diff --git a/src/ao_basis/EZFIO.cfg b/src/ao_basis/EZFIO.cfg index 7f3eb7ec..ad36ca6b 100644 --- a/src/ao_basis/EZFIO.cfg +++ b/src/ao_basis/EZFIO.cfg @@ -82,12 +82,12 @@ interface: ezfio, provider [ao_expo_pw] type: double precision doc: plane wave part for each primitive GTOs |AO| -size: (3,ao_basis.ao_num,ao_basis.ao_prim_num_max) +size: (4,ao_basis.ao_num,ao_basis.ao_prim_num_max) interface: ezfio, provider [ao_expo_phase] type: double precision doc: phase shift for each primitive GTOs |AO| -size: (3,ao_basis.ao_num,ao_basis.ao_prim_num_max) +size: (4,ao_basis.ao_num,ao_basis.ao_prim_num_max) interface: ezfio, provider diff --git a/src/ao_one_e_ints/aos_cgtos.irp.f b/src/ao_one_e_ints/aos_cgtos.irp.f index ae87b3a9..2792d938 100644 --- a/src/ao_one_e_ints/aos_cgtos.irp.f +++ b/src/ao_one_e_ints/aos_cgtos.irp.f @@ -47,10 +47,12 @@ BEGIN_PROVIDER [double precision, ao_coef_norm_cgtos, (ao_num, ao_prim_num_max)] implicit none - integer :: i, j, powA(3), nz + integer :: i, j, ii, m, powA(3), nz double precision :: norm - complex*16 :: overlap_x, overlap_y, overlap_z, C_A(3) - complex*16 :: integ1, integ2, expo + double precision :: kA2, phiA + complex*16 :: expo, expo_inv, C_A(3) + complex*16 :: overlap_x, overlap_y, overlap_z + complex*16 :: integ1, integ2, C1, C2 nz = 100 @@ -62,22 +64,31 @@ BEGIN_PROVIDER [double precision, ao_coef_norm_cgtos, (ao_num, ao_prim_num_max)] do i = 1, ao_num + ii = ao_nucl(i) powA(1) = ao_power(i,1) powA(2) = ao_power(i,2) powA(3) = ao_power(i,3) - ! TODO ! Normalization of the primitives if(primitives_normalized) then do j = 1, ao_prim_num(i) expo = ao_expo(i,j) + (0.d0, 1.d0) * ao_expo_im_cgtos(i,j) + expo_inv = (1.d0, 0.d0) / expo + do m = 1, 3 + C_A(m) = nucl_coord(ii,m) - (0.d0, 0.5d0) * expo_inv * ao_expo_pw(m,i,j) + enddo + phiA = ao_expo_phase(4,i,j) + KA2 = ao_expo_pw(4,i,j) - call overlap_cgaussian_xyz(C_A, C_A, expo, expo, powA, powA, overlap_x, overlap_y, overlap_z, integ1, nz) - call overlap_cgaussian_xyz(C_A, C_A, conjg(expo), expo, powA, powA, overlap_x, overlap_y, overlap_z, integ2, nz) + C1 = zexp(-(0.d0, 2.d0) * phiA - 0.5d0 * expo_inv * KA2) + C2 = zexp(-(0.5d0, 0.d0) * real(expo_inv) * KA2) - norm = 2.d0 * real(integ1 + integ2) + call overlap_cgaussian_xyz(C_A, C_A, expo, expo, powA, powA, overlap_x, overlap_y, overlap_z, integ1, nz) + call overlap_cgaussian_xyz(conjg(C_A), C_A, conjg(expo), expo, powA, powA, overlap_x, overlap_y, overlap_z, integ2, nz) + + norm = 2.d0 * real(C1 * integ1 + C2 * integ2) ao_coef_norm_cgtos(i,j) = ao_coef(i,j) / dsqrt(norm) enddo @@ -98,14 +109,14 @@ END_PROVIDER BEGIN_PROVIDER [double