l
double precision :: dm_mo
tc_spin_transition_matrix_ao = 0.d0
integer :: istate,jstate
do istate = 1, N_states
do jstate = 1, N_states
do i = 1, mo_num
do j = 1, mo_num
dm_mo = tc_spin_transition_matrix_mo(j,i,jstate,istate)
do k = 1, ao_num
do l = 1, ao_num
tc_spin_transition_matrix_ao(l,k,jstate,istate) += mo_l_coef(l,j) * mo_r_coef(k,i) * dm_mo
enddo
enddo
enddo
enddo
enddo
enddo
END_PROVIDER