mirror of
https://github.com/QuantumPackage/qp2.git
synced 2025-01-03 17:15:40 +01:00
merged with dev-tc
This commit is contained in:
parent
2989703835
commit
6513358da3
@ -1,12 +1,18 @@
|
||||
|
||||
[j1b_gauss_pen]
|
||||
[j1b_pen]
|
||||
type: double precision
|
||||
doc: exponents of the 1-body Jastrow
|
||||
interface: ezfio
|
||||
size: (nuclei.nucl_num)
|
||||
|
||||
[j1b_gauss]
|
||||
[j1b_coeff]
|
||||
type: double precision
|
||||
doc: coeff of the 1-body Jastrow
|
||||
interface: ezfio
|
||||
size: (nuclei.nucl_num)
|
||||
|
||||
[j1b_type]
|
||||
type: integer
|
||||
doc: Use 1-body Gaussian Jastrow
|
||||
doc: type of 1-body Jastrow
|
||||
interface: ezfio, provider, ocaml
|
||||
default: 0
|
||||
|
@ -1,9 +1,11 @@
|
||||
|
||||
|
||||
subroutine compute_ao_tc_sym_two_e_pot_jl(j, l, n_integrals, buffer_i, buffer_value)
|
||||
|
||||
use map_module
|
||||
|
||||
BEGIN_DOC
|
||||
! Parallel client for AO integrals of the TC integrals involving purely hermitian operators
|
||||
! Parallel client for AO integrals
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
@ -21,13 +23,10 @@ subroutine compute_ao_tc_sym_two_e_pot_jl(j, l, n_integrals, buffer_i, buffer_va
|
||||
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
double precision :: ao_tc_sym_two_e_pot, ao_two_e_integral_erf
|
||||
double precision :: j1b_gauss_erf, j1b_gauss_coul
|
||||
double precision :: j1b_gauss_coul_debug
|
||||
double precision :: j1b_gauss_coul_modifdebug
|
||||
double precision :: j1b_gauss_coulerf
|
||||
double precision :: j1b_gauss_2e_j1, j1b_gauss_2e_j2
|
||||
|
||||
|
||||
PROVIDE j1b_gauss
|
||||
PROVIDE j1b_type
|
||||
|
||||
thr = ao_integrals_threshold
|
||||
|
||||
@ -45,7 +44,7 @@ subroutine compute_ao_tc_sym_two_e_pot_jl(j, l, n_integrals, buffer_i, buffer_va
|
||||
exit
|
||||
endif
|
||||
|
||||
if (ao_two_e_integral_erf_schwartz(i,k)*ao_two_e_integral_erf_schwartz(j,l) < thr ) then
|
||||
if (ao_two_e_integral_erf_schwartz(i,k)*ao_two_e_integral_erf_schwartz(j,l) < thr) then
|
||||
cycle
|
||||
endif
|
||||
|
||||
@ -54,9 +53,12 @@ subroutine compute_ao_tc_sym_two_e_pot_jl(j, l, n_integrals, buffer_i, buffer_va
|
||||
integral_erf = ao_two_e_integral_erf(i, k, j, l)
|
||||
integral = integral_erf + integral_pot
|
||||
|
||||
if( j1b_gauss .eq. 1 ) then
|
||||
integral = integral &
|
||||
+ j1b_gauss_coulerf(i, k, j, l)
|
||||
if( j1b_type .eq. 1 ) then
|
||||
!print *, ' j1b type 1 is added'
|
||||
integral = integral + j1b_gauss_2e_j1(i, k, j, l)
|
||||
elseif( j1b_type .eq. 2 ) then
|
||||
!print *, ' j1b type 2 is added'
|
||||
integral = integral + j1b_gauss_2e_j2(i, k, j, l)
|
||||
endif
|
||||
|
||||
|
||||
|
@ -1,299 +0,0 @@
|
||||
import sys, os
|
||||
QP_PATH=os.environ["QP_EZFIO"]
|
||||
sys.path.insert(0,QP_PATH+"/Python/")
|
||||
from ezfio import ezfio
|
||||
from datetime import datetime
|
||||
import time
|
||||
from math import exp, sqrt, pi
|
||||
import numpy as np
|
||||
import subprocess
|
||||
from scipy.integrate import tplquad
|
||||
import multiprocessing
|
||||
from multiprocessing import Pool
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
def read_ao():
|
||||
|
||||
with open('ao_data') as f:
|
||||
lines = f.readlines()
|
||||
|
||||
ao_prim_num = np.zeros((ao_num), dtype=int)
|
||||
ao_nucl = np.zeros((ao_num), dtype=int)
|
||||
ao_power = np.zeros((ao_num, 3))
|
||||
nucl_coord = np.zeros((ao_num, 3))
|
||||
ao_expo = np.zeros((ao_num, ao_num))
|
||||
ao_coef = np.zeros((ao_num, ao_num))
|
||||
|
||||
iline = 0
|
||||
for j in range(ao_num):
|
||||
|
||||
line = lines[iline]
|
||||
iline += 1
|
||||
ao_nucl[j] = int(line) - 1
|
||||
|
||||
line = lines[iline].split()
|
||||
iline += 1
|
||||
ao_power[j, 0] = float(line[0])
|
||||
ao_power[j, 1] = float(line[1])
|
||||
ao_power[j, 2] = float(line[2])
|
||||
|
||||
line = lines[iline].split()
|
||||
iline += 1
|
||||
nucl_coord[ao_nucl[j], 0] = float(line[0])
|
||||
nucl_coord[ao_nucl[j], 1] = float(line[1])
|
||||
nucl_coord[ao_nucl[j], 2] = float(line[2])
|
||||
|
||||
line = lines[iline]
|
||||
iline += 1
|
||||
ao_prim_num[j] = int(line)
|
||||
|
||||
for l in range(ao_prim_num[j]):
|
||||
|
||||
line = lines[iline].split()
|
||||
iline += 1
|
||||
ao_expo[l, j] = float(line[0])
|
||||
ao_coef[l, j] = float(line[1])
|
||||
|
||||
return( ao_prim_num
|
||||
, ao_nucl
|
||||
, ao_power
|
||||
, nucl_coord
|
||||
, ao_expo
|
||||
, ao_coef )
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
def Gao(X, i_ao):
|
||||
|
||||
ii = ao_nucl[i_ao]
|
||||
C = np.array([nucl_coord[ii,0], nucl_coord[ii,1], nucl_coord[ii,2]])
|
||||
Y = X - C
|
||||
dis = np.dot(Y,Y)
|
||||
|
||||
ip = np.array([ao_power[i_ao,0], ao_power[i_ao,1], ao_power[i_ao,2]])
|
||||
pol = np.prod(Y**ip)
|
||||
|
||||
xi = np.sum( ao_coef[:,i_ao] * np.exp(-dis*ao_expo[:,i_ao]) )
|
||||
|
||||
return(xi*pol)
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
def grad_Gao(X, i_ao):
|
||||
|
||||
ii = ao_nucl[i_ao]
|
||||
C = np.array([nucl_coord[ii,0], nucl_coord[ii,1], nucl_coord[ii,2]])
|
||||
|
||||
ix = ao_power[i_ao,0]
|
||||
iy = ao_power[i_ao,1]
|
||||
iz = ao_power[i_ao,2]
|
||||
|
||||
Y = X - C
|
||||
dis = np.dot(Y,Y)
|
||||
|
||||
xm = np.sum( ao_coef[:,i_ao]*np.exp(-dis*ao_expo[:,i_ao]))
|
||||
xp = np.sum(ao_expo[:,i_ao]*ao_coef[:,i_ao]*np.exp(-dis*ao_expo[:,i_ao]))
|
||||
|
||||
ip = np.array([ix+1, iy, iz])
|
||||
dx = -2. * np.prod(Y**ip) * xp
|
||||
if(ix > 0):
|
||||
ip = np.array([ix-1, iy, iz])
|
||||
dx += ix * np.prod(Y**ip) * xm
|
||||
|
||||
ip = np.array([ix, iy+1, iz])
|
||||
dy = -2. * np.prod(Y**ip) * xp
|
||||
if(iy > 0):
|
||||
ip = np.array([ix, iy-1, iz])
|
||||
dy += iy * np.prod(Y**ip) * xm
|
||||
|
||||
ip = np.array([ix, iy, iz+1])
|
||||
dz = -2. * np.prod(Y**ip) * xp
|
||||
if(iz > 0):
|
||||
ip = np.array([ix, iy, iz-1])
|
||||
dz += iz * np.prod(Y**ip) * xm
|
||||
|
||||
return(np.array([dx, dy, dz]))
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
# 3 x < XA | exp[-gama r_C^2] | XB >
|
||||
# - 2 x < XA | r_A^2 exp[-gama r_C^2] | XB >
|
||||
#
|
||||
def integ_lap(z, y, x, i_ao, j_ao):
|
||||
|
||||
X = np.array([x, y, z])
|
||||
|
||||
Gi = Gao(X, i_ao)
|
||||
Gj = Gao(X, j_ao)
|
||||
|
||||
c = 0.
|
||||
for k in range(nucl_num):
|
||||
gama = j1b_gauss_pen[k]
|
||||
C = nucl_coord[k,:]
|
||||
Y = X - C
|
||||
dis = np.dot(Y, Y)
|
||||
arg = exp(-gama*dis)
|
||||
arg = exp(-gama*dis)
|
||||
c += ( 3. - 2. * dis * gama ) * arg * gama * Gi * Gj
|
||||
|
||||
return(c)
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
#
|
||||
def integ_grad2(z, y, x, i_ao, j_ao):
|
||||
|
||||
X = np.array([x, y, z])
|
||||
|
||||
Gi = Gao(X, i_ao)
|
||||
Gj = Gao(X, j_ao)
|
||||
|
||||
c = np.zeros((3))
|
||||
for k in range(nucl_num):
|
||||
gama = j1b_gauss_pen[k]
|
||||
C = nucl_coord[k,:]
|
||||
Y = X - C
|
||||
c += gama * exp(-gama*np.dot(Y, Y)) * Y
|
||||
|
||||
return(-2*np.dot(c,c)*Gi*Gj)
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
#
|
||||
def integ_nonh(z, y, x, i_ao, j_ao):
|
||||
|
||||
X = np.array([x, y, z])
|
||||
|
||||
Gi = Gao(X, i_ao)
|
||||
|
||||
c = 0.
|
||||
for k in range(nucl_num):
|
||||
gama = j1b_gauss_pen[k]
|
||||
C = nucl_coord[k,:]
|
||||
Y = X - C
|
||||
grad = grad_Gao(X, j_ao)
|
||||
c += gama * exp(-gama*np.dot(Y,Y)) * np.dot(Y,grad)
|
||||
|
||||
return(2*c*Gi)
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
def perform_integ( ind_ao ):
|
||||
|
||||
i_ao = ind_ao[0]
|
||||
j_ao = ind_ao[1]
|
||||
|
||||
a = -15. #-np.Inf
|
||||
b = +15. #+np.Inf
|
||||
epsrel = 1e-5
|
||||
|
||||
res_lap, err_lap = tplquad( integ_lap
|
||||
, a, b
|
||||
, lambda x : a, lambda x : b
|
||||
, lambda x,y: a, lambda x,y: b
|
||||
, (i_ao, j_ao)
|
||||
, epsrel=epsrel )
|
||||
|
||||
res_grd, err_grd = tplquad( integ_grad2
|
||||
, a, b
|
||||
, lambda x : a, lambda x : b
|
||||
, lambda x,y: a, lambda x,y: b
|
||||
, (i_ao, j_ao)
|
||||
, epsrel=epsrel )
|
||||
|
||||
res_nnh, err_nnh = tplquad( integ_nonh
|
||||
, a, b
|
||||
, lambda x : a, lambda x : b
|
||||
, lambda x,y: a, lambda x,y: b
|
||||
, (i_ao, j_ao)
|
||||
, epsrel=epsrel )
|
||||
|
||||
return( [ res_lap, err_lap
|
||||
, res_grd, err_grd
|
||||
, res_nnh, err_nnh ])
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
def integ_eval():
|
||||
|
||||
list_ind = []
|
||||
for i_ao in range(ao_num):
|
||||
for j_ao in range(ao_num):
|
||||
list_ind.append( [i_ao, j_ao] )
|
||||
|
||||
nb_proc = multiprocessing.cpu_count()
|
||||
print(" --- Excexution with {} processors ---\n".format(nb_proc))
|
||||
|
||||
p = Pool(nb_proc)
|
||||
res = np.array( p.map( perform_integ, list_ind ) )
|
||||
|
||||
ii = 0
|
||||
for i_ao in range(ao_num):
|
||||
for j_ao in range(ao_num):
|
||||
print(" {} {} {:+e} {:+e} {:+e} {:+e}".format( i_ao, j_ao
|
||||
, res[ii][0], res[ii][1], res[ii][2], res[ii][3]) )
|
||||
ii += 1
|
||||
|
||||
p.close()
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
|
||||
# _____________________________________________________________________________
|
||||
#
|
||||
if __name__=="__main__":
|
||||
|
||||
t0 = time.time()
|
||||
|
||||
EZFIO_file = sys.argv[1]
|
||||
ezfio.set_file(EZFIO_file)
|
||||
|
||||
print(" Today's date:", datetime.now() )
|
||||
print(" EZFIO file = {}".format(EZFIO_file))
|
||||
|
||||
nucl_num = ezfio.get_nuclei_nucl_num()
|
||||
ao_num = ezfio.get_ao_basis_ao_num()
|
||||
j1b_gauss_pen = ezfio.get_ao_tc_eff_map_j1b_gauss_pen()
|
||||
|
||||
ao_prim_num, ao_nucl, ao_power, nucl_coord, ao_expo, ao_coef = read_ao()
|
||||
|
||||
#integ_eval()
|
||||
|
||||
i_ao = 0
|
||||
j_ao = 0
|
||||
|
||||
a = -5.
|
||||
b = +5.
|
||||
epsrel = 1e-1
|
||||
res_grd, err_grd = tplquad( integ_nonh
|
||||
, a, b
|
||||
, lambda x : a, lambda x : b
|
||||
, lambda x,y: a, lambda x,y: b
|
||||
, (i_ao, j_ao)
|
||||
, epsrel=epsrel )
|
||||
|
||||
print(res_grd, err_grd)
|
||||
|
||||
|
||||
tf = time.time() - t0
|
||||
print(' end after {} min'.format(tf/60.))
|
||||
# _____________________________________________________________________________
|
||||
|
||||
|
||||
|
@ -1,7 +1,7 @@
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, j1b_gauss_pen, (nucl_num) ]
|
||||
BEGIN_PROVIDER [ double precision, j1b_pen, (nucl_num) ]
|
||||
|
||||
BEGIN_DOC
|
||||
! exponents of the 1-body Jastrow
|
||||
@ -13,7 +13,7 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_pen, (nucl_num) ]
|
||||
PROVIDE ezfio_filename
|
||||
|
||||
if (mpi_master) then
|
||||
call ezfio_has_ao_tc_eff_map_j1b_gauss_pen(exists)
|
||||
call ezfio_has_ao_tc_eff_map_j1b_pen(exists)
|
||||
endif
|
||||
|
||||
IRP_IF MPI_DEBUG
|
||||
@ -24,21 +24,21 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_pen, (nucl_num) ]
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST(j1b_gauss_pen, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
|
||||
call MPI_BCAST(j1b_pen, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read j1b_gauss_pen with MPI'
|
||||
stop 'Unable to read j1b_pen with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
if (exists) then
|
||||
|
||||
if (mpi_master) then
|
||||
write(6,'(A)') '.. >>>>> [ IO READ: j1b_gauss_pen ] <<<<< ..'
|
||||
call ezfio_get_ao_tc_eff_map_j1b_gauss_pen(j1b_gauss_pen)
|
||||
write(6,'(A)') '.. >>>>> [ IO READ: j1b_pen ] <<<<< ..'
|
||||
call ezfio_get_ao_tc_eff_map_j1b_pen(j1b_pen)
|
||||
IRP_IF MPI
|
||||
call MPI_BCAST(j1b_gauss_pen, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
|
||||
call MPI_BCAST(j1b_pen, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read j1b_gauss_pen with MPI'
|
||||
stop 'Unable to read j1b_pen with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
endif
|
||||
@ -47,7 +47,7 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_pen, (nucl_num) ]
|
||||
|
||||
integer :: i
|
||||
do i = 1, nucl_num
|
||||
j1b_gauss_pen(i) = 1d5
|
||||
j1b_pen(i) = 1d5
|
||||
enddo
|
||||
|
||||
endif
|
||||
@ -56,4 +56,57 @@ END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, j1b_coeff, (nucl_num) ]
|
||||
|
||||
BEGIN_DOC
|
||||
! coefficients of the 1-body Jastrow
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
logical :: exists
|
||||
|
||||
PROVIDE ezfio_filename
|
||||
|
||||
if (mpi_master) then
|
||||
call ezfio_has_ao_tc_eff_map_j1b_coeff(exists)
|
||||
endif
|
||||
|
||||
IRP_IF MPI_DEBUG
|
||||
print *, irp_here, mpi_rank
|
||||
call MPI_BARRIER(MPI_COMM_WORLD, ierr)
|
||||
IRP_ENDIF
|
||||
|
||||
IRP_IF MPI
|
||||
include 'mpif.h'
|
||||
integer :: ierr
|
||||
call MPI_BCAST(j1b_coeff, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read j1b_coeff with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
|
||||
if (exists) then
|
||||
|
||||
if (mpi_master) then
|
||||
write(6,'(A)') '.. >>>>> [ IO READ: j1b_coeff ] <<<<< ..'