precision, ao_coef_norm_cgtos_ord, (ao_num, ao_prim_num_max)] &BEGIN_PROVIDER [complex*16 , ao_expo_cgtos_ord, (ao_num, ao_prim_num_max)] -&BEGIN_PROVIDER [double precision, ao_expo_pw_ord, (3, ao_num, ao_prim_num_max)] -&BEGIN_PROVIDER [double precision, ao_expo_phase_ord, (3, ao_num, ao_prim_num_max)] +&BEGIN_PROVIDER [double precision, ao_expo_pw_ord, (4, ao_num, ao_prim_num_max)] +&BEGIN_PROVIDER [double precision, ao_expo_phase_ord, (4, ao_num, ao_prim_num_max)] implicit none - integer :: i, j + integer :: i, j, m integer :: iorder(ao_prim_num_max) - double precision :: d(ao_prim_num_max,9) + double precision :: d(ao_prim_num_max,11) d = 0.d0 @@ -116,28 +127,26 @@ END_PROVIDER d(j,1) = ao_expo(i,j) d(j,2) = ao_coef_norm_cgtos(i,j) d(j,3) = ao_expo_im_cgtos(i,j) - d(j,4) = ao_expo_pw(1,i,j) - d(j,5) = ao_expo_pw(2,i,j) - d(j,6) = ao_expo_pw(3,i,j) - d(j,7) = ao_expo_phase(1,i,j) - d(j,8) = ao_expo_phase(2,i,j) - d(j,9) = ao_expo_phase(3,i,j) + + do m = 1, 4 + d(j,3+m) = ao_expo_pw(m,i,j) + d(j,7+m) = ao_expo_phase(m,i,j) + enddo enddo call dsort(d(1,1), iorder, ao_prim_num(i)) - do j = 2, 9 + do j = 2, 11 call dset_order(d(1,j), iorder, ao_prim_num(i)) enddo do j = 1, ao_prim_num(i) ao_expo_cgtos_ord (i,j) = d(j,1) + (0.d0, 1.d0) * d(j,3) ao_coef_norm_cgtos_ord(i,j) = d(j,2) - ao_expo_pw_ord(i,j,1) = d(j,4) - ao_expo_pw_ord(i,j,2) = d(j,5) - ao_expo_pw_ord(i,j,3) = d(j,6) - ao_expo_phase_ord(i,j,1) = d(j,7) - ao_expo_phase_ord(i,j,2) = d(j,8) - ao_expo_phase_ord(i,j,3) = d(j,9) + + do m = 1, 4 + ao_expo_pw_ord(m,i,j) = d(j,3+m) + ao_expo_phase_ord(m,i,j) = d(j,7+m) + enddo enddo enddo @@ -154,8 +163,10 @@ END_PROVIDER integer :: i, j, m, n, l, ii, jj, dim1, power_A(3), power_B(3) double precision :: c, overlap, overlap_x, overlap_y, overlap_z - complex*16 :: alpha, alpha_inv, A_center(3), KA2(3), phiA(3) - complex*16 :: beta, beta_inv, B_center(3), KB2(3), phiB(3) + double precision :: KA2(3), phiA(3) + double precision :: KB2(3), phiB(3) + complex*16 :: alpha, alpha_inv, A_center(3) + complex*16 :: beta, beta_inv, B_center(3) complex*16 :: C1(1:4), C2(1:4) complex*16 :: overlap1, overlap_x1, overlap_y1, overlap_z1 complex*16 :: overlap2, overlap_x2, overlap_y2, overlap_z2 diff --git a/src/ao_one_e_ints/one_e_coul_integrals_cgtos.irp.f b/src/ao_one_e_ints/one_e_coul_integrals_cgtos.irp.f index d4adaf62..568d4d8f 100644 --- a/src/ao_one_e_ints/one_e_coul_integrals_cgtos.irp.f +++ b/src/ao_one_e_ints/one_e_coul_integrals_cgtos.irp.f @@ -15,8 +15,10 @@ BEGIN_PROVIDER [double precision, ao_integrals_n_e_cgtos, (ao_num, ao_num)] integer :: power_A(3), power_B(3) integer :: i, j, k, l, m, n, ii, jj