9
1
mirror of https://github.com/QuantumPackage/qp2.git synced 2024-09-12 10:48:31 +02:00

opt in v_ij_u_cst_mu_j1b_an: tested

This commit is contained in:
Abdallah Ammar 2023-08-29 19:21:54 +02:00
parent 8f6df34283
commit 53041958a6
3 changed files with 317 additions and 12 deletions

View File

@ -1245,3 +1245,157 @@ end subroutine NAI_pol_x2_mult_erf_ao
! ---
subroutine NAI_pol_012_mult_erf_ao_with1s(i_ao, j_ao, beta, B_center, mu_in, C_center, ints)
BEGIN_DOC
!
! Computes the following integral :
!
! ints(1) = $\int_{-\infty}^{infty} dr x^0 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! ints(2) = $\int_{-\infty}^{infty} dr x^1 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! ints(3) = $\int_{-\infty}^{infty} dr y^1 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! ints(4) = $\int_{-\infty}^{infty} dr z^1 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! ints(5) = $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! ints(6) = $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! ints(7) = $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) e^{-\beta (r - B_center)^2} \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: beta, B_center(3), mu_in, C_center(3)
double precision, intent(out) :: ints(7)
integer :: i, j, power_Ai(3), power_Aj(3), n_pt_in, m
integer :: power_A1(3), power_A2(3)
double precision :: Ai_center(3), Aj_center(3), alphai, alphaj, coef, coefi
double precision :: integral0, integral1, integral2
double precision, external :: NAI_pol_mult_erf_with1s
ASSERT(beta .ge. 0.d0)
if(beta .lt. 1d-10) then
call NAI_pol_012_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
return
endif
ints = 0.d0
power_Ai(1:3) = ao_power(i_ao,1:3)
power_Aj(1:3) = ao_power(j_ao,1:3)
Ai_center(1:3) = nucl_coord(ao_nucl(i_ao),1:3)
Aj_center(1:3) = nucl_coord(ao_nucl(j_ao),1:3)
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alphai = ao_expo_ordered_transp (i,i_ao)
coefi = ao_coef_normalized_ordered_transp(i,i_ao)
do j = 1, ao_prim_num(j_ao)
alphaj = ao_expo_ordered_transp (j,j_ao)
coef = coefi * ao_coef_normalized_ordered_transp(j,j_ao)
integral0 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_Ai, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
ints(1) += coef * integral0
do m = 1, 3
power_A1 = power_Ai
power_A1(m) += 1
integral1 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_A1, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
ints(1+m) += coef * (integral1 + Ai_center(m)*integral0)
power_A2 = power_Ai
power_A2(m) += 2
integral2 = NAI_pol_mult_erf_with1s(Ai_center, Aj_center, power_A2, power_Aj, alphai, alphaj, beta, B_center, C_center, n_pt_in, mu_in)
ints(4+m) += coef * (integral2 + Ai_center(m) * (2.d0*integral1 + Ai_center(m)*integral0))
enddo
enddo
enddo
end subroutine NAI_pol_012_mult_erf_ao_with1s
! ---
subroutine NAI_pol_012_mult_erf_ao(i_ao, j_ao, mu_in, C_center, ints)
BEGIN_DOC
!
! Computes the following integral :
!
! int(1) = $\int_{-\infty}^{infty} dr x^0 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! int(2) = $\int_{-\infty}^{infty} dr x^1 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! int(3) = $\int_{-\infty}^{infty} dr y^1 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! int(4) = $\int_{-\infty}^{infty} dr z^1 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
! int(5) = $\int_{-\infty}^{infty} dr x^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! int(6) = $\int_{-\infty}^{infty} dr y^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
! int(7) = $\int_{-\infty}^{infty} dr z^2 * \chi_i(r) \chi_j(r) \frac{\erf(\mu | r - R_C | )}{ | r - R_C | }$.
!
END_DOC
include 'utils/constants.include.F'
implicit none
integer, intent(in) :: i_ao, j_ao
double precision, intent(in) :: mu_in, C_center(3)
double precision, intent(out) :: ints(7)
integer :: i, j, num_A, num_B, power_A(3), power_B(3), n_pt_in, m
integer :: power_A1(3), power_A2(3)
double precision :: A_center(3), B_center(3), alpha, beta, coef
double precision :: integral0, integral1, integral2
double precision :: NAI_pol_mult_erf
ints = 0.d0
num_A = ao_nucl(i_ao)
power_A(1:3) = ao_power(i_ao,1:3)
A_center(1:3) = nucl_coord(num_A,1:3)
num_B = ao_nucl(j_ao)
power_B(1:3) = ao_power(j_ao,1:3)
B_center(1:3) = nucl_coord(num_B,1:3)
n_pt_in = n_pt_max_integrals
do i = 1, ao_prim_num(i_ao)
alpha = ao_expo_ordered_transp(i,i_ao)
do j = 1, ao_prim_num(j_ao)
beta = ao_expo_ordered_transp(j,j_ao)
coef = ao_coef_normalized_ordered_transp(j,j_ao) * ao_coef_normalized_ordered_transp(i,i_ao)
integral0 = NAI_pol_mult_erf(A_center, B_center, power_A, power_B, alpha, beta, C_center, n_pt_in, mu_in)
ints(1) += coef * integral0
do m = 1, 3
power_A1 = power_A
power_A1(m) += 1
integral1 = NAI_pol_mult_erf(A_center, B_center, power_A1, power_B, alpha, beta, C_center, n_pt_in, mu_in)
ints(1+m) += coef * (integral1 + A_center(m)*integral0)
power_A2 = power_A
power_A2(m) += 2
integral2 = NAI_pol_mult_erf(A_center, B_center, power_A2, power_B, alpha, beta, C_center, n_pt_in, mu_in)
ints(4+m) += coef * (integral2 + A_center(m) * (2.d0*integral1 + A_center(m)*integral0))
enddo
enddo
enddo
end subroutine NAI_pol_012_mult_erf_ao
! ---