|
||||
call ezfio_get_ao_tc_eff_map_j1b_coeff(j1b_coeff)
|
||||
IRP_IF MPI
|
||||
call MPI_BCAST(j1b_coeff, (nucl_num), MPI_DOUBLE_PRECISION, 0, MPI_COMM_WORLD, ierr)
|
||||
if (ierr /= MPI_SUCCESS) then
|
||||
stop 'Unable to read j1b_coeff with MPI'
|
||||
endif
|
||||
IRP_ENDIF
|
||||
endif
|
||||
|
||||
else
|
||||
|
||||
integer :: i
|
||||
do i = 1, nucl_num
|
||||
j1b_coeff(i) = 0d5
|
||||
enddo
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
@ -27,42 +27,52 @@ END_PROVIDER
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, ao_tc_sym_two_e_pot_cache, (0:64*64*64*64) ]
|
||||
|
||||
use map_module
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Cache of |AO| integrals for fast access
|
||||
END_DOC
|
||||
PROVIDE ao_tc_sym_two_e_pot_in_map
|
||||
integer :: i,j,k,l,ii
|
||||
integer(key_kind) :: idx
|
||||
real(integral_kind) :: integral
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Cache of |AO| integrals for fast access
|
||||
END_DOC
|
||||
|
||||
integer :: i,j,k,l,ii
|
||||
integer(key_kind) :: idx
|
||||
real(integral_kind) :: integral
|
||||
|
||||
PROVIDE ao_tc_sym_two_e_pot_in_map
|
||||
|
||||
!$OMP PARALLEL DO PRIVATE (i,j,k,l,idx,ii,integral)
|
||||
do l=ao_tc_sym_two_e_pot_cache_min,ao_tc_sym_two_e_pot_cache_max
|
||||
do k=ao_tc_sym_two_e_pot_cache_min,ao_tc_sym_two_e_pot_cache_max
|
||||
do j=ao_tc_sym_two_e_pot_cache_min,ao_tc_sym_two_e_pot_cache_max
|
||||
do i=ao_tc_sym_two_e_pot_cache_min,ao_tc_sym_two_e_pot_cache_max
|
||||
!DIR$ FORCEINLINE
|
||||
call two_e_integrals_index(i,j,k,l,idx)
|
||||
!DIR$ FORCEINLINE
|
||||
call map_get(ao_tc_sym_two_e_pot_map,idx,integral)
|
||||
ii = l-ao_tc_sym_two_e_pot_cache_min
|
||||
ii = ior( ishft(ii,6), k-ao_tc_sym_two_e_pot_cache_min)
|
||||
ii = ior( ishft(ii,6), j-ao_tc_sym_two_e_pot_cache_min)
|
||||
ii = ior( ishft(ii,6), i-ao_tc_sym_two_e_pot_cache_min)
|
||||
ao_tc_sym_two_e_pot_cache(ii) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
do l = ao_tc_sym_two_e_pot_cache_min, ao_tc_sym_two_e_pot_cache_max
|
||||
do k = ao_tc_sym_two_e_pot_cache_min, ao_tc_sym_two_e_pot_cache_max
|
||||
do j = ao_tc_sym_two_e_pot_cache_min, ao_tc_sym_two_e_pot_cache_max
|
||||
do i = ao_tc_sym_two_e_pot_cache_min, ao_tc_sym_two_e_pot_cache_max
|
||||
!DIR$ FORCEINLINE
|
||||
call two_e_integrals_index(i, j, k, l, idx)
|
||||
!DIR$ FORCEINLINE
|
||||
call map_get(ao_tc_sym_two_e_pot_map, idx, integral)
|
||||
ii = l-ao_tc_sym_two_e_pot_cache_min
|
||||
ii = ior( ishft(ii,6), k-ao_tc_sym_two_e_pot_cache_min)
|
||||
ii = ior( ishft(ii,6), j-ao_tc_sym_two_e_pot_cache_min)
|
||||
ii = ior( ishft(ii,6), i-ao_tc_sym_two_e_pot_cache_min)
|
||||
ao_tc_sym_two_e_pot_cache(ii) = integral
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END PARALLEL DO
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
! ---
|
||||
|
||||
subroutine insert_into_ao_tc_sym_two_e_pot_map(n_integrals, buffer_i, buffer_values)
|
||||
|
||||
subroutine insert_into_ao_tc_sym_two_e_pot_map(n_integrals,buffer_i, buffer_values)
|
||||
use map_module
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Create new entry into |AO| map
|
||||
END_DOC
|
||||
@ -72,21 +82,30 @@ subroutine insert_into_ao_tc_sym_two_e_pot_map(n_integrals,buffer_i, buffer_valu
|
||||
real(integral_kind), intent(inout) :: buffer_values(n_integrals)
|
||||
|
||||
call map_append(ao_tc_sym_two_e_pot_map, buffer_i, buffer_values, n_integrals)
|
||||
|
||||
end
|
||||
|
||||
double precision function get_ao_tc_sym_two_e_pot(i,j,k,l,map) result(result)
|
||||
! ---
|
||||
|
||||
double precision function get_ao_tc_sym_two_e_pot(i, j, k, l, map) result(result)
|
||||
|
||||
use map_module
|
||||
|
||||
implicit none
|
||||
|
||||
BEGIN_DOC
|
||||
! Gets one |AO| two-electron integral from the |AO| map in PHYSICIST NOTATION
|
||||
! Gets one |AO| two-electron integral from the |AO| map
|
||||
END_DOC
|
||||
|
||||
integer, intent(in) :: i,j,k,l
|
||||
integer(key_kind) :: idx
|
||||
type(map_type), intent(inout) :: map
|
||||
integer :: ii
|
||||
real(integral_kind) :: tmp
|
||||
logical, external :: ao_two_e_integral_zero
|
||||
|
||||
PROVIDE ao_tc_sym_two_e_pot_in_map ao_tc_sym_two_e_pot_cache ao_tc_sym_two_e_pot_cache_min
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
! if (ao_two_e_integral_zero(i,j,k,l)) then
|
||||
if (.False.) then
|
||||
@ -100,9 +119,9 @@ double precision function get_ao_tc_sym_two_e_pot(i,j,k,l,map) result(result)
|
||||
ii = ior(ii, i-ao_tc_sym_two_e_pot_cache_min)
|
||||
if (iand(ii, -64) /= 0) then
|
||||
!DIR$ FORCEINLINE
|
||||
call two_e_integrals_index(i,j,k,l,idx)
|
||||
call two_e_integrals_index(i, j, k, l, idx)
|
||||
!DIR$ FORCEINLINE
|
||||
call map_get(map,idx,tmp)
|
||||
call map_get(map, idx, tmp)
|
||||
tmp = tmp
|
||||
else
|
||||
ii = l-ao_tc_sym_two_e_pot_cache_min
|
||||
@ -112,9 +131,12 @@ double precision function get_ao_tc_sym_two_e_pot(i,j,k,l,map) result(result)
|
||||
tmp = ao_tc_sym_two_e_pot_cache(ii)
|
||||
endif
|
||||
endif
|
||||
|
||||
result = tmp
|
||||
|
||||
end
|
||||
|
||||
! ---
|
||||
|
||||
subroutine get_many_ao_tc_sym_two_e_pot(j,k,l,sze,out_val)
|
||||
use map_module
|
||||
|
332
src/ao_tc_eff_map/one_e_1bgauss_grad2.irp.f
Normal file
332
src/ao_tc_eff_map/one_e_1bgauss_grad2.irp.f
Normal file
@ -0,0 +1,332 @@
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, j1b_gauss_hermII, (ao_num,ao_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! :math:`\langle \chi_A | -0.5 \grad \tau_{1b} \cdot \grad \tau_{1b} | \chi_B \rangle`
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: num_A, num_B
|
||||
integer :: power_A(3), power_B(3)
|
||||
integer :: i, j, k1, k2, l, m
|
||||
double precision :: alpha, beta, gama1, gama2, coef1, coef2
|
||||
double precision :: A_center(3), B_center(3), C_center1(3), C_center2(3)
|
||||
double precision :: c1, c
|
||||
|
||||
integer :: dim1
|
||||
double precision :: overlap_y, d_a_2, overlap_z, overlap
|
||||
|
||||
double precision :: int_gauss_4G
|
||||
|
||||
PROVIDE j1b_type j1b_pen j1b_coeff
|
||||
|
||||
! --------------------------------------------------------------------------------
|
||||
! -- Dummy call to provide everything
|
||||
dim1 = 100
|
||||
A_center(:) = 0.d0
|
||||
B_center(:) = 1.d0
|
||||
alpha = 1.d0
|
||||
beta = 0.1d0
|
||||
power_A(:) = 1
|
||||
power_B(:) = 0
|
||||
call overlap_gaussian_xyz( A_center, B_center, alpha, beta, power_A, power_B &
|
||||
, overlap_y, d_a_2, overlap_z, overlap, dim1 )
|
||||
! --------------------------------------------------------------------------------
|
||||
|
||||
|
||||
j1b_gauss_hermII(1:ao_num,1:ao_num) = 0.d0
|
||||
|
||||
if(j1b_type .eq. 1) then
|
||||
! \tau_1b = \sum_iA -[1 - exp(-alpha_A r_iA^2)]
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, k1, k2, l, m, alpha, beta, gama1, gama2, &
|
||||
!$OMP A_center, B_center, C_center1, C_center2, &
|
||||
!$OMP power_A, power_B, num_A, num_B, c1, c) &
|
||||
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
|
||||
!$OMP ao_power, ao_nucl, nucl_coord, &
|
||||
!$OMP ao_coef_normalized_ordered_transp, &
|
||||
!$OMP nucl_num, j1b_pen, j1b_gauss_hermII)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do j = 1, ao_num
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3) = ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
|
||||
do i = 1, ao_num
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3) = ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l = 1, ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
|
||||
do m = 1, ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
|
||||
c = 0.d0
|
||||
do k1 = 1, nucl_num
|
||||
gama1 = j1b_pen(k1)
|
||||
C_center1(1:3) = nucl_coord(k1,1:3)
|
||||
|
||||
do k2 = 1, nucl_num
|
||||
gama2 = j1b_pen(k2)
|
||||
C_center2(1:3) = nucl_coord(k2,1:3)
|
||||
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] r_C1 \cdot r_C2 | XB >
|
||||
c1 = int_gauss_4G( A_center, B_center, C_center1, C_center2 &
|
||||
, power_A, power_B, alpha, beta, gama1, gama2 )
|
||||
|
||||
c = c - 2.d0 * gama1 * gama2 * c1
|
||||
enddo
|
||||
enddo
|
||||
|
||||
j1b_gauss_hermII(i,j) = j1b_gauss_hermII(i,j) &
|
||||
+ ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i) * c
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
elseif(j1b_type .eq. 2) then
|
||||
! \tau_1b = \sum_iA [c_A exp(-alpha_A r_iA^2)]
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, k1, k2, l, m, alpha, beta, gama1, gama2, &
|
||||
!$OMP A_center, B_center, C_center1, C_center2, &
|
||||
!$OMP power_A, power_B, num_A, num_B, c1, c, &
|
||||
!$OMP coef1, coef2) &
|
||||
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
|
||||
!$OMP ao_power, ao_nucl, nucl_coord, &
|
||||
!$OMP ao_coef_normalized_ordered_transp, &
|
||||
!$OMP nucl_num, j1b_pen, j1b_gauss_hermII, &
|
||||
!$OMP j1b_coeff)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do j = 1, ao_num
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3) = ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
|
||||
do i = 1, ao_num
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3) = ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l = 1, ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
|
||||
do m = 1, ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
|
||||
c = 0.d0
|
||||
do k1 = 1, nucl_num
|
||||
gama1 = j1b_pen (k1)
|
||||
coef1 = j1b_coeff(k1)
|
||||
C_center1(1:3) = nucl_coord(k1,1:3)
|
||||
|
||||
do k2 = 1, nucl_num
|
||||
gama2 = j1b_pen (k2)
|
||||
coef2 = j1b_coeff(k2)
|
||||
C_center2(1:3) = nucl_coord(k2,1:3)
|
||||
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] r_C1 \cdot r_C2 | XB >
|
||||
c1 = int_gauss_4G( A_center, B_center, C_center1, C_center2 &
|
||||
, power_A, power_B, alpha, beta, gama1, gama2 )
|
||||
|
||||
c = c - 2.d0 * gama1 * gama2 * coef1 * coef2 * c1
|
||||
enddo
|
||||
enddo
|
||||
|
||||
j1b_gauss_hermII(i,j) = j1b_gauss_hermII(i,j) &
|
||||
+ ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i) * c
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
!_____________________________________________________________________________________________________________
|
||||
!
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] r_C1 \cdot r_C2 | XB >
|
||||
!
|
||||
double precision function int_gauss_4G( A_center, B_center, C_center1, C_center2, power_A, power_B &
|
||||
, alpha, beta, gama1, gama2 )
|
||||
|
||||
! for max_dim
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer , intent(in) :: power_A(3), power_B(3)
|
||||
double precision, intent(in) :: A_center(3), B_center(3), C_center1(3), C_center2(3)
|
||||
double precision, intent(in) :: alpha, beta, gama1, gama2
|
||||
|
||||
integer :: i, dim1, power_C
|
||||
integer :: iorder(3)
|
||||
double precision :: AB_expo, fact_AB, AB_center(3), P_AB(0:max_dim,3)
|
||||
double precision :: gama, fact_C, C_center(3)
|
||||
double precision :: cx0, cy0, cz0, c_tmp1, c_tmp2, cx, cy, cz
|
||||
double precision :: int_tmp
|
||||
|
||||
double precision :: overlap_gaussian_x
|
||||
|
||||
dim1 = 100
|
||||
|
||||
! P_AB(0:max_dim,3) polynomial
|
||||
! AB_center(3) new center
|
||||
! AB_expo new exponent
|
||||
! fact_AB constant factor
|
||||
! iorder(3) i_order(i) = order of the polynomials
|
||||
call give_explicit_poly_and_gaussian( P_AB, AB_center, AB_expo, fact_AB &
|
||||
, iorder, alpha, beta, power_A, power_B, A_center, B_center, dim1)
|
||||
|
||||
call gaussian_product(gama1, C_center1, gama2, C_center2, fact_C, gama, C_center)
|
||||
|
||||
! <<<
|
||||
! to avoid multi-evaluation
|
||||
power_C = 0
|
||||
|
||||
cx0 = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx0 = cx0 + P_AB(i,1) * overlap_gaussian_x( AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cy0 = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy0 = cy0 + P_AB(i,2) * overlap_gaussian_x( AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cz0 = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz0 = cz0 + P_AB(i,3) * overlap_gaussian_x( AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
! >>>
|
||||
|
||||
int_tmp = 0.d0
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
!
|
||||
! x term:
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] (x - x_C1) (x - x_C2) | XB >
|
||||
!
|
||||
|
||||
c_tmp1 = 2.d0 * C_center(1) - C_center1(1) - C_center2(1)
|
||||
c_tmp2 = ( C_center(1) - C_center1(1) ) * ( C_center(1) - C_center2(1) )
|
||||
|
||||
cx = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (x - x_C)^2 | XB >
|
||||
power_C = 2
|
||||
cx = cx + P_AB(i,1) &
|
||||
* overlap_gaussian_x( AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (x - x_C) | XB >
|
||||
power_C = 1
|
||||
cx = cx + P_AB(i,1) * c_tmp1 &
|
||||
* overlap_gaussian_x( AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
power_C = 0
|
||||
cx = cx + P_AB(i,1) * c_tmp2 &
|
||||
* overlap_gaussian_x( AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
enddo
|
||||
|
||||
int_tmp += cx * cy0 * cz0
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
!
|
||||
! y term:
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] (y - y_C1) (y - y_C2) | XB >
|
||||
!
|
||||
|
||||
c_tmp1 = 2.d0 * C_center(2) - C_center1(2) - C_center2(2)
|
||||
c_tmp2 = ( C_center(2) - C_center1(2) ) * ( C_center(2) - C_center2(2) )
|
||||
|
||||
cy = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (y - y_C)^2 | XB >
|
||||
power_C = 2
|
||||
cy = cy + P_AB(i,2) &
|
||||
* overlap_gaussian_x( AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (y - y_C) | XB >
|
||||
power_C = 1
|
||||
cy = cy + P_AB(i,2) * c_tmp1 &
|
||||
* overlap_gaussian_x( AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
power_C = 0
|
||||
cy = cy + P_AB(i,2) * c_tmp2 &
|
||||
* overlap_gaussian_x( AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
enddo
|
||||
|
||||
int_tmp += cx0 * cy * cz0
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
!
|
||||
! z term:
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] (z - z_C1) (z - z_C2) | XB >
|
||||
!
|
||||
|
||||
c_tmp1 = 2.d0 * C_center(3) - C_center1(3) - C_center2(3)
|
||||
c_tmp2 = ( C_center(3) - C_center1(3) ) * ( C_center(3) - C_center2(3) )
|
||||
|
||||
cz = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (z - z_C)^2 | XB >
|
||||
power_C = 2
|
||||
cz = cz + P_AB(i,3) &
|
||||
* overlap_gaussian_x( AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (z - z_C) | XB >
|
||||
power_C = 1
|
||||
cz = cz + P_AB(i,3) * c_tmp1 &
|
||||
* overlap_gaussian_x( AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
power_C = 0
|
||||
cz = cz + P_AB(i,3) * c_tmp2 &
|
||||
* overlap_gaussian_x( AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
enddo
|
||||
|
||||
int_tmp += cx0 * cy0 * cz
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
|
||||
int_gauss_4G = fact_AB * fact_C * int_tmp
|
||||
|
||||
return
|
||||
end function int_gauss_4G
|
||||
!_____________________________________________________________________________________________________________
|
||||
!_____________________________________________________________________________________________________________
|
||||
|
||||
|
@ -1,519 +0,0 @@
|
||||
|
||||
BEGIN_PROVIDER [ double precision, j1b_gauss_hermII, (ao_num,ao_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Hermitian part of 1-body Jastrow factow in the |AO| basis set.
|
||||
!
|
||||
! :math:`\langle \chi_A | -0.5 \grad \tau_{1b} \cdot \grad \tau_{1b} | \chi_B \rangle`
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: num_A, num_B
|
||||
integer :: power_A(3), power_B(3)
|
||||
integer :: i, j, k1, k2, l, m
|
||||
double precision :: alpha, beta, gama1, gama2
|
||||
double precision :: A_center(3), B_center(3), C_center1(3), C_center2(3)
|
||||
double precision :: c1, c
|
||||
|
||||
integer :: dim1
|
||||
double precision :: overlap_y, d_a_2, overlap_z, overlap
|
||||
|
||||
double precision :: int_gauss_4G
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
! --------------------------------------------------------------------------------
|
||||
! -- Dummy call to provide everything
|
||||
dim1 = 100
|
||||
A_center(:) = 0.d0
|
||||
B_center(:) = 1.d0
|
||||
alpha = 1.d0
|
||||
beta = 0.1d0
|
||||
power_A(:) = 1
|
||||
power_B(:) = 0
|
||||
call overlap_gaussian_xyz( A_center, B_center, alpha, beta, power_A, power_B &
|
||||
, overlap_y, d_a_2, overlap_z, overlap, dim1 )
|
||||
! --------------------------------------------------------------------------------
|
||||
|
||||
|
||||
j1b_gauss_hermII(1:ao_num,1:ao_num) = 0.d0
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, k1, k2, l, m, alpha, beta, gama1, gama2, &
|
||||
!$OMP A_center, B_center, C_center1, C_center2, &
|
||||
!$OMP power_A, power_B, num_A, num_B, c1, c) &
|
||||
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
|
||||
!$OMP ao_power, ao_nucl, nucl_coord, &
|
||||
!$OMP ao_coef_normalized_ordered_transp, &
|
||||
!$OMP nucl_num, j1b_gauss_pen, j1b_gauss_hermII)
|
||||
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
|
||||
do j = 1, ao_num
|
||||
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3) = ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
|
||||
do i = 1, ao_num
|
||||
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3) = ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l = 1, ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
|
||||
do m = 1, ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
|
||||
c = 0.d0
|
||||
do k1 = 1, nucl_num
|
||||
gama1 = j1b_gauss_pen(k1)
|
||||
C_center1(1:3) = nucl_coord(k1,1:3)
|
||||
|
||||
do k2 = 1, nucl_num
|
||||
gama2 = j1b_gauss_pen(k2)
|
||||
C_center2(1:3) = nucl_coord(k2,1:3)
|
||||
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] r_C1 \cdot r_C2 | XB >
|
||||
c1 = int_gauss_4G( A_center, B_center, C_center1, C_center2 &
|
||||
, power_A, power_B, alpha, beta, gama1, gama2 )
|
||||
|
||||
c = c - 2.d0 * gama1 * gama2 * c1
|
||||
enddo
|
||||
enddo
|
||||
|
||||
j1b_gauss_hermII(i,j) = j1b_gauss_hermII(i,j) &
|
||||
+ ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i) * c
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
!_____________________________________________________________________________________________________________
|
||||
!