double precision :: c, Z, C_center(3) - complex*16 :: alpha, alpha_inv, A_center(3), phiA, KA2 - complex*16 :: beta, beta_inv, B_center(3), phiB, KB2 + double precision :: phiA, KA2 + double precision :: phiB, KB2 + complex*16 :: alpha, alpha_inv, A_center(3) + complex*16 :: beta, beta_inv, B_center(3) complex*16 :: C1, C2, I1, I2 complex*16 :: NAI_pol_mult_cgtos diff --git a/src/ao_one_e_ints/one_e_kin_integrals_cgtos.irp.f b/src/ao_one_e_ints/one_e_kin_integrals_cgtos.irp.f index 99ed82eb..7f1f62cb 100644 --- a/src/ao_one_e_ints/one_e_kin_integrals_cgtos.irp.f +++ b/src/ao_one_e_ints/one_e_kin_integrals_cgtos.irp.f @@ -8,8 +8,10 @@ implicit none integer :: i, j, m, n, l, ii, jj, dim1, power_A(3), power_B(3) double precision :: c, deriv_tmp - complex*16 :: alpha, alpha_inv, A_center(3), KA2, phiA, C1 - complex*16 :: beta, beta_inv, B_center(3), KB2, phiB, C2 + double precision :: KA2, phiA + double precision :: KB2, phiB + complex*16 :: alpha, alpha_inv, A_center(3), C1 + complex*16 :: beta, beta_inv, B_center(3), C2 complex*16 :: overlap_x, overlap_y, overlap_z, overlap complex*16 :: overlap_x0_1, overlap_y0_1, overlap_z0_1 complex*16 :: overlap_x0_2, overlap_y0_2, overlap_z0_2 diff --git a/src/ao_two_e_ints/two_e_coul_integrals_cgtos.irp.f b/src/ao_two_e_ints/two_e_coul_integrals_cgtos.irp.f index adc8feeb..3ac6f1a1 100644 --- a/src/ao_two_e_ints/two_e_coul_integrals_cgtos.irp.f +++ b/src/ao_two_e_ints/two_e_coul_integrals_cgtos.irp.f @@ -17,10 +17,14 @@ double precision function ao_two_e_integral_cgtos(i, j, k, l) integer :: ii, jj, kk, ll, dim1, I_power(3), J_power(3), K_power(3), L_power(3) integer :: iorder_p1(3), iorder_p2(3), iorder_q1(3), iorder_q2(3) double precision :: coef1, coef2, coef3, coef4 - complex*16 :: expo1, expo1_inv, I_center(3), KI2, phiI - complex*16 :: expo2, expo2_inv, J_center(3), KJ2, phiJ - complex*16 :: expo3, expo3_inv, K_center(3), KK2, phiK - complex*16 :: expo4, expo4_inv, L_center(3), KL2, phiL + double precision :: KI2, phiI + double precision :: KJ2, phiJ + double precision :: KK2, phiK + double precision :: KL2, phiL + complex*16 :: expo1, expo1_inv, I_center(3) + complex*16 :: expo2, expo2_inv, J_center(3) + complex*16 :: expo3, expo3_inv, K_center(3) + complex*16 :: expo4, expo4_inv, L_center(3) complex*16 :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1, p1_inv complex*16 :: P2_new(0:max_dim,3), P2_center(3), fact_p2, pp2, p2_inv complex*16 :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1, q1_inv @@ -313,10 +317,14 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) integer :: ii, jj, kk, ll, dim1, I_power(3), J_power(3), K_power(3), L_power(3) integer :: iorder_p1(3), iorder_p2(3), iorder_q1(3), iorder_q2(3) double precision :: coef1, coef2, coef3, coef4 - complex*16 :: expo1, expo1_inv, I_center(3), KI2, phiI - complex*16 :: expo2, expo2_inv, J_center(3), KJ2, phiJ - complex*16 :: expo3, expo3_inv, K_center(3), KK2, phiK - complex*16 :: expo4, expo4_inv, L_center(3), KL2, phiL + double precision :: KI2, phiI + double precision :: KJ2, phiJ + double precision :: KK2, phiK + double precision :: KL2, phiL + complex*16 :: expo1, expo1_inv, I_center(3) + complex*16 :: expo2, expo2_inv, J_center(3) + complex*16 :: expo3, expo3_inv, K_center(3) + complex*16 :: expo4, expo4_inv, L_center(3) complex*16 :: P1_new(0:max_dim,3), P1_center(3), fact_p1, pp1, p1_inv complex*16 :: P2_new(0:max_dim,3), P2_center(3), fact_p2, pp2, p2_inv complex*16 :: Q1_new(0:max_dim,3), Q1_center(3), fact_q1, qq1, q1_inv @@ -393,7 +401,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) !C3 = C2 C4 = zexp((0.d0, 2.d0) * (phiK - phiL) - 0.5d0 * (conjg(expo1_inv) * KK2 + expo2_inv * KL2)) C5 = zexp(-(0.d0, 2.d0) * phiK - 0.5d0 * (expo1_inv * KK2 + real(expo2_inv) * KL2)) - C6 = zexp(-0.5d0 * (real(expo1_inv) * KK2 + real(expo2_inv) * KL2)) + C6 = zexp(-(0.5d0, 0.d0) * (real(expo1_inv) * KK2 + real(expo2_inv) * KL2)) !C7 = C6 !C8 = conjg(C5) @@ -478,7 +486,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) !C3 = C2 C4 = zexp((0.d0, 2.d0) * (phiI - phiJ) - 0.5d0 * (conjg(expo1_inv) * KI2 + expo2_inv * KJ2)) C5 = zexp(-(0.d0, 2.d0) * phiI - 0.5d0 * (expo1_inv * KI2 + real(expo2_inv) * KJ2)) - C6 = zexp(-0.5d0 * (real(expo1_inv) * KI2 + real(expo2_inv) * KJ2)) + C6 = zexp(-(0.5d0, 0.d0) * (real(expo1_inv) * KI2 + real(expo2_inv) * KJ2)) !C7 = C6 !C8 = conjg(C5) @@ -643,7 +651,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) !C3 = C2 C4 = zexp((0.d0, 2.d0) * (phiK - phiL) - 0.5d0 * (conjg(expo1_inv) * KK2 + expo2_inv * KL2)) C5 = zexp(-(0.d0, 2.d0) * phiK - 0.5d0 * (expo1_inv * KK2 + real(expo2_inv) * KL2)) - C6 = zexp(-0.5d0 * (real(expo1_inv) * KK2 + real(expo2_inv) * KL2)) + C6 = zexp(-(0.5d0, 0.d0) * (real(expo1_inv) * KK2 + real(expo2_inv) * KL2)) !C7 = C6 !C8 = conjg(C5) @@ -726,7 +734,7 @@ double precision function ao_2e_cgtos_schwartz_accel(i, j, k, l) !C3 = C2 C4 = zexp((0.d0, 2.d0) * (phiI - phiJ) - 0.5d0 * (conjg(expo1_inv) * KI2 + expo2_inv * KJ2)) C5 = zexp(-(0.d0, 2.d0) * phiI - 0.5d0 * (expo1_inv * KI2 + real(expo2_inv) * KJ2)) - C6 = zexp(-0.5d0 * (real(expo1_inv) * KI2 + real(expo2_inv) * KJ2)) + C6 = zexp(-(0.5d0, 0.d0) * (real(expo1_inv) * KI2 + real(expo2_inv) * KJ2)) !C7 = C6 !C8 = conjg(C5)