9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-12-22 19:43:32 +01:00

removed stupid stuffs in spher_harm
Some checks failed
continuous-integration/drone/push Build is failing

This commit is contained in:
eginer 2024-04-26 10:57:57 +02:00
parent a730559eaf
commit 5c69a7c005
3 changed files with 93 additions and 86 deletions

View File

@ -2,3 +2,6 @@
spher_harm spher_harm
========== ==========
Routines for spherical Harmonics evaluation in real space.
The main routine is "spher_harm_func_r3(r,l,m,re_ylm, im_ylm)".
The test routine is "test_spher_harm" where everything is explained in details.

View File

@ -1,10 +1,93 @@
subroutine test_spher_harm
implicit none
BEGIN_DOC
! routine to test the generic spherical harmonics routine "spher_harm_func_r3" from R^3 --> C
!
! We test <Y_l1,m1|Y_l2,m2> = delta_m1,m2 delta_l1,l2
!
! The test is done through the integration on a sphere with the Lebedev grid.
END_DOC
include 'constants.include.F'
integer :: l1,m1,i,l2,m2,lmax
double precision :: r(3),weight,accu_re, accu_im,accu
double precision :: re_ylm_1, im_ylm_1,re_ylm_2, im_ylm_2
double precision :: theta,phi,r_abs
lmax = 5 ! Maximum angular momentum until which we are going to test orthogonality conditions
do l1 = 0,lmax
do m1 = -l1 ,l1
do l2 = 0,lmax
do m2 = -l2 ,l2
accu_re = 0.d0 ! accumulator for the REAL part of <Y_l1,m1|Y_l2,m2>
accu_im = 0.d0 ! accumulator for the IMAGINARY part of <Y_l1,m1|Y_l2,m2>
accu = 0.d0 ! accumulator for the weights ==> should be \int dOmega == 4 pi
! <l1,m1|l2,m2> = \int dOmega Y_l1,m1^* Y_l2,m2
! \approx \sum_i W_i Y_l1,m1^*(r_i) Y_l2,m2(r_i) WITH r_i being on the spher of radius 1
do i = 1, n_points_integration_angular
r(1:3) = angular_quadrature_points(i,1:3) ! ith Lebedev point (x,y,z) on the sphere of radius 1
weight = weights_angular_points(i) ! associated Lebdev weight not necessarily positive
!!!!!!!!!!! Test of the Cartesian --> Spherical coordinates
! theta MUST belong to [0,pi] and phi to [0,2pi]
! gets the cartesian to spherical change of coordinates
call cartesian_to_spherical(r,theta,phi,r_abs)
if(theta.gt.pi.or.theta.lt.0.d0)then
print*,'pb with theta, it should be in [0,pi]',theta
print*,r
endif
if(phi.gt.2.d0*pi.or.phi.lt.0.d0)then
print*,'pb with phi, it should be in [0,2 pi]',phi/pi
print*,r
endif
!!!!!!!!!!! Routines returning the Spherical harmonics on the grid point
call spher_harm_func_r3(r,l1,m1,re_ylm_1, im_ylm_1)
call spher_harm_func_r3(r,l2,m2,re_ylm_2, im_ylm_2)
!!!!!!!!!!! Integration of Y_l1,m1^*(r) Y_l2,m2(r)
! = \int dOmega (re_ylm_1 -i im_ylm_1) * (re_ylm_2 +i im_ylm_2)
! = \int dOmega (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2) +i (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
accu_re += weight * (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2)
accu_im += weight * (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
accu += weight
enddo
! Test that the sum of the weights is 4 pi
if(dabs(accu - dfour_pi).gt.1.d-6)then
print*,'Problem !! The sum of the Lebedev weight is not 4 pi ..'
print*,accu
stop
endif
! Test for the delta l1,l2 and delta m1,m2
!
! Test for the off-diagonal part of the Kronecker delta
if(l1.ne.l2.or.m1.ne.m2)then
if(dabs(accu_re).gt.1.d-6.or.dabs(accu_im).gt.1.d-6)then
print*,'pb OFF DIAG !!!!! '
print*,'l1,m1,l2,m2',l1,m1,l2,m2
print*,'accu_re = ',accu_re
print*,'accu_im = ',accu_im
endif
endif
! Test for the diagonal part of the Kronecker delta
if(l1==l2.and.m1==m2)then
if(dabs(accu_re-1.d0).gt.1.d-5.or.dabs(accu_im).gt.1.d-6)then
print*,'pb DIAG !!!!! '
print*,'l1,m1,l2,m2',l1,m1,l2,m2
print*,'accu_re = ',accu_re
print*,'accu_im = ',accu_im
endif
endif
enddo
enddo
enddo
enddo
end
subroutine test_cart subroutine test_cart
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! test for the cartesian --> spherical change of coordinates ! test for the cartesian --> spherical change of coordinates
! !
! simple test such that the polar angle theta ranges in [0,pi] ! test the routine "cartesian_to_spherical" such that the polar angle theta ranges in [0,pi]
! !
! and the asymuthal angle phi ranges in [0,2pi] ! and the asymuthal angle phi ranges in [0,2pi]
END_DOC END_DOC
@ -40,97 +123,18 @@ subroutine test_cart