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] r_C1 \cdot r_C2 | XB >
|
||||
!
|
||||
double precision function int_gauss_4G( A_center, B_center, C_center1, C_center2, power_A, power_B &
|
||||
, alpha, beta, gama1, gama2 )
|
||||
|
||||
! for max_dim
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer , intent(in) :: power_A(3), power_B(3)
|
||||
double precision, intent(in) :: A_center(3), B_center(3), C_center1(3), C_center2(3)
|
||||
double precision, intent(in) :: alpha, beta, gama1, gama2
|
||||
|
||||
integer :: i, dim1, power_C
|
||||
integer :: iorder(3)
|
||||
double precision :: AB_expo, fact_AB, AB_center(3), P_AB(0:max_dim,3)
|
||||
double precision :: gama, fact_C, C_center(3)
|
||||
double precision :: cx0, cy0, cz0, c_tmp1, c_tmp2, cx, cy, cz
|
||||
double precision :: int_tmp
|
||||
|
||||
double precision :: overlap_gaussian_x
|
||||
|
||||
dim1 = 100
|
||||
|
||||
! P_AB(0:max_dim,3) polynomial
|
||||
! AB_center(3) new center
|
||||
! AB_expo new exponent
|
||||
! fact_AB constant factor
|
||||
! iorder(3) i_order(i) = order of the polynomials
|
||||
call give_explicit_poly_and_gaussian( P_AB, AB_center, AB_expo, fact_AB &
|
||||
, iorder, alpha, beta, power_A, power_B, A_center, B_center, dim1)
|
||||
|
||||
call gaussian_product(gama1, C_center1, gama2, C_center2, fact_C, gama, C_center)
|
||||
|
||||
! <<<
|
||||
! to avoid multi-evaluation
|
||||
power_C = 0
|
||||
|
||||
cx0 = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx0 = cx0 + P_AB(i,1) * overlap_gaussian_x( AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cy0 = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy0 = cy0 + P_AB(i,2) * overlap_gaussian_x( AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cz0 = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz0 = cz0 + P_AB(i,3) * overlap_gaussian_x( AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
! >>>
|
||||
|
||||
int_tmp = 0.d0
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
!
|
||||
! x term:
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] (x - x_C1) (x - x_C2) | XB >
|
||||
!
|
||||
|
||||
c_tmp1 = 2.d0 * C_center(1) - C_center1(1) - C_center2(1)
|
||||
c_tmp2 = ( C_center(1) - C_center1(1) ) * ( C_center(1) - C_center2(1) )
|
||||
|
||||
cx = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (x - x_C)^2 | XB >
|
||||
power_C = 2
|
||||
cx = cx + P_AB(i,1) &
|
||||
* overlap_gaussian_x( AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (x - x_C) | XB >
|
||||
power_C = 1
|
||||
cx = cx + P_AB(i,1) * c_tmp1 &
|
||||
* overlap_gaussian_x( AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
power_C = 0
|
||||
cx = cx + P_AB(i,1) * c_tmp2 &
|
||||
* overlap_gaussian_x( AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
enddo
|
||||
|
||||
int_tmp += cx * cy0 * cz0
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
!
|
||||
! y term:
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] (y - y_C1) (y - y_C2) | XB >
|
||||
!
|
||||
|
||||
c_tmp1 = 2.d0 * C_center(2) - C_center1(2) - C_center2(2)
|
||||
c_tmp2 = ( C_center(2) - C_center1(2) ) * ( C_center(2) - C_center2(2) )
|
||||
|
||||
cy = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (y - y_C)^2 | XB >
|
||||
power_C = 2
|
||||
cy = cy + P_AB(i,2) &
|
||||
* overlap_gaussian_x( AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (y - y_C) | XB >
|
||||
power_C = 1
|
||||
cy = cy + P_AB(i,2) * c_tmp1 &
|
||||
* overlap_gaussian_x( AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
power_C = 0
|
||||
cy = cy + P_AB(i,2) * c_tmp2 &
|
||||
* overlap_gaussian_x( AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
enddo
|
||||
|
||||
int_tmp += cx0 * cy * cz0
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
!
|
||||
! z term:
|
||||
! < XA | exp[-gama1 r_C1^2 -gama2 r_C2^2] (z - z_C1) (z - z_C2) | XB >
|
||||
!
|
||||
|
||||
c_tmp1 = 2.d0 * C_center(3) - C_center1(3) - C_center2(3)
|
||||
c_tmp2 = ( C_center(3) - C_center1(3) ) * ( C_center(3) - C_center2(3) )
|
||||
|
||||
cz = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (z - z_C)^2 | XB >
|
||||
power_C = 2
|
||||
cz = cz + P_AB(i,3) &
|
||||
* overlap_gaussian_x( AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] (z - z_C) | XB >
|
||||
power_C = 1
|
||||
cz = cz + P_AB(i,3) * c_tmp1 &
|
||||
* overlap_gaussian_x( AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
power_C = 0
|
||||
cz = cz + P_AB(i,3) * c_tmp2 &
|
||||
* overlap_gaussian_x( AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
|
||||
enddo
|
||||
|
||||
int_tmp += cx0 * cy0 * cz
|
||||
|
||||
! -----------------------------------------------------------------------------------------------
|
||||
|
||||
int_gauss_4G = fact_AB * fact_C * int_tmp
|
||||
|
||||
return
|
||||
end function int_gauss_4G
|
||||
!_____________________________________________________________________________________________________________
|
||||
!_____________________________________________________________________________________________________________
|
||||
|
||||
BEGIN_PROVIDER [ double precision, j1b_gauss_hermI, (ao_num,ao_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Hermitian part of 1-body Jastrow factow in the |AO| basis set.
|
||||
!
|
||||
! :math:`\langle \chi_A | -0.5 \Delta \tau_{1b} | \chi_B \rangle`
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: num_A, num_B
|
||||
integer :: power_A(3), power_B(3)
|
||||
integer :: i, j, k, l, m
|
||||
double precision :: alpha, beta, gama
|
||||
double precision :: A_center(3), B_center(3), C_center(3)
|
||||
double precision :: c1, c2, c
|
||||
|
||||
integer :: dim1
|
||||
double precision :: overlap_y, d_a_2, overlap_z, overlap
|
||||
|
||||
double precision :: int_gauss_r0, int_gauss_r2
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
! --------------------------------------------------------------------------------
|
||||
! -- Dummy call to provide everything
|
||||
dim1 = 100
|
||||
A_center(:) = 0.d0
|
||||
B_center(:) = 1.d0
|
||||
alpha = 1.d0
|
||||
beta = 0.1d0
|
||||
power_A(:) = 1
|
||||
power_B(:) = 0
|
||||
call overlap_gaussian_xyz( A_center, B_center, alpha, beta, power_A, power_B &
|
||||
, overlap_y, d_a_2, overlap_z, overlap, dim1 )
|
||||
! --------------------------------------------------------------------------------
|
||||
|
||||
j1b_gauss_hermI(1:ao_num,1:ao_num) = 0.d0
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, k, l, m, alpha, beta, gama, &
|
||||
!$OMP A_center, B_center, C_center, power_A, power_B, &
|
||||
!$OMP num_A, num_B, c1, c2, c) &
|
||||
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
|
||||
!$OMP ao_power, ao_nucl, nucl_coord, &
|
||||
!$OMP ao_coef_normalized_ordered_transp, &
|
||||
!$OMP nucl_num, j1b_gauss_pen, j1b_gauss_hermI)
|
||||
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
|
||||
do j = 1, ao_num
|
||||
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3) = ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
|
||||
do i = 1, ao_num
|
||||
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3) = ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l = 1, ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
|
||||
do m = 1, ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
|
||||
c = 0.d0
|
||||
do k = 1, nucl_num
|
||||
|
||||
gama = j1b_gauss_pen(k)
|
||||
C_center(1:3) = nucl_coord(k,1:3)
|
||||
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
c1 = int_gauss_r0( A_center, B_center, C_center &
|
||||
, power_A, power_B, alpha, beta, gama )
|
||||
|
||||
! < XA | r_A^2 exp[-gama r_C^2] | XB >
|
||||
c2 = int_gauss_r2( A_center, B_center, C_center &
|
||||
, power_A, power_B, alpha, beta, gama )
|
||||
|
||||
c = c + 3.d0 * gama * c1 - 2.d0 * gama * gama * c2
|
||||
enddo
|
||||
|
||||
j1b_gauss_hermI(i,j) = j1b_gauss_hermI(i,j) &
|
||||
+ ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i) * c
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
!_____________________________________________________________________________________________________________
|
||||
!
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
!
|
||||
double precision function int_gauss_r0(A_center, B_center, C_center, power_A, power_B, alpha, beta, gama)
|
||||
|
||||
! for max_dim
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer , intent(in) :: power_A(3), power_B(3)
|
||||
double precision, intent(in) :: A_center(3), B_center(3), C_center(3)
|
||||
double precision, intent(in) :: alpha, beta, gama
|
||||
|
||||
integer :: i, power_C, dim1
|
||||
integer :: iorder(3)
|
||||
integer :: nmax
|
||||
double precision :: AB_expo, fact_AB, AB_center(3), P_AB(0:max_dim,3)
|
||||
double precision :: cx, cy, cz
|
||||
|
||||
double precision :: overlap_gaussian_x
|
||||
|
||||
dim1 = 100
|
||||
|
||||
! P_AB(0:max_dim,3) polynomial
|
||||
! AB_center(3) new center
|
||||
! AB_expo new exponent
|
||||
! fact_AB constant factor
|
||||
! iorder(3) i_order(i) = order of the polynomials
|
||||
call give_explicit_poly_and_gaussian( P_AB, AB_center, AB_expo, fact_AB &
|
||||
, iorder, alpha, beta, power_A, power_B, A_center, B_center, dim1)
|
||||
|
||||
if( fact_AB .lt. 1d-20 ) then
|
||||
int_gauss_r0 = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
power_C = 0
|
||||
cx = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx = cx + P_AB(i,1) * overlap_gaussian_x(AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cy = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy = cy + P_AB(i,2) * overlap_gaussian_x(AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cz = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz = cz + P_AB(i,3) * overlap_gaussian_x(AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
|
||||
int_gauss_r0 = fact_AB * cx * cy * cz
|
||||
|
||||
return
|
||||
end function int_gauss_r0
|
||||
!_____________________________________________________________________________________________________________
|
||||
!_____________________________________________________________________________________________________________
|
||||
|
||||
|
||||
|
||||
!_____________________________________________________________________________________________________________
|
||||
!
|
||||
! < XA | r_C^2 exp[-gama r_C^2] | XB >
|
||||
!
|
||||
double precision function int_gauss_r2(A_center, B_center, C_center, power_A, power_B, alpha, beta, gama)
|
||||
|
||||
! for max_dim
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: power_A(3), power_B(3)
|
||||
double precision, intent(in) :: A_center(3), B_center(3), C_center(3)
|
||||
double precision, intent(in) :: alpha, beta, gama
|
||||
|
||||
integer :: i, power_C, dim1
|
||||
integer :: iorder(3)
|
||||
double precision :: AB_expo, fact_AB, AB_center(3), P_AB(0:max_dim,3)
|
||||
double precision :: cx0, cy0, cz0, cx, cy, cz
|
||||
double precision :: int_tmp
|
||||
|
||||
double precision :: overlap_gaussian_x
|
||||
|
||||
dim1 = 100
|
||||
|
||||
! P_AB(0:max_dim,3) polynomial centered on AB_center
|
||||
! AB_center(3) new center
|
||||
! AB_expo new exponent
|
||||
! fact_AB constant factor
|
||||
! iorder(3) i_order(i) = order of the polynomials
|
||||
call give_explicit_poly_and_gaussian( P_AB, AB_center, AB_expo, fact_AB &
|
||||
, iorder, alpha, beta, power_A, power_B, A_center, B_center, dim1)
|
||||
|
||||
! <<<
|
||||
! to avoid multi-evaluation
|
||||
power_C = 0
|
||||
|
||||
cx0 = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx0 = cx0 + P_AB(i,1) * overlap_gaussian_x(AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cy0 = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy0 = cy0 + P_AB(i,2) * overlap_gaussian_x(AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cz0 = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz0 = cz0 + P_AB(i,3) * overlap_gaussian_x(AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
! >>>
|
||||
|
||||
int_tmp = 0.d0
|
||||
|
||||
power_C = 2
|
||||
|
||||
! ( x - XC)^2
|
||||
cx = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx = cx + P_AB(i,1) * overlap_gaussian_x(AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
int_tmp += cx * cy0 * cz0
|
||||
|
||||
! ( y - YC)^2
|
||||
cy = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy = cy + P_AB(i,2) * overlap_gaussian_x(AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
int_tmp += cx0 * cy * cz0
|
||||
|
||||
! ( z - ZC)^2
|
||||
cz = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz = cz + P_AB(i,3) * overlap_gaussian_x(AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
int_tmp += cx0 * cy0 * cz
|
||||
|
||||
int_gauss_r2 = fact_AB * int_tmp
|
||||
|
||||
return
|
||||
end function int_gauss_r2
|
||||
!_____________________________________________________________________________________________________________
|
||||
!_____________________________________________________________________________________________________________
|
303
src/ao_tc_eff_map/one_e_1bgauss_lap.irp.f
Normal file
303
src/ao_tc_eff_map/one_e_1bgauss_lap.irp.f
Normal file
@ -0,0 +1,303 @@
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, j1b_gauss_hermI, (ao_num,ao_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! :math:`\langle \chi_A | -0.5 \Delta \tau_{1b} | \chi_B \rangle`
|
||||
!
|
||||
END_DOC
|
||||
|
||||
implicit none
|
||||
|
||||
integer :: num_A, num_B
|
||||
integer :: power_A(3), power_B(3)
|
||||
integer :: i, j, k, l, m
|
||||
double precision :: alpha, beta, gama, coef
|
||||
double precision :: A_center(3), B_center(3), C_center(3)
|
||||
double precision :: c1, c2, c
|
||||
|
||||
integer :: dim1
|
||||
double precision :: overlap_y, d_a_2, overlap_z, overlap
|
||||
|
||||
double precision :: int_gauss_r0, int_gauss_r2
|
||||
|
||||
PROVIDE j1b_type j1b_pen j1b_coeff
|
||||
|
||||
! --------------------------------------------------------------------------------
|
||||
! -- Dummy call to provide everything
|
||||
dim1 = 100
|
||||
A_center(:) = 0.d0
|
||||
B_center(:) = 1.d0
|
||||
alpha = 1.d0
|
||||
beta = 0.1d0
|
||||
power_A(:) = 1
|
||||
power_B(:) = 0
|
||||
call overlap_gaussian_xyz( A_center, B_center, alpha, beta, power_A, power_B &
|
||||
, overlap_y, d_a_2, overlap_z, overlap, dim1 )
|
||||
! --------------------------------------------------------------------------------
|
||||
|
||||
j1b_gauss_hermI(1:ao_num,1:ao_num) = 0.d0
|
||||
|
||||
if(j1b_type .eq. 1) then
|
||||
! \tau_1b = \sum_iA -[1 - exp(-alpha_A r_iA^2)]
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, k, l, m, alpha, beta, gama, &
|
||||
!$OMP A_center, B_center, C_center, power_A, power_B, &
|
||||
!$OMP num_A, num_B, c1, c2, c) &
|
||||
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
|
||||
!$OMP ao_power, ao_nucl, nucl_coord, &
|
||||
!$OMP ao_coef_normalized_ordered_transp, &
|
||||
!$OMP nucl_num, j1b_pen, j1b_gauss_hermI)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do j = 1, ao_num
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3) = ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
|
||||
do i = 1, ao_num
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3) = ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l = 1, ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
|
||||
do m = 1, ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
|
||||
c = 0.d0
|
||||
do k = 1, nucl_num
|
||||
gama = j1b_pen(k)
|
||||
C_center(1:3) = nucl_coord(k,1:3)
|
||||
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
c1 = int_gauss_r0( A_center, B_center, C_center &
|
||||
, power_A, power_B, alpha, beta, gama )
|
||||
|
||||
! < XA | r_A^2 exp[-gama r_C^2] | XB >
|
||||
c2 = int_gauss_r2( A_center, B_center, C_center &
|
||||
, power_A, power_B, alpha, beta, gama )
|
||||
|
||||
c = c + 3.d0 * gama * c1 - 2.d0 * gama * gama * c2
|
||||
enddo
|
||||
|
||||
j1b_gauss_hermI(i,j) = j1b_gauss_hermI(i,j) &
|
||||
+ ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i) * c
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
elseif(j1b_type .eq. 2) then
|
||||
! \tau_1b = \sum_iA [c_A exp(-alpha_A r_iA^2)]
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, k, l, m, alpha, beta, gama, coef, &
|
||||
!$OMP A_center, B_center, C_center, power_A, power_B, &
|
||||
!$OMP num_A, num_B, c1, c2, c) &
|
||||
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
|
||||
!$OMP ao_power, ao_nucl, nucl_coord, &
|
||||
!$OMP ao_coef_normalized_ordered_transp, &
|
||||
!$OMP nucl_num, j1b_pen, j1b_gauss_hermI, &
|
||||
!$OMP j1b_coeff)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do j = 1, ao_num
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3) = ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
|
||||
do i = 1, ao_num
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3) = ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l = 1, ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
|
||||
do m = 1, ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
|
||||
c = 0.d0
|
||||
do k = 1, nucl_num
|
||||
gama = j1b_pen (k)
|
||||
coef = j1b_coeff(k)
|
||||
C_center(1:3) = nucl_coord(k,1:3)
|
||||
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
c1 = int_gauss_r0( A_center, B_center, C_center &
|
||||
, power_A, power_B, alpha, beta, gama )
|
||||
|
||||
! < XA | r_A^2 exp[-gama r_C^2] | XB >
|
||||
c2 = int_gauss_r2( A_center, B_center, C_center &
|
||||
, power_A, power_B, alpha, beta, gama )
|
||||
|
||||
c = c + 3.d0 * gama * coef * c1 - 2.d0 * gama * gama * coef * c2
|
||||
enddo
|
||||
|
||||
j1b_gauss_hermI(i,j) = j1b_gauss_hermI(i,j) &
|
||||
+ ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i) * c
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
!_____________________________________________________________________________________________________________
|
||||
!
|
||||
! < XA | exp[-gama r_C^2] | XB >
|
||||
!