View File

@ -299,15 +299,12 @@ END_PROVIDER
! ---
BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_points_final_grid)]
BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an_old, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12)
!
! TODO
! one subroutine for all integrals
!
END_DOC
include 'constants.include.F'
@ -325,7 +322,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_poin
double precision, external :: overlap_gauss_r12_ao_with1s
double precision, external :: NAI_pol_mult_erf_ao_with1s
print*, ' providing v_ij_u_cst_mu_j1b_an ...'
print*, ' providing v_ij_u_cst_mu_j1b_an_old ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
@ -333,7 +330,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_poin
ct = inv_sq_pi_2 / mu_erf
v_ij_u_cst_mu_j1b_an = 0.d0
v_ij_u_cst_mu_j1b_an_old = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, &
@ -342,7 +339,7 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_poin
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
!$OMP final_grid_points, mu_erf, ct, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_an)
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_an_old)
!$OMP DO
do ipoint = 1, n_points_final_grid
@ -413,6 +410,125 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_poin
! ---
v_ij_u_cst_mu_j1b_an_old(j,i,ipoint) = tmp
enddo
enddo
enddo
!$OMP END DO
!$OMP END PARALLEL
do ipoint = 1, n_points_final_grid
do i = 2, ao_num
do j = 1, i-1
v_ij_u_cst_mu_j1b_an_old(j,i,ipoint) = v_ij_u_cst_mu_j1b_an_old(i,j,ipoint)
enddo
enddo
enddo
call wall_time(wall1)
print*, ' wall time for v_ij_u_cst_mu_j1b_an_old', wall1 - wall0
END_PROVIDER
! ---
BEGIN_PROVIDER [double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_points_final_grid)]
BEGIN_DOC
!
! int dr2 phi_i(r2) phi_j(r2) 1s_j1b(r2) u(mu, r12)
!
END_DOC
include 'constants.include.F'
implicit none
integer :: i, j, ipoint, i_1s
double precision :: r(3), r1_2
double precision :: int_o
double precision :: int_c(7), int_e(7)
double precision :: coef, beta, B_center(3)
double precision :: tmp, ct
double precision :: wall0, wall1
double precision, external :: overlap_gauss_r12_ao_with1s
double precision, external :: NAI_pol_mult_erf_ao_with1s
print*, ' providing v_ij_u_cst_mu_j1b_an ...'
call wall_time(wall0)
provide mu_erf final_grid_points j1b_pen
PROVIDE List_all_comb_b2_size List_all_comb_b2_coef List_all_comb_b2_expo List_all_comb_b2_cent
ct = inv_sq_pi_2 / mu_erf
v_ij_u_cst_mu_j1b_an = 0.d0
!$OMP PARALLEL DEFAULT (NONE) &
!$OMP PRIVATE (ipoint, i, j, i_1s, r, coef, beta, B_center, &
!$OMP r1_2, tmp, int_c, int_e, int_o) &
!$OMP SHARED (n_points_final_grid, ao_num, List_all_comb_b2_size, &
!$OMP final_grid_points, mu_erf, ct, &
!$OMP List_all_comb_b2_coef, List_all_comb_b2_expo, &