print*,phi/pi print*,phi/pi
end end
subroutine test_spher_harm
implicit none
BEGIN_DOC
! routine to test the spherical harmonics integration on a sphere with the grid.
!
! We test <Y_l1,m1|Y_l2,m2> = delta_m1,m2 delta_l1,l2
END_DOC
include 'constants.include.F'
integer :: l1,m1,i,l2,m2,lmax
double precision :: r(3),weight,accu_re, accu_im,accu
double precision :: re_ylm_1, im_ylm_1,re_ylm_2, im_ylm_2
l1 = 0
m1 = 0
l2 = 0
m2 = 0
lmax = 5
do l1 = 0,lmax
do m1 = -l1 ,l1
do l2 = 0,lmax
do m2 = -l2 ,l2
accu_re = 0.d0
accu_im = 0.d0
! <l1,m1|l2,m2> = \int dOmega Y_l1,m1^* Y_l2,m2
! = \int dOmega (re_ylm_1 -i im_ylm_1) * (re_ylm_2 +i im_ylm_2)
! = \int dOmega (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2) +i (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
accu = 0.d0
do i = 1, n_points_integration_angular
double precision :: theta,phi,r_abs
r(1:3) = angular_quadrature_points(i,1:3)
weight = weights_angular_points(i)
call cartesian_to_spherical(r,theta,phi,r_abs)
if(theta.gt.pi.or.theta.lt.0.d0)then
print*,'pb with theta',theta
print*,r
endif
if(phi.gt.2.d0*pi.or.phi.lt.0.d0)then
print*,'pb with phi',phi/pi
print*,r
endif
call spher_harm_func_r3(r,l1,m1,re_ylm_1, im_ylm_1)
call spher_harm_func_r3(r,l2,m2,re_ylm_2, im_ylm_2)
accu_re += weight * (re_ylm_1*re_ylm_2 + im_ylm_1*im_ylm_2)
accu_im += weight * (im_ylm_2*re_ylm_1 - im_ylm_1*re_ylm_2)
accu += weight
write(33,'(10(F16.10,X))')phi/pi
enddo
! Test for the delta l1,l2 and delta m1,m2
if(l1.ne.l2.or.m1.ne.m2)then
if(dabs(accu_re).gt.1.d-6.or.dabs(accu_im).gt.1.d-6)then
print*,'pb OFF DIAG !!!!! '
print*,'l1,m1,l2,m2',l1,m1,l2,m2
print*,'accu_re = ',accu_re
print*,'accu_im = ',accu_im
endif
endif
if(l1==l2.and.m1==m2)then
if(dabs(accu_re-1.d0).gt.1.d-5.or.dabs(accu_im).gt.1.d-6)then
print*,'pb DIAG !!!!! '
print*,'l1,m1,l2,m2',l1,m1,l2,m2
print*,'accu_re = ',accu_re
print*,'accu_im = ',accu_im
endif
endif
enddo
enddo
enddo
enddo
double precision :: x,dx,xmax,xmin
integer:: nx
nx = 10000
xmin = -5.d0
xmax = 5.d0
dx = (xmax - xmin)/dble(nx)
x = xmin
do i = 1, nx
write(34,*)x,datan(x),dacos(x)
x += dx
enddo
end
subroutine test_brutal_spheric subroutine test_brutal_spheric
implicit none implicit none
include 'constants.include.F' include 'constants.include.F'
BEGIN_DOC BEGIN_DOC
! test for the <Y_l1,m1|Y_l2,m2> = delta_m1,m2 delta_l1,l2 using a two dimentional integration ! Test for the <Y_l1,m1|Y_l2,m2> = delta_m1,m2 delta_l1,l2 using the following two dimentional integration
! !
! \int_0^2pi d Phi \int_-1^+1 d(cos(Theta)) Y_l1,m1^*(Theta,Phi) Y_l2,m2(Theta,Phi) ! \int_0^2pi d Phi \int_-1^+1 d(cos(Theta)) Y_l1,m1^*(Theta,Phi) Y_l2,m2(Theta,Phi)
! !
!= \int_0^2pi d Phi \int_0^pi dTheta sin(Theta) Y_l1,m1^*(Theta,Phi) Y_l2,m2(Theta,Phi) != \int_0^2pi d Phi \int_0^pi dTheta sin(Theta) Y_l1,m1^*(Theta,Phi) Y_l2,m2(Theta,Phi)
! !
! Allows to test for the general functions spher_harm_func_m_pos with spher_harm_func_expl ! Allows to test for the general functions "spher_harm_func_m_pos" with "spher_harm_func_expl"
END_DOC END_DOC
integer :: itheta, iphi,ntheta,nphi integer :: itheta, iphi,ntheta,nphi
double precision :: theta_min, theta_max, dtheta,theta double precision :: theta_min, theta_max, dtheta,theta
@ -147,7 +151,7 @@ subroutine test_brutal_spheric
dphi = (phi_max - phi_min)/dble(nphi) dphi = (phi_max - phi_min)/dble(nphi)
dtheta = (theta_max - theta_min)/dble(ntheta) dtheta = (theta_max - theta_min)/dble(ntheta)
lmax = 3 lmax = 2
do l1 = 0,lmax do l1 = 0,lmax
do m1 = 0 ,l1 do m1 = 0 ,l1
do l2 = 0,lmax do l2 = 0,lmax
@ -196,7 +200,7 @@ end
subroutine test_assoc_leg_pol subroutine test_assoc_leg_pol
implicit none implicit none
BEGIN_DOC BEGIN_DOC
! TODO : Put the documentation of the program here ! Test for the associated Legendre Polynoms. The test is done through the orthogonality condition.
END_DOC END_DOC
print *, 'Hello world' print *, 'Hello world'
integer :: l1,m1,ngrid,i,l2,m2 integer :: l1,m1,ngrid,i,l2,m2

View File

@ -1,7 +1,7 @@
program spher_harm program spher_harm
implicit none implicit none
call test_spher_harm ! call test_spher_harm
! call test_cart ! call test_cart
! call test_brutal_spheric call test_brutal_spheric
end end