|
||||
double precision function int_gauss_r0(A_center, B_center, C_center, power_A, power_B, alpha, beta, gama)
|
||||
|
||||
! for max_dim
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer , intent(in) :: power_A(3), power_B(3)
|
||||
double precision, intent(in) :: A_center(3), B_center(3), C_center(3)
|
||||
double precision, intent(in) :: alpha, beta, gama
|
||||
|
||||
integer :: i, power_C, dim1
|
||||
integer :: iorder(3)
|
||||
integer :: nmax
|
||||
double precision :: AB_expo, fact_AB, AB_center(3), P_AB(0:max_dim,3)
|
||||
double precision :: cx, cy, cz
|
||||
|
||||
double precision :: overlap_gaussian_x
|
||||
|
||||
dim1 = 100
|
||||
|
||||
! P_AB(0:max_dim,3) polynomial
|
||||
! AB_center(3) new center
|
||||
! AB_expo new exponent
|
||||
! fact_AB constant factor
|
||||
! iorder(3) i_order(i) = order of the polynomials
|
||||
call give_explicit_poly_and_gaussian( P_AB, AB_center, AB_expo, fact_AB &
|
||||
, iorder, alpha, beta, power_A, power_B, A_center, B_center, dim1)
|
||||
|
||||
if( fact_AB .lt. 1d-20 ) then
|
||||
int_gauss_r0 = 0.d0
|
||||
return
|
||||
endif
|
||||
|
||||
power_C = 0
|
||||
cx = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx = cx + P_AB(i,1) * overlap_gaussian_x(AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cy = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy = cy + P_AB(i,2) * overlap_gaussian_x(AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cz = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz = cz + P_AB(i,3) * overlap_gaussian_x(AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
|
||||
int_gauss_r0 = fact_AB * cx * cy * cz
|
||||
|
||||
return
|
||||
end function int_gauss_r0
|
||||
!_____________________________________________________________________________________________________________
|
||||
!_____________________________________________________________________________________________________________
|
||||
|
||||
|
||||
|
||||
!_____________________________________________________________________________________________________________
|
||||
!
|
||||
! < XA | r_C^2 exp[-gama r_C^2] | XB >
|
||||
!
|
||||
double precision function int_gauss_r2(A_center, B_center, C_center, power_A, power_B, alpha, beta, gama)
|
||||
|
||||
! for max_dim
|
||||
include 'constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: power_A(3), power_B(3)
|
||||
double precision, intent(in) :: A_center(3), B_center(3), C_center(3)
|
||||
double precision, intent(in) :: alpha, beta, gama
|
||||
|
||||
integer :: i, power_C, dim1
|
||||
integer :: iorder(3)
|
||||
double precision :: AB_expo, fact_AB, AB_center(3), P_AB(0:max_dim,3)
|
||||
double precision :: cx0, cy0, cz0, cx, cy, cz
|
||||
double precision :: int_tmp
|
||||
|
||||
double precision :: overlap_gaussian_x
|
||||
|
||||
dim1 = 100
|
||||
|
||||
! P_AB(0:max_dim,3) polynomial centered on AB_center
|
||||
! AB_center(3) new center
|
||||
! AB_expo new exponent
|
||||
! fact_AB constant factor
|
||||
! iorder(3) i_order(i) = order of the polynomials
|
||||
call give_explicit_poly_and_gaussian( P_AB, AB_center, AB_expo, fact_AB &
|
||||
, iorder, alpha, beta, power_A, power_B, A_center, B_center, dim1)
|
||||
|
||||
! <<<
|
||||
! to avoid multi-evaluation
|
||||
power_C = 0
|
||||
|
||||
cx0 = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx0 = cx0 + P_AB(i,1) * overlap_gaussian_x(AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cy0 = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy0 = cy0 + P_AB(i,2) * overlap_gaussian_x(AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
cz0 = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz0 = cz0 + P_AB(i,3) * overlap_gaussian_x(AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
! >>>
|
||||
|
||||
int_tmp = 0.d0
|
||||
|
||||
power_C = 2
|
||||
|
||||
! ( x - XC)^2
|
||||
cx = 0.d0
|
||||
do i = 0, iorder(1)
|
||||
cx = cx + P_AB(i,1) * overlap_gaussian_x(AB_center(1), C_center(1), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
int_tmp += cx * cy0 * cz0
|
||||
|
||||
! ( y - YC)^2
|
||||
cy = 0.d0
|
||||
do i = 0, iorder(2)
|
||||
cy = cy + P_AB(i,2) * overlap_gaussian_x(AB_center(2), C_center(2), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
int_tmp += cx0 * cy * cz0
|
||||
|
||||
! ( z - ZC)^2
|
||||
cz = 0.d0
|
||||
do i = 0, iorder(3)
|
||||
cz = cz + P_AB(i,3) * overlap_gaussian_x(AB_center(3), C_center(3), AB_expo, gama, i, power_C, dim1)
|
||||
enddo
|
||||
int_tmp += cx0 * cy0 * cz
|
||||
|
||||
int_gauss_r2 = fact_AB * int_tmp
|
||||
|
||||
return
|
||||
end function int_gauss_r2
|
||||
!_____________________________________________________________________________________________________________
|
||||
!_____________________________________________________________________________________________________________
|
||||
|
||||
|
@ -1,11 +1,10 @@
|
||||
! ---
|
||||
|
||||
BEGIN_PROVIDER [ double precision, j1b_gauss_nonherm, (ao_num,ao_num)]
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! Hermitian part of 1-body Jastrow factow in the |AO| basis set.
|
||||
!
|
||||
! \langle \chi_i | - grad \tau_{1b} \cdot grad | \chi_j \rangle =
|
||||
! 2 \sum_A aA \langle \chi_i | exp[-aA riA^2] (ri-rA) \cdot grad | \chi_j \rangle
|
||||
! j1b_gauss_nonherm(i,j) = \langle \chi_j | - grad \tau_{1b} \cdot grad | \chi_i \rangle
|
||||
!
|
||||
END_DOC
|
||||
|
||||
@ -14,7 +13,7 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_nonherm, (ao_num,ao_num)]
|
||||
integer :: num_A, num_B
|
||||
integer :: power_A(3), power_B(3)
|
||||
integer :: i, j, k, l, m
|
||||
double precision :: alpha, beta, gama
|
||||
double precision :: alpha, beta, gama, coef
|
||||
double precision :: A_center(3), B_center(3), C_center(3)
|
||||
double precision :: c1, c
|
||||
|
||||
@ -23,7 +22,7 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_nonherm, (ao_num,ao_num)]
|
||||
|
||||
double precision :: int_gauss_deriv
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
PROVIDE j1b_type j1b_pen j1b_coeff
|
||||
|
||||
! --------------------------------------------------------------------------------
|
||||
! -- Dummy call to provide everything
|
||||
@ -41,6 +40,9 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_nonherm, (ao_num,ao_num)]
|
||||
|
||||
j1b_gauss_nonherm(1:ao_num,1:ao_num) = 0.d0
|
||||
|
||||
if(j1b_type .eq. 1) then
|
||||
! \tau_1b = \sum_iA -[1 - exp(-alpha_A r_iA^2)]
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, k, l, m, alpha, beta, gama, &
|
||||
@ -49,53 +51,101 @@ BEGIN_PROVIDER [ double precision, j1b_gauss_nonherm, (ao_num,ao_num)]
|
||||
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
|
||||
!$OMP ao_power, ao_nucl, nucl_coord, &
|
||||
!$OMP ao_coef_normalized_ordered_transp, &
|
||||
!$OMP nucl_num, j1b_gauss_pen, j1b_gauss_nonherm)
|
||||
|
||||
!$OMP nucl_num, j1b_pen, j1b_gauss_nonherm)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
|
||||
do j = 1, ao_num
|
||||
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3) = ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
|
||||
do i = 1, ao_num
|
||||
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3) = ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l = 1, ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
|
||||
do m = 1, ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
|
||||
c = 0.d0
|
||||
do k = 1, nucl_num
|
||||
|
||||
gama = j1b_gauss_pen(k)
|
||||
C_center(1:3) = nucl_coord(k,1:3)
|
||||
|
||||
! \langle \chi_A | exp[-gama r_C^2] r_C \cdot grad | \chi_B \rangle
|
||||
c1 = int_gauss_deriv( A_center, B_center, C_center &
|
||||
, power_A, power_B, alpha, beta, gama )
|
||||
|
||||
c = c + 2.d0 * gama * c1
|
||||
do j = 1, ao_num
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3) = ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
|
||||
do i = 1, ao_num
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3) = ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l = 1, ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
|
||||
do m = 1, ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
|
||||
c = 0.d0
|
||||
do k = 1, nucl_num
|
||||
gama = j1b_pen(k)
|
||||
C_center(1:3) = nucl_coord(k,1:3)
|
||||
|
||||
! \langle \chi_A | exp[-gama r_C^2] r_C \cdot grad | \chi_B \rangle
|
||||
c1 = int_gauss_deriv( A_center, B_center, C_center &
|
||||
, power_A, power_B, alpha, beta, gama )
|
||||
|
||||
c = c + 2.d0 * gama * c1
|
||||
enddo
|
||||
|
||||
j1b_gauss_nonherm(i,j) = j1b_gauss_nonherm(i,j) &
|
||||
+ ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i) * c
|
||||
enddo
|
||||
|
||||
j1b_gauss_nonherm(i,j) = j1b_gauss_nonherm(i,j) &
|
||||
+ ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i) * c
|
||||
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
elseif(j1b_type .eq. 2) then
|
||||
! \tau_1b = \sum_iA [c_A exp(-alpha_A r_iA^2)]
|
||||
|
||||
!$OMP PARALLEL &
|
||||
!$OMP DEFAULT (NONE) &
|
||||
!$OMP PRIVATE (i, j, k, l, m, alpha, beta, gama, coef, &
|
||||
!$OMP A_center, B_center, C_center, power_A, power_B, &
|
||||
!$OMP num_A, num_B, c1, c) &
|
||||
!$OMP SHARED (ao_num, ao_prim_num, ao_expo_ordered_transp, &
|
||||
!$OMP ao_power, ao_nucl, nucl_coord, &
|
||||
!$OMP ao_coef_normalized_ordered_transp, &
|
||||
!$OMP nucl_num, j1b_pen, j1b_gauss_nonherm, &
|
||||
!$OMP j1b_coeff)
|
||||
!$OMP DO SCHEDULE (dynamic)
|
||||
do j = 1, ao_num
|
||||
num_A = ao_nucl(j)
|
||||
power_A(1:3) = ao_power(j,1:3)
|
||||
A_center(1:3) = nucl_coord(num_A,1:3)
|
||||
|
||||
do i = 1, ao_num
|
||||
num_B = ao_nucl(i)
|
||||
power_B(1:3) = ao_power(i,1:3)
|
||||
B_center(1:3) = nucl_coord(num_B,1:3)
|
||||
|
||||
do l = 1, ao_prim_num(j)
|
||||
alpha = ao_expo_ordered_transp(l,j)
|
||||
|
||||
do m = 1, ao_prim_num(i)
|
||||
beta = ao_expo_ordered_transp(m,i)
|
||||
|
||||
c = 0.d0
|
||||
do k = 1, nucl_num
|
||||
gama = j1b_pen (k)
|
||||
coef = j1b_coeff(k)
|
||||
C_center(1:3) = nucl_coord(k,1:3)
|
||||
|
||||
! \langle \chi_A | exp[-gama r_C^2] r_C \cdot grad | \chi_B \rangle
|
||||
c1 = int_gauss_deriv( A_center, B_center, C_center &
|
||||
, power_A, power_B, alpha, beta, gama )
|
||||
|
||||
c = c + 2.d0 * gama * coef * c1
|
||||
enddo
|
||||
|
||||
j1b_gauss_nonherm(i,j) = j1b_gauss_nonherm(i,j) &
|
||||
+ ao_coef_normalized_ordered_transp(l,j) &
|
||||
* ao_coef_normalized_ordered_transp(m,i) * c
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
enddo
|
||||
!$OMP END DO
|
||||
!$OMP END PARALLEL
|
||||
|
||||
endif
|
||||
|
||||
END_PROVIDER
|
||||
|
||||
|
||||
@ -317,3 +367,5 @@ double precision function int_gauss_deriv(A_center, B_center, C_center, power_A,
|
||||
end function int_gauss_deriv
|
||||
!_____________________________________________________________________________________________________________
|
||||
!_____________________________________________________________________________________________________________
|
||||
|
||||
|
||||
|
@ -1,800 +0,0 @@
|
||||
double precision function j1b_gauss_coul(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ 0.5 / r12 ] (r1-r2) \cdot \sum_A (-2 a_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = [ 1 / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s, ii
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: p_inv, q_inv
|
||||
double precision :: P_new_tmp(0:max_dim,3), P_center_tmp(3), fact_p_tmp, pp_tmp
|
||||
double precision :: Q_new_tmp(0:max_dim,3), Q_center_tmp(3), fact_q_tmp, qq_tmp
|
||||
double precision :: P_new(0:max_dim,3), P_center(3), fact_p, pp
|
||||
double precision :: Q_new(0:max_dim,3), Q_center(3), fact_q, qq
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: expoii, factii, Centerii(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: general_primitive_integral_coul_shifted
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul = 0.d0
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! [ 1 / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new_tmp, P_center_tmp, pp_tmp, fact_p_tmp, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new, Q_center, qq, fact_q, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp_tmp, P_center_tmp, expoii, Centerii, factii, pp, P_center)
|
||||
|
||||
fact_p = fact_p_tmp * factii
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
! pol centerd on P_center_tmp ==> centerd on P_center
|
||||
call pol_modif_center( P_center_tmp, P_center, iorder_p, P_new_tmp, P_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
|
||||
shift_P = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
ff = P_center(2) - Centerii(2)
|
||||
|
||||
shift_P = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
ff = P_center(3) - Centerii(3)
|
||||
|
||||
shift_P = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul = j1b_gauss_coul + coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! [ 1 / r12 ] \sum_A a_A [ (r2-RA)^2 exp(-aA r2A^2)
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new, P_center, pp, fact_p, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new_tmp, Q_center_tmp, qq_tmp, fact_q_tmp, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(qq_tmp, Q_center_tmp, expoii, Centerii, factii, qq, Q_center)
|
||||
|
||||
fact_q = fact_q_tmp * factii
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
! pol centerd on Q_center_tmp ==> centerd on Q_center
|
||||
call pol_modif_center( Q_center_tmp, Q_center, iorder_q, Q_new_tmp, Q_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
ff = Q_center(1) - Centerii(1)
|
||||
|
||||
shift_Q = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
ff = Q_center(2) - Centerii(2)
|
||||
|
||||
shift_Q = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
ff = Q_center(3) - Centerii(3)
|
||||
|
||||
shift_Q = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul = j1b_gauss_coul + coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! - [ 1 / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r1A^2) ]
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new_tmp, P_center_tmp, pp_tmp, fact_p_tmp, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new, Q_center, qq, fact_q, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp_tmp, P_center_tmp, expoii, Centerii, factii, pp, P_center)
|
||||
|
||||
fact_p = fact_p_tmp * factii
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
! pol centerd on P_center_tmp ==> centerd on P_center
|
||||
call pol_modif_center( P_center_tmp, P_center, iorder_p, P_new_tmp, P_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
gg = Q_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
ff = P_center(2) - Centerii(2)
|
||||
gg = Q_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
ff = P_center(3) - Centerii(3)
|
||||
gg = Q_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul = j1b_gauss_coul - coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! - [ 1 / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new, P_center, pp, fact_p, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new_tmp, Q_center_tmp, qq_tmp, fact_q_tmp, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(qq_tmp, Q_center_tmp, expoii, Centerii, factii, qq, Q_center)
|
||||
|
||||
fact_q = fact_q_tmp * factii
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
! pol centerd on Q_center_tmp ==> centerd on Q_center
|
||||
call pol_modif_center( Q_center_tmp, Q_center, iorder_q, Q_new_tmp, Q_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
gg = Q_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
ff = P_center(2) - Centerii(2)
|
||||
gg = Q_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
ff = P_center(3) - Centerii(3)
|
||||
gg = Q_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul = j1b_gauss_coul - coef4 * ( cx + cy + cz )
|
||||
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
return
|
||||
end function j1b_gauss_coul
|
||||
|
||||
|
||||
|
||||
|
||||
!______________________________________________________________________________________________________________________
|
||||
!______________________________________________________________________________________________________________________
|
||||
|
||||
double precision function general_primitive_integral_coul_shifted( dim &
|
||||
, P_new, P_center, fact_p, p, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, q, q_inv, iorder_q, shift_Q )
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: dim
|
||||
integer, intent(in) :: iorder_p(3), shift_P(3)
|
||||
integer, intent(in) :: iorder_q(3), shift_Q(3)
|
||||
double precision, intent(in) :: P_new(0:max_dim,3), P_center(3), fact_p, p, p_inv
|
||||
double precision, intent(in) :: Q_new(0:max_dim,3), Q_center(3), fact_q, q, q_inv
|
||||
|
||||
integer :: n_Ix, n_Iy, n_Iz, nx, ny, nz
|
||||
integer :: ix, iy, iz, jx, jy, jz, i
|
||||
integer :: n_pt_tmp, n_pt_out, iorder
|
||||
integer :: ii, jj
|
||||
double precision :: rho, dist
|
||||
double precision :: dx(0:max_dim), Ix_pol(0:max_dim)
|
||||
double precision :: dy(0:max_dim), Iy_pol(0:max_dim)
|
||||