!$OMP List_all_comb_b2_cent, v_ij_u_cst_mu_j1b_an)
!$OMP DO
do ipoint = 1, n_points_final_grid
r(1) = final_grid_points(1,ipoint)
r(2) = final_grid_points(2,ipoint)
r(3) = final_grid_points(3,ipoint)
r1_2 = 0.5d0 * (r(1)*r(1) + r(2)*r(2) + r(3)*r(3))
do i = 1, ao_num
do j = i, ao_num
! ---
coef = List_all_comb_b2_coef (1)
beta = List_all_comb_b2_expo (1)
B_center(1) = List_all_comb_b2_cent(1,1)
B_center(2) = List_all_comb_b2_cent(2,1)
B_center(3) = List_all_comb_b2_cent(3,1)
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c)
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e)
int_o = overlap_gauss_r12_ao_with1s(B_center, beta, r, mu_erf*mu_erf, i, j)
tmp = coef &
* ( r1_2 * (int_c(1) - int_e(1)) &
- r(1) * (int_c(2) - int_e(2)) - r(2) * (int_c(3) - int_e(3)) - r(3) * (int_c(4) - int_e(4)) &
+ 0.5d0 * (int_c(5) + int_c(6) + int_c(7) - int_e(5) - int_e(6) - int_e(7)) &
- ct * int_o &
)
! ---
do i_1s = 2, List_all_comb_b2_size
coef = List_all_comb_b2_coef (i_1s)
if(dabs(coef) .lt. 1d-15) cycle ! beta = 0.0
beta = List_all_comb_b2_expo (i_1s)
B_center(1) = List_all_comb_b2_cent(1,i_1s)
B_center(2) = List_all_comb_b2_cent(2,i_1s)
B_center(3) = List_all_comb_b2_cent(3,i_1s)
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, 1.d+9, r, int_c)
call NAI_pol_012_mult_erf_ao_with1s(i, j, beta, B_center, mu_erf, r, int_e)
int_o = overlap_gauss_r12_ao_with1s(B_center, beta, r, mu_erf*mu_erf, i, j)
tmp = tmp + coef &
* ( r1_2 * (int_c(1) - int_e(1)) &
- r(1) * (int_c(2) - int_e(2)) - r(2) * (int_c(3) - int_e(3)) - r(3) * (int_c(4) - int_e(4)) &
+ 0.5d0 * (int_c(5) + int_c(6) + int_c(7) - int_e(5) - int_e(6) - int_e(7)) &
- ct * int_o &
)
enddo
! ---
v_ij_u_cst_mu_j1b_an(j,i,ipoint) = tmp
enddo
enddo
@ -434,4 +550,3 @@ BEGIN_PROVIDER [ double precision, v_ij_u_cst_mu_j1b_an, (ao_num, ao_num, n_poin
END_PROVIDER
! ---

View File

@ -14,7 +14,9 @@ program test_non_h
!call routine_grad_squared()
!call routine_fit()
call test_ipp()
!call test_ipp()
call test_v_ij_u_cst_mu_j1b_an()
end
! ---
@ -545,9 +547,43 @@ end subroutine grad1_aos_ik_grad1_esquare
! ---
subroutine test_v_ij_u_cst_mu_j1b_an()
implicit none
integer :: i, j, ipoint
double precision :: I_old, I_new
double precision :: norm, accu, thr, diff
PROVIDE v_ij_u_cst_mu_j1b_an_old v_ij_u_cst_mu_j1b_an
thr = 1d-12
norm = 0.d0
accu = 0.d0
do ipoint = 1, n_points_final_grid
do i = 1, ao_num
do j = 1, ao_num
I_old = v_ij_u_cst_mu_j1b_an_old(j,i,ipoint)
I_new = v_ij_u_cst_mu_j1b_an (j,i,ipoint)
diff = dabs(I_new-I_old)
if(diff .gt. thr) then
print *, ' problem on:', j, i, ipoint
print *, ' old value :', I_old
print *, ' new value :', I_new
stop
endif
accu += diff
norm += dabs(I_old)
enddo
enddo
enddo
print*, ' accuracy(%) = ', 100.d0 * accu / norm
return
end subroutine test_v_ij_u_cst_mu_j1b_an()