double precision :: dz(0:max_dim), Iz_pol(0:max_dim)
|
||||
double precision :: a, b, c, d, e, f, accu, pq, const
|
||||
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2, pq_inv_2
|
||||
double precision :: d1(0:max_dim), d_poly(0:max_dim)
|
||||
double precision :: p_plus_q
|
||||
|
||||
double precision :: rint_sum
|
||||
|
||||
general_primitive_integral_coul_shifted = 0.d0
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx, Ix_pol, dy, Iy_pol, dz, Iz_pol
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
||||
|
||||
! Gaussian Product
|
||||
! ----------------
|
||||
p_plus_q = (p+q)
|
||||
pq = p_inv * 0.5d0 * q_inv
|
||||
pq_inv = 0.5d0 / p_plus_q
|
||||
p10_1 = q * pq ! 1/(2p)
|
||||
p01_1 = p * pq ! 1/(2q)
|
||||
pq_inv_2 = pq_inv + pq_inv
|
||||
p10_2 = pq_inv_2 * p10_1 * q ! 0.5d0 * q / (pq + p*p)
|
||||
p01_2 = pq_inv_2 * p01_1 * p ! 0.5d0 * p / (q*q + pq)
|
||||
|
||||
accu = 0.d0
|
||||
|
||||
iorder = iorder_p(1) + iorder_q(1) + iorder_p(1) + iorder_q(1)
|
||||
iorder = iorder + shift_P(1) + shift_Q(1)
|
||||
iorder = iorder + shift_P(1) + shift_Q(1)
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do ix = 0, iorder
|
||||
Ix_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Ix = 0
|
||||
do ix = 0, iorder_p(1)
|
||||
|
||||
ii = ix + shift_P(1)
|
||||
a = P_new(ix,1)
|
||||
if(abs(a) < thresh) cycle
|
||||
|
||||
do jx = 0, iorder_q(1)
|
||||
|
||||
jj = jx + shift_Q(1)
|
||||
d = a * Q_new(jx,1)
|
||||
if(abs(d) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(1), Q_center(1), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dx, nx )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dx, nx, d, Ix_pol, n_Ix)
|
||||
enddo
|
||||
enddo
|
||||
if(n_Ix == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(2) + iorder_q(2) + iorder_p(2) + iorder_q(2)
|
||||
iorder = iorder + shift_P(2) + shift_Q(2)
|
||||
iorder = iorder + shift_P(2) + shift_Q(2)
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do ix = 0, iorder
|
||||
Iy_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iy = 0
|
||||
do iy = 0, iorder_p(2)
|
||||
|
||||
if(abs(P_new(iy,2)) > thresh) then
|
||||
|
||||
ii = iy + shift_P(2)
|
||||
b = P_new(iy,2)
|
||||
|
||||
do jy = 0, iorder_q(2)
|
||||
|
||||
jj = jy + shift_Q(2)
|
||||
e = b * Q_new(jy,2)
|
||||
if(abs(e) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(2), Q_center(2), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dy, ny )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dy, ny, e, Iy_pol, n_Iy)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if(n_Iy == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(3) + iorder_q(3) + iorder_p(3) + iorder_q(3)
|
||||
iorder = iorder + shift_P(3) + shift_Q(3)
|
||||
iorder = iorder + shift_P(3) + shift_Q(3)
|
||||
do ix = 0, iorder
|
||||
Iz_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iz = 0
|
||||
do iz = 0, iorder_p(3)
|
||||
|
||||
if( abs(P_new(iz,3)) > thresh ) then
|
||||
|
||||
ii = iz + shift_P(3)
|
||||
c = P_new(iz,3)
|
||||
|
||||
do jz = 0, iorder_q(3)
|
||||
|
||||
jj = jz + shift_Q(3)
|
||||
f = c * Q_new(jz,3)
|
||||
if(abs(f) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(3), Q_center(3), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dz, nz )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dz, nz, f, Iz_pol, n_Iz)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if(n_Iz == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
rho = p * q * pq_inv_2
|
||||
dist = (P_center(1) - Q_center(1)) * (P_center(1) - Q_center(1)) &
|
||||
+ (P_center(2) - Q_center(2)) * (P_center(2) - Q_center(2)) &
|
||||
+ (P_center(3) - Q_center(3)) * (P_center(3) - Q_center(3))
|
||||
const = dist*rho
|
||||
|
||||
n_pt_tmp = n_Ix + n_Iy
|
||||
do i = 0, n_pt_tmp
|
||||
d_poly(i) = 0.d0
|
||||
enddo
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call multiply_poly(Ix_pol, n_Ix, Iy_pol, n_Iy, d_poly, n_pt_tmp)
|
||||
if(n_pt_tmp == -1) then
|
||||
return
|
||||
endif
|
||||
n_pt_out = n_pt_tmp + n_Iz
|
||||
do i = 0, n_pt_out
|
||||
d1(i) = 0.d0
|
||||
enddo
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call multiply_poly(d_poly, n_pt_tmp, Iz_pol, n_Iz, d1, n_pt_out)
|
||||
accu = accu + rint_sum(n_pt_out, const, d1)
|
||||
|
||||
general_primitive_integral_coul_shifted = fact_p * fact_q * accu * pi_5_2 * p_inv * q_inv / dsqrt(p_plus_q)
|
||||
|
||||
return
|
||||
end function general_primitive_integral_coul_shifted
|
||||
!______________________________________________________________________________________________________________________
|
||||
!______________________________________________________________________________________________________________________
|
@ -1,433 +0,0 @@
|
||||
double precision function j1b_gauss_coul_acc(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ 0.5 / r12 ] (r1-r2) \cdot \sum_A (-2 a_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = [ 1 / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s, ii
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: p1_inv, q1_inv, p2_inv, q2_inv
|
||||
double precision :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1
|
||||
double precision :: P2_new(0:max_dim,3), P2_center(3), fact_p2, pp2
|
||||
double precision :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1
|
||||
double precision :: Q2_new(0:max_dim,3), Q2_center(3), fact_q2, qq2
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: expoii, factii, Centerii(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: general_primitive_integral_coul_shifted
|
||||
!double precision :: j1b_gauss_coul_schwartz_accel
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
! TODO
|
||||
!if( ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
|
||||
! j1b_gauss_coul_schwartz_accel = j1b_gauss_coul_schwartz_accel(i, j, k, l)
|
||||
! return
|
||||
!endif
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_acc = 0.d0
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P1_new, P1_center, pp1, fact_p1, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p1_inv = 1.d0 / pp1
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q1_inv = 1.d0 / qq1
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp1, P1_center, expoii, Centerii, factii, pp2, P2_center)
|
||||
fact_p2 = fact_p1 * factii
|
||||
p2_inv = 1.d0 / pp2
|
||||
call pol_modif_center( P1_center, P2_center, iorder_p, P1_new, P2_new)
|
||||
|
||||
call gaussian_product(qq1, Q1_center, expoii, Centerii, factii, qq2, Q2_center)
|
||||
fact_q2 = fact_q1 * factii
|
||||
q2_inv = 1.d0 / qq2
|
||||
call pol_modif_center( Q1_center, Q2_center, iorder_q, Q1_new, Q2_new)
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! [ 1 / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
|
||||
! x term:
|
||||
ff = P2_center(1) - Centerii(1)
|
||||
|
||||
shift_P = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P2_center(2) - Centerii(2)
|
||||
|
||||
shift_P = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P2_center(3) - Centerii(3)
|
||||
|
||||
shift_P = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! [ 1 / r12 ] \sum_A a_A [ (r2-RA)^2 exp(-aA r2A^2)
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
|
||||
! x term:
|
||||
ff = Q2_center(1) - Centerii(1)
|
||||
|
||||
shift_Q = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = Q2_center(2) - Centerii(2)
|
||||
|
||||
shift_Q = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = Q2_center(3) - Centerii(3)
|
||||
|
||||
shift_Q = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! - [ 1 / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r1A^2) ]
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! x term:
|
||||
ff = P2_center(1) - Centerii(1)
|
||||
gg = Q1_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P2_center(2) - Centerii(2)
|
||||
gg = Q1_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P2_center(3) - Centerii(3)
|
||||
gg = Q1_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! - [ 1 / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! x term:
|
||||
ff = P1_center(1) - Centerii(1)
|
||||
gg = Q2_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P1_center(2) - Centerii(2)
|
||||
gg = Q2_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P1_center(3) - Centerii(3)
|
||||
gg = Q2_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_acc = j1b_gauss_coul_acc + coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
return
|
||||
end function j1b_gauss_coul_acc
|
@ -1,397 +0,0 @@
|
||||
double precision function j1b_gauss_coul_debug(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ 0.5 / r12 ] (r1-r2) \cdot \sum_A (-2 a_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = [ 1 / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s, ii
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: p_inv, q_inv
|
||||
double precision :: P_new_tmp(0:max_dim,3), P_center_tmp(3), fact_p_tmp, pp_tmp
|
||||
double precision :: Q_new_tmp(0:max_dim,3), Q_center_tmp(3), fact_q_tmp, qq_tmp
|
||||
double precision :: P_new(0:max_dim,3), P_center(3), fact_p, pp
|
||||
double precision :: Q_new(0:max_dim,3), Q_center(3), fact_q, qq
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: expoii, factii, Centerii(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: general_primitive_integral_coul_shifted
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_debug = 0.d0
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! [ 1 / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new_tmp, P_center_tmp, pp_tmp, fact_p_tmp, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new, Q_center, qq, fact_q, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
cx = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp_tmp, P_center_tmp, expoii, Centerii, factii, pp, P_center)
|
||||
|
||||
fact_p = fact_p_tmp * factii
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
! pol centerd on P_center_tmp ==> centerd on P_center
|
||||
call pol_modif_center( P_center_tmp, P_center, iorder_p, P_new_tmp, P_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
|
||||
shift_P = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_debug = j1b_gauss_coul_debug + coef4 * cx
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
! !
|
||||
! ! [ 1 / r12 ] \sum_A a_A [ (r2-RA)^2 exp(-aA r2A^2)
|
||||
! !
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! shift_P = (/ 0, 0, 0 /)
|
||||
!
|
||||
! do p = 1, ao_prim_num(i)
|
||||
! coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
! expo1 = ao_expo_ordered_transp(p, i)
|
||||
!
|
||||
! do q = 1, ao_prim_num(j)
|
||||
! coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
! expo2 = ao_expo_ordered_transp(q, j)
|
||||
!
|
||||
! call give_explicit_poly_and_gaussian( P_new, P_center, pp, fact_p, iorder_p, expo1, expo2 &
|
||||
! , I_power, J_power, I_center, J_center, dim1 )
|
||||
! p_inv = 1.d0 / pp
|
||||
!
|
||||
! do r = 1, ao_prim_num(k)
|
||||
! coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
! expo3 = ao_expo_ordered_transp(r, k)
|
||||
!
|
||||
! do s = 1, ao_prim_num(l)
|
||||
! coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
! expo4 = ao_expo_ordered_transp(s, l)
|
||||
!
|
||||
! call give_explicit_poly_and_gaussian( Q_new_tmp, Q_center_tmp, qq_tmp, fact_q_tmp, iorder_q, expo3, expo4 &
|
||||
! , K_power, L_power, K_center, L_center, dim1 )
|
||||
!
|
||||
! cx = 0.d0
|
||||
! do ii = 1, nucl_num
|
||||
! expoii = j1b_gauss_pen(ii)
|
||||
! Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
!
|
||||
! call gaussian_product(qq_tmp, Q_center_tmp, expoii, Centerii, factii, qq, Q_center)
|
||||
!
|
||||
! fact_q = fact_q_tmp * factii
|
||||
! q_inv = 1.d0 / qq
|
||||
!
|
||||
! ! pol centerd on Q_center_tmp ==> centerd on Q_center
|
||||
! call pol_modif_center( Q_center_tmp, Q_center, iorder_q, Q_new_tmp, Q_new)
|
||||
!
|
||||
! ! ----------------------------------------------------------------------------------------------------
|
||||
! ! x term:
|
||||
!
|
||||
! ff = Q_center(1) - Centerii(1)
|
||||
!
|
||||
! shift_Q = (/ 2, 0, 0 /)
|
||||
! cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
! , P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
! , Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
!
|
||||
! shift_Q = (/ 1, 0, 0 /)
|
||||
! cx = cx + expoii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
! , P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
! , Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
!
|
||||
! shift_Q = (/ 0, 0, 0 /)
|
||||
! cx = cx + expoii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
! , P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
! , Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
!
|
||||
! ! ----------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! enddo
|
||||
!
|
||||
! j1b_gauss_coul_debug = j1b_gauss_coul_debug + coef4 * cx
|
||||
! enddo ! s
|
||||
! enddo ! r
|
||||
! enddo ! q
|
||||
! enddo ! p
|
||||
!
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! - [ 1 / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r1A^2) ]
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new_tmp, P_center_tmp, pp_tmp, fact_p_tmp, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new, Q_center, qq, fact_q, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
cx = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp_tmp, P_center_tmp, expoii, Centerii, factii, pp, P_center)
|
||||
|
||||
fact_p = fact_p_tmp * factii
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
! pol centerd on P_center_tmp ==> centerd on P_center
|
||||
call pol_modif_center( P_center_tmp, P_center, iorder_p, P_new_tmp, P_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
gg = Q_center(1) - Centerii(1)
|
||||
|
||||
shift_P = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_debug = j1b_gauss_coul_debug - coef4 * cx
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
! !
|
||||
! ! - [ 1 / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
! !
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! do p = 1, ao_prim_num(i)
|
||||
! coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
! expo1 = ao_expo_ordered_transp(p, i)
|
||||
!
|
||||
! do q = 1, ao_prim_num(j)
|
||||
! coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
! expo2 = ao_expo_ordered_transp(q, j)
|
||||
!
|
||||
! call give_explicit_poly_and_gaussian( P_new, P_center, pp, fact_p, iorder_p, expo1, expo2 &
|
||||
! , I_power, J_power, I_center, J_center, dim1 )
|
||||
! p_inv = 1.d0 / pp
|
||||
!
|
||||
! do r = 1, ao_prim_num(k)
|
||||
! coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
! expo3 = ao_expo_ordered_transp(r, k)
|
||||
!
|
||||
! do s = 1, ao_prim_num(l)
|
||||
! coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
! expo4 = ao_expo_ordered_transp(s, l)
|
||||
!
|
||||
! call give_explicit_poly_and_gaussian( Q_new_tmp, Q_center_tmp, qq_tmp, fact_q_tmp, iorder_q, expo3, expo4 &
|
||||
! , K_power, L_power, K_center, L_center, dim1 )
|
||||
!
|
||||
! cx = 0.d0
|
||||
! do ii = 1, nucl_num
|
||||
! expoii = j1b_gauss_pen(ii)
|
||||
! Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
!
|
||||
! call gaussian_product(qq_tmp, Q_center_tmp, expoii, Centerii, factii, qq, Q_center)
|
||||
!
|
||||
! fact_q = fact_q_tmp * factii
|
||||
! q_inv = 1.d0 / qq
|
||||
!
|
||||
! ! pol centerd on Q_center_tmp ==> centerd on Q_center
|
||||
! call pol_modif_center( Q_center_tmp, Q_center, iorder_q, Q_new_tmp, Q_new)
|
||||
!
|
||||
! ! ----------------------------------------------------------------------------------------------------
|
||||
! ! x term:
|
||||
!
|
||||
! ff = P_center(1) - Centerii(1)
|
||||
! gg = Q_center(1) - Centerii(1)
|
||||
!
|
||||
! shift_P = (/ 1, 0, 0 /)
|
||||
! shift_Q = (/ 1, 0, 0 /)
|
||||
! cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
! , P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
! , Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
!
|
||||
! shift_P = (/ 1, 0, 0 /)
|
||||
! shift_Q = (/ 0, 0, 0 /)
|
||||
! cx = cx + expoii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
! , P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
! , Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
!
|
||||
! shift_P = (/ 0, 0, 0 /)
|
||||
! shift_Q = (/ 1, 0, 0 /)
|
||||
! cx = cx + expoii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
! , P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
! , Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
!
|
||||
! shift_P = (/ 0, 0, 0 /)
|
||||
! shift_Q = (/ 0, 0, 0 /)
|
||||
! cx = cx + expoii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
! , P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
! , Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
!
|
||||
! ! ----------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! enddo
|
||||
!
|
||||
! j1b_gauss_coul_debug = j1b_gauss_coul_debug - coef4 * cx
|
||||
!
|
||||
! enddo ! s
|
||||
! enddo ! r
|
||||
! enddo ! q
|
||||
! enddo ! p
|
||||
!
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
! ! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
return
|
||||
end function j1b_gauss_coul_debug
|
||||
|
@ -1,324 +0,0 @@
|
||||
double precision function j1b_gauss_coul_modifdebug(i, j, k, l)
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s, ii
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: p_inv, q_inv
|
||||
double precision :: P_new_tmp(0:max_dim,3), P_center_tmp(3), fact_p_tmp, pp_tmp
|
||||
double precision :: Q_new_tmp(0:max_dim,3), Q_center_tmp(3), fact_q_tmp, qq_tmp
|
||||
double precision :: P_new(0:max_dim,3), P_center(3), fact_p, pp
|
||||
double precision :: Q_new(0:max_dim,3), Q_center(3), fact_q, qq
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: expoii, factii, Centerii(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: general_primitive_integral_coul
|
||||
double precision :: general_primitive_integral_coul_shifted
|
||||
double precision :: ao_two_e_integral
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_modifdebug = 0.d0
|
||||
|
||||
! do ii = 1, nucl_num
|
||||
! expoii = j1b_gauss_pen(ii)
|
||||
! j1b_gauss_coul_modifdebug += expoii * ao_two_e_integral(i, j, k, l)
|
||||
! enddo
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! [ 1 / r12 ] \sum_A a_A exp(-aA r1A^2)
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new_tmp, P_center_tmp, pp_tmp, fact_p_tmp, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new, Q_center, qq, fact_q, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
cx = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp_tmp, P_center_tmp, expoii, Centerii, factii, pp, P_center)
|
||||
fact_p = fact_p_tmp * factii
|
||||
p_inv = 1.d0 / pp
|
||||
P_new(:,:) = 0.d0
|
||||
call pol_modif_center( P_center_tmp, P_center, iorder_p, P_new_tmp, P_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_modifdebug = j1b_gauss_coul_modifdebug + coef4 * cx
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! [ 1 / r12 ] \sum_A a_A exp(-aA r2A^2)
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new, P_center, pp, fact_p, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new_tmp, Q_center_tmp, qq_tmp, fact_q_tmp, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
|
||||
cx = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(qq_tmp, Q_center_tmp, expoii, Centerii, factii, qq, Q_center)
|
||||
fact_q = fact_q_tmp * factii
|
||||
Q_inv = 1.d0 / qq
|
||||
call pol_modif_center( Q_center_tmp, Q_center, iorder_q, Q_new_tmp, Q_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
cx = cx + expoii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_coul_modifdebug = j1b_gauss_coul_modifdebug + coef4 * cx
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
return
|
||||
end function j1b_gauss_coul_modifdebug
|
||||
|
||||
|
||||
|
||||
|
||||
double precision function general_primitive_integral_coul(dim, &
|
||||
P_new,P_center,fact_p,p,p_inv,iorder_p, &
|
||||
Q_new,Q_center,fact_q,q,q_inv,iorder_q)
|
||||
implicit none
|
||||
BEGIN_DOC
|
||||
! Computes the integral <pq|rs> where p,q,r,s are Gaussian primitives
|
||||
END_DOC
|
||||
integer,intent(in) :: dim
|
||||
include 'utils/constants.include.F'
|
||||
double precision, intent(in) :: P_new(0:max_dim,3),P_center(3),fact_p,p,p_inv
|
||||
double precision, intent(in) :: Q_new(0:max_dim,3),Q_center(3),fact_q,q,q_inv
|
||||
integer, intent(in) :: iorder_p(3)
|
||||
integer, intent(in) :: iorder_q(3)
|
||||
|
||||
double precision :: r_cut,gama_r_cut,rho,dist
|
||||
double precision :: dx(0:max_dim),Ix_pol(0:max_dim),dy(0:max_dim),Iy_pol(0:max_dim),dz(0:max_dim),Iz_pol(0:max_dim)
|
||||
integer :: n_Ix,n_Iy,n_Iz,nx,ny,nz
|
||||
double precision :: bla
|
||||
integer :: ix,iy,iz,jx,jy,jz,i
|
||||
double precision :: a,b,c,d,e,f,accu,pq,const
|
||||
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2,pq_inv_2
|
||||
integer :: n_pt_tmp,n_pt_out, iorder
|
||||
double precision :: d1(0:max_dim),d_poly(0:max_dim),rint,d1_screened(0:max_dim)
|
||||
|
||||
general_primitive_integral_coul = 0.d0
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx,Ix_pol,dy,Iy_pol,dz,Iz_pol
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
||||
|
||||
! Gaussian Product
|
||||
! ----------------
|
||||
|
||||
pq = p_inv*0.5d0*q_inv
|
||||
pq_inv = 0.5d0/(p+q)
|
||||
p10_1 = q*pq ! 1/(2p)
|
||||
p01_1 = p*pq ! 1/(2q)
|
||||
pq_inv_2 = pq_inv+pq_inv
|
||||
p10_2 = pq_inv_2 * p10_1*q !0.5d0*q/(pq + p*p)
|
||||
p01_2 = pq_inv_2 * p01_1*p !0.5d0*p/(q*q + pq)
|
||||
|
||||
|
||||
accu = 0.d0
|
||||
iorder = iorder_p(1)+iorder_q(1)+iorder_p(1)+iorder_q(1)
|
||||
do ix=0,iorder
|
||||
Ix_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Ix = 0
|
||||
do ix = 0, iorder_p(1)
|
||||
if (abs(P_new(ix,1)) < thresh) cycle
|
||||
a = P_new(ix,1)
|
||||
do jx = 0, iorder_q(1)
|
||||
d = a*Q_new(jx,1)
|
||||
if (abs(d) < thresh) cycle
|
||||
!DIR$ FORCEINLINE
|
||||
call give_polynom_mult_center_x(P_center(1),Q_center(1),ix,jx,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dx,nx)
|
||||
!DIR$ FORCEINLINE
|
||||
call add_poly_multiply(dx,nx,d,Ix_pol,n_Ix)
|
||||
enddo
|
||||
enddo
|
||||
if (n_Ix == -1) then
|
||||
return
|
||||
endif
|
||||
iorder = iorder_p(2)+iorder_q(2)+iorder_p(2)+iorder_q(2)
|
||||
do ix=0, iorder
|
||||
Iy_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iy = 0
|
||||
do iy = 0, iorder_p(2)
|
||||
if (abs(P_new(iy,2)) > thresh) then
|
||||
b = P_new(iy,2)
|
||||
do jy = 0, iorder_q(2)
|
||||
e = b*Q_new(jy,2)
|
||||
if (abs(e) < thresh) cycle
|
||||
!DIR$ FORCEINLINE
|
||||
call give_polynom_mult_center_x(P_center(2),Q_center(2),iy,jy,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dy,ny)
|
||||
!DIR$ FORCEINLINE
|
||||
call add_poly_multiply(dy,ny,e,Iy_pol,n_Iy)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if (n_Iy == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(3)+iorder_q(3)+iorder_p(3)+iorder_q(3)
|
||||
do ix=0,iorder
|
||||
Iz_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iz = 0
|
||||
do iz = 0, iorder_p(3)
|
||||
if (abs(P_new(iz,3)) > thresh) then
|
||||
c = P_new(iz,3)
|
||||
do jz = 0, iorder_q(3)
|
||||
f = c*Q_new(jz,3)
|
||||
if (abs(f) < thresh) cycle
|
||||
!DIR$ FORCEINLINE
|
||||
call give_polynom_mult_center_x(P_center(3),Q_center(3),iz,jz,p,q,iorder,pq_inv,pq_inv_2,p10_1,p01_1,p10_2,p01_2,dz,nz)
|
||||
!DIR$ FORCEINLINE
|
||||
call add_poly_multiply(dz,nz,f,Iz_pol,n_Iz)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if (n_Iz == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
rho = p*q *pq_inv_2
|
||||
dist = (P_center(1) - Q_center(1))*(P_center(1) - Q_center(1)) + &
|
||||
(P_center(2) - Q_center(2))*(P_center(2) - Q_center(2)) + &
|
||||
(P_center(3) - Q_center(3))*(P_center(3) - Q_center(3))
|
||||
const = dist*rho
|
||||
|
||||
n_pt_tmp = n_Ix+n_Iy
|
||||
do i=0,n_pt_tmp
|
||||
d_poly(i)=0.d0
|
||||
enddo
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(Ix_pol,n_Ix,Iy_pol,n_Iy,d_poly,n_pt_tmp)
|
||||
if (n_pt_tmp == -1) then
|
||||
return
|
||||
endif
|
||||
n_pt_out = n_pt_tmp+n_Iz
|
||||
do i=0,n_pt_out
|
||||
d1(i)=0.d0
|
||||
enddo
|
||||
|
||||
!DIR$ FORCEINLINE
|
||||
call multiply_poly(d_poly ,n_pt_tmp ,Iz_pol,n_Iz,d1,n_pt_out)
|
||||
double precision :: rint_sum
|
||||
accu = accu + rint_sum(n_pt_out,const,d1)
|
||||
|
||||
general_primitive_integral_coul = fact_p * fact_q * accu *pi_5_2*p_inv*q_inv/dsqrt(p+q)
|
||||
end function general_primitive_integral_coul
|
@ -1,102 +0,0 @@
|
||||
double precision function j1b_gauss_coulerf(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ (0.5 - 0.5 erf(mu r12)) / r12 ] (r1-r2) \cdot \sum_A (-2 a_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = [ (1 - erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1, p1_inv
|
||||
double precision :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1, q1_inv
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: j1b_gauss_coulerf_schwartz
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
if( ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
|
||||
j1b_gauss_coulerf = j1b_gauss_coulerf_schwartz(i, j, k, l)
|
||||
return
|
||||
endif
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_coulerf = 0.d0
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P1_new, P1_center, pp1, fact_p1, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p1_inv = 1.d0 / pp1
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q1_inv = 1.d0 / qq1
|
||||
|
||||
call get_cxcycz( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
|
||||
j1b_gauss_coulerf = j1b_gauss_coulerf + coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
return
|
||||
end function j1b_gauss_coulerf
|
||||
|
@ -1,854 +0,0 @@
|
||||
double precision function j1b_gauss_erf(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ -0.5 erf(mu r12) / r12 ] (r1-r2) \cdot \sum_A (-2 a_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = - [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s, ii
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: p_inv, q_inv
|
||||
double precision :: P_new_tmp(0:max_dim,3), P_center_tmp(3), fact_p_tmp, pp_tmp
|
||||
double precision :: Q_new_tmp(0:max_dim,3), Q_center_tmp(3), fact_q_tmp, qq_tmp
|
||||
double precision :: P_new(0:max_dim,3), P_center(3), fact_p, pp
|
||||
double precision :: Q_new(0:max_dim,3), Q_center(3), fact_q, qq
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: expoii, factii, Centerii(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: general_primitive_integral_erf_shifted
|
||||
|
||||
PROVIDE mu_erf
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_erf = 0.d0
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! - [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_Q(1) = 0
|
||||
shift_Q(2) = 0
|
||||
shift_Q(3) = 0
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new_tmp, P_center_tmp, pp_tmp, fact_p_tmp, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new, Q_center, qq, fact_q, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp_tmp, P_center_tmp, expoii, Centerii, factii, pp, P_center)
|
||||
|
||||
fact_p = fact_p_tmp * factii
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
! pol centerd on P_center_tmp ==> centerd on P_center
|
||||
call pol_modif_center( P_center_tmp, P_center, iorder_p, P_new_tmp, P_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
shift_P(2) = 0
|
||||
shift_P(3) = 0
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
|
||||
shift_P(1) = 2
|
||||
cx = cx + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 1
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 0
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_P(3) = 0
|
||||
|
||||
ff = P_center(2) - Centerii(2)
|
||||
|
||||
shift_P(2) = 2
|
||||
cy = cy + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 1
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 0
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_P(2) = 0
|
||||
|
||||
ff = P_center(3) - Centerii(3)
|
||||
|
||||
shift_P(3) = 2
|
||||
cz = cz + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 1
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 0
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_erf = j1b_gauss_erf - coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! - [ erf(mu r12) / r12 ] \sum_A a_A [ (r2-RA)^2 exp(-aA r2A^2)
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_P(2) = 0
|
||||
shift_P(3) = 0
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new, P_center, pp, fact_p, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new_tmp, Q_center_tmp, qq_tmp, fact_q_tmp, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(qq_tmp, Q_center_tmp, expoii, Centerii, factii, qq, Q_center)
|
||||
|
||||
fact_q = fact_q_tmp * factii
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
! pol centerd on Q_center_tmp ==> centerd on Q_center
|
||||
call pol_modif_center( Q_center_tmp, Q_center, iorder_q, Q_new_tmp, Q_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
shift_Q(2) = 0
|
||||
shift_Q(3) = 0
|
||||
|
||||
ff = Q_center(1) - Centerii(1)
|
||||
|
||||
shift_Q(1) = 2
|
||||
cx = cx + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q(1) = 1
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q(1) = 0
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
shift_Q(1) = 0
|
||||
shift_Q(3) = 0
|
||||
|
||||
ff = Q_center(2) - Centerii(2)
|
||||
|
||||
shift_Q(2) = 2
|
||||
cy = cy + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q(2) = 1
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q(2) = 0
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
shift_Q(1) = 0
|
||||
shift_Q(2) = 0
|
||||
|
||||
ff = Q_center(3) - Centerii(3)
|
||||
|
||||
shift_Q(3) = 2
|
||||
cz = cz + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q(3) = 1
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q(3) = 0
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_erf = j1b_gauss_erf - coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r1A^2) ]
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new_tmp, P_center_tmp, pp_tmp, fact_p_tmp, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new, Q_center, qq, fact_q, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp_tmp, P_center_tmp, expoii, Centerii, factii, pp, P_center)
|
||||
|
||||
fact_p = fact_p_tmp * factii
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
! pol centerd on P_center_tmp ==> centerd on P_center
|
||||
call pol_modif_center( P_center_tmp, P_center, iorder_p, P_new_tmp, P_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
shift_P(2) = 0
|
||||
shift_P(3) = 0
|
||||
shift_Q(2) = 0
|
||||
shift_Q(3) = 0
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
gg = Q_center(1) - Centerii(1)
|
||||
|
||||
shift_P(1) = 1
|
||||
shift_Q(1) = 1
|
||||
cx = cx + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 1
|
||||
shift_Q(1) = 0
|
||||
cx = cx + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_Q(1) = 1
|
||||
cx = cx + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_Q(1) = 0
|
||||
cx = cx + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_P(3) = 0
|
||||
shift_Q(1) = 0
|
||||
shift_Q(3) = 0
|
||||
|
||||
ff = P_center(2) - Centerii(2)
|
||||
gg = Q_center(2) - Centerii(2)
|
||||
|
||||
shift_P(2) = 1
|
||||
shift_Q(2) = 1
|
||||
cy = cy + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 1
|
||||
shift_Q(2) = 0
|
||||
cy = cy + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 0
|
||||
shift_Q(2) = 1
|
||||
cy = cy + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 0
|
||||
shift_Q(2) = 0
|
||||
cy = cy + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_P(2) = 0
|
||||
shift_Q(1) = 0
|
||||
shift_Q(2) = 0
|
||||
|
||||
ff = P_center(3) - Centerii(3)
|
||||
gg = Q_center(3) - Centerii(3)
|
||||
|
||||
shift_P(3) = 1
|
||||
shift_Q(3) = 1
|
||||
cz = cz + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 1
|
||||
shift_Q(3) = 0
|
||||
cz = cz + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 0
|
||||
shift_Q(3) = 1
|
||||
cz = cz + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 0
|
||||
shift_Q(3) = 0
|
||||
cz = cz + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_erf = j1b_gauss_erf + coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
!
|
||||
! [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P_new, P_center, pp, fact_p, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p_inv = 1.d0 / pp
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q_new_tmp, Q_center_tmp, qq_tmp, fact_q_tmp, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(qq_tmp, Q_center_tmp, expoii, Centerii, factii, qq, Q_center)
|
||||
|
||||
fact_q = fact_q_tmp * factii
|
||||
q_inv = 1.d0 / qq
|
||||
|
||||
! pol centerd on Q_center_tmp ==> centerd on Q_center
|
||||
call pol_modif_center( Q_center_tmp, Q_center, iorder_q, Q_new_tmp, Q_new)
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! x term:
|
||||
|
||||
shift_P(2) = 0
|
||||
shift_P(3) = 0
|
||||
shift_Q(2) = 0
|
||||
shift_Q(3) = 0
|
||||
|
||||
ff = P_center(1) - Centerii(1)
|
||||
gg = Q_center(1) - Centerii(1)
|
||||
|
||||
shift_P(1) = 1
|
||||
shift_Q(1) = 1
|
||||
cx = cx + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 1
|
||||
shift_Q(1) = 0
|
||||
cx = cx + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_Q(1) = 1
|
||||
cx = cx + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_Q(1) = 0
|
||||
cx = cx + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! y term:
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_P(3) = 0
|
||||
shift_Q(1) = 0
|
||||
shift_Q(3) = 0
|
||||
|
||||
ff = P_center(2) - Centerii(2)
|
||||
gg = Q_center(2) - Centerii(2)
|
||||
|
||||
shift_P(2) = 1
|
||||
shift_Q(2) = 1
|
||||
cy = cy + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 1
|
||||
shift_Q(2) = 0
|
||||
cy = cy + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 0
|
||||
shift_Q(2) = 1
|
||||
cy = cy + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(2) = 0
|
||||
shift_Q(2) = 0
|
||||
cy = cy + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! z term:
|
||||
|
||||
shift_P(1) = 0
|
||||
shift_P(2) = 0
|
||||
shift_Q(1) = 0
|
||||
shift_Q(2) = 0
|
||||
|
||||
ff = P_center(3) - Centerii(3)
|
||||
gg = Q_center(3) - Centerii(3)
|
||||
|
||||
shift_P(3) = 1
|
||||
shift_Q(3) = 1
|
||||
cz = cz + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 1
|
||||
shift_Q(3) = 0
|
||||
cz = cz + expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 0
|
||||
shift_Q(3) = 1
|
||||
cz = cz + expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P(3) = 0
|
||||
shift_Q(3) = 0
|
||||
cz = cz + expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P_new, P_center, fact_p, pp, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, qq, q_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_erf = j1b_gauss_erf + coef4 * ( cx + cy + cz )
|
||||
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
! -------------------------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
return
|
||||
end function j1b_gauss_erf
|
||||
|
||||
|
||||
|
||||
|
||||
!______________________________________________________________________________________________________________________
|
||||
!______________________________________________________________________________________________________________________
|
||||
|
||||
double precision function general_primitive_integral_erf_shifted( dim &
|
||||
, P_new, P_center, fact_p, p, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, q, q_inv, iorder_q, shift_Q )
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: dim
|
||||
integer, intent(in) :: iorder_p(3), shift_P(3)
|
||||
integer, intent(in) :: iorder_q(3), shift_Q(3)
|
||||
double precision, intent(in) :: P_new(0:max_dim,3), P_center(3), fact_p, p, p_inv
|
||||
double precision, intent(in) :: Q_new(0:max_dim,3), Q_center(3), fact_q, q, q_inv
|
||||
|
||||
integer :: n_Ix, n_Iy, n_Iz, nx, ny, nz
|
||||
integer :: ix, iy, iz, jx, jy, jz, i
|
||||
integer :: n_pt_tmp, n_pt_out, iorder
|
||||
integer :: ii, jj
|
||||
double precision :: rho, dist
|
||||
double precision :: dx(0:max_dim), Ix_pol(0:max_dim)
|
||||
double precision :: dy(0:max_dim), Iy_pol(0:max_dim)
|
||||
double precision :: dz(0:max_dim), Iz_pol(0:max_dim)
|
||||
double precision :: a, b, c, d, e, f, accu, pq, const
|
||||
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2, pq_inv_2
|
||||
double precision :: d1(0:max_dim), d_poly(0:max_dim)
|
||||
double precision :: p_plus_q
|
||||
|
||||
double precision :: rint_sum
|
||||
|
||||
general_primitive_integral_erf_shifted = 0.d0
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx, Ix_pol, dy, Iy_pol, dz, Iz_pol
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
||||
|
||||
! Gaussian Product
|
||||
! ----------------
|
||||
p_plus_q = (p+q) * ( (p*q)/(p+q) + mu_erf*mu_erf ) / (mu_erf*mu_erf)
|
||||
pq = p_inv * 0.5d0 * q_inv
|
||||
pq_inv = 0.5d0 / p_plus_q
|
||||
p10_1 = q * pq ! 1/(2p)
|
||||
p01_1 = p * pq ! 1/(2q)
|
||||
pq_inv_2 = pq_inv + pq_inv
|
||||
p10_2 = pq_inv_2 * p10_1 * q ! 0.5d0 * q / (pq + p*p)
|
||||
p01_2 = pq_inv_2 * p01_1 * p ! 0.5d0 * p / (q*q + pq)
|
||||
|
||||
accu = 0.d0
|
||||
|
||||
iorder = iorder_p(1) + iorder_q(1) + iorder_p(1) + iorder_q(1)
|
||||
iorder = iorder + shift_P(1) + shift_Q(1)
|
||||
iorder = iorder + shift_P(1) + shift_Q(1)
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do ix = 0, iorder
|
||||
Ix_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Ix = 0
|
||||
do ix = 0, iorder_p(1)
|
||||
|
||||
ii = ix + shift_P(1)
|
||||
a = P_new(ix,1)
|
||||
if(abs(a) < thresh) cycle
|
||||
|
||||
do jx = 0, iorder_q(1)
|
||||
|
||||
jj = jx + shift_Q(1)
|
||||
d = a * Q_new(jx,1)
|
||||
if(abs(d) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(1), Q_center(1), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dx, nx )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dx, nx, d, Ix_pol, n_Ix)
|
||||
enddo
|
||||
enddo
|
||||
if(n_Ix == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(2) + iorder_q(2) + iorder_p(2) + iorder_q(2)
|
||||
iorder = iorder + shift_P(2) + shift_Q(2)
|
||||
iorder = iorder + shift_P(2) + shift_Q(2)
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do ix = 0, iorder
|
||||
Iy_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iy = 0
|
||||
do iy = 0, iorder_p(2)
|
||||
|
||||
if(abs(P_new(iy,2)) > thresh) then
|
||||
|
||||
ii = iy + shift_P(2)
|
||||
b = P_new(iy,2)
|
||||
|
||||
do jy = 0, iorder_q(2)
|
||||
|
||||
jj = jy + shift_Q(2)
|
||||
e = b * Q_new(jy,2)
|
||||
if(abs(e) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(2), Q_center(2), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dy, ny )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dy, ny, e, Iy_pol, n_Iy)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if(n_Iy == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(3) + iorder_q(3) + iorder_p(3) + iorder_q(3)
|
||||
iorder = iorder + shift_P(3) + shift_Q(3)
|
||||
iorder = iorder + shift_P(3) + shift_Q(3)
|
||||
do ix = 0, iorder
|
||||
Iz_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iz = 0
|
||||
do iz = 0, iorder_p(3)
|
||||
|
||||
if( abs(P_new(iz,3)) > thresh ) then
|
||||
|
||||
ii = iz + shift_P(3)
|
||||
c = P_new(iz,3)
|
||||
|
||||
do jz = 0, iorder_q(3)
|
||||
|
||||
jj = jz + shift_Q(3)
|
||||
f = c * Q_new(jz,3)
|
||||
if(abs(f) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(3), Q_center(3), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dz, nz )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dz, nz, f, Iz_pol, n_Iz)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if(n_Iz == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
rho = p * q * pq_inv_2
|
||||
dist = (P_center(1) - Q_center(1)) * (P_center(1) - Q_center(1)) &
|
||||
+ (P_center(2) - Q_center(2)) * (P_center(2) - Q_center(2)) &
|
||||
+ (P_center(3) - Q_center(3)) * (P_center(3) - Q_center(3))
|
||||
const = dist*rho
|
||||
|
||||
n_pt_tmp = n_Ix + n_Iy
|
||||
do i = 0, n_pt_tmp
|
||||
d_poly(i) = 0.d0
|
||||
enddo
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call multiply_poly(Ix_pol, n_Ix, Iy_pol, n_Iy, d_poly, n_pt_tmp)
|
||||
if(n_pt_tmp == -1) then
|
||||
return
|
||||
endif
|
||||
n_pt_out = n_pt_tmp + n_Iz
|
||||
do i = 0, n_pt_out
|
||||
d1(i) = 0.d0
|
||||
enddo
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call multiply_poly(d_poly, n_pt_tmp, Iz_pol, n_Iz, d1, n_pt_out)
|
||||
accu = accu + rint_sum(n_pt_out, const, d1)
|
||||
|
||||
general_primitive_integral_erf_shifted = fact_p * fact_q * accu * pi_5_2 * p_inv * q_inv / dsqrt(p_plus_q)
|
||||
|
||||
return
|
||||
end function general_primitive_integral_erf_shifted
|
||||
!______________________________________________________________________________________________________________________
|
||||
!______________________________________________________________________________________________________________________
|
@ -1,433 +0,0 @@
|
||||
double precision function j1b_gauss_erf_acc(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ -0.5 erf(mu r12) / r12 ] (r1-r2) \cdot \sum_A (-2 a_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = - [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s, ii
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: p1_inv, q1_inv, p2_inv, q2_inv
|
||||
double precision :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1
|
||||
double precision :: P2_new(0:max_dim,3), P2_center(3), fact_p2, pp2
|
||||
double precision :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1
|
||||
double precision :: Q2_new(0:max_dim,3), Q2_center(3), fact_q2, qq2
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: expoii, factii, Centerii(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: general_primitive_integral_erf_shifted
|
||||
!double precision :: j1b_gauss_erf_schwartz_accel
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
! TODO
|
||||
!if( ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
|
||||
! j1b_gauss_erf_schwartz_accel = j1b_gauss_erf_schwartz_accel(i, j, k, l)
|
||||
! return
|
||||
!endif
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_erf_acc = 0.d0
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P1_new, P1_center, pp1, fact_p1, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p1_inv = 1.d0 / pp1
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q1_inv = 1.d0 / qq1
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp1, P1_center, expoii, Centerii, factii, pp2, P2_center)
|
||||
fact_p2 = fact_p1 * factii
|
||||
p2_inv = 1.d0 / pp2
|
||||
call pol_modif_center( P1_center, P2_center, iorder_p, P1_new, P2_new)
|
||||
|
||||
call gaussian_product(qq1, Q1_center, expoii, Centerii, factii, qq2, Q2_center)
|
||||
fact_q2 = fact_q1 * factii
|
||||
q2_inv = 1.d0 / qq2
|
||||
call pol_modif_center( Q1_center, Q2_center, iorder_q, Q1_new, Q2_new)
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
|
||||
! x term:
|
||||
ff = P2_center(1) - Centerii(1)
|
||||
|
||||
shift_P = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P2_center(2) - Centerii(2)
|
||||
|
||||
shift_P = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P2_center(3) - Centerii(3)
|
||||
|
||||
shift_P = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! [ erf(mu r12) / r12 ] \sum_A a_A [ (r2-RA)^2 exp(-aA r2A^2)
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
|
||||
! x term:
|
||||
ff = Q2_center(1) - Centerii(1)
|
||||
|
||||
shift_Q = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = Q2_center(2) - Centerii(2)
|
||||
|
||||
shift_Q = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = Q2_center(3) - Centerii(3)
|
||||
|
||||
shift_Q = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! - [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r1A^2) ]
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! x term:
|
||||
ff = P2_center(1) - Centerii(1)
|
||||
gg = Q1_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P2_center(2) - Centerii(2)
|
||||
gg = Q1_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P2_center(3) - Centerii(3)
|
||||
gg = Q1_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! - [ erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! x term:
|
||||
ff = P1_center(1) - Centerii(1)
|
||||
gg = Q2_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P1_center(2) - Centerii(2)
|
||||
gg = Q2_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P1_center(3) - Centerii(3)
|
||||
gg = Q2_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
j1b_gauss_erf_acc = j1b_gauss_erf_acc - coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
return
|
||||
end function j1b_gauss_erf_acc
|
@ -1,4 +1,106 @@
|
||||
double precision function j1b_gauss_coulerf_schwartz(i, j, k, l)
|
||||
! ---
|
||||
|
||||
double precision function j1b_gauss_2e_j1(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ (0.5 - 0.5 erf(mu r12)) / r12 ] (r1-r2) \cdot \sum_A (-2 a_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = [ (1 - erf(mu r12) / r12 ] \sum_A a_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1, p1_inv
|
||||
double precision :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1, q1_inv
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: j1b_gauss_2e_j1_schwartz
|
||||
|
||||
if( ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
|
||||
j1b_gauss_2e_j1 = j1b_gauss_2e_j1_schwartz(i, j, k, l)
|
||||
return
|
||||
endif
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_2e_j1 = 0.d0
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P1_new, P1_center, pp1, fact_p1, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p1_inv = 1.d0 / pp1
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q1_inv = 1.d0 / qq1
|
||||
|
||||
call get_cxcycz_j1( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
|
||||
j1b_gauss_2e_j1 = j1b_gauss_2e_j1 + coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
return
|
||||
end function j1b_gauss_2e_j1
|
||||
|
||||
! ---
|
||||
|
||||
double precision function j1b_gauss_2e_j1_schwartz(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
@ -35,7 +137,7 @@ double precision function j1b_gauss_coulerf_schwartz(i, j, k, l)
|
||||
double precision :: schwartz_ij, thr
|
||||
double precision, allocatable :: schwartz_kl(:,:)
|
||||
|
||||
PROVIDE j1b_gauss_pen
|
||||
PROVIDE j1b_pen
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
thr = ao_integrals_threshold * ao_integrals_threshold
|
||||
@ -73,9 +175,9 @@ double precision function j1b_gauss_coulerf_schwartz(i, j, k, l)
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q1_inv = 1.d0 / qq1
|
||||
|
||||
call get_cxcycz( dim1, cx, cy, cz &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
call get_cxcycz_j1( dim1, cx, cy, cz &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
|
||||
schwartz_kl(s,r) = coef4 * dabs( cx + cy + cz )
|
||||
schwartz_kl(0,r) = max( schwartz_kl(0,r) , schwartz_kl(s,r) )
|
||||
@ -85,7 +187,7 @@ double precision function j1b_gauss_coulerf_schwartz(i, j, k, l)
|
||||
enddo
|
||||
|
||||
|
||||
j1b_gauss_coulerf_schwartz = 0.d0
|
||||
j1b_gauss_2e_j1_schwartz = 0.d0
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
@ -99,9 +201,9 @@ double precision function j1b_gauss_coulerf_schwartz(i, j, k, l)
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p1_inv = 1.d0 / pp1
|
||||
|
||||
call get_cxcycz( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p )
|
||||
call get_cxcycz_j1( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p )
|
||||
|
||||
schwartz_ij = coef2 * coef2 * dabs( cx + cy + cz )
|
||||
if( schwartz_kl(0,0) * schwartz_ij < thr ) cycle
|
||||
@ -120,11 +222,11 @@ double precision function j1b_gauss_coulerf_schwartz(i, j, k, l)
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q1_inv = 1.d0 / qq1
|
||||
|
||||
call get_cxcycz( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
call get_cxcycz_j1( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
|
||||
j1b_gauss_coulerf_schwartz = j1b_gauss_coulerf_schwartz + coef4 * ( cx + cy + cz )
|
||||
j1b_gauss_2e_j1_schwartz = j1b_gauss_2e_j1_schwartz + coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
@ -133,15 +235,13 @@ double precision function j1b_gauss_coulerf_schwartz(i, j, k, l)
|
||||
deallocate( schwartz_kl )
|
||||
|
||||
return
|
||||
end function j1b_gauss_coulerf_schwartz
|
||||
end function j1b_gauss_2e_j1_schwartz
|
||||
|
||||
! ---
|
||||
|
||||
|
||||
|
||||
|
||||
subroutine get_cxcycz( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
subroutine get_cxcycz_j1( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
@ -163,12 +263,14 @@ subroutine get_cxcycz( dim1, cx, cy, cz &
|
||||
double precision :: general_primitive_integral_erf_shifted
|
||||
double precision :: general_primitive_integral_coul_shifted
|
||||
|
||||
PROVIDE j1b_pen
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
|
||||
expoii = j1b_gauss_pen(ii)
|
||||
expoii = j1b_pen(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp1, P1_center, expoii, Centerii, factii, pp2, P2_center)
|
||||
@ -620,5 +722,7 @@ subroutine get_cxcycz( dim1, cx, cy, cz &
|
||||
enddo
|
||||
|
||||
return
|
||||
end subroutine get_cxcycz
|
||||
end subroutine get_cxcycz_j1
|
||||
|
||||
! ---
|
||||
|
729
src/ao_tc_eff_map/two_e_1bgauss_j2.irp.f
Normal file
729
src/ao_tc_eff_map/two_e_1bgauss_j2.irp.f
Normal file
@ -0,0 +1,729 @@
|
||||
! ---
|
||||
|
||||
double precision function j1b_gauss_2e_j2(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ (0.5 - 0.5 erf(mu r12)) / r12 ] (r1-r2) \cdot \sum_A (-2 a_A c_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = [ (1 - erf(mu r12) / r12 ] \sum_A a_A c_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1, p1_inv
|
||||
double precision :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1, q1_inv
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: ff, gg, cx, cy, cz
|
||||
|
||||
double precision :: j1b_gauss_2e_j2_schwartz
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
|
||||
if( ao_prim_num(i) * ao_prim_num(j) * ao_prim_num(k) * ao_prim_num(l) > 1024 ) then
|
||||
j1b_gauss_2e_j2 = j1b_gauss_2e_j2_schwartz(i, j, k, l)
|
||||
return
|
||||
endif
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
j1b_gauss_2e_j2 = 0.d0
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P1_new, P1_center, pp1, fact_p1, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p1_inv = 1.d0 / pp1
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q1_inv = 1.d0 / qq1
|
||||
|
||||
call get_cxcycz_j2( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
|
||||
j1b_gauss_2e_j2 = j1b_gauss_2e_j2 + coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
return
|
||||
end function j1b_gauss_2e_j2
|
||||
|
||||
! ---
|
||||
|
||||
double precision function j1b_gauss_2e_j2_schwartz(i, j, k, l)
|
||||
|
||||
BEGIN_DOC
|
||||
!
|
||||
! integral in the AO basis:
|
||||
! i(r1) j(r1) f(r12) k(r2) l(r2)
|
||||
!
|
||||
! with:
|
||||
! f(r12) = - [ (0.5 - 0.5 erf(mu r12)) / r12 ] (r1-r2) \cdot \sum_A (-2 a_A c_A) [ r1A exp(-aA r1A^2) - r2A exp(-aA r2A^2) ]
|
||||
! = [ (1 - erf(mu r12) / r12 ] \sum_A a_A c_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! + (r2-RA)^2 exp(-aA r2A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r1A^2)
|
||||
! - (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
!
|
||||
END_DOC
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: i, j, k, l
|
||||
|
||||
integer :: p, q, r, s
|
||||
integer :: num_i, num_j, num_k, num_l, num_ii
|
||||
integer :: I_power(3), J_power(3), K_power(3), L_power(3)
|
||||
integer :: iorder_p(3), iorder_q(3)
|
||||
integer :: dim1
|
||||
|
||||
double precision :: coef1, coef2, coef3, coef4
|
||||
double precision :: expo1, expo2, expo3, expo4
|
||||
double precision :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1, p1_inv
|
||||
double precision :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1, q1_inv
|
||||
double precision :: I_center(3), J_center(3), K_center(3), L_center(3)
|
||||
double precision :: cx, cy, cz
|
||||
double precision :: schwartz_ij, thr
|
||||
double precision, allocatable :: schwartz_kl(:,:)
|
||||
|
||||
dim1 = n_pt_max_integrals
|
||||
thr = ao_integrals_threshold * ao_integrals_threshold
|
||||
|
||||
num_i = ao_nucl(i)
|
||||
num_j = ao_nucl(j)
|
||||
num_k = ao_nucl(k)
|
||||
num_l = ao_nucl(l)
|
||||
|
||||
do p = 1, 3
|
||||
I_power(p) = ao_power(i,p)
|
||||
J_power(p) = ao_power(j,p)
|
||||
K_power(p) = ao_power(k,p)
|
||||
L_power(p) = ao_power(l,p)
|
||||
I_center(p) = nucl_coord(num_i,p)
|
||||
J_center(p) = nucl_coord(num_j,p)
|
||||
K_center(p) = nucl_coord(num_k,p)
|
||||
L_center(p) = nucl_coord(num_l,p)
|
||||
enddo
|
||||
|
||||
|
||||
allocate( schwartz_kl(0:ao_prim_num(l) , 0:ao_prim_num(k)) )
|
||||
|
||||
schwartz_kl(0,0) = 0.d0
|
||||
do r = 1, ao_prim_num(k)
|
||||
expo3 = ao_expo_ordered_transp(r,k)
|
||||
coef3 = ao_coef_normalized_ordered_transp(r,k) * ao_coef_normalized_ordered_transp(r,k)
|
||||
|
||||
schwartz_kl(0,r) = 0.d0
|
||||
do s = 1, ao_prim_num(l)
|
||||
expo4 = ao_expo_ordered_transp(s,l)
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s,l) * ao_coef_normalized_ordered_transp(s,l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q1_inv = 1.d0 / qq1
|
||||
|
||||
call get_cxcycz_j2( dim1, cx, cy, cz &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
|
||||
schwartz_kl(s,r) = coef4 * dabs( cx + cy + cz )
|
||||
schwartz_kl(0,r) = max( schwartz_kl(0,r) , schwartz_kl(s,r) )
|
||||
enddo
|
||||
|
||||
schwartz_kl(0,0) = max( schwartz_kl(0,r) , schwartz_kl(0,0) )
|
||||
enddo
|
||||
|
||||
|
||||
j1b_gauss_2e_j2_schwartz = 0.d0
|
||||
|
||||
do p = 1, ao_prim_num(i)
|
||||
expo1 = ao_expo_ordered_transp(p, i)
|
||||
coef1 = ao_coef_normalized_ordered_transp(p, i)
|
||||
|
||||
do q = 1, ao_prim_num(j)
|
||||
expo2 = ao_expo_ordered_transp(q, j)
|
||||
coef2 = coef1 * ao_coef_normalized_ordered_transp(q, j)
|
||||
|
||||
call give_explicit_poly_and_gaussian( P1_new, P1_center, pp1, fact_p1, iorder_p, expo1, expo2 &
|
||||
, I_power, J_power, I_center, J_center, dim1 )
|
||||
p1_inv = 1.d0 / pp1
|
||||
|
||||
call get_cxcycz_j2( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p )
|
||||
|
||||
schwartz_ij = coef2 * coef2 * dabs( cx + cy + cz )
|
||||
if( schwartz_kl(0,0) * schwartz_ij < thr ) cycle
|
||||
|
||||
do r = 1, ao_prim_num(k)
|
||||
if( schwartz_kl(0,r) * schwartz_ij < thr ) cycle
|
||||
coef3 = coef2 * ao_coef_normalized_ordered_transp(r, k)
|
||||
expo3 = ao_expo_ordered_transp(r, k)
|
||||
|
||||
do s = 1, ao_prim_num(l)
|
||||
if( schwartz_kl(s,r) * schwartz_ij < thr ) cycle
|
||||
coef4 = coef3 * ao_coef_normalized_ordered_transp(s, l)
|
||||
expo4 = ao_expo_ordered_transp(s, l)
|
||||
|
||||
call give_explicit_poly_and_gaussian( Q1_new, Q1_center, qq1, fact_q1, iorder_q, expo3, expo4 &
|
||||
, K_power, L_power, K_center, L_center, dim1 )
|
||||
q1_inv = 1.d0 / qq1
|
||||
|
||||
call get_cxcycz_j2( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
|
||||
j1b_gauss_2e_j2_schwartz = j1b_gauss_2e_j2_schwartz + coef4 * ( cx + cy + cz )
|
||||
enddo ! s
|
||||
enddo ! r
|
||||
enddo ! q
|
||||
enddo ! p
|
||||
|
||||
deallocate( schwartz_kl )
|
||||
|
||||
return
|
||||
end function j1b_gauss_2e_j2_schwartz
|
||||
|
||||
! ---
|
||||
|
||||
subroutine get_cxcycz_j2( dim1, cx, cy, cz &
|
||||
, P1_center, P1_new, pp1, fact_p1, p1_inv, iorder_p &
|
||||
, Q1_center, Q1_new, qq1, fact_q1, q1_inv, iorder_q )
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: dim1
|
||||
integer, intent(in) :: iorder_p(3), iorder_q(3)
|
||||
double precision, intent(in) :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1, p1_inv
|
||||
double precision, intent(in) :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1, q1_inv
|
||||
double precision, intent(out) :: cx, cy, cz
|
||||
|
||||
integer :: ii
|
||||
integer :: shift_P(3), shift_Q(3)
|
||||
double precision :: coefii, expoii, factii, Centerii(3)
|
||||
double precision :: P2_new(0:max_dim,3), P2_center(3), fact_p2, pp2, p2_inv
|
||||
double precision :: Q2_new(0:max_dim,3), Q2_center(3), fact_q2, qq2, q2_inv
|
||||
double precision :: ff, gg
|
||||
|
||||
double precision :: general_primitive_integral_erf_shifted
|
||||
double precision :: general_primitive_integral_coul_shifted
|
||||
|
||||
PROVIDE j1b_pen j1b_coeff
|
||||
|
||||
cx = 0.d0
|
||||
cy = 0.d0
|
||||
cz = 0.d0
|
||||
do ii = 1, nucl_num
|
||||
|
||||
expoii = j1b_pen (ii)
|
||||
coefii = j1b_coeff(ii)
|
||||
Centerii(1:3) = nucl_coord(ii, 1:3)
|
||||
|
||||
call gaussian_product(pp1, P1_center, expoii, Centerii, factii, pp2, P2_center)
|
||||
fact_p2 = fact_p1 * factii
|
||||
p2_inv = 1.d0 / pp2
|
||||
call pol_modif_center( P1_center, P2_center, iorder_p, P1_new, P2_new )
|
||||
|
||||
call gaussian_product(qq1, Q1_center, expoii, Centerii, factii, qq2, Q2_center)
|
||||
fact_q2 = fact_q1 * factii
|
||||
q2_inv = 1.d0 / qq2
|
||||
call pol_modif_center( Q1_center, Q2_center, iorder_q, Q1_new, Q2_new )
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! [ (1-erf(mu r12)) / r12 ] \sum_A a_A c_A [ (r1-RA)^2 exp(-aA r1A^2)
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
|
||||
! x term:
|
||||
ff = P2_center(1) - Centerii(1)
|
||||
|
||||
shift_P = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * coefii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cx = cx - expoii * coefii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * coefii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cx = cx - expoii * coefii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * coefii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cx = cx - expoii * coefii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P2_center(2) - Centerii(2)
|
||||
|
||||
shift_P = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * coefii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cy = cy - expoii * coefii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * coefii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cy = cy - expoii * coefii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * coefii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cy = cy - expoii * coefii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P2_center(3) - Centerii(3)
|
||||
|
||||
shift_P = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * coefii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cz = cz - expoii * coefii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * coefii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cz = cz - expoii * coefii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * coefii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cz = cz - expoii * coefii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! [ (1-erf(mu r12)) / r12 ] \sum_A a_A c_A [ (r2-RA)^2 exp(-aA r2A^2)
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
shift_P = (/ 0, 0, 0 /)
|
||||
|
||||
! x term:
|
||||
ff = Q2_center(1) - Centerii(1)
|
||||
|
||||
shift_Q = (/ 2, 0, 0 /)
|
||||
cx = cx + expoii * coefii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cx = cx - expoii * coefii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx + expoii * coefii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cx = cx - expoii * coefii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx + expoii * coefii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cx = cx - expoii * coefii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = Q2_center(2) - Centerii(2)
|
||||
|
||||
shift_Q = (/ 0, 2, 0 /)
|
||||
cy = cy + expoii * coefii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cy = cy - expoii * coefii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy + expoii * coefii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cy = cy - expoii * coefii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy + expoii * coefii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cy = cy - expoii * coefii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = Q2_center(3) - Centerii(3)
|
||||
|
||||
shift_Q = (/ 0, 0, 2 /)
|
||||
cz = cz + expoii * coefii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cz = cz - expoii * coefii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz + expoii * coefii * 2.d0 * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cz = cz - expoii * coefii * 2.d0 * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz + expoii * coefii * ff * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cz = cz - expoii * coefii * ff * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! - [ (1-erf(mu r12)) / r12 ] \sum_A a_A c_A [ (r1-RA) \cdot (r2-RA) exp(-aA r1A^2) ]
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! x term:
|
||||
ff = P2_center(1) - Centerii(1)
|
||||
gg = Q1_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * coefii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * coefii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * coefii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * coefii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * coefii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * coefii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * coefii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * coefii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P2_center(2) - Centerii(2)
|
||||
gg = Q1_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * coefii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * coefii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * coefii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * coefii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * coefii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * coefii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * coefii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * coefii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P2_center(3) - Centerii(3)
|
||||
gg = Q1_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * coefii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * coefii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * coefii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * coefii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * coefii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * coefii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * coefii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * coefii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P2_new, P2_center, fact_p2, pp2, p2_inv, iorder_p, shift_P &
|
||||
, Q1_new, Q1_center, fact_q1, qq1, q1_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
! - [ (1-erf(mu r12)) / r12 ] \sum_A a_A c_A [ (r1-RA) \cdot (r2-RA) exp(-aA r2A^2) ]
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
! x term:
|
||||
ff = P1_center(1) - Centerii(1)
|
||||
gg = Q2_center(1) - Centerii(1)
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * coefii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * coefii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 1, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * coefii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * coefii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 1, 0, 0 /)
|
||||
cx = cx - expoii * coefii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * coefii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cx = cx - expoii * coefii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cx = cx + expoii * coefii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! y term:
|
||||
ff = P1_center(2) - Centerii(2)
|
||||
gg = Q2_center(2) - Centerii(2)
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * coefii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * coefii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 1, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * coefii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * coefii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 1, 0 /)
|
||||
cy = cy - expoii * coefii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * coefii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cy = cy - expoii * coefii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cy = cy + expoii * coefii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! z term:
|
||||
ff = P1_center(3) - Centerii(3)
|
||||
gg = Q2_center(3) - Centerii(3)
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * coefii * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * coefii * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 1 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * coefii * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * coefii * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 1 /)
|
||||
cz = cz - expoii * coefii * ff * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * coefii * ff * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
shift_p = (/ 0, 0, 0 /)
|
||||
shift_Q = (/ 0, 0, 0 /)
|
||||
cz = cz - expoii * coefii * ff * gg * general_primitive_integral_coul_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
cz = cz + expoii * coefii * ff * gg * general_primitive_integral_erf_shifted( dim1 &
|
||||
, P1_new, P1_center, fact_p1, pp1, p1_inv, iorder_p, shift_P &
|
||||
, Q2_new, Q2_center, fact_q2, qq2, q2_inv, iorder_q, shift_Q )
|
||||
|
||||
! ----------------------------------------------------------------------------------------------------
|
||||
|
||||
enddo
|
||||
|
||||
return
|
||||
end subroutine get_cxcycz_j2
|
||||
|
||||
! ---
|
||||
|
364
src/ao_tc_eff_map/useful_sub.irp.f
Normal file
364
src/ao_tc_eff_map/useful_sub.irp.f
Normal file
@ -0,0 +1,364 @@
|
||||
! ---
|
||||
|
||||
!______________________________________________________________________________________________________________________
|
||||
!______________________________________________________________________________________________________________________
|
||||
|
||||
double precision function general_primitive_integral_coul_shifted( dim &
|
||||
, P_new, P_center, fact_p, p, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, q, q_inv, iorder_q, shift_Q )
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: dim
|
||||
integer, intent(in) :: iorder_p(3), shift_P(3)
|
||||
integer, intent(in) :: iorder_q(3), shift_Q(3)
|
||||
double precision, intent(in) :: P_new(0:max_dim,3), P_center(3), fact_p, p, p_inv
|
||||
double precision, intent(in) :: Q_new(0:max_dim,3), Q_center(3), fact_q, q, q_inv
|
||||
|
||||
integer :: n_Ix, n_Iy, n_Iz, nx, ny, nz
|
||||
integer :: ix, iy, iz, jx, jy, jz, i
|
||||
integer :: n_pt_tmp, n_pt_out, iorder
|
||||
integer :: ii, jj
|
||||
double precision :: rho, dist
|
||||
double precision :: dx(0:max_dim), Ix_pol(0:max_dim)
|
||||
double precision :: dy(0:max_dim), Iy_pol(0:max_dim)
|
||||
double precision :: dz(0:max_dim), Iz_pol(0:max_dim)
|
||||
double precision :: a, b, c, d, e, f, accu, pq, const
|
||||
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2, pq_inv_2
|
||||
double precision :: d1(0:max_dim), d_poly(0:max_dim)
|
||||
double precision :: p_plus_q
|
||||
|
||||
double precision :: rint_sum
|
||||
|
||||
general_primitive_integral_coul_shifted = 0.d0
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx, Ix_pol, dy, Iy_pol, dz, Iz_pol
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
||||
|
||||
! Gaussian Product
|
||||
! ----------------
|
||||
p_plus_q = (p+q)
|
||||
pq = p_inv * 0.5d0 * q_inv
|
||||
pq_inv = 0.5d0 / p_plus_q
|
||||
p10_1 = q * pq ! 1/(2p)
|
||||
p01_1 = p * pq ! 1/(2q)
|
||||
pq_inv_2 = pq_inv + pq_inv
|
||||
p10_2 = pq_inv_2 * p10_1 * q ! 0.5d0 * q / (pq + p*p)
|
||||
p01_2 = pq_inv_2 * p01_1 * p ! 0.5d0 * p / (q*q + pq)
|
||||
|
||||
accu = 0.d0
|
||||
|
||||
iorder = iorder_p(1) + iorder_q(1) + iorder_p(1) + iorder_q(1)
|
||||
iorder = iorder + shift_P(1) + shift_Q(1)
|
||||
iorder = iorder + shift_P(1) + shift_Q(1)
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do ix = 0, iorder
|
||||
Ix_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Ix = 0
|
||||
do ix = 0, iorder_p(1)
|
||||
|
||||
ii = ix + shift_P(1)
|
||||
a = P_new(ix,1)
|
||||
if(abs(a) < thresh) cycle
|
||||
|
||||
do jx = 0, iorder_q(1)
|
||||
|
||||
jj = jx + shift_Q(1)
|
||||
d = a * Q_new(jx,1)
|
||||
if(abs(d) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(1), Q_center(1), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dx, nx )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dx, nx, d, Ix_pol, n_Ix)
|
||||
enddo
|
||||
enddo
|
||||
if(n_Ix == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(2) + iorder_q(2) + iorder_p(2) + iorder_q(2)
|
||||
iorder = iorder + shift_P(2) + shift_Q(2)
|
||||
iorder = iorder + shift_P(2) + shift_Q(2)
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do ix = 0, iorder
|
||||
Iy_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iy = 0
|
||||
do iy = 0, iorder_p(2)
|
||||
|
||||
if(abs(P_new(iy,2)) > thresh) then
|
||||
|
||||
ii = iy + shift_P(2)
|
||||
b = P_new(iy,2)
|
||||
|
||||
do jy = 0, iorder_q(2)
|
||||
|
||||
jj = jy + shift_Q(2)
|
||||
e = b * Q_new(jy,2)
|
||||
if(abs(e) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(2), Q_center(2), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dy, ny )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dy, ny, e, Iy_pol, n_Iy)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if(n_Iy == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(3) + iorder_q(3) + iorder_p(3) + iorder_q(3)
|
||||
iorder = iorder + shift_P(3) + shift_Q(3)
|
||||
iorder = iorder + shift_P(3) + shift_Q(3)
|
||||
do ix = 0, iorder
|
||||
Iz_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iz = 0
|
||||
do iz = 0, iorder_p(3)
|
||||
|
||||
if( abs(P_new(iz,3)) > thresh ) then
|
||||
|
||||
ii = iz + shift_P(3)
|
||||
c = P_new(iz,3)
|
||||
|
||||
do jz = 0, iorder_q(3)
|
||||
|
||||
jj = jz + shift_Q(3)
|
||||
f = c * Q_new(jz,3)
|
||||
if(abs(f) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(3), Q_center(3), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dz, nz )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dz, nz, f, Iz_pol, n_Iz)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if(n_Iz == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
rho = p * q * pq_inv_2
|
||||
dist = (P_center(1) - Q_center(1)) * (P_center(1) - Q_center(1)) &
|
||||
+ (P_center(2) - Q_center(2)) * (P_center(2) - Q_center(2)) &
|
||||
+ (P_center(3) - Q_center(3)) * (P_center(3) - Q_center(3))
|
||||
const = dist*rho
|
||||
|
||||
n_pt_tmp = n_Ix + n_Iy
|
||||
do i = 0, n_pt_tmp
|
||||
d_poly(i) = 0.d0
|
||||
enddo
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call multiply_poly(Ix_pol, n_Ix, Iy_pol, n_Iy, d_poly, n_pt_tmp)
|
||||
if(n_pt_tmp == -1) then
|
||||
return
|
||||
endif
|
||||
n_pt_out = n_pt_tmp + n_Iz
|
||||
do i = 0, n_pt_out
|
||||
d1(i) = 0.d0
|
||||
enddo
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call multiply_poly(d_poly, n_pt_tmp, Iz_pol, n_Iz, d1, n_pt_out)
|
||||
accu = accu + rint_sum(n_pt_out, const, d1)
|
||||
|
||||
general_primitive_integral_coul_shifted = fact_p * fact_q * accu * pi_5_2 * p_inv * q_inv / dsqrt(p_plus_q)
|
||||
|
||||
return
|
||||
end function general_primitive_integral_coul_shifted
|
||||
!______________________________________________________________________________________________________________________
|
||||
!______________________________________________________________________________________________________________________
|
||||
|
||||
|
||||
|
||||
!______________________________________________________________________________________________________________________
|
||||
!______________________________________________________________________________________________________________________
|
||||
|
||||
double precision function general_primitive_integral_erf_shifted( dim &
|
||||
, P_new, P_center, fact_p, p, p_inv, iorder_p, shift_P &
|
||||
, Q_new, Q_center, fact_q, q, q_inv, iorder_q, shift_Q )
|
||||
|
||||
include 'utils/constants.include.F'
|
||||
|
||||
implicit none
|
||||
|
||||
integer, intent(in) :: dim
|
||||
integer, intent(in) :: iorder_p(3), shift_P(3)
|
||||
integer, intent(in) :: iorder_q(3), shift_Q(3)
|
||||
double precision, intent(in) :: P_new(0:max_dim,3), P_center(3), fact_p, p, p_inv
|
||||
double precision, intent(in) :: Q_new(0:max_dim,3), Q_center(3), fact_q, q, q_inv
|
||||
|
||||
integer :: n_Ix, n_Iy, n_Iz, nx, ny, nz
|
||||
integer :: ix, iy, iz, jx, jy, jz, i
|
||||
integer :: n_pt_tmp, n_pt_out, iorder
|
||||
integer :: ii, jj
|
||||
double precision :: rho, dist
|
||||
double precision :: dx(0:max_dim), Ix_pol(0:max_dim)
|
||||
double precision :: dy(0:max_dim), Iy_pol(0:max_dim)
|
||||
double precision :: dz(0:max_dim), Iz_pol(0:max_dim)
|
||||
double precision :: a, b, c, d, e, f, accu, pq, const
|
||||
double precision :: pq_inv, p10_1, p10_2, p01_1, p01_2, pq_inv_2
|
||||
double precision :: d1(0:max_dim), d_poly(0:max_dim)
|
||||
double precision :: p_plus_q
|
||||
|
||||
double precision :: rint_sum
|
||||
|
||||
general_primitive_integral_erf_shifted = 0.d0
|
||||
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: dx, Ix_pol, dy, Iy_pol, dz, Iz_pol
|
||||
!DIR$ ATTRIBUTES ALIGN : $IRP_ALIGN :: d1, d_poly
|
||||
|
||||
! Gaussian Product
|
||||
! ----------------
|
||||
p_plus_q = (p+q) * ( (p*q)/(p+q) + mu_erf*mu_erf ) / (mu_erf*mu_erf)
|
||||
pq = p_inv * 0.5d0 * q_inv
|
||||
pq_inv = 0.5d0 / p_plus_q
|
||||
p10_1 = q * pq ! 1/(2p)
|
||||
p01_1 = p * pq ! 1/(2q)
|
||||
pq_inv_2 = pq_inv + pq_inv
|
||||
p10_2 = pq_inv_2 * p10_1 * q ! 0.5d0 * q / (pq + p*p)
|
||||
p01_2 = pq_inv_2 * p01_1 * p ! 0.5d0 * p / (q*q + pq)
|
||||
|
||||
accu = 0.d0
|
||||
|
||||
iorder = iorder_p(1) + iorder_q(1) + iorder_p(1) + iorder_q(1)
|
||||
iorder = iorder + shift_P(1) + shift_Q(1)
|
||||
iorder = iorder + shift_P(1) + shift_Q(1)
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do ix = 0, iorder
|
||||
Ix_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Ix = 0
|
||||
do ix = 0, iorder_p(1)
|
||||
|
||||
ii = ix + shift_P(1)
|
||||
a = P_new(ix,1)
|
||||
if(abs(a) < thresh) cycle
|
||||
|
||||
do jx = 0, iorder_q(1)
|
||||
|
||||
jj = jx + shift_Q(1)
|
||||
d = a * Q_new(jx,1)
|
||||
if(abs(d) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(1), Q_center(1), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dx, nx )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dx, nx, d, Ix_pol, n_Ix)
|
||||
enddo
|
||||
enddo
|
||||
if(n_Ix == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(2) + iorder_q(2) + iorder_p(2) + iorder_q(2)
|
||||
iorder = iorder + shift_P(2) + shift_Q(2)
|
||||
iorder = iorder + shift_P(2) + shift_Q(2)
|
||||
!DIR$ VECTOR ALIGNED
|
||||
do ix = 0, iorder
|
||||
Iy_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iy = 0
|
||||
do iy = 0, iorder_p(2)
|
||||
|
||||
if(abs(P_new(iy,2)) > thresh) then
|
||||
|
||||
ii = iy + shift_P(2)
|
||||
b = P_new(iy,2)
|
||||
|
||||
do jy = 0, iorder_q(2)
|
||||
|
||||
jj = jy + shift_Q(2)
|
||||
e = b * Q_new(jy,2)
|
||||
if(abs(e) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(2), Q_center(2), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dy, ny )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dy, ny, e, Iy_pol, n_Iy)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if(n_Iy == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
iorder = iorder_p(3) + iorder_q(3) + iorder_p(3) + iorder_q(3)
|
||||
iorder = iorder + shift_P(3) + shift_Q(3)
|
||||
iorder = iorder + shift_P(3) + shift_Q(3)
|
||||
do ix = 0, iorder
|
||||
Iz_pol(ix) = 0.d0
|
||||
enddo
|
||||
n_Iz = 0
|
||||
do iz = 0, iorder_p(3)
|
||||
|
||||
if( abs(P_new(iz,3)) > thresh ) then
|
||||
|
||||
ii = iz + shift_P(3)
|
||||
c = P_new(iz,3)
|
||||
|
||||
do jz = 0, iorder_q(3)
|
||||
|
||||
jj = jz + shift_Q(3)
|
||||
f = c * Q_new(jz,3)
|
||||
if(abs(f) < thresh) cycle
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call give_polynom_mult_center_x( P_center(3), Q_center(3), ii, jj &
|
||||
, p, q, iorder, pq_inv, pq_inv_2, p10_1, p01_1, p10_2, p01_2, dz, nz )
|
||||
!DEC$ FORCEINLINE
|
||||
call add_poly_multiply(dz, nz, f, Iz_pol, n_Iz)
|
||||
enddo
|
||||
endif
|
||||
enddo
|
||||
if(n_Iz == -1) then
|
||||
return
|
||||
endif
|
||||
|
||||
rho = p * q * pq_inv_2
|
||||
dist = (P_center(1) - Q_center(1)) * (P_center(1) - Q_center(1)) &
|
||||
+ (P_center(2) - Q_center(2)) * (P_center(2) - Q_center(2)) &
|
||||
+ (P_center(3) - Q_center(3)) * (P_center(3) - Q_center(3))
|
||||
const = dist*rho
|
||||
|
||||
n_pt_tmp = n_Ix + n_Iy
|
||||
do i = 0, n_pt_tmp
|
||||
d_poly(i) = 0.d0
|
||||
enddo
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call multiply_poly(Ix_pol, n_Ix, Iy_pol, n_Iy, d_poly, n_pt_tmp)
|
||||
if(n_pt_tmp == -1) then
|
||||
return
|
||||
endif
|
||||
n_pt_out = n_pt_tmp + n_Iz
|
||||
do i = 0, n_pt_out
|
||||
d1(i) = 0.d0
|
||||
enddo
|
||||
|
||||
!DEC$ FORCEINLINE
|
||||
call multiply_poly(d_poly, n_pt_tmp, Iz_pol, n_Iz, d1, n_pt_out)
|
||||
accu = accu + rint_sum(n_pt_out, const, d1)
|
||||
|
||||
general_primitive_integral_erf_shifted = fact_p * fact_q * accu * pi_5_2 * p_inv * q_inv / dsqrt(p_plus_q)
|
||||
|
||||
return
|
||||
end function general_primitive_integral_erf_shifted
|
||||
!______________________________________________________________________________________________________________________
|
||||
!______________________________________________________________________________________________________________________
|
||||
|
||||
|
||||
|
||||
|
||||
|
@ -8,9 +8,9 @@ BEGIN_PROVIDER [double precision, ao_one_e_integrals_tc_tot, (ao_num,ao_num)]
|
||||
|
||||
ao_one_e_integrals_tc_tot = ao_one_e_integrals
|
||||
|
||||
provide j1b_gauss
|
||||
provide j1b_type
|
||||
|
||||
if(j1b_gauss .eq. 1) then
|
||||
if(j1b_type .ne. 0) then
|
||||
|
||||
do i = 1, ao_num
|
||||
do j = 1, ao_num
|
||||
|
Loading…
Reference in New Issue
Block a user